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Abstract 

Fast re-training of word segmentation models is 
required for adapting to new resources or 
domains in NLP of many Asian languages 
without word delimiters. The traditional 
tokenization model is efficient but inaccurate. 
This paper proposes a phrase-based model that 
factors sentence tokenization into phrase 
tokenizations, the dependencies of which are 
also taken into account. The model has a good 
OOV recognition ability, which improves the 
overall performance significantly. The training 
is a linear time phrase extraction and MLE 
procedure, while the decoding is via dynamic 
programming based algorithms. 

1 Introduction 

In many Asian languages, including Chinese, a 
sentence is written as a character sequence without 
word delimiters, thus word segmentation remains a 
key research topic in language processing for these 
languages. Although many reports from evaluation 
tasks present quite positive results, a fundamental 
problem for real word applications is that most 
systems heavily depend on the data they were 
trained on. In order to utilize increasingly available 
language resources such as user contributed 
annotations and web lexicon and/or to dynamically 
construct models for new domains, we have to 
either frequently re-build models or rely on 
techniques such as incremental learning and 
transfer learning, which are unsolved problems 
themselves.  
    In the case of frequent model re-building, the 
most efficient approach is the tokenization model  

 
(using the terminology in Huang et al., 2007), in 
which the re-training is just the update of the 
dictionary and the segmentation is a greedy string 
matching procedure using the dictionary and some 
disambiguation heuristics, e.g. Liang (1986) and 
Wang et al. (1991). An extension of this approach 
is the dynamic programming search of the most 
probable word combination on the word lattice, 
such as Ma (1996) and Sproat et al. (1996), which 
utilize information such as word frequency 
statistics in a corpus to build the model and are less 
efficient but more accurate. 
    However, all the methods mentioned above are 
mostly based on the knowledge of in-vocabulary 
words and usually suffer from poor performance, 
as the out-of-vocabulary words (OOV) rather than 
segmentation ambiguities turn out to the dominant 
error source for word segmentation on real corpora 
(Huang and Zhao, 2007). This fact has led to a 
shift of the research focus to modeling the roles of 
individual characters in the word formation process 
to tackle the OOV problem. Xue (2003) proposes a 
character classification model, which classifies 
characters according to their positions in a word 
using the maximum entropy classifier (Berger et 
al., 1996). Peng et al. (2004) has further extended 
this model to its sequential form, i.e. sequence 
labeling, by adopting linear-chain conditional 
random fields (CRFs, Lafferty et al., 2001). As it is 
capable of capturing the morphological behaviors 
of characters, the character classification model 
has significantly better performance in OOV 
recognition and overall segmentation accuracy, and 
has been the state-of-art since its introduction, 
suggested by the leading performances of systems 
based on it in recent international Chinese word 
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segmentation bakeoffs (Emerson, 2005; Levow, 
2006; Zhao and Liu, 2010).  
    The tokenization model has advantages in 
simplicity and efficiency, as the basic operation in 
segmentation is string matching with linear time 
complexity to the sentence length and it only needs 
a dictionary thus requires no training as in the 
character classification model, which can easily 
have millions of features and require hundreds of 
iterations in the training phase. On the other hand, 
it has inferior performance, caused by its poor 
OOV induction ability.  
    This work proposes a framework called phrase-
based tokenization as a generalization of the 
tokenization model to cope with its deficiencies in 
OOV recognition, while preserving its advantages 
of simplicity and efficiency, which are important 
for adaptive word segmentation. The segmentation 
hypothesis unit is extended from a word to a 
phrase, which is a character string of arbitrary 
length, i.e. combinations of partial and/or complete 
words. And the statistics of different tokenizations 
of the same phrase are collected and used for 
parameters estimation, which leads to a linear time 
model construction procedure. This extension 
makes hypothesis units capable of capturing richer 
context and describing morphological behavior of 
characters, which improves OOV recognition. 
Moreover, overlapping hypothesis units can be 
combined once certain consistency conditions are 
satisfied, which avoids the unrealistic assumption 
of independence among the tokenizations of 
neighboring phrases.  
    Phrase-based tokenization decomposes the 
sentence tokenization into phrase tokenizations. 
We use a graph called phrase tokenization lattice 
to represent all the hypotheses of phrase 
tokenization in a given sentence. Under such a 
formulation, tokenizing a sentence is transformed 
to the shortest path search problem on the graph, 
which can be efficiently solved by dynamic 
programming techniques similar to the Viterbi 
(1967) algorithm.   

2 Phrase-Based Model 

The hypothesis unit of the tokenization model is 
the word, i.e. it selects the best word sequence 
from all the words that can be matched by 
substrings of the sentence (usually in a greedy 
manner). Once a word is chosen, the corresponding 

boundaries are determined. This implies that as the 
characters in a word are always considered as a 
whole, the morphological behavior of an individual 
character, e.g. the distribution of its positions in 
words, is ignored thus makes it impossible to 
model the word formation process and recognize 
OOV.   
    Critical tokenization (Guo, 1997) suggests a 
method of discovering all and only unambiguous 
token boundaries (critical points) and generating 
longest substrings with all inner positions 
ambiguous (critical fragments) under the 
assumption of complete dictionary. Then an 
example-based method using the context can be 
adopted to disambiguate the tokenization of critical 
fragments (Hu et al, 2004). However, the complete 
dictionary assumption is not realistic in practice, as 
the word formation is so dynamic and productive 
that there is no dictionary that is even close to the 
complete lexicon. Given the presence of OOV, a 
word, including a monosyllabic word, in the 
original dictionary may be a substring, i.e. a partial 
word, of an OOV. In this case, the critical points 
found by the dictionary are not guaranteed to be 
unambiguous.  
    As the complete dictionary does not exist as a 
static object, a possible solution is to make a 
dynamic dictionary, which induces words on the 
fly. But this will not be discussed in this paper. 
Instead, we attempt to generalize the tokenization 
model to work without the complete dictionary. 
Different from making distinctions of critical 
fragments and “non-critical” fragments in critical 
tokenization, we suggest using phrases to represent 
potentially ambiguous fragments of sentences in a 
unified way. We define a phrase as a substring of a 
sentence, the boundaries of which, depending on 
the tokenization, may or may not necessarily match 
word boundaries. The fact that partial words, 
including single characters, may appear on both 
ends of a phrase makes it possible to describe 
“morphemes in the context” for OOV induction. A 
consequence of introducing phrase in tokenization 
is that a manually segmented corpus is needed in 
order to collect phrases. 

2.1   Tokenization 

Tokenization is the process of separating words or 
word-like units from sentences or character strings. 
We can consider sentence tokenization as a 
mapping from each position in the sentence to a 
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binary value, which indicates the presence 
(denoted as #) or the absence of word boundary 
(denoted as $) at that position. A specific 
tokenization realization of a sentence can be 
represented by a list of binary values, which can be 
generated by the concatenations of its sub-lists. In 
other words, a tokenization of a given sentence can 
be represented as the concatenation of the 
tokenizations of its component phrases.  
    If we assume that the tokenization of a phrase is 
independent of other phrases in the same sentence, 
the sentence tokenization problem is decomposed 
to smaller phrase tokenization problems, which are 
unrelated to each other. The independency 
assumption is not necessarily true but in general is 
a good approximation. We take this assumption by 
default, unless there exists evidence that suggests 
otherwise. In that case, we introduce a method 
called backward dependency match to fix the 
problem, which will be discussed in Section 3.3. 

 2.2   Phrase Tokenization Lattice 

Informally a phrase tokenization lattice, or lattice 
in short, is a set of hypothesized tokenization of 
phrases in the given sentence, which is a compact 
representation of all the possible tokenization for 
that sentence. Using the notations in Mohri (2002), 
we formally define a lattice as a weighted directed 
graph <V,E >  with a mapping  W :E! A , where 
V  is the set of nodes, E  is the set of edges, and 
the mapping W  assigns each edge a weight w  
from the semiring < A,!,", 0,1> 1.  
    For a given sentence S[0...m] , each node 
v !V , denotes a sentence position (the position 
between a pair of adjacent characters in a 
untokenized sentence). Each edge e! E  from 
node va to node vb , denotes a tokenization of the 
phrase between the positions defined by va  and 
vb . And for each edge e , a weight w  is 
determined by the mapping W , denotes the phrase 
tokenization probability, the probability of the 
phrase defined by the two nodes of the edge being 
tokenized as the tokenization defined by that edge. 
A path !  in the lattice is a sequence of 
consecutive edges, i.e. ! = e1e2...ek , where ei  and 
                                                             
1 A semiring defines an algebra system with certain rules to 
compute path probabilities and the max probabilities from a 
node to another. See Mohri (2002) for details.  
 

ei+1 are connected with a node. The weight for the 
path !  can be defined as: 

w(! ) =!
i=1

k
w(ei )                   (1) 

which is the product of the weights of its 
component edges. A path from the source node to 
the sink node, represents a tokenization of the 
sentence being factored as the concatenation of 
tokenizations of phrases represented by those edges 
of on that path.  
    For example, with some edges being pruned, the 
lattice for the sentence 有人质疑他 ‘Someone 
questions him’ is shown in Figure 1.  

 
Figure 1. A pruned phrase tokenization lattice. Edges 
are tokenizations of phrases, e.g. e5  represents 
tokenizing 质疑 ‘question’ into a word and e7  
represents tokenizing疑他 ‘doubt him’ into a partial 
word 疑  ‘doubt’ followed by a word 他 ‘him’.  

2.3   Tokenization as the Best Path Search 

After the introduction of the lattice, we formally 
describe the tokenization (disambiguation) 
problem as the best path searching on the lattice: 

 
 
T! = argmax

T!D
w T( )                (2) 

where D  is the set of all paths from the source 
node to the sink node, and  T! is the path with the 
highest weight, which represents the best 
tokenization of the sentence. Intuitively, we 
consider the product of phrase tokenization 
probabilities as the probability of the sentence 
tokenization that is generated from the 
concatenation of these phrase tokenizations.  
    Note that every edge in the lattice is from a node 
represents an earlier sentence position to a node 
that represents a later one. In other words, the 
lattice is acyclic and has a clear topological order. 
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In this case, the best path can be found using the 
Viterbi (1967) algorithm efficiently2. 

3 Training and Inference Algorithms 

3.1   Model Training 

In order to use the lattice to tokenize unseen 
sentences, we first have to build a model that can 
generate the edges and their associated weight, i.e. 
the tokenization of all the possible phrases and 
their corresponding phrase tokenization probability. 
We do it by collecting all the phrases that have 
occurred in a training corpus and use maximum 
likelihood estimation (MLE) to estimate the phrase 
tokenization probabilities.  The estimation of the 
probability that a particular phrase A = a1a 2 ...an  
being tokenized as the tokenization T = t1t2 ...tm  is 
given in equation (3), where C(•)  represents the 
empirical count, and the set of all T ' stands for all 
possible tokenizations of A . To avoid extreme 
cases in which there is no path at all, techniques 
such as smoothing can be applied. 

P(T | A) = C (T ,A)
C (T ',A)

T '! = C (T ,A)
C (A)                (3) 

    The result of the MLE estimation is stored in a 
data structure called phase tokenization table, from 
which one can retrieval all the possible 
tokenizations with their corresponding 
probabilities for the every phrase that has occurred 
in the training corpus. With this model, we can 
construct the lattice, i.e. determine the set of edges 
E and the mapping function W (defining nodes is 
trivial) for a given sentence in a simple string 
matching and table retrieval manner: when a 
substring of sentence is matched to a stored phrase, 
an edge is built from the its starting and ending 
node to represent a tokenization of that phrase, 
with the weight of the edge equals to the MLE 
estimation of the stored phrase-tokenization pair.  

3.2   Simple Dynamic Programming 

Once the model is built, we can tokenize a given 
sentence by the inference on the lattice which 
represents that sentence. The proposed simple 
dynamic programming algorithm (Algorithm 1, as 

                                                             
2 More rigid mathematical descriptions of this family of 
problems and generic algorithms based on semirings are 
discussed in Mohri (2002) and Huang (2008). 

shown in Figure 2) can be considered as the phrase 
tokenization lattice version of the evalUtterance 
algorithm in Venkataraman (2001). The best 
tokenization of the partial sentence up to a certain 
position is yielded by the best combination of one 
previous best tokenization and one of the phrase 
tokenizations under consideration at the current 
step.  
    The upper bound of the time complexity of 
Algorithm 1 is O(kn2 ) , where n  is the sentence 
length and k is the maximum number of the 
possible tokenization for a phrase. But in practice, 
it is neither necessary nor possible (due to data 
sparseness) to consider phrases of arbitrary length, 
so we set a constraint of maximum phrase length 
of about 10, which makes the time complexity de-
facto linear. 
  

!"#$%&'()*+,**-&)."/*0123)&4*5%$#%3))&2#

!"#"#$%&'&(#)**!+",'#*-./#0&1,(&.0*-,23#*4!-5*

62.7')***6#0(#07#**689:::;<

62&'&3"&83'&$2,

=#'(67."#>*!?@&A#0'&.0*1#".*B#7(."

=#'(-./#0&1,(&.0>*!?@&A#0'&.0*0%33?'("&0C*B#7(."

!"#$%&'()9,

:$%*">D***(.***;***;$*,*************EE*")*7%""#0(*F.'&(&.0*&0*(+#*'#0(#07#

********:$%***#>"?D***(.***9****;$*,****EE*#)*'(,"(&0C*F.'&(&.0*.G*(+#*3,'(*F+",'#

****************$%&'()>68#)"<*************

****************&:***$%&'()***&0***!-*,**

************************+,-)."/'+",.>H#(-.F-./#0&1,(&.04!-I*$%&'()5**

************************+,-)."/'+",.0$&,1>H#(!".2,2&3&(J4!-I*+,-)."/'+",.5

************************(2,&)>=#'(67."#8#<*K*+,-)."/'+",.0$&,1*

************************&:***(2,&)L=#'(67."#8"<*,

********************************=#'(-./#0&1,(&.08"<>+,-)."/'+",.

********************************=#'(67."#8"<3(2,&)

********************************1'2-0$,".+)&4"53#***************

****************/"9/)

************************<%/3=****EE*&G*(+#*F+",'#*0.(*&0*!-I*#M&'(*(+#*&00#"*3..F

*

=#'(!,(+*N**!,(+*(",7#@*2,7/*G".A*2,7/OF.&0(#"8;<*
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Figure 2. The pseudo code of Algorithm 1. 

   
    The key difference to a standard word-lattice 
based dynamic programming lies in the phrase 
lattice representation that the algorithm runs on. 
Instead of representing a word candidate as in 
Venkataraman (2001), each edge now represents a 
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tokenization of a phrase defined by two nodes of 
the edge, which can include full and partial words. 
The combination of phrase tokenizations may yield 
new words that are not in the dictionary, i.e. our 
method can recognize OOVs. 
    Let us consider a slightly modified version of 
the lattice in Figure 1. Suppose edge e5  =#质$疑# 
does not exist , i.e. the word 质疑 ‘question’ is not 

in the dictionary, and there is new edge e5!= #质
$ that links node 2 and node 3 and represents a 
partial word. Two of possible tokenizations of the 
sentence are path p1 = e1e4e6e8 and path 

p2 = e2e5!e7 . Note that p2 recognizes the word质
疑  ‘question’ by combining two partial words, 
even though the word itself has not seen before. Of 
course, this OOV is finally recognized only if a 
path that can yield it is the best path found by the 
decoding algorithm. 
    Once the best path is found, the procedure of 
mapping it back to segmented words is as follows. 
The phrase tokenizations represented by the edges 
of the best path are concatenated, before 
substituting meta symbols # and $ into white space 
and empty string, respectively. For example, if  

p2 = e2e5!e7  is the best path, the concatenation of 
the phrase tokenizations of the three edges on the 
path will be #有#人##质$$疑#他#, and removal of 
$ and substitution of # into the white space will 
further transform it into 有   人   质疑   他 
‘Somebody questions him’, which is the final 
result of the algorithm.  

3.3   Compatibility and Backward Dependency 
Match 

As mentioned in Section 2, the independency 
assumption of phrase tokenization is not always 
true. Considering the example in Figure 1, e4 and 
and e7 are not really compatible, as e4  represents a 
word while e7  represents a partial word that 
expects the suffix of its preceding phrase to form a 
word with its prefix. To solve this problem, we 
require that the last (meta) symbol of the preceding 
tokenization must equal to the first (meta) symbol 
of the following tokenization in order to 
concatenate the two. This, however, has the 
consequence that there may be no valid 

tokenization at all for some positions. As a result, 
we have to maintain the top k hypotheses and use 
the k-best path search algorithms instead of 1-best 
(Mohri, 2002). We adopt the naïve k-best path 
search, but it is possible to use more advanced 
techniques (Huang and Chiang, 2005).  
    The compatibility problem is just the most 
salient example of the general problem of variable 
independency assumptions, which is the "unigram 
model" of phrase tokenization. A natural extension 
is a higher order Markov model. But that is 
inflexible, as it assumes a fixed variable 
dependency structure (the current variable is 
always dependent on previous n variables). So we 
propose a method called backward dependency 
match, in which we start from the independency 
assumption, then try to explore the longest 
sequence of adjacent dependencies that we can 
reach via string match for a given phrase and its 
precedent. 
    To simplify the discussion, we use sequence 
labeling, or conditional probability notation of the 
tokenization. A tokenization of the given character 
sequence (sentence) is represented as a specific 
label sequence of same length. The label can be 
those in the standard 4-tag set of word 
segmentation (Huang and Zhao, 2007) or the #/$ 
labels indicating the presence or absence of a word 
boundary after a specific character.  
    The possible tokenizations of character sequence 
a1a2a3 are represented as the probability 
distribution P(t

1
t
2
t
3
| a1a2a3 ) , where t1t2t3  are labels 

of a1a2a3 . If a tokenization hypothesis of 
a1a2a3 decomposes its tokenization into the 
concatenation of the tokenization of a1a2  and the 
tokenization of a3 , this factorization can be 
expressed as P(t1t2 | a1a2 )! P(t3 | a3) , as shown in 
Figure 3a. For a specific assignment 
< a1a2a3;t1t2 t3 > , if we find that < a2a3 >  can be 
tokenized as < t2t3 > , it suggests that t3  may be 
dependent on a2 and t2  as well, so we update the 
second part of the factorization (at least for this 
assignment) to: P(t3 | a3;a2t2 ) , which can be 
estimated as:  

P(t3 | a3;a2 t2 ) =
C(a

2
a
3
t
2
t
3
)

C(a
2
a
3
t
2
t
3
)

t3

!
                     (4)  
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In this case, the factorization of the tokenization 
P(t

1
t
2
t
3
| a1a2a3 )  is P(t1t2 | a1a2 )! P(t3 | a3;a2t2 ) , as 

shown in Figure 3b.  
 
 

 
 
Figure 3a. The factorization of P(t1t2t3 | a1a2a3 )  
intoP(t1t2 | a1a2 )! P(t3 | a3) .  
 

 
 
Figure 3b. The factorization of P(t1t2t3 | a1a2a3 )  
into P(t1t2 | a1a2 )! P(t3 | a3;a2t2 ) . Note that in the 2nd 
factor, in addition to a3, a2 and t2 are also observed 
variables and all of them are treated as a unit (shown by 
the L-shape). The shadowed parts (a2 and t2)  represent 
the matched items. 
 
    Algorithm 2 is based on the k-best search 
algorithm, which calls the backward dependency 
match after a successful compatibility check, and 
match as far as possible to get the largest 
probability of each tokenization hypothesis. In 

extreme cases, where no tokenization hypothesis 
survives the compatibility check, the algorithm 
backs off to Algorithm 1. 

4 Experiments 

We use the training and testing sets from the 
second international Chinese word segmentation 
bakeoff (Emerson, 2005), which are freely 
available and most widely used in evaluations. 
There are two corpora in simplified Chinese 
provided by Peking University (PKU) and 
Microsoft Research (MSR) and two corpora in 
traditional Chinese provided by Academic Sinica 
(AS) and the City University of Hong Kong 
(CityU). The experiments are conducted in a 
closed-test manner, in which no extra recourse 
other than the training corpora is used. We use the 
same criteria and the official script for evaluation 
from the bakeoff, which measure the overall 
segmentation performance in terms of F-scores, 
and the OOV recognition capacity in terms of 
Roov. 
    Precision is defined as the number of correctly 
segmented words divided by the total number of 
words in the segmentation result, where the 
correctness of the segmented words is determined 
by matching the segmentation with the gold 
standard test set. Recall is defined as the number of 
correctly segmented words divided by the total 
number of words in the gold standard test set. The 
evenly-weighted F-score is calculated by: 

 F = 2 ! p ! r / (p + r)               (5) 
Roov is the recall of all the OOV words. And Riv is 
the recall of words that have occurred in the 
training corpus. The evaluation in this experiment 
is done automatically using the script provided 
with the second bakeoffs data. 
    We have implemented both Algorithm 1 and 
Algorithm 2 in Python with some simplifications, 
e.g. only processing phrase up to the length of 10 
characters, ignoring several important details such 
as pruning. The performances are compared with 
the baseline algorithm maximum matching (MM), 
described in Wang et al. (1991), and the best 
bakeoff results. The F-score, Roov and Riv are 
summarized in Table 1, Table 2, and Table 3, 
respectively. 
    All the algorithms have quite similar recall for 
the in-vocabulary words (Riv), but their Roov vary 
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greatly, which leads to the differences in F-score. 
In general both Algorithm 1 and Algorithm 2 
improves OOV Recall significantly, compared 
with the baseline algorithm, maximum matching, 
which has barely any OOV recognition capacity. 
This confirms the effectiveness of the proposed 
phrase-based model in modeling morphological 
behaviors of characters. Moreover, Algorithm 2 
works consistently better than Algorithm 1, which 
suggests the usefulness of its strategy of dealing 
with dependencies among phrase tokenizations. 
    Besides, the proposed method has the linear 
training and testing (when setting a maximum 
phrase length) time complexity, while the training 
complexity of CRF is the proportional to the 
feature numbers, which are often over millions. 
Even with current prototype, our method takes 
only minutes to build the model, in contrast with 
several hours that CRF segmenter needs to train 
the model for the same corpus on the same 
machine.   
    Admittedly, our model still underperforms the 
best systems in the bakeoff. This may be resulted 
from that 1) our system is still a prototype that 
ignores many minor issues and lack optimization 
and 2) as a generative model, our model may suffer 
more from the data sparseness problem, compared 
with discriminative models, such as CRF. 
    As mentioned earlier, the OOV recognition is 
the dominant factor that influences the overall 
accuracy. Different from the mechanism of 
tokenization combination in our approach, state-of-
art systems such as those based on MaxEnt or 
CRF, achieve OOV recognition basically in the 
same way as in-dictionary word recognition. The 
segmentation is modeled as assigning labels to 
characters. And the probability of the label 
assignment for a character token is mostly 
determined by its features, which are usually local 
contexts in the form of character co-occurrences.   
    There are many other OOV recognition methods 
proposed in literature before the rise of machine 
learning in the field. For example, the Sproat et al. 
(1996) system can successfully recognize OOVs of 
strong patterns, such as Chinese personal names, 
transliterations, using finite-state techniques.  
Another typical example is Ma and Chen (2003), 
which proposed context free grammar like rules 
together with a recursive bottom-up merge 
algorithm that merges possible morphemes after an 
initial segmentation using maximum matching. It 

would be fairer to compare the OOV recognition 
performance of our approach with these methods, 
rather than maximum matching. But most earlier 
works are not evaluated on standard bake-off 
corpora and the implementations are not openly 
available, so it is difficult to make direct 
comparisons. 
 

F-score As CityU MSR PKU 

Best Bakeoff 0.952 0.943 0.964 0.950 

Algorithm 2 0.919 0.911 0.946 0.912 

Algorithm 1 0.897 0.888 0.922 0.890 

MM 0.882 0.833 0.933 0.869 

Table 1. The F-score over the bakeoff-2 data. 

 
Roov AS CityU MSR PKU 

Best Bakeoff 0.696 0.698 0.717 0.636 

Algorithm 2 0.440 0.489 0.429 0.434 

Algorithm 1 0.329 0.367 0.411 0.416 

MM 0.004 0.000 0.000 0.059 

Table 2. The Roov over the bakeoff-2 data. 

 

Riv AS CityU MSR PKU 

Best Bakeoff 0.963 0.961 0.968 0.972 

Algorithm 2 0.961 0.961 0.970 0.951 

Algorithm 1 0.955 0.940 0.950 0.940 

MM 0.950 0.952 0.981 0.956 

Table 3. The Riv over the bakeoff-2 data. 

5 Conclusion 

In this paper, we have presented the phrase-based 
tokenization for adaptive word segmentation. The 
proposed model is efficient in both training and 
decoding, which is desirable for fast model re-
construction. It generalizes the traditional 
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tokenization model by considering the phrase 
instead of the word as the segmentation hypothesis 
unit, which is capable of describing “morphemes in 
the context” and improves the OOV recognition 
performance significantly. Our approach 
decomposes sentence tokenization into phrase 
tokenizations. The final tokenization of the 
sentence is determined by finding the best 
combination of the tokenizations of phrases that 
cover the whole sentence. The tokenization 
hypotheses of a sentence are represented by a 
weighed directed acyclic graph called phrase 
tokenization lattice. Using this formalism, the 
sentence tokenization problem becomes a shortest 
path search problem on the graph. 
    In our model, one only needs to estimate the 
phrase tokenization probabilities in order to 
segment new sentences. The training is thus a 
linear time phrase extraction and maximum 
likelihood estimation procedure. We adopted a 
Viterbi-style dynamic programming algorithm to 
segment unseen sentences using the lattice. We 
also proposed a method called backward 
dependency match to model the dependencies of 
adjacent phrases to overcome the limitations of the 
assumption that tokenizations of neighboring 
phrases is independent. The experiment showed 
the effectiveness of the proposed phrase-based 
model in recognizing out-of-vocabulary words and 
its superior overall performance compared with the 
traditional tokenization model. It has both the 
efficiency of the tokenization model and the high 
performance of the character classification model.   
     One possible extension of the proposed model 
is to apply re-ranking techniques (Collins and Koo, 
2005) to the k-best list generated by Algorithm 2. 
A second improvement would be to combine our 
model with other models in a log linear way as in 
Jiang et al. (2008). Since phrase-based tokenization 
is a model that can be accompanied by different 
training algorithms, it is also interesting to see 
whether discriminative training can lead to better 
performance. 
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