
NAACL-HLT 2012

SIGMORPHON2012

Twelfth Meeting of the ACL Special Interest Group on
Computational Morphology and Phonology

Proceedings of the Workshop

June 7, 2012
Montréal, Canada

Production and Manufacturing by
Omnipress, Inc.
2600 Anderson Street
Madison, WI 53707
USA

c©2012 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN13: 978-1-937284-20-6.
ISBN10: 1-937284-20-4.

ii

Introduction

We are delighted to present the Proceedings of the Twelfth Meeting of the ACL Special Interest
Group on Computational Morphology and Phonology (SIGMORPHON), to be held on June 7,
2012 at Le Centre Sheraton Montréal, Montréal, Canada. The purpose of SIGMORPHON is to
foster computational research on the phonological, morphological, and phonetic properties of human
language. All three of these sub-areas deal largely with the local structure of words and so share many
technical methods. Furthermore, computational work that models empirical data must often draw on
at least two of these areas, with explicit consideration of the morphology-phonology or phonology-
phonetics interface. In recent years the remit has expanded to also include research on orthographic
issues such as transliteration and variable spelling.

We received a good number of submissions, on the full range of sub-areas, and accepted around sixty
percent. This has enabled us to provide what we hope you will agree is a high quality program.

We are grateful to the program committee for their careful and thoughtful reviews and discussions of
the papers submitted this year. We hope that you enjoy the workshop and these proceedings.

Lynne Cahill
Adam Albright

iii

Organizers:

Lynne Cahill, Univeristy of Brighton (UK)
Adam Albright, MIT (USA)

Program Committee:

Jason Eisner, Johns Hopkins University (USA)
Mark Ellison, University of Western Australia (Australia)
Roger Evans, University of Brighton (UK)
Sharon Goldwater, University of Edinburgh (UK)
Jeffrey Heinz, University of Delaware (USA)
Jon Herring, British Library (UK)
William Idsardi, University of Maryland (USA)
Gaja Jarosz, Yale University (USA)
Greg Kobele, University of Chicago (USA)
Grzegorz Kondrak, University of Alberta (Canada)
Kimmo Koskenniemi, University of Helsinki (Finland)
Mikko Kurimo, TKK (Finland)
Karen Livescu, Toyota Technological Institute at University of Chicago (USA)
Giorgio Magri, IJN, ENS (France)
Katya Pertsova, University of North Carolina (USA)
Jason Riggle, University of Chicago (USA)
Shuly Wintner, University of Haifa (Israel)

v

Table of Contents

A Morphological Analyzer for Egyptian Arabic
Nizar Habash, Ramy Eskander and Abdelati Hawwari . 1

Hindi Derivational Morphological Analyzer
Nikhil Kanuparthi, Abhilash Inumella and Dipti Misra Sharma . 10

Phrase-Based Approach for Adaptive Tokenization
Jianqiang Ma and Dale Gerdemann . 17

A Regularized Compression Method to Unsupervised Word Segmentation
Ruey-Cheng Chen, Chiung-Min Tsai and Jieh Hsiang . 26

A rule-based approach to unknown word recognition in Arabic
Lynne Cahill . 35

Bounded copying is subsequential: Implications for metathesis and reduplication
Jane Chandlee and Jeffrey Heinz . 42

An approximation approach to the problem of the acquisition of phonotactics in Optimality Theory
Giorgio Magri . 52

Learning probabilities over underlying representations
Joe Pater, Robert Staubs, Karen Jesney and Brian Smith . 62

Linguistic categorization and complexity
Katya Pertsova . 72

vii

Conference Program

Thursday June 7, 2012

9:00 Welcome

9:15–9:45 A Morphological Analyzer for Egyptian Arabic
Nizar Habash, Ramy Eskander and Abdelati Hawwari

9:45–10:15 Hindi Derivational Morphological Analyzer
Nikhil Kanuparthi, Abhilash Inumella and Dipti Misra Sharma

10:15-10:30 Discussion

10:30-11:00 Coffee break

11:00–11:30 Phrase-Based Approach for Adaptive Tokenization
Jianqiang Ma and Dale Gerdemann

11:30–12:00 A Regularized Compression Method to Unsupervised Word Segmentation
Ruey-Cheng Chen, Chiung-Min Tsai and Jieh Hsiang

12:00–12:30 A rule-based approach to unknown word recognition in Arabic
Lynne Cahill

12:30-12:45 Discussion

12:45-2:00 Lunch

2:00–2:30 Bounded copying is subsequential: Implications for metathesis and reduplication
Jane Chandlee and Jeffrey Heinz

2:30–3:00 An approximation approach to the problem of the acquisition of phonotactics in
Optimality Theory
Giorgio Magri

3:00–3:30 Learning probabilities over underlying representations
Joe Pater, Robert Staubs, Karen Jesney and Brian Smith

ix

Thursday June 7, 2012 (continued)

3:30-4:00 Coffee break

4:00–4:30 Linguistic categorization and complexity
Katya Pertsova

4:30-4:45 Discussion

4:45-5:15 Business meeting (all are welcome to attend)

x

Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology (SIGMORPHON2012), pages 1–9,
Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

A Morphological Analyzer for Egyptian Arabic

Nizar Habash and Ramy Eskander and Abdelati Hawwari
Center for Computational Learning Systems

Columbia University
New York, NY, USA

{habash,reskander,ahawwari}@ccls.columbia.edu

Abstract

Most tools and resources developed for nat-
ural language processing of Arabic are de-
signed for Modern Standard Arabic (MSA)
and perform terribly on Arabic dialects, such
as Egyptian Arabic. Egyptian Arabic differs
from MSA phonologically, morphologically
and lexically and has no standardized orthog-
raphy. We present a linguistically accurate,
large-scale morphological analyzer for Egyp-
tian Arabic. The analyzer extends an existing
resource, the Egyptian Colloquial Arabic Lex-
icon, and follows the part-of-speech guide-
lines used by the Linguistic Data Consortium
for Egyptian Arabic. It accepts multiple or-
thographic variants and normalizes them to a
conventional orthography.

1 Introduction

Dialectal Arabic (DA) refers to the day-to-day na-
tive vernaculars spoken in the Arab World. DA
is used side by side with Modern Standard Ara-
bic (MSA), the official language of the media and
education (Holes, 2004). Although DAs are his-
torically related to MSA, there are many phono-
logical, morphological and lexical differences be-
tween them. Unlike MSA, DAs have no stan-
dard orthographies or language academies. Fur-
thermore, different DAs, such as Egyptian Arabic
(henceforth, EGY), Levantine Arabic or Moroccan
Arabic have important differences among them sim-
ilar to those seen among Romance languages (Er-
win, 1963; Cowell, 1964; Abdel-Massih et al., 1979;
Holes, 2004). Most tools and resources developed
for natural language processing (NLP) of Arabic are
designed for MSA. Such resources are quite limited

when it comes to processing DA, e.g., a state-of-the-
art MSA morphological analyzer has been reported
to only have 60% coverage of Levantine Arabic verb
forms (Habash and Rambow, 2006). Most efforts to
address this gap have been lacking. Some have taken
a quick-and-dirty approach to model shallow mor-
phology in DA by extending MSA tools, resulting
in linguistically inaccurate models (Abo Bakr et al.,
2008; Salloum and Habash, 2011). Others have at-
tempted to build linguistically accurate models that
are lacking in coverage (at the lexical or inflectional
levels) or focusing on representations that are not
readily usable for NLP text processing, e.g., phono-
logical lexicons (Kilany et al., 2002).

In this paper we present the Columbia Ara-
bic Language and dIalect Morphological Analyzer
(CALIMA) for EGY.1 We built this tool by ex-
tending an existing resource for EGY, the Egyptian
Colloquial Arabic Lexicon (ECAL) (Kilany et al.,
2002). CALIMA is a linguistically accurate, large-
scale morphological analyzer. It follows the part-of-
speech (POS) guidelines used by the Linguistic Data
Consortium for EGY (Maamouri et al., 2012b). It
accepts multiple orthographic variants and normal-
izes them to CODA, a conventional orthography for
DA (Habash et al., 2012).

The rest of the paper is structured as follows: Sec-
tion 2 presents relevant motivating linguistic facts.
Section 3 discusses related work. Section 4 details
the steps taken to create CALIMA starting with
ECAL. Section 5 presents a preliminary evaluation
and statistics about the coverage of CALIMA. Fi-
nally, Section 6 outlines future plans and directions.

1Although we focus on Egyptian Arabic in this paper, the
CALIMA name will be used in the future to cover a variety of
dialects.

1

2 Motivating Linguistic Facts

We present some general Arabic (MSA/DA) NLP
challenges. Then we discuss differences between
MSA and DA – specifically EGY.

2.1 General Arabic Linguistic Challenges

Arabic, as MSA or DA, poses many challenges
for NLP. Arabic is a morphologically complex lan-
guage which includes rich inflectional morphology,
expressed both templatically and affixationally, and
several classes of attachable clitics. For example, the
MSA word Aî

	
EñJ.

�
JºJ
�ð wa+sa+ya-ktub-uwna+hA2

‘and they will write it’ has two proclitics (+ð wa+
‘and’ and +� sa+ ‘will’), one prefix -ø

ya- ‘3rd

person’, one suffix 	
àð- -uwna ‘masculine plural’

and one pronominal enclitic Aë+ +hA ‘it/her’. The
stem ktub can be further analyzed into the root ktb
and pattern 12u3.

Additionally, Arabic is written with optional dia-
critics that primarily specify short vowels and con-
sonantal doubling, e.g., the example above will most
certainly be written as wsyktbwnhA. The absence of
these diacritics together with the language’s com-
plex morphology lead to a high degree of ambiguity,
e.g., the Standard Arabic Morphological Analyzer
(SAMA) (Graff et al., 2009) produces an average of
12 analyses per MSA word.

Moreover, some letters in Arabic are often spelled
inconsistently which leads to an increase in both
sparsity (multiple forms of the same word) and
ambiguity (same form corresponding to multiple
words), e.g., variants of the Hamzated Alif,

@ Â or

@

Ǎ, are often written without their Hamza (Z ’): @ A.

and the Alif-Maqsura (or dot-less Ya) ø ý and the
regular dotted Ya ø

y are often used interchangeably

in the word-final position (Buckwalter, 2007).
Arabic complex morphology and ambiguity are

handled using tools for disambiguation and tok-
enization (Habash and Rambow, 2005; Diab et al.,
2007).

2Arabic orthographic transliteration is presented in the HSB
scheme (Habash et al., 2007): (in alphabetical order)
@ H.

�
H

�
H h. h p X

	
XP 	P �

�
� �

	
�

	
 ¨

	
¨

	
¬

�
� ¼ È Ð

	
à è ð ø

A b t θ j H x d ð r z s š S D T Ď ς γ f q k l m n h w y

and the additional letters: ’ Z, Â

@, Ǎ @

, Ā

�
@, ŵ

ð', ŷ Zø', ~ �
è, ý ø.

We distinguish between morphological analysis,
whose target is to produce all possible morphologi-
cal/POS readings of a word out of context, and mor-
phological disambiguation, which attempts to tag
the word in context (Habash and Rambow, 2005).
The work presented in this paper is only about mor-
phological analysis.

2.2 Differences between MSA and DA

Contemporary Arabic is in fact a collection of vari-
eties: MSA, which has a standard orthography and
is used in formal settings, and DAs, which are com-
monly used informally and with increasing presence
on the web, but which do not have standard or-
thographies. DAs mostly differ from MSA phono-
logically, morphologically, and lexically (Gadalla,
2000; Holes, 2004). These difference are not mod-
eled as part of MSA NLP tools, leaving a gap in
coverage when using them to process DAs. All ex-
amples below are in Egyptian Arabic (EGY).

Phonologically, the profile of EGY is quite simi-
lar to MSA, except for some important differences.
For example, the MSA consonants �

�/ 	
X/ �

H q/ð/θ
are generally pronounced in EGY (Cairene) as ’/z/s
(Holes, 2004). Some of these consonants shift in dif-
ferent ways in different words: e.g., MSA I.

	
K

	
X ðanb

‘fault’ and H.

	
Y» kiðb ‘lying’ are pronounced zanb

and kidb. EGY has five long vowels compared with
MSA’s three long vowels. Unlike MSA, long vow-
els in EGY predictably shorten under certain condi-
tions, often as a result of cliticization. For example,
compare the following forms of the same verb:

	
¬A

�
�

šAf /šāf/ ‘he saw’ and Aê
	
¯A

�
� šAf+hA /šafha/ ‘he saw

her’ (Habash et al., 2012).
Morphologically, the most important difference

is in the use of clitics and affixes that do not ex-
ist in MSA. For instance, the EGY equivalent of
the MSA example above is AëñJ.

�
JºJ
kð wi+Ha+yi-

ktib-uw+hA ‘and they will write it’. The optionality
of vocalic diacritics helps hide some of the differ-
ences resulting from vowel changes; compare the
undiacritized forms: EGY wHyktbwhA and MSA
wsyktbwnhA. In this example, the forms of the cli-
tics and affixes are different in EGY although they
have the same meaning; however, EGY has clitics
that are not part of MSA morphology, e.g., the in-
direct pronominal object clitic (+l+uh ‘for him’)

2

éËAëñJ.
�
JºJ
kð wi+Ha+yi-ktib-uw+hA+l+uh ‘and they

will write it for him’. Another important example is
the circumfix negation �

�+ + AÓ mA+ +š which sur-
rounds some verb forms: �

��.
�
J» AÓ mA+katab+š ‘he

did not write’ (the MSA equivalent is two words:
I.

�
JºK
 ÕË lam yaktub). Another important morpho-

logical difference from MSA is that DAs in general
and not just EGY drop the case and mood features
almost completely.

Lexically, the number of differences is very
large. Examples include ��. bas ‘only’, �

è
	Q�
K. Q£

tarabayza~ ‘table’, �
H@QÓ mirAt ‘wife [of]’ and ÈðX

dawl ‘these’, which correspond to MSA ¡
�
®

	
¯ faqaT,

�
éËðA£ TAwila~, �

ék. ð 	P zawja~ and ZB

ñë haŵlA’, re-
spectively.

An important challenge for NLP work on DAs
in general is the lack of an orthographic standard.
EGY writers are often inconsistent even in their
own writing. The differences in phonology between
MSA and EGY are often responsible: words can
be spelled as pronounced or etymologically in their
related MSA form, e.g., H. Y» kidb or H.

	
Y» kiðb.

Some clitics have multiple common forms, e.g., the
future particle h Ha appears as a separate word or as

a proclitic +h/+ë Ha+/ha+, reflecting different pro-
nunciations. The different spellings may add some
confusion, e.g., ñJ.

�
J» ktbw may be @ñJ.

�
J» katabuwA

‘they wrote’ or éJ.
�
J» katabuh ‘he wrote it’. Finally,

shortened long vowels can be spelled long or short,
e.g., Aê

	
¯A

�
�/ Aê

	
®

�
� šAf+hA/šf+hA ‘he saw her’.

3 Related Work

3.1 Approaches to Arabic Morphology
There has been a considerable amount of work on
Arabic morphological analysis (Al-Sughaiyer and
Al-Kharashi, 2004; Habash, 2010). Altantawy et al.
(2011) characterize the various approaches explored
for Arabic and Semitic computational morphology
as being on a continuum with two poles: on one end,
very abstract and linguistically rich representations
and morphological rules are used to derive surface
forms; while on the other end, simple and shallow
techniques focus on efficient search in a space of
precompiled (tabulated) solutions. The first type is
typically implemented using finite-state technology
and can be at many different degrees of sophistica-

tion and detail (Beesley et al., 1989; Kiraz, 2000;
Habash and Rambow, 2006). The second type is typ-
ically implemented using hash-tables with a simple
search algorithm. Examples include the Buckwalter
Arabic Morphological Analyzer (BAMA) (Buck-
walter, 2004), its Standard Arabic Morphological
Analyzer (SAMA) (Graff et al., 2009) incarnation,
and their generation-oriented extension, ALMOR
(Habash, 2007). These systems do not represent the
morphemic, phonological and orthographic rules di-
rectly, and instead compile their effect into the lexi-
con itself, which consists of three tables for prefixes,
stems and suffixes and their compatibilities. A pre-
fix or suffix in this approach is a string consisting of
all the word’s prefixes and suffixes, respectively, as
a single unit (including null affix sequences). Dur-
ing analysis, all possible splits of a word into com-
patible prefix-stem-suffix combination are explored.
More details are discussed in Section 4.5. Numer-
ous intermediate points exist between these two ex-
tremes (e.g., ElixirFM (Smrž, 2007)). Altantawy et
al. (2011) describe a method for converting a lin-
guistically complex and abstract implementation of
Arabic verbs in finite-state machinery into a simple
precompiled tabular representation.

The approach we follow in this paper is closer
to the second type. We start with a lexicon of in-
flected forms and derive from it a tabular represen-
tation compatible with the SAMA system for MSA.
However, as we do this, we design the tables and ex-
tend them in ways that capture generalizations and
extend orthographic coverage.

3.2 Arabic Dialect Morphology

The majority of the work discussed above has fo-
cused on MSA, while only a few efforts have tar-
geted DA morphology (Kilany et al., 2002; Riesa
and Yarowsky, 2006; Habash and Rambow, 2006;
Abo Bakr et al., 2008; Salloum and Habash, 2011;
Mohamed et al., 2012). These efforts generally fall
in two camps. First are solutions that focus on ex-
tending MSA tools to cover DA phenomena. For
example, both Abo Bakr et al. (2008) and Salloum
and Habash (2011) extended the BAMA/SAMA
databases (Buckwalter, 2004; Graff et al., 2009) to
accept DA prefixes and suffixes. Both of these ef-
forts were interested in mapping DA text to some
MSA-like form; as such they did not model DA lin-

3

guistic phenomena, e.g., the ADAM system (Sal-
loum and Habash, 2011) outputs only MSA diacrit-
ics that are discarded in later processing.

The second camp is interested in modeling DA di-
rectly. However, the attempts at doing so are lacking
in coverage in one dimension or another. The earli-
est effort on EGY that we know of is the Egyptian
Colloquial Arabic Lexicon (ECAL) (Kilany et al.,
2002). It was developed as part of the CALLHOME
Egyptian Arabic (CHE) corpus (Gadalla et al., 1997)
which contains 140 telephone conversations and
their transcripts. The lexicon lists all of the words
appearing in the CHE corpus and provides phono-
logical, orthographic and morphological informa-
tion for them. This is an important resource; how-
ever, it is lacking in many ways: the orthographic
forms are undiacritized, no morpheme segmenta-
tions are provided, and the lexicon has only some
66K fully inflected forms and as such lacks general
morphological coverage. Another effort is the work
by Habash and Rambow (2006) which focuses on
modeling DAs together with MSA using a common
multi-tier finite-state-machine framework. Although
this approach has a lot of potential, in practice, it
is closer to the first camp in its results since they
used MSA lexicons as a base. Finally, two previ-
ous efforts focused on modeling shallow dialectal
segmentation using supervised methods (Riesa and
Yarowsky, 2006; Mohamed et al., 2012). Riesa and
Yarowsky (2006) presented a supervised algorithm
for online morpheme segmentation for Iraqi Arabic
that cut the out-of-vocabulary rates by half in the
context of machine translation into English. Mo-
hamed et al. (2012) annotated a collection of EGY
for morpheme boundaries and used this data to de-
velop an EGY tokenizer. Although these efforts
model DA directly, they remain at a shallow level
of representation (undiacritized surface morph seg-
mentation).

We use the ECAL lexicon as a base for CAL-
IMA and extend it further. Some of the expansion
techniques we used are inspired by previous solu-
tions (Abo Bakr et al., 2008; Salloum and Habash,
2011). For the morphological representation, we
follow the Linguistic Data Consortium guidelines
which extend the MSA POS guidelines to multi-
ple dialects (Maamouri et al., 2006; Maamouri et
al., 2012b). To address the problem of orthographic

variations, we follow the proposal by Habash et al.
(2012) who designed a conventional orthography for
DA (or CODA) for NLP applications in the CAL-
IMA databases. However, to handle input in a vari-
ety of spellings, we extend our analyzer to accept
non-CODA-compliant word forms but map them
only to CODA-compliant forms as part of the anal-
ysis.

4 Approach

We describe next the various steps for creating
CALIMA starting with ECAL. The details of the
approach are to some degree dependent on this
unique resource; however, some aspects of the ap-
proach may be generalizable to other resources, and
languages or dialects.

4.1 The Egyptian Colloquial Arabic Lexicon
ECAL has about 66K entries: 27K verbs, 36K
nouns and adjectives, 1.5K proper nouns and 1K
closed classes. For each entry, the lexicon pro-
vides a phonological form, an undiacritized Ara-
bic script orthography, a lemma (in phonological
form), and morphological features, among other
information. There are 36K unique lemmas and
1,464 unique morphological feature combinations.
The following is an example ECAL entry for the
word �

�ñÒÊ¾J
J.Ó mbyklmwš ‘he did not talk to him’.3

We only show Arabic orthography, phonology, and
lemma+features:
mbyklmwš
mabiykallimU$4

kallim:verb+pres-3rd-masc-sg+DO-3rd-masc-sg+neg

Our goal for CALIMA is to have a much larger
coverage, a CODA-compliant diacritized orthogra-
phy, and a morpheme-based morphological analysis.
The next steps allow us to accomplish these goals.

4.2 Diacritic Insertion
First, we built a component to diacritize the ECAL
undiacritized Arabic script entries in a way that is
consistent with ECAL phonological form. This was
implemented using a finite-state transducer (FST)
that maps the phonological form to multiple possible

3The same orthographic form has another reading ‘they did
not talk’ which of course has different morphological features.

4The phonological form as used in ECAL. For transcrip-
tion details, see (Kilany et al., 2002).

4

diacritized Arabic script forms. The form that is the
same as the undiacritized ECAL orthography (ex-
cept for diacritics) is used as the diacritized orthog-
raphy for the rest of the process. The FST consists of
about 160 transformations that we created manually.
All except for 100 cases are generic mappings, e.g.,
two repeated b consonants are turned into �

H. b∼,5

or a short vowel u can be orthographically a short
vowel (just the diacritic u) or a long vowel uw which
shortened. The exceptional 100 cases were specified
by hand in the FST as complete string mappings.
These were mostly odd spellings of foreign words
or spelling errors. We did not attempt to correct or
change the ECAL letter spelling; we only added di-
acritics.

After diacritization, we modify the Arabic orthog-
raphy in the example above to: mabiykal~imuwš.

4.3 Morphological Tag Mapping
Next, we wrote rules to convert from ECAL
diacritized Arabic and morphology to CODA-
compliant diacritized Arabic and LDC EGY POS
compliant tags. The rules fall into three categories:
ignore rules specify which ECAL entries to ex-
clude due to errors; correction rules correct for some
ECAL entry errors; and prefix/suffix/stem rules are
used to identify specific pairs of prefix/suffix/stem
substrings and morphological features to map to
appropriate prefix/suffix/stem morphemes, respec-
tively. For stems, the majority of the rules also
identify roots and patterns. Since multiple root-
pattern combinations may be possible for a partic-
ular word, the appropriate root-pattern is chosen by
enforcing consistency across all the inflected forms
of the lemma of the word and minimizing the over-
all number of roots in the system. We do not use
or report on root-patterns in CALIMA in this paper
since this information is not required by the LDC
tags; however, we plan on using them in future ef-
forts exploiting templatic morphology.

At the time of writing this paper, the system in-
cluded 4,632 rules covering all POS. These include
1,248 ignore rules, 1,451 correction rules, 83 pre-
fix rules, and 441 suffixes rules. About 1,409 stem
rules are used to map core POS tags and iden-
tify templatic roots and patterns. Some rules were

5The ∼ diacritic or Shadda indicates the presence of conso-
nantal doubling.

semi-automatically created, but all were manually
checked. The rules are specified in a simple format
that is interpreted and applied by a separate rule pro-
cessing script. Developing the script and writing the
rules took about 3 person-months of effort.

As an example, the following three rules are used
to handle the circumfix ma++š ‘not’ and the pro-
gressing particle bi+.

PRE: ma,+neg => φ ,+neg >> mA/NEG_PART#
PRE: bi,+pres => φ ,+subj >> bi/PROG_PART+
SUF: š,+neg => φ,φ >> +š/NEG_PART

The input to the rule processor is a pair of surface
form and morphological features. Each rule matches
on a surface substring and a combination of mor-
phological features (first two comma-separated to-
kens in the rule) and rewrites the parts it matched
on (second two comma-separated tokens in the rule
after =>). The type of the rule, i.e. prefix or suf-
fix rule, determines how the matching is applied. In
addition, the rule generates a substring of the tar-
get tag (last token in the rule). The first and third
rules above handle a circumfix; the +neg feature is
not deleted in the first rule (which handles the pre-
fix) to allow the third rule (which handles the suffix)
to fire. The second rule rewrites the feature +pres
(present tense) as +subj (subjunctive) which is con-
sistent with the form of the verb after removing the
progressive particle bi+. After applying these rules
in addition to a few others, the above example is
turned into CODA and EGY POS compliant forms
(# means word boundary):6

mA#bi+yi+kal~im+huw+š
NEG_PART#PROG_PART+IV3MS+IV+IVSUFF_DO:3MS+NEG_PART

The stem rules, whose results are not shown here,
determine that the root is klm and the pattern is
1a22i3.

We extended the set of mapped ECAL entries
systematically. We copied entries and modified them
to include additional clitics that are not present with
all entries, e.g., the conjunction +

	
¬ fa+ ‘then’, and

the definite article +È@ Al+.

4.4 Orthographic Lemma Identification
The ECAL lemmas are specified in a phonological
form, e.g., in the example above, it is kallim. To de-
termine the diacritized Arabic orthography spelling

6CODA guidelines state that the negative particle AÓ mA is
not to be cliticized except in a very small number of words
(Habash et al., 2012).

5

of the lemma, we relied on the existence of the
lemma itself as an entry and other ad hoc rules to
identify the appropriate form. Using this technique,
we successfully identified the orthographic lemma
form for 97% of the cases. The remainder were
manually corrected. We followed the guidelines for
lemma specification in SAMA, e.g., verbs are cited
using the third person masculine singular perfective
form. For our example, the CALIMA lemma is
kal∼im.

4.5 Table Construction

We converted the mapped ECAL entries to a
SAMA-like representation (Graff et al., 2009). In
SAMA, morphological information is stored in six
tables. Three tables specify complex prefixes, com-
plex suffixes and stems. A complex prefix/suffix is
a set of prefix/suffix morphemes that are treated as a
single database entry, e.g., wi+Ha+yi is a complex
prefix made of three prefix morphemes. Each com-
plex prefix, complex suffix and stem has a class cat-
egory which abstract away from all similarly behav-
ing complex affixes and stems. The other three ta-
bles specify compatibility across the class categories
(prefix-stem, prefix-suffix and stem-suffix). We ex-
tracted triples of prefix-stem-suffix and used them to
build the six SAMA-like tables. The generated ta-
bles are usable by the sama-analyze engine provided
as part of SAMA3.1 (Graff et al., 2009). We also
added back off mode support for NOUN_PROP.

Prefix/stem/suffix class categories are generated
automatically. We identified specific features of the
word’s stem and affixes to generate specific affix
classes that allow for correct coverage expansion.
For example, in a complex suffix, the first morpheme
is the only one interacting with the stem. As such,
there is no need to give each complex suffix its own
class category, but rather assign the class category
based on the first morpheme. This allows us to auto-
matically extend the coverage of the analyzer com-
pared to that of the ECAL lexicon.

We also go further in terms of generalizations. For
instance, some of the pronoun clitics in EGY have
two forms that depend on whether the stem ends
with vowel-consonant or two consonants, e.g., AîE. A

�
J»

kitAb+hA ‘her book’ as opposed to Aî
	

DK. @ Aibn+ahA
‘her son’. This information is used to give the suf-

fixes +hA and +ahA different class categories that
are generalizable to other similarly behaving clitics.

At this stage of our system, which we refer to as
CALIMA-core in Section 5.2, there are 252 unique
complex prefixes and 550 unique complex suffixes,
constructed from 43 and 86 unique simple prefixes
and suffixes, respectively. The total number of pre-
fix/suffix class categories is only 41 and 78, respec-
tively.

4.6 Various Table Extensions
We extended the CALIMA-core tables in a simi-
lar approach to the extension of SAMA tables done
by Salloum and Habash (2011). We distinguish two
types of extensions.

Additional Clitics and POS Tags We added a
number of clitics and POS tags that are not part of
ECAL, e.g., the prepositional clitic +¨ Ea+ ‘on’

and multiple POS tags for the proclitic +
	

¬ fa+ (as
CONJ, SUB_CONJ and CONNEC_PART). Here we copied a
related entry and modified it but kept its category
class. For example, in the case of +¨ Ea+ ‘on’, we
copied a prepositional clitic with similar distribution
and behavior: +H. bi+ ‘with’.

Non-CODA Orthography Support We extended
the generated tables to include common non-CODA
orthographic variants. The following are some ex-
amples of the expansions. First, we added the vari-
ant ð+ +w for two suffixes: è+ +uh ‘his/him’ and
@ð+ +uwA ‘they/you [plural]’. Second, we added
the form ha+ for the future particle Ha+. Third,
we introduced non-CODA-compliant Hamza forms
as variants for some stems. Finally, some of the
extensions target specific stems of frequently used
words, such as the adverb é

	
�QK. brDh ‘also’ which

can be written as èXQK. brdh and ñ
	

�QK. brDw among
other forms. The non-CODA forms are only used to
match on the input word, with the returned analysis
being a corrected analysis. For example, the word
ñJ.

�
JºJ
ë hyktbw returns the analysis @ñJ.

�
JºJ
k Hyk-

tbwA Ha/FUT_PART+yi/IV3P+ktib/IV+uwA/3P ‘they
will write’ among other analyses. The orthographic
variations supported include 16 prefix cases, 41 stem
cases, and eight suffix cases.

After all the clitic, POS tag and orthographic ex-
tensions, the total number of complex prefix entries

6

substantially increases from 352 to 2,421, and the
number of complex suffix entries increases from 826
to 1,179. The number of stem entries increases from
around 60K to 100K. The total number of recogniz-
able word forms increases from 4M to 48M. We will
refer to the system with all the extensions as CAL-
IMA in Section 5.

5 Current Status

In this section, we present some statistics on the cur-
rent status of the CALIMA analyzer. As with all
work on morphological analyzers, there are always
ways to improve the quality and coverage.

5.1 System Statistics

CALIMA has 100K stems corresponding to 36K
lemmas. There are 2,421 complex prefixes and
1,179 complex suffixes (unique diacritized form and
POS tag combinations). The total number of ana-
lyzable words by CALIMA is 48M words (com-
pared to the 66K entries in ECAL). This is still lim-
ited compared to the SAMA3.1 analyzer (Graff et
al., 2009) whose coverage of MSA reaches 246M
words. See Table 1.

5.2 Coverage Evaluation

We tested CALIMA against a manually annotated
EGY corpus of 3,300 words (Maamouri et al.,
2012a) which was not used as part of its develop-
ment, i.e., a completely blind test.7 This evaluation
is a POS recall evaluation. It is not about selecting
the correct POS answer in context. We do not con-
sider whether the diacritization or the lemma choice
are correct or not. We compare CALIMA coverage
with that of ECAL and a state-of-the-art MSA an-
alyzer, SAMA3.1 (Graff et al., 2009). For the pur-
pose of completeness, we also compare CALIMA-
core and an extended version of SAMA3.1. The
SAMA3.1 extensions include two EGY verbal pro-
clitics (Ha/FUT_PART and bi/PROG_PART), some alter-
native suffixes that have no case or mood, and all the
orthographic variations used inside CALIMA. We

7We ignore some specific choices made by the annotators,
most importantly the use of ".VN" to mark verbal nominals,
which is not even supported in SAMA3.1. We also ignore
some annotation choices that are not consistent with the latest
LDC guidelines (Maamouri et al., 2012b), such as using gender-
marked plurals in some contexts, e.g., 3MP instead of 3P.

also compare the performance of different merged
versions of SAMA3.1 and CALIMA. The results
are presented in Table 1.

The second column in Table 1, Correct Answer
indicates the percentage of the test words whose cor-
rect analysis in context appears among the analyses
returned by the analyzer. The third column, No Cor-
rect Answer, presents the percentage of time one or
more analyses are returned, but none matching the
correct answer. The fourth column, No Analysis, in-
dicates the percentage of words returning no anal-
yses. The last column presents the total number of
recognizable words in the system.

CALIMA provides among its results a correct an-
swer for POS tags over 84% of the time. This is al-
most 27% absolute over the original list of words
from ECAL and almost 21% absolute over the
SAMA3.1 system. The various extensions in CAL-
IMA give it about 10% absolute over CALIMA-
core (and increase its size 10-fold). The limited
extensions to SAMA3.1 reduce the difference be-
tween it and CALIMA-core by 50% relative. The
overall performance of CALIMA-core merged with
SAMA3.1 is comparable to CALIMA, although
CALIMA has three times the number of no-analysis
cases. Merging CALIMA and extended SAMA3.1
increases the performance to 92%, an 8% absolute
increase over CALIMA alone. The final rate of no-
analysis cases is only 1%.

5.3 Error Analysis

We analyzed a sample of 100 cases where no an-
swer was found (No Correct Answer + No Analy-
sis) for CALIMA+extended SAMA3.1. About a
third of the cases (30%) are due to gold tag errors.
Irrecoverable typographical errors occur 5% of the
time, e.g., 	á�

	
¯ fyn instead of ú

	
¯ fy ‘in’. Only 2%

of the cases involve a speech effect, e.g., ÉJ
�
J
�
J
Ô
g
.

jmyyyyyl ‘beautiful!!!’. A fifth of the cases (22%) in-
volve a non-CODA orthographic choice which was
not extended, e.g., the shortened long vowel in �

HAm.
k

HjAt instead of the CODA-compliant �
HAg. Ag HAjAt

‘things’. Another fifth of the cases (20%) are due to
incomplete paradigms, i.e., the lemma exists but not
the specific inflected stem. Finally, 21% of the cases
receive a SAMA3.1 analysis that is almost correct,
except for the presence of some mood/case mark-

7

Correct Answer No Correct Answer No Analysis Words
ECAL 57.4% 14.7% 27.9% 66K
SAMA3.1 63.7% 27.1% 9.3% 246M
extended SAMA3.1 68.8% 24.9% 6.3% 511M
CALIMA-core 73.9% 10.8% 15.3% 4M
CALIMA 84.1% 8.0% 7.9% 48M
CALIMA-core + SAMA3.1 84.4% 12.8% 2.8% 287M
CALIMA + extended SAMA3.1 92.1% 7.0% 1.0% 543M

Table 1: Comparison of seven morphological analysis systems on a manually annotated test set. The second column
indicates the percentage of the test words whose correct analysis in context appears among the analyses returned by the
analyzer. The third column presents the percentage of time one or more analyses are returned, but none matching the
correct answer. The fourth column indicates the percentage of words returning no analyses. The last column presents
the total number of recognizable words in the system.

ers that are absent in EGY, and which we did not
handle. Overall, these are positive results that sug-
gest the next steps should involve additional ortho-
graphic and morphological extensions and paradigm
completion.

6 Outlook

We plan to continue improving the coverage of
CALIMA using a variety of methods. First, we are
investigating techniques to automatically fill in the
paradigm gaps using information from multiple en-
tries in ECAL belonging to different lemmas that
share similar characteristics, e.g., hollow verbs in
Form I. Another direction is to update our tables
with less common orthographic variations, perhaps
using information from the phonological forms in
ECAL. Manual addition of specific entries will also
be considered to fill in lexicon gaps. Furthermore,
we plan to add additional features which we did not
discuss such as the English and MSA glosses for all
the entries in CALIMA. We also plan to make this
tool public so it can be used by other people work-
ing on EGY NLP tasks, from annotating corpora to
building morphological disambiguation tools.

Acknowledgments

This paper is based upon work supported by
the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR0011-12-C-0014.
Any opinions, findings and conclusions or recom-
mendations expressed in this paper are those of
the authors and do not necessarily reflect the views

of DARPA. We thank Mohamed Maamouri, Owen
Rambow, Seth Kulick, Mona Diab and Mike Ciul,
for helpful discussions and feedback.

References
Ernest T. Abdel-Massih, Zaki N. Abdel-Malek, and El-

Said M. Badawi. 1979. A Reference Grammar of
Egyptian Arabic. Georgetown University Press.

Hitham Abo Bakr, Khaled Shaalan, and Ibrahim Ziedan.
2008. A Hybrid Approach for Converting Written
Egyptian Colloquial Dialect into Diacritized Arabic.
In The 6th International Conference on Informatics
and Systems, INFOS2008. Cairo University.

Imad Al-Sughaiyer and Ibrahim Al-Kharashi. 2004.
Arabic Morphological Analysis Techniques: A Com-
prehensive Survey. Journal of the American Society
for Information Science and Technology, 55(3):189–
213.

Mohamed Altantawy, Nizar Habash, and Owen Ram-
bow. 2011. Fast Yet Rich Morphological Analysis.
In Proceedings of the 9th International Workshop on
Finite-State Methods and Natural Language Process-
ing (FSMNLP 2011), Blois, France.

Kenneth Beesley, Tim Buckwalter, and Stuart Newton.
1989. Two-Level Finite-State Analysis of Arabic Mor-
phology. In Proceedings of the Seminar on Bilingual
Computing in Arabic and English, page n.p.

Tim Buckwalter. 2004. Buckwalter arabic morpho-
logical analyzer version 2.0. LDC catalog number
LDC2004L02, ISBN 1-58563-324-0.

Tim Buckwalter. 2007. Issues in Arabic Morphologi-
cal Analysis. In A. van den Bosch and A. Soudi, edi-
tors, Arabic Computational Morphology: Knowledge-
based and Empirical Methods. Springer.

Mark W. Cowell. 1964. A Reference Grammar of Syrian
Arabic. Georgetown University Press.

8

Mona Diab, Kadri Hacioglu, and Daniel Jurafsky, 2007.
Arabic Computational Morphology: Knowledge-
based and Empirical Methods, chapter Automated
Methods for Processing Arabic Text: From Tokeniza-
tion to Base Phrase Chunking. Springer.

Wallace Erwin. 1963. A Short Reference Grammar of
Iraqi Arabic. Georgetown University Press.

Hassan Gadalla, Hanaa Kilany, Howaida Arram, Ashraf
Yacoub, Alaa El-Habashi, Amr Shalaby, Krisjanis
Karins, Everett Rowson, Robert MacIntyre, Paul
Kingsbury, David Graff, and Cynthia McLemore.
1997. CALLHOME Egyptian Arabic Transcripts. In
Linguistic Data Consortium, Philadelphia.

Hassan Gadalla. 2000. Comparative Morphology of
Standard and Egyptian Arabic. LINCOM EUROPA.

David Graff, Mohamed Maamouri, Basma Bouziri,
Sondos Krouna, Seth Kulick, and Tim Buckwal-
ter. 2009. Standard Arabic Morphological Analyzer
(SAMA) Version 3.1. Linguistic Data Consortium
LDC2009E73.

Nizar Habash and Owen Rambow. 2005. Arabic Tok-
enization, Part-of-Speech Tagging and Morphological
Disambiguation in One Fell Swoop. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), pages 573–580, Ann
Arbor, Michigan.

Nizar Habash and Owen Rambow. 2006. MAGEAD:
A Morphological Analyzer and Generator for the Ara-
bic Dialects. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics, pages 681–688, Sydney, Australia.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den Bosch
and A. Soudi, editors, Arabic Computational Mor-
phology: Knowledge-based and Empirical Methods.
Springer.

Nizar Habash, Mona Diab, and Owen Rabmow. 2012.
Conventional Orthography for Dialectal Arabic. In
Proceedings of the Language Resources and Evalua-
tion Conference (LREC), Istanbul.

Nizar Habash. 2007. Arabic Morphological Representa-
tions for Machine Translation. In Antal van den Bosch
and Abdelhadi Soudi, editors, Arabic Computational
Morphology: Knowledge-based and Empirical Meth-
ods. Kluwer/Springer.

Nizar Habash. 2010. Introduction to Arabic Natural
Language Processing. Morgan & Claypool Publish-
ers.

Clive Holes. 2004. Modern Arabic: Structures, Func-
tions, and Varieties. Georgetown Classics in Ara-
bic Language and Linguistics. Georgetown University
Press.

H. Kilany, H. Gadalla, H. Arram, A. Yacoub, A. El-
Habashi, and C. McLemore. 2002. Egyptian

Colloquial Arabic Lexicon. LDC catalog number
LDC99L22.

George Anton Kiraz. 2000. Multi-Tiered Nonlinear
Morphology Using Multi-Tape Finite Automata: A
Case Study on Syriac and Arabic. Computational Lin-
guistics, 26(1):77–105.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, Mona
Diab, Nizar Habash, Owen Rambow, and Dalila
Tabessi. 2006. Developing and Using a Pilot Dialectal
Arabic Treebank. In Proceedings of the Language Re-
sources and Evaluation Conference (LREC), Genoa,
Italy.

Mohamed Maamouri, Ann Bies, Seth Kulick, Dalila
Tabessi, and Sondos Krouna. 2012a. Egyptian Ara-
bic Treebank Pilot.

Mohamed Maamouri, Sondos Krouna, Dalila Tabessi,
Nadia Hamrouni, and Nizar Habash. 2012b. Egyptian
Arabic Morphological Annotation Guidelines.

Emad Mohamed, Behrang Mohit, and Kemal Oflazer.
2012. Annotating and Learning Morphological Seg-
mentation of Egyptian Colloquial Arabic. In Proceed-
ings of the Language Resources and Evaluation Con-
ference (LREC), Istanbul.

Jason Riesa and David Yarowsky. 2006. Minimally Su-
pervised Morphological Segmentation with Applica-
tions to Machine Translation. In Proceedings of the
7th Conference of the Association for Machine Trans-
lation in the Americas (AMTA06), pages 185–192,
Cambridge,MA.

Wael Salloum and Nizar Habash. 2011. Dialectal
to Standard Arabic Paraphrasing to Improve Arabic-
English Statistical Machine Translation. In Proceed-
ings of the First Workshop on Algorithms and Re-
sources for Modelling of Dialects and Language Va-
rieties, pages 10–21, Edinburgh, Scotland.

Otakar Smrž. 2007. Functional Arabic Morphology. For-
mal System and Implementation. Ph.D. thesis, Charles
University in Prague, Prague, Czech Republic.

9

Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology (SIGMORPHON2012), pages 10–16,
Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

Hindi Derivational Morphological Analyzer

Nikhil Kanuparthi
LTRC

IIIT-Hyderabad
India

{nikhil.kvs,abhilashi}

Abhilash Inumella
LTRC

IIIT-Hyderabad
India

@research.iiit.ac.in

Dipti Misra Sharma
LTRC

IIIT-Hyderabad
India

dipti@iiit.ac.in

Abstract

Hindi is an Indian language which is rela-
tively rich in morphology. A few morpholog-
ical analyzers of this language have been de-
veloped. However, they give only inflectional
analysis of the language. In this paper, we
present our Hindi derivational morphological
analyzer. Our algorithm upgrades an existing
inflectional analyzer to a derivational analyzer
and primarily achieves two goals. First, it suc-
cessfully incorporates derivational analysis in
the inflectional analyzer. Second, it also in-
creases the coverage of the inflectional analy-
sis of the existing inflectional analyzer.

1 Introduction

Morphology is the study of processes of word for-
mation and also the linguistic units such as mor-
phemes, affixes in a given language. It consists
of two branches: derivational morphology and in-
flectional morphology. Derivational morphology
is the study of those processes of word formation
where new words are formed from the existing stems
through the addition of morphemes. The meaning of
the resultant new word is different from the original
word and it often belongs to a different syntactic cat-
egory. Example: happiness (noun) = happy (adjec-
tive) + ness. Inflectional morphology is the study of
those processes of word formation where various in-
flectional forms are formed from the existing stems.
Number is an example of inflectional morphology.
Example: cars = car + plural affix ’s’.

The main objective of our work is to develop a
tool which executes the derivational morphological

analysis of Hindi. Morphological analysis is an im-
portant step for any linguistically informed natural
language processing task. Most morphological ana-
lyzers perform only inflectional analysis. However,
derivational analysis is also crucial for better perfor-
mance of several systems. They are used to improve
the efficiency of machine translators (C Gdaniec et
al., 2001). They are also used in search engines
to improve the information extraction (J Vilares et
al., 2001). Since derivational processes can often be
productive in a language, the development of an ef-
fective derivational analyzer will prove beneficial in
several aspects.

We developed a derivational analyzer for Hindi
over an already existing inflectional analyzer devel-
oped at IIIT Hyderabad. In this approach, first, the
derived words in Hindi were studied to obtain the
derivational suffixes of the language. Then the rules
were designed by understanding the properties of the
suffixes. The Hindi Wikipedia was also utilized to
collect the required background data. Finally, an al-
gorithm was developed based on the above findings.
This algorithm has been used to upgrade the inflec-
tional analyzer to a derivational analyzer.

In the sections that follow, we describe the ap-
proach we followed to develop our derivational an-
alyzer and the experiments that we conducted using
our system.

2 Related Work

There is no derivational morphological analyzer for
Hindi to the best of our knowledge. However,
a few inflectional morphological analyzers (IIIT;
Vishal and G. Singh, 2008; Niraj and Robert, 2010)

10

of this language have been developed. There are
derivational analyzers for other Indian languages
like Marathi (Ashwini Vaidya, 2009) and Kannada
(Bhuvaneshwari C Melinamath et al., 2011). The
Marathi morphological analyzer was built using a
Paradigm based approach whereas the Kannada ana-
lyzer was built using an FST based approach. As far
as English is concerned, there are some important
works (Woods, 2000; Hoeppner, 1982) pertaining
to the area of derivational morphological analysis.
However, both of these are lexicon based works.

For our work, we employed a set of suffix replace-
ment rules and a dictionary in our derivational ana-
lyzer, having taken insights from the Porter’s stem-
mer (Porter, 1980) and the K-stemmer (R. Krovetz.
1993). They are amongst the most cited stemmers
in the literature. The primary goal of Porter’s stem-
mer is suffix stripping. So when a word is given as
input, the stemmer strips all the suffixes in the word
to produce a stem. It achieves the task in five steps
applying rules at each step. Given a word as input,
the Krovetz stemmer removes inflectional suffixes
present in the word in three steps. First it converts
the plural form of the word into a singular form,
then it converts past tense to present tense, and fi-
nally removes -ing. As the last step, the stemmer
checks the dictionary for any recoding and returns
the stem. Our algorithm uses the main principles of
both the Porters stemmer and Krovetz stemmer. The
suffix replacement rules of our algorithm resemble
that of the Porters and a segment of the algorithm
is analogous to the dictionary based approach of the
Krovetzs stemmer.

3 Existing Inflectional Hindi
Morphological Analyzers

A derivational morph analyzer can be developed
from an existing morph analyzer instead of build-
ing one from scratch. So three inflectional analyzers
were considered for the purpose. The morphological
analyzer developed by Vishal and Gurpreet stores all
the commonly used word forms for all Hindi root
words in its database. Thus, space is a constraint for
this analyzer but the search time is quite low. The
morph analyzer developed by Niraj and Robert ex-
tracts a set of suffix replacement rules from a corpus
and a dictionary. The rules are applied to an inflected

word to obtain the root word. They show that the
process of developing such rulessets is simple and it
can be applied to develop morphological analyzers
of other Indian languages.

However, our derivational analyzer is an exten-
sion of an existing inflectional morphological ana-
lyzer developed at IIIT Hyderabad (Bharati Akshar
et al, 1995). The inflectional analyzer is based on
the paradigm model. It uses the combination of
paradigms and a root word dictionary to provide in-
flectional analysis. Given an inflected Hindi word,
this inflectional analyzer returns its root form and
other grammatical features such as gender, num-
ber, person, etc. For example: if the input word
to the morphological analyzer is bAgabAnoM1 (gar-
deners), the output will be bAgabAna (gardener),
noun, m, pl, etc. Here the word bAgabAna is the
root word of the input word. ’Noun’ is the cate-
gory of the input word, ’m’ means masculine and
’pl’ means that the input word is plural in number.

The analyzer uses a root word dictionary for the
purpose. If a word is present in the root word dic-
tionary, the analyzer handles all the inflections per-
taining to that word. For example: xe (give) is a root
word present in the dictionary of the analyzer. xewA
(gives), xenA (to give), xiyA (gave) and other inflec-
tional forms of the root word xe are handled by the
analyzer. There are 34407 words in the root word
dictionary.

The analyzer handles inflected words using the
paradigm tables. Every entry (word) in the dic-
tionary has values like lexical category, paradigm
class, etc. For example: there is a word pulisavAlA
(policeman) in the dictionary. Its paradigm class
is ladakA. Table 1 shows the paradigm forms of
ladakA. Since the paradigm value of pulisavAlA is
ladakA, its four inflections will be similar to the four
paradigms of ladakA (root paradigm). The four in-
flections of pulisavAlA are pulisavAlA, pulisavAle,
pulisavAle, pulisavAloM. Only the root form (word)
pulisavAlA is present in the dictionary. In this way
every root word present in the dictionary belongs to
a paradigm class and this paradigm class has a struc-
tured paradigm table containing all the inflections of
the main paradigm. This paradigm table is used by

1The Hindi words are in wx-format (san-
skrit.inria.fr/DATA/wx.html) followed by IIIT-Hyderabad.

11

Table 1: Paradigm table of ladakA
Case Singular form Plural form

Direct ladakA (boy) ladake (boys)
Oblique ladake (boy) ladakoM (boys)

the analyzer to reconstruct all the inflections of the
root words belonging to this paradigm class. There-
fore the analyzer can analyze a word only if its root
word is present in the dictionary.

This inflectional morphological analyzer works as
a platform for our derivational morphological ana-
lyzer. So our tool gives derivational analysis of all
the words whose root forms are present in the root
word dictionary. Our tool also tackles certain words
whose root forms are not present in the root word
dictionary of the IIIT morphological analyzer.

4 Approach

We pursued the following five step approach for
building our derivational analyzer.

4.1 Studying Hindi Derivations

To build the derivational morphological analyzer, we
first conducted a study to identify the derivational
suffixes and the related morphological changes. Af-
ter identifying the suffixes, the rules pertaining to
these suffixes were obtained.

First, the nouns present in the Hindi vocabulary
were studied. The study of nouns helped us in iden-
tifying some of the most productive derivational suf-
fixes present in the language. For example, let us
consider the word maxaxagAra (helper). This word
is derived from the word maxaxa (maxaxagAra =
maxaxa (help) + gAra). But gAra cannot be con-
firmed as a suffix because of just one instance. In
order to confirm gAra as a suffix, even other words
ending with gAra must be examined. The more the
number of words we find, the greater is the pro-
ductivity of the suffix. Words like yAxagAra (de-
rived from yAxa) and gunAhagAra (criminal) (de-
rived from gunAha (crime)) prove that gAra is a
derivational suffix. However, every word ending
with gAra need not be a derived word. For exam-
ple: the word aMgAra is not a derived word. There-
fore only relevant words were studied and the suf-
fixes were obtained only from them.

Table 2: Example derivations of some suffixes
Suffix Root Derivation
Ana laganA lagAna

bAna bAga bAgabAna
gAra yAxa yAxagAra
xAra xukAna xukAnaxAra
ika aXikAra aXikArika
I KuSa KuSI

AI acCA acCAI

Table 3: Rules of few suffixes
Suffix First set rules
bAna noun = noun/adj + bAna
gAra noun = noun/adj + gAra
xAra noun = noun/adj + xAra
ika adj = noun - a + ika

The entire process of obtaining the derivational
suffixes was done manually and was a time consum-
ing process. This process was repeated for adjec-
tives as well. Only those suffixes that participate in
the formation of nouns and adjectives were found.
A total of 22 productive derivational suffixes were
procured. Table 2 shows a few suffixes and their
derivations.

4.2 Derivational Rules

After finding the derivational suffixes, two sets of
derivational rules were developed for each suffix.
The first set explains the formation of the derived
words from their root words. Let us consider the
suffix gAra. This suffix generates nouns from nouns
and adjectives. The rule of this suffix explains the
formation of derivations like yAxagAra (yAxagAra
= yAxa (noun) + gAra) and maxaxagAra (maxaxa-
gAra = maxaxa + gAra). The second set consists of
reverse rules of the first set. The reverse rule for the
previous example is noun/adj = noun - suffix. In this
way, rules were developed for all the 22 derivational
suffixes. These rules form a vital component of our
algorithm. Table 3 contains the derivational rules of
a few suffixes.

4.3 Finding Majority Properties

The majority properties (of derived words of a suf-
fix) are the properties which most of the words ex-

12

hibit. Example: let us consider the derived words
of the suffix vAlA. There are 36 derived words of
the vAlA suffix in the root word dictionary. Some
of these words are adjectives but the majority are
nouns. Hence noun is fixed as the category (major-
ity category) for derived words of this class. Simi-
larly the majority paradigm class of these words is
ladakA. The majority properties of derived words
pertaining to all the 22 suffixes were acquired.

The majority properties of a suffix help us in the
derivational analysis of the unknown derived words
of that suffix. For example: consider the word Gar-
avAlA (housekeeper). Let us assume that it is not
present in the root word dictionary. Therefore the
lexical category, paradigm value and other important
features of this word are not known. But let us as-
sume that this word is a genuine derived word of the
suffix vAlA. So the tool must handle this case. The
majority properties of the vAlA suffix are assigned to
this word. So noun and ladakA are fixed as the cat-
egory and paradigm of this word. Thus the genuine
derived words which are unknown to the analyzer
will be analyzed using the majority properties.

The majority properties of derived words were ob-
tained in two main steps. First, a suffix was consid-
ered. Then all the derived words pertaining to that
suffix were acquired. Only genuine derived words
were taken into consideration. Genuine derivations
were found out using the suffix derivational rules.
Example: let us take the word maxaxagAra (ending
with gAra). First, the root word of this word is re-
trieved using the gAra derivational rule. The root
word according to the rule is maxaxa. This word is
present in the dictionary and it also satisfies the cat-
egory condition of the rule. The word maxaxa is a
noun. Hence the word maxaxagAra is accepted as a
derived word. If the word maxaxa is not found in the
dictionary or if its category is not a noun/adjective,
the word maxaxagAra will be rejected. In this way
all the valid derivations of the suffix were acquired.
This process was repeated for other suffixes as well.
In the second step, the majority properties of the de-
rived words were directly retrieved.

Finally, a suffix table was built using the major-
ity properties of the derived words. The suffix table
contains all the suffixes and their inflectional forms.
Table 4 contains few suffixes and their inflectional
forms. For example: the majority paradigm of de-

Table 4: Few suffixes and their forms
Suffix Suffix-forms
Ana Ana
bAna bAna, bAnoM
gAra gAra, gAroM
xAra xAra, xAroM
ika ika
I I

AI AI
anI anI, aniyAz, aniyoM

rived words of vAlA suffix is ladakA. This implies
that the derived words of this suffix end with vAlA,
vAle and vAloM. Thus the possible inflections of a
suffix can be derived from its majority properties.
This information was stored in a table. The majority
properties and the suffix table play an important role
in the analysis of the unknown words. Their usage in
our algorithm will be described in the later sections.

4.4 Using Wikipedia Data for Confirming
Genuineness

If an invalid word is not analyzed by the inflec-
tional analyzer, there is no need for proceeding to
the derivational analysis of that word. Therefore the
genuineness of a word must be tested before going
for the derivational analysis. The Hindi Wikipedia
was chosen as a resource that enables us to test the
genuineness of a word.

A total of 400k words were extracted from the
Hindi Wikipedia. This data contains many words
which do not exist in Hindi vocabulary. So 220k
proper Hindi words were selected (on the basis of
frequency) from the data and a list containing those
220k words was created. A word will be treated as
a genuine word only when it is present in that list.
This assumption is used by our algorithm. The Wiki
data is used as a standard corpus.

4.5 Algorithm for Derivational Analysis

An algorithm was developed to make use of the
existing inflectional morphological analyzer for
derivational analysis. This algorithm enabled us to
bypass the construction of a derivational analyzer
from the scratch. The majority properties of the
derivations, the Wikipedia data and the suffix-table
are also employed by the algorithm for analyzing un-

13

known derivations.

Figure 1: Algorithm

The input to the algorithm is a word. The out-
put is a combination of the inflectional analysis and
the derivational analysis of the input word. For ex-
ample: if the input word is bAgabAnoM (garden-
ers). First, the algorithm gives the inflectional anal-
ysis of the input word. In this case the word bAga-
bAnoM is a noun, plural in number, etc. Then it
gives the information (category, gender) of the root
word (bAga (garden)) from which the input word is
derived (derivational analysis). So a dual analysis of
the input word is provided.

4.6 Examples

The following 4 examples explain the working of
the algorithm in 4 different cases. These examples
are provided to give a clear picture of the complete
algorithm.

a) Example 1
Input word: pulisavAle (Policemen)
In the step-2, the word is analyzed by the IIIT
inflectional analyzer. In the step 3a.1, the word
pulisavAlA (Policeman) is the normal-form of the
input word. The normal-form is ending (vAlA)
with one of our 22 suffixes. The rule of the suffix
is noun = noun/verb + vAlA. So the root word is
pulisa because pulisavAlA = pulisa + vAlA. The
word pulisa should be a noun or a verb in order
to satisfy the rule. All the conditions are met and
the step 3a.5 becomes the vital final step. This
step gives the information that the final root word
pulisa is a masculine noun and the input word is
also a masculine noun and it is plural in number.
Here the information about the final root word and
the input word is again given using the inflectional
morphological analyzer.

b) Example 2
Input word: kirAexAroM (Tenants)
The IIIT inflectional analyzer cannot analyze this
word. The word kirAexAroM is ending with one
of the forms (xAroM) present in the suffix table.
The normal-form of the input word is obtained by
replacing the suffix form in the input word with
the suffix. Hence the normal-form of the input
word kirAexAroM is kirAexAra. In this way, the
normal-form of the input word is acquired without
the inflectional analyzer. The word kirAexAra is
present in Wiki data and it is ending with one of
the 22 suffixes. The rule of the suffix is noun =
noun/adj + xAra. So the root word is kirAe because
kirAexAra = kirAe + xAra.

c) Example 3
Input word: ladake (Boys)
In the step-2, the word is analyzed by the IIIT
inflectional analyzer. The normal form of the word
is ladakA (boy). The normal-form of the word is not
ending with any of our 22 suffixes. So there is no
derivational analysis of this particular case.

d) Example 4
Input word: ppppwA (invalid word)
The IIIT inflectional analyzer cannot analyze this
word. The word ppppwA is ending with one of
the forms (wA) present in the suffix table. But the

14

normal-form (ppppwA) is not present in Wikipedia.
So there is no derivational analysis for this particular
case.

4.7 Expanding Inflectional Analysis

The algorithm for derivational analysis was also
used for expanding the inflectional analysis of the
analyzer. Consider the second example in the pre-
vious section. The word kirAexAroM is analyzed
by the derivational analyzer even though its root
form (kirAexAra) is not present in the root word dic-
tionary. Words like kirAexAra are genuine deriva-
tions and can be added to the root word dictio-
nary. The addition of such kind of words will extend
the inflectional analysis of the analyzer. For exam-
ple. if the word kirAexAra is added, its forms ki-
rAexAroM and kirAexAra will be automatically ana-
lyzed. This is because the word kirAexAra would be
added along with its features/values like category,
paradigm class, etc.

Therefore all the words which fall into the
example-2 category of the previous section can be
added to the dictionary. All such words must be ob-
tained in order to expand our dictionary. For this
purpose, a Wiki data consisting of 220k Wiki words
was extracted from Wikipedia. Out of these 220k
words, 40k words are ending with our 22 suffixes
and their forms. So the derived words which can be
analyzed by our system are part of this sub-dataset.
Out of 40k words, the derivational analyzer analyzed
5579 words. The inflectional analyzer analyzed only
2362 words out of 40000. So the derivational an-
alyzer analyzed 3217 derived words more than the
inflectional analyzer. So these words were added to
the root word dictionary for expanding the inflec-
tional analysis of the analyzer. The algorithm which
was designed to perform derivational analysis also
inflated the inflectional analysis of the analyzer.

5 Experiments and Results

The performance of our derivational analyzer must
be compared with an existing derivational analyzer.
Since there is no such derivational analyzer, we
compared the performance of our tool with the ex-
isting IIIT inflectional analyzer (or the old morpho-
logical analyzer). The two tools must be tested on
a gold-data (data that does not contain any errors).

For example: let us assume that we have a data of
100 words and their morphological analysis. The
analysis of these 100 words does not contain any
errors and it is a gold-data. Now we must get the
analysis of these 100 words from both the deriva-
tional analyzer and the old morphological analyzer.
Then their analyses must be compared against the
gold-data. This is nothing but directly comparing
the outputs of the derivational analyzer and the old
morphological analyzer. This will help in evaluating
the derivational analyzer. This method of evaluation
will also tell the improvement the derivational ana-
lyzer achieved.

Figure 2: Evaluation Methodology for Morph Analyzers

The figure 2 (Amba P Kulkarni, 2010) explains
our evaluation methodology for morphological ana-
lyzers. Let us continue with the example mentioned
in the previous paragraph. First, we find the anal-
ysis of the 100 words by the old morph analyzer.
We compare its output with the gold output/analysis.
Let there be 50 words which belong to Type-1. It
means the gold analysis and morphological analysis
(by old morph) of 50 words is perfectly equal. Let
there be 10 words which belong to Type-6. It means

15

Table 5: Output analysis of old morph analyzer
Type Number of instances % of Type

Type1 2361 47.2
Type2 763 15.2
Type3 419 8.4
Type4 575 11.5
Type5 599 11.9
Type6 288 5.8

Table 6: Output analysis of derivational analyzer
Type Number of instances % of Type

Type1 2600 51.9
Type2 771 15.4
Type3 418 8.4
Type4 576 11.5
Type5 609 12.2
Type6 31 0.6

that the old morphological analyzer could not an-
alyze 10 words but there is gold analysis of those
words. In this way, each type forms an important
part of the evaluation process. Similarly we evalu-
ate the analysis of the 100 words by the derivational
analyzer. Finally we compare the evaluations of the
old morphological analyzer and our derivational an-
alyzer. This is our evaluation methodology.

So a gold-data consisting of the analysis of 5000
words was taken. The linguistic experts of IIIT Hy-
derabad have built this data and it was acquired from
that institution. The 5000 words were tested on both
the derivational analyzer and the inflectional ana-
lyzer.

Both the analyzers were tested on the gold-data
containing 5000 words. The table 6 proves that
the performance of the new derivational analyzer
is better than the old morphological analyzer. The
old analyzer could not provide any output of 288
words (Type-6) whereas that number is only 31 in-
case of the derivational analyzer. As a result of
this improvement, the overall Type-1 (Perfect output
which is completely matching with the gold output)
of derivational analyzer is nearly 5% more than that
of the old morphological analyzer. The data size is
small (only 5000). A testing on a larger gold-data
will show an even better picture of the improvement
that can be achieved by the derivational analyzer.

6 Conclusions

We presented an algorithm which uses an exist-
ing inflectional analyzer for performing derivational
analysis. The algorithm uses the main principles of
both the Porters stemmer and Krovetz stemmer for
achieving the task. The algorithm achieves decent
precision and recall. It also expands the coverage
of the inflectional analyzer. But it must be incorpo-
rated in applications like machine translators which
use derivational analysis for understanding its real
strengths and limitations.

References
Claudia Gdaniec, Esm Manandise, Michael C. McCord.

2001. Derivational morphology to the rescue: how it
can help resolve unfound words in MT, pp.129–131.
Summit VIII: Machine Translation in the Information
Age, Proceedings, Santiago de Compostela, Spain.

Jesus Vilares, David Cabrero and Miguel A. Alonso.
2001. Applying Productive Derivational Morphology
to Term Indexing of Spanish Texts. In Proceedings of
CICLing.

Vishal Goyal, Gurpreet Singh Lehal. 2008. Hindi Mor-
phological Analyzer and Generator, pp. 1156–1159.
IEEE Computer Society Press, California, USA.

Niraj Aswani, Robert Gaizauskas. 2010. Develop-
ing Morphological Analysers for South Asian Lan-
guages: Experimenting with the Hindi and Gujarati
Languages. In Proceedings of LREC.

Ashwini Vaidya. 2009. Using paradigms for certain
morphological phenomena in Marathi. In Proceedings
of ICON.

Bhuvaneshwari C Melinamath, Shubhagini D. 2011. A
robust Morphological analyzer to capture Kannada
noun Morphology, VOL 13. IPCSIT.

William A. Woods. 2000. Aggressive Morphology for
Robust Lexical Coverage. In Proceedings of ANLC.

Wolfgang Hoeppner. 1982. A multilayered approach to
the handling of word formation. In Proceedings of
COLING.

R. Krovetz. 1993. Viewing morphology as an inference
process. In Proceedings of COLING.

M. F. Porter. 1980. An algorithm for suffix stripping.
Originally published in Program, 14 no. 3, pp 130-137.

Bharati Akshar, Vineet Chaitanya, Rajeev Sangal. 1995.
Natural Language Processing: A Paninian Perspec-
tive. Prentice-Hall of India.

Amba P Kulkarni. 2010. A Report on Evaluation of San-
skrit Tools.

16

Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology (SIGMORPHON2012), pages 17–25,
Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

Phrase-Based Approach for Adaptive Tokenization

Jianqiang Ma Dale Gerdemann
Department of Linguistics

University of Tübingen
Department of Linguistics

University of Tübingen
Wilhelmstr. 19, Tübingen, 72074, Germany Wilhelmstr. 19, Tübingen, 72074, Germany

jma@sfs.uni-tuebingen.de dg@sfs.uni-tuebingen.de

Abstract

Fast re-training of word segmentation models is
required for adapting to new resources or
domains in NLP of many Asian languages
without word delimiters. The traditional
tokenization model is efficient but inaccurate.
This paper proposes a phrase-based model that
factors sentence tokenization into phrase
tokenizations, the dependencies of which are
also taken into account. The model has a good
OOV recognition ability, which improves the
overall performance significantly. The training
is a linear time phrase extraction and MLE
procedure, while the decoding is via dynamic
programming based algorithms.

1 Introduction

In many Asian languages, including Chinese, a
sentence is written as a character sequence without
word delimiters, thus word segmentation remains a
key research topic in language processing for these
languages. Although many reports from evaluation
tasks present quite positive results, a fundamental
problem for real word applications is that most
systems heavily depend on the data they were
trained on. In order to utilize increasingly available
language resources such as user contributed
annotations and web lexicon and/or to dynamically
construct models for new domains, we have to
either frequently re-build models or rely on
techniques such as incremental learning and
transfer learning, which are unsolved problems
themselves.
 In the case of frequent model re-building, the
most efficient approach is the tokenization model

(using the terminology in Huang et al., 2007), in
which the re-training is just the update of the
dictionary and the segmentation is a greedy string
matching procedure using the dictionary and some
disambiguation heuristics, e.g. Liang (1986) and
Wang et al. (1991). An extension of this approach
is the dynamic programming search of the most
probable word combination on the word lattice,
such as Ma (1996) and Sproat et al. (1996), which
utilize information such as word frequency
statistics in a corpus to build the model and are less
efficient but more accurate.
 However, all the methods mentioned above are
mostly based on the knowledge of in-vocabulary
words and usually suffer from poor performance,
as the out-of-vocabulary words (OOV) rather than
segmentation ambiguities turn out to the dominant
error source for word segmentation on real corpora
(Huang and Zhao, 2007). This fact has led to a
shift of the research focus to modeling the roles of
individual characters in the word formation process
to tackle the OOV problem. Xue (2003) proposes a
character classification model, which classifies
characters according to their positions in a word
using the maximum entropy classifier (Berger et
al., 1996). Peng et al. (2004) has further extended
this model to its sequential form, i.e. sequence
labeling, by adopting linear-chain conditional
random fields (CRFs, Lafferty et al., 2001). As it is
capable of capturing the morphological behaviors
of characters, the character classification model
has significantly better performance in OOV
recognition and overall segmentation accuracy, and
has been the state-of-art since its introduction,
suggested by the leading performances of systems
based on it in recent international Chinese word

17

segmentation bakeoffs (Emerson, 2005; Levow,
2006; Zhao and Liu, 2010).
 The tokenization model has advantages in
simplicity and efficiency, as the basic operation in
segmentation is string matching with linear time
complexity to the sentence length and it only needs
a dictionary thus requires no training as in the
character classification model, which can easily
have millions of features and require hundreds of
iterations in the training phase. On the other hand,
it has inferior performance, caused by its poor
OOV induction ability.
 This work proposes a framework called phrase-
based tokenization as a generalization of the
tokenization model to cope with its deficiencies in
OOV recognition, while preserving its advantages
of simplicity and efficiency, which are important
for adaptive word segmentation. The segmentation
hypothesis unit is extended from a word to a
phrase, which is a character string of arbitrary
length, i.e. combinations of partial and/or complete
words. And the statistics of different tokenizations
of the same phrase are collected and used for
parameters estimation, which leads to a linear time
model construction procedure. This extension
makes hypothesis units capable of capturing richer
context and describing morphological behavior of
characters, which improves OOV recognition.
Moreover, overlapping hypothesis units can be
combined once certain consistency conditions are
satisfied, which avoids the unrealistic assumption
of independence among the tokenizations of
neighboring phrases.
 Phrase-based tokenization decomposes the
sentence tokenization into phrase tokenizations.
We use a graph called phrase tokenization lattice
to represent all the hypotheses of phrase
tokenization in a given sentence. Under such a
formulation, tokenizing a sentence is transformed
to the shortest path search problem on the graph,
which can be efficiently solved by dynamic
programming techniques similar to the Viterbi
(1967) algorithm.

2 Phrase-Based Model

The hypothesis unit of the tokenization model is
the word, i.e. it selects the best word sequence
from all the words that can be matched by
substrings of the sentence (usually in a greedy
manner). Once a word is chosen, the corresponding

boundaries are determined. This implies that as the
characters in a word are always considered as a
whole, the morphological behavior of an individual
character, e.g. the distribution of its positions in
words, is ignored thus makes it impossible to
model the word formation process and recognize
OOV.
 Critical tokenization (Guo, 1997) suggests a
method of discovering all and only unambiguous
token boundaries (critical points) and generating
longest substrings with all inner positions
ambiguous (critical fragments) under the
assumption of complete dictionary. Then an
example-based method using the context can be
adopted to disambiguate the tokenization of critical
fragments (Hu et al, 2004). However, the complete
dictionary assumption is not realistic in practice, as
the word formation is so dynamic and productive
that there is no dictionary that is even close to the
complete lexicon. Given the presence of OOV, a
word, including a monosyllabic word, in the
original dictionary may be a substring, i.e. a partial
word, of an OOV. In this case, the critical points
found by the dictionary are not guaranteed to be
unambiguous.
 As the complete dictionary does not exist as a
static object, a possible solution is to make a
dynamic dictionary, which induces words on the
fly. But this will not be discussed in this paper.
Instead, we attempt to generalize the tokenization
model to work without the complete dictionary.
Different from making distinctions of critical
fragments and “non-critical” fragments in critical
tokenization, we suggest using phrases to represent
potentially ambiguous fragments of sentences in a
unified way. We define a phrase as a substring of a
sentence, the boundaries of which, depending on
the tokenization, may or may not necessarily match
word boundaries. The fact that partial words,
including single characters, may appear on both
ends of a phrase makes it possible to describe
“morphemes in the context” for OOV induction. A
consequence of introducing phrase in tokenization
is that a manually segmented corpus is needed in
order to collect phrases.

2.1 Tokenization

Tokenization is the process of separating words or
word-like units from sentences or character strings.
We can consider sentence tokenization as a
mapping from each position in the sentence to a

18

binary value, which indicates the presence
(denoted as #) or the absence of word boundary
(denoted as $) at that position. A specific
tokenization realization of a sentence can be
represented by a list of binary values, which can be
generated by the concatenations of its sub-lists. In
other words, a tokenization of a given sentence can
be represented as the concatenation of the
tokenizations of its component phrases.
 If we assume that the tokenization of a phrase is
independent of other phrases in the same sentence,
the sentence tokenization problem is decomposed
to smaller phrase tokenization problems, which are
unrelated to each other. The independency
assumption is not necessarily true but in general is
a good approximation. We take this assumption by
default, unless there exists evidence that suggests
otherwise. In that case, we introduce a method
called backward dependency match to fix the
problem, which will be discussed in Section 3.3.

 2.2 Phrase Tokenization Lattice

Informally a phrase tokenization lattice, or lattice
in short, is a set of hypothesized tokenization of
phrases in the given sentence, which is a compact
representation of all the possible tokenization for
that sentence. Using the notations in Mohri (2002),
we formally define a lattice as a weighted directed
graph <V,E > with a mapping W :E! A , where
V is the set of nodes, E is the set of edges, and
the mapping W assigns each edge a weight w
from the semiring < A,!,", 0,1> 1.
 For a given sentence S[0...m] , each node
v !V , denotes a sentence position (the position
between a pair of adjacent characters in a
untokenized sentence). Each edge e! E from
node va to node vb , denotes a tokenization of the
phrase between the positions defined by va and
vb . And for each edge e , a weight w is
determined by the mapping W , denotes the phrase
tokenization probability, the probability of the
phrase defined by the two nodes of the edge being
tokenized as the tokenization defined by that edge.
A path ! in the lattice is a sequence of
consecutive edges, i.e. ! = e1e2...ek , where ei and

1 A semiring defines an algebra system with certain rules to
compute path probabilities and the max probabilities from a
node to another. See Mohri (2002) for details.

ei+1 are connected with a node. The weight for the
path ! can be defined as:

w(!) =!
i=1

k
w(ei) (1)

which is the product of the weights of its
component edges. A path from the source node to
the sink node, represents a tokenization of the
sentence being factored as the concatenation of
tokenizations of phrases represented by those edges
of on that path.
 For example, with some edges being pruned, the
lattice for the sentence 有人质疑他 ‘Someone
questions him’ is shown in Figure 1.

Figure 1. A pruned phrase tokenization lattice. Edges
are tokenizations of phrases, e.g. e5 represents
tokenizing 质疑 ‘question’ into a word and e7
represents tokenizing疑他 ‘doubt him’ into a partial
word 疑 ‘doubt’ followed by a word 他 ‘him’.

2.3 Tokenization as the Best Path Search

After the introduction of the lattice, we formally
describe the tokenization (disambiguation)
problem as the best path searching on the lattice:

T! = argmax

T!D
w T() (2)

where D is the set of all paths from the source
node to the sink node, and T! is the path with the
highest weight, which represents the best
tokenization of the sentence. Intuitively, we
consider the product of phrase tokenization
probabilities as the probability of the sentence
tokenization that is generated from the
concatenation of these phrase tokenizations.
 Note that every edge in the lattice is from a node
represents an earlier sentence position to a node
that represents a later one. In other words, the
lattice is acyclic and has a clear topological order.

19

In this case, the best path can be found using the
Viterbi (1967) algorithm efficiently2.

3 Training and Inference Algorithms

3.1 Model Training

In order to use the lattice to tokenize unseen
sentences, we first have to build a model that can
generate the edges and their associated weight, i.e.
the tokenization of all the possible phrases and
their corresponding phrase tokenization probability.
We do it by collecting all the phrases that have
occurred in a training corpus and use maximum
likelihood estimation (MLE) to estimate the phrase
tokenization probabilities. The estimation of the
probability that a particular phrase A = a1a 2 ...an
being tokenized as the tokenization T = t1t2 ...tm is
given in equation (3), where C(•) represents the
empirical count, and the set of all T ' stands for all
possible tokenizations of A . To avoid extreme
cases in which there is no path at all, techniques
such as smoothing can be applied.

P(T | A) = C (T ,A)
C (T ',A)

T '! = C (T ,A)
C (A) (3)

 The result of the MLE estimation is stored in a
data structure called phase tokenization table, from
which one can retrieval all the possible
tokenizations with their corresponding
probabilities for the every phrase that has occurred
in the training corpus. With this model, we can
construct the lattice, i.e. determine the set of edges
E and the mapping function W (defining nodes is
trivial) for a given sentence in a simple string
matching and table retrieval manner: when a
substring of sentence is matched to a stored phrase,
an edge is built from the its starting and ending
node to represent a tokenization of that phrase,
with the weight of the edge equals to the MLE
estimation of the stored phrase-tokenization pair.

3.2 Simple Dynamic Programming

Once the model is built, we can tokenize a given
sentence by the inference on the lattice which
represents that sentence. The proposed simple
dynamic programming algorithm (Algorithm 1, as

2 More rigid mathematical descriptions of this family of
problems and generic algorithms based on semirings are
discussed in Mohri (2002) and Huang (2008).

shown in Figure 2) can be considered as the phrase
tokenization lattice version of the evalUtterance
algorithm in Venkataraman (2001). The best
tokenization of the partial sentence up to a certain
position is yielded by the best combination of one
previous best tokenization and one of the phrase
tokenizations under consideration at the current
step.
 The upper bound of the time complexity of
Algorithm 1 is O(kn2) , where n is the sentence
length and k is the maximum number of the
possible tokenization for a phrase. But in practice,
it is neither necessary nor possible (due to data
sparseness) to consider phrases of arbitrary length,
so we set a constraint of maximum phrase length
of about 10, which makes the time complexity de-
facto linear.

!"#$%&'()*+,**-&)."/*0123)&4*5%$#%3))&2#

!"#"#$%&'&(#)**!+",'#*-./#0&1,(&.0*-,23#*4!-5*

62.7')***6#0(#07#**689:::;<

62&'&3"&83'&$2,

=#'(67."#>*!?@&A#0'&.0*1#".*B#7(."

=#'(-./#0&1,(&.0>*!?@&A#0'&.0*0%33?'("&0C*B#7(."

!"#$%&'()9,

:$%*">D***(.***;***;$*,*************EE*")*7%""#0(*F.'&(&.0*&0*(+#*'#0(#07#

********:$%***#>"?D***(.***9****;$*,****EE*#)*'(,"(&0C*F.'&(&.0*.G*(+#*3,'(*F+",'#

****************$%&'()>68#)"<*************

****************&:***$%&'()***&0***!-*,**

************************+,-)."/'+",.>H#(-.F-./#0&1,(&.04!-I*$%&'()5**

************************+,-)."/'+",.0$&,1>H#(!".2,2&3&(J4!-I*+,-)."/'+",.5

************************(2,&)>=#'(67."#8#<*K*+,-)."/'+",.0$&,1*

************************&:***(2,&)L=#'(67."#8"<*,

********************************=#'(-./#0&1,(&.08"<>+,-)."/'+",.

********************************=#'(67."#8"<3(2,&)

********************************1'2-0$,".+)&4"53#***************

****************/"9/)

************************<%/3=****EE*&G*(+#*F+",'#*0.(*&0*!-I*#M&'(*(+#*&00#"*3..F

*

=#'(!,(+*N**!,(+*(",7#@*2,7/*G".A*2,7/OF.&0(#"8;<*

6#0(#07#-./#0&1,(&.0N*P.07,(#0,(&.0*.G*(+#*=#'(-./#0&1,&(.0*

#0("&#'*.G*(+#*#@C#'*.0*(+#*=#'(!,(+*4Q+&7+*,"#*F+",'#*(./#0&1,(&.0'5*

>7'.7')****6#0(#07#-./#0&1,(&.0!!

Figure 2. The pseudo code of Algorithm 1.

 The key difference to a standard word-lattice
based dynamic programming lies in the phrase
lattice representation that the algorithm runs on.
Instead of representing a word candidate as in
Venkataraman (2001), each edge now represents a

20

tokenization of a phrase defined by two nodes of
the edge, which can include full and partial words.
The combination of phrase tokenizations may yield
new words that are not in the dictionary, i.e. our
method can recognize OOVs.
 Let us consider a slightly modified version of
the lattice in Figure 1. Suppose edge e5 =#质$疑#
does not exist , i.e. the word 质疑 ‘question’ is not

in the dictionary, and there is new edge e5!= #质
$ that links node 2 and node 3 and represents a
partial word. Two of possible tokenizations of the
sentence are path p1 = e1e4e6e8 and path

p2 = e2e5!e7 . Note that p2 recognizes the word质
疑 ‘question’ by combining two partial words,
even though the word itself has not seen before. Of
course, this OOV is finally recognized only if a
path that can yield it is the best path found by the
decoding algorithm.
 Once the best path is found, the procedure of
mapping it back to segmented words is as follows.
The phrase tokenizations represented by the edges
of the best path are concatenated, before
substituting meta symbols # and $ into white space
and empty string, respectively. For example, if

p2 = e2e5!e7 is the best path, the concatenation of
the phrase tokenizations of the three edges on the
path will be #有#人##质$$疑#他#, and removal of
$ and substitution of # into the white space will
further transform it into 有 人 质疑 他
‘Somebody questions him’, which is the final
result of the algorithm.

3.3 Compatibility and Backward Dependency
Match

As mentioned in Section 2, the independency
assumption of phrase tokenization is not always
true. Considering the example in Figure 1, e4 and
and e7 are not really compatible, as e4 represents a
word while e7 represents a partial word that
expects the suffix of its preceding phrase to form a
word with its prefix. To solve this problem, we
require that the last (meta) symbol of the preceding
tokenization must equal to the first (meta) symbol
of the following tokenization in order to
concatenate the two. This, however, has the
consequence that there may be no valid

tokenization at all for some positions. As a result,
we have to maintain the top k hypotheses and use
the k-best path search algorithms instead of 1-best
(Mohri, 2002). We adopt the naïve k-best path
search, but it is possible to use more advanced
techniques (Huang and Chiang, 2005).
 The compatibility problem is just the most
salient example of the general problem of variable
independency assumptions, which is the "unigram
model" of phrase tokenization. A natural extension
is a higher order Markov model. But that is
inflexible, as it assumes a fixed variable
dependency structure (the current variable is
always dependent on previous n variables). So we
propose a method called backward dependency
match, in which we start from the independency
assumption, then try to explore the longest
sequence of adjacent dependencies that we can
reach via string match for a given phrase and its
precedent.
 To simplify the discussion, we use sequence
labeling, or conditional probability notation of the
tokenization. A tokenization of the given character
sequence (sentence) is represented as a specific
label sequence of same length. The label can be
those in the standard 4-tag set of word
segmentation (Huang and Zhao, 2007) or the #/$
labels indicating the presence or absence of a word
boundary after a specific character.
 The possible tokenizations of character sequence
a1a2a3 are represented as the probability
distribution P(t

1
t
2
t
3
| a1a2a3) , where t1t2t3 are labels

of a1a2a3 . If a tokenization hypothesis of
a1a2a3 decomposes its tokenization into the
concatenation of the tokenization of a1a2 and the
tokenization of a3 , this factorization can be
expressed as P(t1t2 | a1a2)! P(t3 | a3) , as shown in
Figure 3a. For a specific assignment
< a1a2a3;t1t2 t3 > , if we find that < a2a3 > can be
tokenized as < t2t3 > , it suggests that t3 may be
dependent on a2 and t2 as well, so we update the
second part of the factorization (at least for this
assignment) to: P(t3 | a3;a2t2) , which can be
estimated as:

P(t3 | a3;a2 t2) =
C(a

2
a
3
t
2
t
3
)

C(a
2
a
3
t
2
t
3
)

t3

!
 (4)

21

In this case, the factorization of the tokenization
P(t

1
t
2
t
3
| a1a2a3) is P(t1t2 | a1a2)! P(t3 | a3;a2t2) , as

shown in Figure 3b.

Figure 3a. The factorization of P(t1t2t3 | a1a2a3)
intoP(t1t2 | a1a2)! P(t3 | a3) .

Figure 3b. The factorization of P(t1t2t3 | a1a2a3)
into P(t1t2 | a1a2)! P(t3 | a3;a2t2) . Note that in the 2nd
factor, in addition to a3, a2 and t2 are also observed
variables and all of them are treated as a unit (shown by
the L-shape). The shadowed parts (a2 and t2) represent
the matched items.

 Algorithm 2 is based on the k-best search
algorithm, which calls the backward dependency
match after a successful compatibility check, and
match as far as possible to get the largest
probability of each tokenization hypothesis. In

extreme cases, where no tokenization hypothesis
survives the compatibility check, the algorithm
backs off to Algorithm 1.

4 Experiments

We use the training and testing sets from the
second international Chinese word segmentation
bakeoff (Emerson, 2005), which are freely
available and most widely used in evaluations.
There are two corpora in simplified Chinese
provided by Peking University (PKU) and
Microsoft Research (MSR) and two corpora in
traditional Chinese provided by Academic Sinica
(AS) and the City University of Hong Kong
(CityU). The experiments are conducted in a
closed-test manner, in which no extra recourse
other than the training corpora is used. We use the
same criteria and the official script for evaluation
from the bakeoff, which measure the overall
segmentation performance in terms of F-scores,
and the OOV recognition capacity in terms of
Roov.
 Precision is defined as the number of correctly
segmented words divided by the total number of
words in the segmentation result, where the
correctness of the segmented words is determined
by matching the segmentation with the gold
standard test set. Recall is defined as the number of
correctly segmented words divided by the total
number of words in the gold standard test set. The
evenly-weighted F-score is calculated by:

 F = 2 ! p ! r / (p + r) (5)
Roov is the recall of all the OOV words. And Riv is
the recall of words that have occurred in the
training corpus. The evaluation in this experiment
is done automatically using the script provided
with the second bakeoffs data.
 We have implemented both Algorithm 1 and
Algorithm 2 in Python with some simplifications,
e.g. only processing phrase up to the length of 10
characters, ignoring several important details such
as pruning. The performances are compared with
the baseline algorithm maximum matching (MM),
described in Wang et al. (1991), and the best
bakeoff results. The F-score, Roov and Riv are
summarized in Table 1, Table 2, and Table 3,
respectively.
 All the algorithms have quite similar recall for
the in-vocabulary words (Riv), but their Roov vary

22

greatly, which leads to the differences in F-score.
In general both Algorithm 1 and Algorithm 2
improves OOV Recall significantly, compared
with the baseline algorithm, maximum matching,
which has barely any OOV recognition capacity.
This confirms the effectiveness of the proposed
phrase-based model in modeling morphological
behaviors of characters. Moreover, Algorithm 2
works consistently better than Algorithm 1, which
suggests the usefulness of its strategy of dealing
with dependencies among phrase tokenizations.
 Besides, the proposed method has the linear
training and testing (when setting a maximum
phrase length) time complexity, while the training
complexity of CRF is the proportional to the
feature numbers, which are often over millions.
Even with current prototype, our method takes
only minutes to build the model, in contrast with
several hours that CRF segmenter needs to train
the model for the same corpus on the same
machine.
 Admittedly, our model still underperforms the
best systems in the bakeoff. This may be resulted
from that 1) our system is still a prototype that
ignores many minor issues and lack optimization
and 2) as a generative model, our model may suffer
more from the data sparseness problem, compared
with discriminative models, such as CRF.
 As mentioned earlier, the OOV recognition is
the dominant factor that influences the overall
accuracy. Different from the mechanism of
tokenization combination in our approach, state-of-
art systems such as those based on MaxEnt or
CRF, achieve OOV recognition basically in the
same way as in-dictionary word recognition. The
segmentation is modeled as assigning labels to
characters. And the probability of the label
assignment for a character token is mostly
determined by its features, which are usually local
contexts in the form of character co-occurrences.
 There are many other OOV recognition methods
proposed in literature before the rise of machine
learning in the field. For example, the Sproat et al.
(1996) system can successfully recognize OOVs of
strong patterns, such as Chinese personal names,
transliterations, using finite-state techniques.
Another typical example is Ma and Chen (2003),
which proposed context free grammar like rules
together with a recursive bottom-up merge
algorithm that merges possible morphemes after an
initial segmentation using maximum matching. It

would be fairer to compare the OOV recognition
performance of our approach with these methods,
rather than maximum matching. But most earlier
works are not evaluated on standard bake-off
corpora and the implementations are not openly
available, so it is difficult to make direct
comparisons.

F-score As CityU MSR PKU

Best Bakeoff 0.952 0.943 0.964 0.950

Algorithm 2 0.919 0.911 0.946 0.912

Algorithm 1 0.897 0.888 0.922 0.890

MM 0.882 0.833 0.933 0.869

Table 1. The F-score over the bakeoff-2 data.

Roov AS CityU MSR PKU

Best Bakeoff 0.696 0.698 0.717 0.636

Algorithm 2 0.440 0.489 0.429 0.434

Algorithm 1 0.329 0.367 0.411 0.416

MM 0.004 0.000 0.000 0.059

Table 2. The Roov over the bakeoff-2 data.

Riv AS CityU MSR PKU

Best Bakeoff 0.963 0.961 0.968 0.972

Algorithm 2 0.961 0.961 0.970 0.951

Algorithm 1 0.955 0.940 0.950 0.940

MM 0.950 0.952 0.981 0.956

Table 3. The Riv over the bakeoff-2 data.

5 Conclusion

In this paper, we have presented the phrase-based
tokenization for adaptive word segmentation. The
proposed model is efficient in both training and
decoding, which is desirable for fast model re-
construction. It generalizes the traditional

23

tokenization model by considering the phrase
instead of the word as the segmentation hypothesis
unit, which is capable of describing “morphemes in
the context” and improves the OOV recognition
performance significantly. Our approach
decomposes sentence tokenization into phrase
tokenizations. The final tokenization of the
sentence is determined by finding the best
combination of the tokenizations of phrases that
cover the whole sentence. The tokenization
hypotheses of a sentence are represented by a
weighed directed acyclic graph called phrase
tokenization lattice. Using this formalism, the
sentence tokenization problem becomes a shortest
path search problem on the graph.
 In our model, one only needs to estimate the
phrase tokenization probabilities in order to
segment new sentences. The training is thus a
linear time phrase extraction and maximum
likelihood estimation procedure. We adopted a
Viterbi-style dynamic programming algorithm to
segment unseen sentences using the lattice. We
also proposed a method called backward
dependency match to model the dependencies of
adjacent phrases to overcome the limitations of the
assumption that tokenizations of neighboring
phrases is independent. The experiment showed
the effectiveness of the proposed phrase-based
model in recognizing out-of-vocabulary words and
its superior overall performance compared with the
traditional tokenization model. It has both the
efficiency of the tokenization model and the high
performance of the character classification model.
 One possible extension of the proposed model
is to apply re-ranking techniques (Collins and Koo,
2005) to the k-best list generated by Algorithm 2.
A second improvement would be to combine our
model with other models in a log linear way as in
Jiang et al. (2008). Since phrase-based tokenization
is a model that can be accompanied by different
training algorithms, it is also interesting to see
whether discriminative training can lead to better
performance.

Acknowledgments

The research leading to these results has received
funding from the European Commission’s 7th
Framework Program under grant agreement n°
238405 (CLARA).

References

Adam Berger, Stephen Della Pietra, and Vincent Della
Pietra. 1992. A Maximum Entropy Approach to
Natural Language Processing. 1996. Computational
Linguistics, 22(1): 39-71

Michael Collins and Terry Koo. 2005. Discriminative
Reranking for Natural Language Parsing.
Computational Linguistics, 31(1):25-69.

Thomas Emerson. 2005. The second international Chi-
nese word segmentation bakeoff. In Proceedings of
Forth SIGHAN Workshop on Chinese Language
Processing. Jeju Island, Korea.

Jin Guo. 1997. Critical tokenization and its properties.
Computational Linguistics, 23(4): 569-596

Qinan Hu, Haihua Pan, and Chunyu Kit. 2004. An
example-based study on Chinese word segmentation
using critical fragments. In Proceedings of IJCNLP-
2004. Hainan Island, China

Changning Huang and Hai Zhao. 2007. Chinese Word
Segmentation: a Decade Review. Journal of Chinese
Information Processing, 21(3): 8-20

Chu-Ren Huang, Petr Simon, Shu-Kai Hsieh, and
Laurent Prévot. Rethinking Chinese word
segmentation: tokenization, character classification,
or wordbreak identification. In Proceedings of ACL-
2007. Prague, Czech

Liang Huang. 2008. Advanced dynamic programming
in semiring and hypergraph frameworks. In
Proceedings of COLING 2008. Manchester, UK.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proceedings of the Ninth International
Workshop on Parsing Technology. Vancouver,
Canada

Wenbin Jiang, Liang Huang, Qun Liu, Yajuan Lu. 2008.
A Cascaded Linear Model for Joint Chinese Word
Segmentation and Part-of-Speech Tagging. In
Proceedings of ACL 2008: HLT. Columbus, USA

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling
sequence data. In Proceedings of ICML 2001.
Williamstown, MA, USA

Gina-Anne Levow. 2006. The third international
Chinese language processing bakeoff: Word
segmentation and named entity recognition. In
Proceedings of the Fifth SIGHAN Workshop on
Chinese Language Processing. Sydney, Australia

24

Nanyuan Liang. 1986. On computer automatic word
segmentation of written Chinese. Journal of Chinese
Information Processing, 1(1).

Wei-Yun Ma and Keh-Jiann Chen. 2003. A bottom-up
merging algorithm for Chinese unknown word
extraction. In Proceedings of the second SIGHAN
workshop on Chinese language processing. Sapporo,
Japan

Yan Ma. 1996. The study and realization of an
evaluation-based automatic segmentation system. In
Changning Huang and Ying Xia, editors, Essays in
Language Information Processing. Tsinghua
University Press, Beijing, China.

Mehryar Mohri. 2002. Semiring frameworks and
algorithms for shortest-distance problems. Journal of
Automata, Languages and Combinatorics, 7(3):321–
350.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detection
using conditional random fields. In Proceedings of
COLING. Stroudsburg, PA, USA.

Richard Sproat, Chilin Shih, William Gale, and Nancy
Chang. 1996. A stochastic finite-state word-
segmentation algorithm for Chinese. Computational
Linguistics, 22(3):377-404.

Anand Venkataraman. 2001. A Statistical Model for
Word Discovery in Transcribed Speech.
Computational Linguistics, 27(3): 351-372

Andrew Viterbi (1967). Error bounds for convolutional
codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information
Theory, 13 (2): 260–269.

Xiaolong Wang, Kaizhu Wang, and Xiaohua Bai. 1991.
Separating syllables and characters into words in
natural language understanding. Journal of Chinese
Information Processing, 5(3):48-58.

Nianwen Xue. 2003. Chinese Word Segmentation as
Characater Tagging. Computational Linguistics and
Chinese Language Processing, 8(1): 29-48

Hongmei Zhao and Qun Liu. 2010. The CIPS-SIGHAN
CLP 2010 Chinese Word Segmentation Bakeoff. In
Proceedings of the First CPS-SIGHAN Joint
Conference on Chinese Language Processing.
Beijing, China.

25

Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology (SIGMORPHON2012), pages 26–34,
Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

A Regularized Compression Method To Unsupervised Word Segmentation

Ruey-Cheng Chen, Chiung-Min Tsai and Jieh Hsiang

National Taiwan University

1 Roosevelt Rd. Sec. 4

Taipei 106, Taiwan

rueycheng@turing.csie.ntu.edu.tw

cmtsai@mail.lis.ntu.edu.tw

jhsiang@ntu.edu.tw

Abstract

Languages are constantly evolving through

their users due to the need to communicate

more efficiently. Under this hypothesis, we

formulate unsupervised word segmentation as

a regularized compression process. We re-

duce this process to an optimization problem,

and propose a greedy inclusion solution. Pre-

liminary test results on the Bernstein-Ratner

corpus and Bakeoff-2005 show that the our

method is comparable to the state-of-the-art in

terms of effectiveness and efficiency.

1 Introduction

Unsupervised word segmentation has been a popular

research subject due to its close connection to lan-

guage acquisition. It has attracted researchers from

different communities, including linguistics, cogni-

tive science, and machine learning, to investigate

how human beings develop and harness their lan-

guages, and, more importantly, how knowledge is

acquired.

In this paper we propose a new formulation to the

unsupervised word segmentation problem. Our idea

is based on the observation that language evolves be-

cause of the need to reduce communication efforts.

For instance, new terminologies, abbreviations, and

slang that carry complex semantics which cannot be

efficiently expressed in the original languages are in-

vented so that concepts can be conveyed. Such an

evolution, we hypothesize, is limited to the extent

where the evolved vocabulary exhibits similar com-

plexity as the original one, in light of reducing the

extra cost to pick up the new language. This process

is realized as an optimization problem called regu-

larized compression, which gets this name from its

analogy to text compression.

The rest of the paper is organized as follows.

We briefly summarize related work on unsupervised

word segmentation in Section 2. In Section 3, we in-

troduce the proposed formulation. The iterative al-

gorithm and other technical details for solving the

optimization problem are covered in Section 4. In

Section 5, we describe the evaluation procedure and

discuss the experimental results. Finally, we present

concluding remarks in Section 6.

2 Related Work

The past few years have seen many nonparametric

Bayesian methods developed to model natural lan-

guages. Many such applications were applied to

word segmentation and have collectively reshaped

the entire research field. Two most notable exam-

ples are hierarchical Bayesian models and the min-

imum description length principle. Our method fits

in the latter category since we use this principle to

optimize model parameters.

Hierarchical Bayesian methods were first in-

troduced to complement conventional probabilistic

methods to facilitate context-aware word generation.

Goldwater et al. (2006) used hierarchical Dirichlet

processes (HDP) to induce contextual word mod-

els. Their approach was a significant improvement

over conventional probabilistic methods, and has in-

spired further explorations into more advanced hi-

erarchical modeling techniques. Such examples in-

clude the nested Pitman-Yor process (Mochihashi et

al., 2009), a sophisticated installment for hierarchi-

26

cal modeling at both word and character levels, and

adaptor grammars (Johnson and Goldwater, 2009), a

framework that aligns HDP to probabilistic context-

free grammars.

The minimum description length (MDL) princi-

ple, originally developed in the context of infor-

mation theory, was adopted in Bayesian statistics

as a principled model selection method (Rissanen,

1978). Its connection to lexical acquisition was

first uncovered in behavioral studies, and early ap-

plications focused mostly on applying MDL to in-

duce word segmentation that results in compact lex-

icons (Kit and Wilks, 1999; Yu, 2000; Argamon et

al., 2004). More recent approaches (Zhikov et al.,

2010; Hewlett and Cohen, 2011) used MDL in com-

bination with existing algorithms, such as branch-

ing entropy (Tanaka-Ishii, 2005; Jin and Ishii, 2006)

and bootstrap voting experts (Hewlett and Cohen,

2009), to determine the best segmentation parame-

ters. On various benchmarks, MDL-powered algo-

rithms have achieved state-of-the-art performance,

sometimes even surpassing that of the most sophis-

ticated hierarchical modeling methods.

3 Regularized Compression

3.1 Preliminaries

Consider that the unsegmented text consists of K ut-

terances and totally of N characters. We denote the

text as a sequence of characters c = 〈c1, . . . , cN 〉,
as if conceptually concatenating all the K utter-

ances into one string. The positions of all the ut-

terance boundaries in c are represented as a set

U = {u0 = 0, u1, . . . , uK}. In other words, the

k-th utterance (k = 1, . . . ,K) is stored as the sub-

sequence 〈cuk−1+1, . . . , cuk
〉 in c.

A segmented text is denoted as a sequence of

words w = 〈w1, w2, . . . , wM 〉 for some M < N . It

represents the same piece of text as c does. The word

sequence w is said to respect the utterance bound-

aries U if any word in the sequence does not span

over two utterances. Unique elements in a charac-

ter or word sequence implicitly define an alphabet

set (or lexicon). Hereafter, we denote such alphabet

sets for c and w as Ac and Aw, respectively.

3.2 Effects of Compression

Word segmentation results from compressing a se-

quence of characters. By compression, we mean to

replace the occurrences for some k-characters sub-
sequence 〈c1, c2, . . . , ck〉 in the text with those for a

new string w = c1c2 . . . ck (word). This procedure

can be generalized to include more subsequences to

be replaced, each with a different length. The result-

ing sequence is a mixture of characters and words

introduced during compression. For clarity, we use

the term token sequence to refer to such a mixed se-

quence of characters or words.

Compression has a few effects to the token se-

quence: (i) it increases the total number of tokens,

(ii) it expands the alphabet set to include newly pro-

duced tokens, (iii) it affects the entropy rate esti-

mates. Note that, by seeing a token sequence as

a series of outcomes drawn from some underlying

stochastic process, we can estimate the entropy rate

empirically.

Items (i) and (ii) are natural consequences of com-

pression. The effort to describe the same piece

of information gets reduced at the expense of ex-

panding the vocabulary, and sometimes even chang-

ing the usage. A real-life example for this is that

language users invent new terminologies for effi-

ciently conveying complex information. Item (iii)

describes something more subtle. Observe that,

when some n occurrences of a k-character subse-

quence 〈c1, c2, . . . , ck〉 get compressed, each char-

acter ci loses n occurrences, and totally nk occur-

rences move away from the subsequence; as a result,

the newly created word w receives n occurrences. It

is clear that compression has this side effect of re-

distributing probability masses among the observa-

tions (i.e., characters), thereby causing deviation to

entropy rate estimates.

3.3 Formulation

The choice of subsequences to be compressed is es-

sential in the aforementioned process. We hypothe-

size that a good choice has the following two prop-

erties: (i) higher frequency, and (ii) low deviation in

entropy rate.

We motivate these two properties as follows.

First, high frequency subsequences are favorable

here since they are more likely to be character-level

27

collocations; compressing these subsequences re-

sults in better compression rate. Second, deviation

in entropy rate is reflected in vocabulary complex-

ity, and we believe that it directly translates to efforts

that language users pay to adapt to the new language.

In this case, there seems no reason to believe that ei-

ther increasing or decreasing vocabulary complexity

is beneficial, since in two trivial “bad choices” that

one can easily imagine, i.e., the text being fully seg-

mented or unsegmented, the entropy rates reach both

extremes.

Motivated by these observations, we expect that

the best word segmentation (i) achieves some prede-

fined compression rate, and (ii) minimizes deviation

in entropy rate. This idea is realized as an optimiza-

tion problem, called regularized compression. Con-

ceptually, this problem is defined as:

minimize DV(c,w)
subject to w respects U

| |w|
|c| − ρ| ≤ ǫ

(1)

where ρ denotes some expected compression ratio

and ǫ denotes the tolerance. Note that DV(c,w) =
|H̃(C) − H̃(W)| represents the deviation in en-

tropy rate with respect to sequences c and w. In

this definition, H̃(C) and H̃(W) denote the em-

pirical entropy rates for random variables C ∈ Ac

and W ∈ Aw, estimated on the corresponding se-

quences c and w, respectively.

4 Iterative Algorithm

4.1 Ordered Ruleset

Acknowledging that exponentially many feasible

word sequences need to be checked, we propose an

alternative formulation in a restricted solution space.

The idea is, instead of optimizing for segmentations,

we search for segmentation generators, i.e., a set of

functions that generate segmentations from the in-

put. The generators we consider here is the ordered

rulesets.

An ordered ruleset R = 〈r1, r2, . . . , rk〉 is a se-

quence of translation rules, each of which takes the

following form:

w → c1c2 . . . cn,

where the right-hand side (c1c2 . . . cn) denotes the

n-token subsequence to be replaced, and the left-

hand side (w) denotes the new token to be intro-

duced. Applying a translation rule r to a token se-

quence has an effect of replacing all the occurrences

for subsequence c1c2 . . . cn with those for token w.

Applying an ordered ruleset R to a token se-

quence is equivalent to iteratively applying the trans-

lation rules r1, r2, . . . , rk in strict order. Specifi-

cally, consider that the initial token sequence is de-

noted as c(0) and let the final result be denoted as

c
(k). By iterative application, we mean to repeat the

following step for i = 1 . . . k:

Apply rule ri to c
(i−1) and save the result

as c(i).

4.2 Alternative Formulation

This notion of ordered rulesets allows one to explore

the search space efficiently using a greedy inclusion

algorithm. The idea is to maintain a globally best

ruleset B that covers the best translation rules we

have discovered so far, and then iteratively expand

B by discovering new best rule and adding it to rule-

set. The procedure repeats several times until the

compression rate reaches some predefined ratio ρ. In
each iteration, the best translation rule is determined

by solving a modified version of Equation (1), which

is written as follows:

(In iteration i)

minimize α |c(i)|

|c(i−1)|
+ DV(c(i−1), c(i))

subject to r is a rule

r(c(i−1)) = c
(i)

c
(i) respects U

(2)

Note that the alternative formulation is largely a

greedy version of Equation (1) except a few minor

changes. First, the compression rate constraint be-

comes the termination condition in the greedy in-

clusion algorithm. Second, we add an extra term

|c(i)|/|c(i−1)| to the objective to encourage early in-

clusion of frequent collocations. The trade-off pa-

rameter α is introduced in Equation (2) to scalarize

both terms in the objective.

A brief sketch of the algorithm is given in the fol-

lowing paragraphs.

1. Let B be an empty ordered ruleset, and let c(0)

be the original sequence of tokens.

28

2. Repeat the following steps for each i ∈ N ,

starting from i = 1, until the compression rate

reaches some predefined threshold.

(a) Find a rule r that maximizes Equation (2)

(b) Apply the rule r to form a new sequence

c
(i) from c

(i−1).

(c) Add r to the end of B.

3. Output B and the final sequence.

4.3 Implementation

Additional care needs to be taken in implementing

Steps 2a and 2b. The simplest way to collect n-gram
counts for computing the objective in Equation (2) is

to run multiple scans over the entire sequence. Our

experience suggests that using an indexing structure

that keeps track of token positions can be more ef-

ficient. This is especially important when updating

the affected n-gram counts in each iteration. Since

replacing one occurrence for any subsequence af-

fects only its surrounding n-grams, the total num-

ber of such affected n-gram occurrences in one it-

eration is linear in the number of occurrences for

the replaced subsequence. Using an indexing struc-

ture in this case has the advantage to reduce seek

time. Note that, however, the overall running time

remains in the same complexity class regardless of

the deployment of an indexing structure. The time

complexity for this algorithm is O(TN), where T is

the number of iterations and N is the length of the

input sequence.

Although it is theoretically appealing to create an

n-gram search algorithm, in this preliminary study

we used a simple bigram-based implementation for

efficiency. We considered only bigrams in creat-

ing translation rules, expecting that the discovered

bigrams can grow into trigrams or higher-order n-
grams in the subsequent iterations. To allow un-

merged tokens (i.e., characters that was supposed

to be in one n-gram but eventually left out due to

bigram implementation) being merged into the dis-

covered bigram, we also required that that one of

the two participating tokens at the right-hand side

of any translation rule has to be an unmerged to-

ken. This has a side effect to exclude generation of

collocation-based words1. It can be an issue in cer-

1Fictional examples include “homework” or “cellphone”.

tain standards; on the test corpora we used, this kind

of problems is not obvious.

Another constraint that we added to the imple-

mentation is to limit the choice of bigrams to those

has more frequency counts. Generally, the number

of occurrence for any candidate bigram being con-

sidered in the search space has to be greater or equal

to some predefined threshold. In practice, we found

little difference in performance for specifying any

integer between 3 and 7 as the threshold; in this pa-

per, we stick to 3.

5 Evaluation

5.1 Setup

We conducted a series of experiments to investi-

gate the effectiveness of the proposed segmentation

method under different language settings and seg-

mentation standards. In the first and the second

experiments, we focus on drawing comparison be-

tween our method and state-of-the-art approaches.

The third experiment focuses on the influence of

data size to segmentation accuracy.

Segmentation performance is assessed using stan-

dard metrics, such as precision, recall, and F-

measure. Generally, these measures are reported

only at word level; in some cases where further anal-

ysis is called for, we report boundary-level and type-

level measures as well. We used the evaluation script

in the official HDP package to calculate these num-

bers.

The reference methods we considered in the com-

parative study include the following:

• Hierarchical Dirichlet process, denoted as HDP

(Goldwater et al., 2009);

• Nested Pitman-Yor process, denoted as NPY

(Mochihashi et al., 2009);

• Adaptor grammars, denoted as AG (Johnson

and Goldwater, 2009);

• Branching entropy + MDL, denoted as Ent-

MDL (Zhikov et al., 2010);

• Bootstrap voting experts + MDL, denoted as

BVE-MDL (Hewlett and Cohen, 2011);

• Description length gain, denoted as DLG (Zhao

and Kit, 2008).

29

The proposed method is denoted as RC; it is also

denoted as RC-MDL in a few cases where MDL is

used for parameter estimation.

5.2 Parameter Estimation

There are two free parameters α and ρ in our model.

The parameter α specifies the degree to which we

favors high-frequency collocations when solving

Equation (2). Experimentation suggests that α can

be sensitive when set too low2. Practically, we rec-

ommend optimizing α based on grid search on de-

velopment data, or the MDL principle. The formula

for calculating description length is not shown here;

see Zhikov et al. (2010), Hewlett and Cohen (2011),

and Rissanen (1978) for details.

The expected compression rate ρ determines

when to stop the segmentor. It is related to the

expected word length: When the compression rate

|c|/|w| reaches ρ and the segmentor is about to stop,

1/ρ is the average word length in the segmentation.

In this sense, it seems ρ is somehow connected to the

language of concern. We expect that optimal values

learned on one data set may thus generalize on the

other sets of the same language. Throughout the ex-

periments, we estimated this value based on devel-

opment data.

5.3 Evaluation on Bernstein-Ratner Corpus

We conducted the first experiment on the Bernstein-

Ratner corpus (Bernstein-Ratner, 1987), a standard

benchmark for English phonetic segmentation. We

used the version derived by Michael Brent, which

is made available in the CHILDES database (Brent

and Cartwright, 1996; MacWhinney and Snow,

1990). The corpus comprises 9,790 utterances,

which amount to 95,809 words in total. Its rel-

atively small size allows experimentation with the

most computational-intensive Bayesian models.

Parameter estimation for the proposed method has

been a challenge due to the lack of appropriate de-

velopment data. We first obtained a rough estimate

for the compression rate ρ via human inspection into

the first 10 lines of the corpus (these 10 lines were

later excluded in evaluation) and used that estimate

to set up the termination condition. Since the first

2Informally speaking, when α < H̃(c). The analysis is not
covered in this preliminary study.

P R F Time

HDP 0.752 0.696 0.723 –

NPY, bigram 0.748 0.767 0.757 17 min.

AG – – 0.890 –

Ent-MDL 0.763 0.745 0.754 2.6 sec.

BVE-MDL 0.793 0.734 0.762 2.6 sec.

RC-MDL 0.771 0.819 0.794 0.9 sec.

Table 2: Performance evaluation on the Bernstein-Ratner

corpus. The reported values for each method indicate

word precision, recall, F-measure and running time, re-

spectively. The boldface value for each column indicates

the top performer under the corresponding metric.

10 lines are too small to reveal any useful segmenta-

tion cues other than the word/token ration of interest,

we considered this setting (“almost unsupervised”)

a reasonable compromise. In this experiment, ρ is

set to 0.37; the trade-off parameter α is set to 8.3,

optimized using MDL principle in a two-pass grid

search (the first pass over {1, 2, . . . , 20} and the sec-
ond over {8.0, 8.1, . . . , 10.0}).

A detailed performance result for the proposed

method is described in Table 1. A reference run

for HDP is included for comparison. The pro-

posed method achieved satisfactory result at word

and boundary levels. Nevertheless, low type-level

numbers (in contrast to those for HDP) together with

high boundary recall suggested that we might have

experienced over-segmentation.

Table 2 covers the same result with less details

in order to compare with other reference methods.

All the reported measures for reference methods

are directly taken from the literature. The result

shows that AG achieved the best performance in F-

measure (other metrics are not reported), surpass-

ing all the other methods by a large margin (10 per-

cent). Among the other methods, our method paired

with MDL achieved comparable performance as the

others in precision; it does slightly better than the

others in recall (5 percent) and F-measure (2.5 per-

cent). Furthermore, our algorithm also seems to be

competitive in terms of computational efficiency. On

this benchmark it demanded only minimal memory

low as 4MB and finished the segmentation run in 0.9

second, even less than the reported running time for

both MDL-based algorithms.

30

P R F BP BR BF TP TR TF

HDP, Bernstein-Ratner 0.75 0.70 0.72 0.90 0.81 0.85 0.64 0.55 0.59

RC-MDL, Bernstein-Ratner 0.77 0.82 0.79 0.85 0.92 0.89 0.57 0.48 0.50

RC, CityU training 0.75 0.79 0.77 0.89 0.93 0.91 0.63 0.35 0.45

RC, MSR training 0.73 0.82 0.77 0.86 0.96 0.91 0.70 0.26 0.38

Table 1: Performance evaluation for the proposed method across different test corpora. The first row indicates a

reference HDP run (Goldwater et al., 2009); the other rows represent the proposed method tested on different test cor-

pora. Columns indicates performance metrics, which correspond to precision, recall, and F-measure at word (P/R/F),

boundary (BP/BR/BF), and type (TP/TR/TF) levels.

Corpus Training (W/T) Test (W/T)

AS 5.45M / 141K 122K / 19K

PKU 1.1M / 55K 104K / 13K

CityU 1.46M / 69K 41K / 9K

MSR 2.37M / 88K 107K / 13K

Table 3: A short summary about the subsets in the

Bakeoff-2005 dataset. The size of each subset is given in

number of words (W) and number of unique word types

(T).

5.4 Evaluation on Bakeoff-2005 Corpus

The second benchmark that we adopted is the

SIGHAN Bakeoff-2005 dataset (Emerson, 2005)

for Chinese word segmentation. The corpus has

four separates subsets prepared by different research

groups; it is among the largest word segmentation

benchmarks available. Table 3 briefly summarizes

the statistics regarding this dataset.

We decided to compare our algorithm with de-

scription length gain (DLG), for that it seems to de-

liver best segmentation accuracy among other un-

supervised approaches ever reported on this bench-

mark (Zhao and Kit, 2008). Since the reported

values for DLG were obtained on another closed

dataset Bakeoff-2006 (Levow, 2006), we followed a

similar experimental setup as suggested in the liter-

ature (Mochihashi et al., 2009): We compared both

methods only on the training sets for the common

subsets CityU and MSR. Note that this experimental

setup departed slightly from that of Mochihashi et al.

in that all the comparisons were strictly made on the

training sets. The approach is more straightforward

than the suggested sampling-based method.

Other baseline methods that we considered in-

clude HDP, Ent-MDL, and BVE-MDL, for their

representativeness in segmentation performance and

CityU MSR

RC, r = 0.65 0.770 0.774

DLG, ensemble 0.684 0.665

Ent-MDL, nmax = 3 0.798 0.795

Table 4: Performance evaluation on the common training

subsets in the Bakeoff-2005 and Bakeoff-2006 datasets.

The reported values are token F-measure. The boldface

value in each column indicates the top performer for the

corresponding set.

ease of implementation. The HDP implementation

we used is a modified version of the offical HDP

package3; we patched the package to make it work

with Unicode-encoded Chinese characters. For Ent-

MDL and BVE-MDL, we used the software pack-

age4 distributed by Hewlett and Cohen (2011). We

estimated the parameters using the AS training set

as the development data. We set α to 6 based on a

grid search. The expected compression rate ρ that

we learned from the development data is 0.65.

In Table 1, we give a detailed listing of vari-

ous performance measures for the proposed method.

Segmentation performance seems moderate at both

word and boundary levels. Nevertheless, high type

precision and low type recall on both CityU and

MSR training corpora signaled that our algorithm

failed to discover most word types. This issue, we

suspect, was caused by exclusion of low-frequency

candidate bigrams, as discussed in Section 4.3.

Table 4 summarizes the result for word segmen-

tation conducted on the CityU and MSR subsets of

Bakeoff-2005. Due to practical computational lim-

its, we were not able to run HDP and BVE-MDL

on any complete subset. The result shows that our

3http://homepages.inf.ed.ac.uk/sgwater/
4http://code.google.com/p/voting-experts

31

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Data size in percentage

F
−

m
e

a
s
u

re

F

BF

TF

Figure 1: Performance evaluation for the proposed

method on the CityU training set.

CityU-1k MSR-1k

RC, r = 0.65 0.505 0.492

HDP, 10 sample average 0.591 0.623

RC, r = 0.65/punc. 0.599 0.591

Table 5: Performance evaluation on two random samples

from the common sets (CityU and MSR subsets) in the

Bakeoff-2005 and Bakeoff-2006 datasets.

algorithm outperforms DLG by 8 to 10 percents in

F-measure, while Ent-MDL still performs slightly

better, achieving the top performance among all the

experimental runs on both subsets.

To compare with HDP, we conducted another test

run on top of a random sample of 1,000 lines from

each subset. We chose 1,000 lines because HDP can

easily consume more than 4GB of main memory on

any larger sample. We adopted standard settings for

HDP: α0 = 3, 000, α1 = 300, and pb = 0.2. In

each trial run, we ran the Gibbs sampler for 20,000

iterations using simulated annealing (Goldwater et

al., 2009). We obtained 10 samples from the Gibbs

sampler and used the average performance in com-

parison. It took slightly more than 50 hours to col-

lect one trial run on one subset.

The evaluation result is summarized in Table 5.

We ran our algorithm to the desired compression

ratio r = 0.65 on this small sample. The result

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Data size in percentage

F
−

m
e

a
s
u

re

F

BF

TF

Figure 2: Performance evaluation for the proposed

method on the MSR training set.

shows that the performance of regularized compres-

sion is inferior to that of HDP by 9 to 13 percents

in F-measure for both sets. To investigate why, we

looked into the segmentation output. We observed

that, in the regularized compression output, most of

the punctuation marks were incorrectly aligned to

their neighboring words, owing to the short of fre-

quency counts in this small sample. The HDP, how-

ever, does not seem to suffer from this issue.

We devised a simple post-processing step, in

which each punctuation mark was forced segmented

from the surrounding text. Another outside test was

conducted to see how well the algorithm works us-

ing heuristics derived from minimal domain knowl-

edge. The additional run is denoted as RC/punc.

The result is shown in Table 5. From the result,

we found that the combined approach works slightly

better than HDP in one corpus, but not in the other.

5.5 Effects of Data Size

We employed the third experiment to study the influ-

ence of corpora size to segmentation accuracy. Since

the proposed method relies on empirical estimates

for entropy rate to decide the word boundaries, we

were interested in learning about how it responds to

relatively low and high volume input.

This experiment was conducted on CityU and

32

MSR training sets. On each corpus, we took the first

k% of data (in terms of utterances) and tested the

proposed method against that subset; this test was

repeated several times with different values for k. In
this experiment, we chose the value for k from the

set {2, 4, 6, 8, 10, 20, 30, . . . , 90, 100}. The perfor-

mance is evaluated using word, boundary, and type

F-measures.

Figures 1 and 2 show the experiment results. Both

figures revealed similar patterns for segmentation

performance at different volume levels. Word F-

measures for both corpora begin at roughly 0.52,

climb up rapidly to 0.73 as the volume grows from

2% to 20%, and finally settle on some value around

0.77. Boundary F-measures for both corpora show a

similar trend—a less steep increase before 20% from

0.80 to 0.89 followed by a plateau at around 0.93.

Here, the result seems to suggest that estimating to-

ken entropy rate using less than 20% of data might

be insufficient for this type of text corpora. Further-

more, since performance is saturated at such an early

stage, it seems feasible to split the entire dataset into

a number of folds (e.g., 5, in this case) and solve

each fold individually in parallel. This technique

may greatly enhance the run-time efficiency of the

segmentor.

The patterns we observed for type F-measure tells

another story. On both corpora, type F-measures do

not seem to improve as data volume increases. On

CityU corpora, type F-measure gradually increased

from 0.42 to 0.48 and then slowly falling back to

0.45. On MSR corpora, type F-measure peaked at

0.45 when receiving 10% of data; after that it started

decreasing, going all the way down to 0.37, even

lower than the number 0.43 it received at the begin-

ning. Our guess is that, at some early point (20%),

the proposed method started to under-segment the

text. We suspect that there is some deep con-

nection between performance saturation and under-

segmentation, since from the result they both begin

at roughly the same level. Further investigation in

this respect is needed to give out definitive explana-

tions.

6 Concluding Remarks

Preliminary experimental results suggest that the

regularized compression method, even only with

partial evidence, seems as effective as the state-of-

the-art methods in different language settings. When

paired with MDL criteria, regularized compression

is comparable to hierarchical Bayesian methods and

MDL-based algorithms in terms of segmentation ac-

curacy and computational efficiency. Furthermore,

regularized compression is less memory-demanding

than the other approaches; thus, it scales more easily

to large corpora for carrying out certain tasks such

as segmenting historical texts written in ancient lan-

guages, or preprocessing a large dataset for subse-

quent manual annotation.

We have identified a number of limitations of reg-

ular compression. First, the choice of candidate n-
grams does not cover hapax legomena, i.e., words

that occur only once in the corpus. At present, pre-

cluding these low-frequency n-grams seems to be

a necessary compromise due to our limited under-

standing about the dynamics behind regular com-

pression. Second, regularized compression does not

work well with low volume data, since on smaller

dataset the distribution of frequency counts is less

precise. Third, the algorithm may stop identifying

new word types at some point. We suspect that this

is related to the choice of n-gram, since in our im-

plementation no two existing “words” can be aggre-

gated into one. These issues shall be addressed in

our future work.

Acknowledgments

We thank the anonymous reviewers for their valu-

able comments. The research efforts described in

this paper are supported under the National Tai-

wan University Digital Archives Project (Project

No. NSC-98-2631-H-002-005), which is sponsored

by National Science Council, Taiwan.

References

Shlomo Argamon, Navot Akiva, Amihood Amir, and

Oren Kapah. 2004. Efficient unsupervised recursive

word segmentation using minimum description length.

In Proceedings of the 20th international conference

on Computational Linguistics, COLING ’04, Strouds-

burg, PA, USA. Association for Computational Lin-

guistics.

Nan Bernstein-Ratner. 1987. The phonology of parent

child speech. Children’s language, 6:159–174.

33

Michael R. Brent and Timothy A. Cartwright. 1996. Dis-

tributional regularity and phonotactic constraints are

useful for segmentation. In Cognition, pages 93–125.

Thomas Emerson. 2005. The second international chi-

nese word segmentation bakeoff. In Proceedings of

the Fourth SIGHAN Workshop on Chinese Language

Processing, volume 133. Jeju Island, Korea.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-

son. 2006. Contextual dependencies in unsupervised

word segmentation. In Proceedings of the 21st In-

ternational Conference on Computational Linguistics

and the 44th annual meeting of the Association for

Computational Linguistics, ACL-44, pages 673–680,

Stroudsburg, PA, USA. Association for Computational

Linguistics.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-

son. 2009. A bayesian framework for word segmen-

tation: Exploring the effects of context. Cognition,

112(1):21–54, July.

Daniel Hewlett and Paul Cohen. 2009. Bootstrap voting

experts. In Proceedings of the 21st international jont

conference on Artifical intelligence, IJCAI’09, pages

1071–1076, San Francisco, CA, USA. Morgan Kauf-

mann Publishers Inc.

Daniel Hewlett and Paul Cohen. 2011. Fully unsuper-

vised word segmentation with BVE and MDL. In

Proceedings of the 49th Annual Meeting of the Asso-

ciation for Computational Linguistics: Human Lan-

guage Technologies: short papers - Volume 2, HLT

’11, pages 540–545, Stroudsburg, PA, USA. Associ-

ation for Computational Linguistics.

Zhihui Jin and Kumiko T. Ishii. 2006. Unsupervised seg-

mentation of chinese text by use of branching entropy.

In Proceedings of the COLING/ACL on Main confer-

ence poster sessions, COLING-ACL ’06, pages 428–

435, Stroudsburg, PA, USA. Association for Compu-

tational Linguistics.

Mark Johnson and Sharon Goldwater. 2009. Improving

nonparameteric bayesian inference: experiments on

unsupervised word segmentation with adaptor gram-

mars. In Proceedings of Human Language Technolo-

gies: The 2009 Annual Conference of the North Ameri-

can Chapter of the Association for Computational Lin-

guistics, NAACL ’09, pages 317–325, Stroudsburg,

PA, USA. Association for Computational Linguistics.

Chunyu Kit and Yorick Wilks. 1999. Unsupervised

learning of word boundary with description length

gain. In CoNLL-99, pages 1–6, Bergen, Norway.

Gina-Anne Levow. 2006. The third international chinese

language processing bakeoff: Word segmentation and

named entity recognition. In Proceedings of the Fifth

SIGHAN Workshop on Chinese Language Processing,

volume 117. Sydney: July.

Brian MacWhinney and Catherine Snow. 1990. The

child language data exchange system: an update.

Journal of child language, 17(2):457–472, June.

Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda.

2009. Bayesian unsupervised word segmentation with

nested Pitman-Yor language modeling. In Proceed-

ings of the Joint Conference of the 47th Annual Meet-

ing of the ACL and the 4th International Joint Confer-

ence on Natural Language Processing of the AFNLP:

Volume 1 - Volume 1, ACL ’09, pages 100–108,

Stroudsburg, PA, USA. Association for Computational

Linguistics.

Jorma Rissanen. 1978. Modeling by shortest data de-

scription. Automatica, 14(5):465–471, September.

Kumiko Tanaka-Ishii. 2005. Entropy as an indicator of

context boundaries: An experiment using a web search

engine. In Robert Dale, Kam-Fai Wong, Jian Su,

and Oi Kwong, editors, Natural Language Process-

ing IJCNLP 2005, volume 3651 of Lecture Notes in

Computer Science, chapter 9, pages 93–105. Springer

Berlin / Heidelberg, Berlin, Heidelberg.

Hua Yu. 2000. Unsupervised word induction using MDL

criterion. In Proceedings of the International Sympo-

sium of Chinese Spoken Language Processing, Beijin,

China.

Hai Zhao and Chunyu Kit. 2008. An empirical compar-

ison of goodness measures for unsupervised chinese

word segmentation with a unified framework. In The

Third International Joint Conference on Natural Lan-

guage Processing (IJCNLP-2008).

Valentin Zhikov, Hiroya Takamura, and Manabu Oku-

mura. 2010. An efficient algorithm for unsupervised

word segmentation with branching entropy and MDL.

In Proceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing, EMNLP

’10, pages 832–842, Stroudsburg, PA, USA. Associ-

ation for Computational Linguistics.

34

Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology (SIGMORPHON2012), pages 35–41,
Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

A rule-based approach to unknown word recognition in Arabic

Lynne Cahill
NLTG, University of Brighton

Lewes Rd, Brighton
BN2 4GJ, UK

L.Cahill@brighton.ac.uk

Abstract

This paper describes a small experiment to
test a rule-based approach to unknown word
recognition in Arabic. The morphological
complexity of Arabic presents its challenges
to a variety of NLP applications, but it can al-
so be viewed as an advantage, if we can tap
into the complex linguistic knowledge associ-
ated with these complex forms. In particular,
the derived forms of verbs can be analysed
and an educated guess at the likely meaning of
a derived form can be predicted, based on the
meaning of a known form and the relationship
between the known form and the unknown
one. The performance of the approach is test-
ed on the NEMLAR Written Arabic Corpus.

1 Introduction

The Semitic languages, especially Arabic, are lin-
guistically interesting for a number of reasons, and
are attracting more and more attention for both
linguistic and socio-political reasons. One of the
aspects of Arabic that makes it particularly inter-
esting to linguists, namely the morphological com-
plexity, is at once both appealing and the source of
potential practical problems. It is appealing to lin-
guists, for whom it offers interesting challenges in
their descriptive frameworks, but for builders of
NLP applications, it represents a significant chal-
lenge. In this paper, we are particularly interested
in the derivational aspects of the morphology,
whereby verb stems are derived from triliteral
roots in well defined formal ways, and with vary-
ing degrees of regularity in the meanings of those
derived forms.

Another aspect of the Arabic language that makes
it both interesting and challenging is the fact that it
is not actually a single language. There are many
varieties of Arabic, with rather different status.
Classical Arabic (CA) is the language of the Ko-
ran, and the historical ancestor of the other varie-
ties. Modern Standard Arabic (MSA) is the modern
version of CA and is, broadly speaking, the univer-
sal (i.e. not regional) standard variety of Arabic.
Until recently, CA and MSA were the only varie-
ties that were written – other, regional, varieties
were only spoken. The situation is rapidly chang-
ing, with electronic communication increasingly
involving written versions of the regional varieties.
Even in traditional written forms, such as news
reports, the vocabulary used in different geograph-
ical regions is different. For example, Khoja
(2001) found that the percentage of out of vocabu-
lary items in news reports from Egypt and Qatar
was around double that found in Saudi news re-
ports, Saudi Arabic being much closer to MSA
than the other two regional varieties. Ways in
which the present approach may assist in this prob-
lem will be discussed later.

The approach we describe here depends on a hier-
archically organised lexicon, based on the DATR
lexical representation language (Evans and Gazdar,
1996). The PolyLex lexical framework (Cahill and
Gazdar, 1999) was developed originally with lan-
guages like English, German and Dutch in mind,
but has been shown to lend itself to the description
of Arabic templatic morphology (Cahill, 2007,
2010). The inheritance of information by default in
this framework is fundamental to the approach we
describe.

The problem to which we seek a solution is not one
unique to Arabic. Any NLP system which wants to

35

process naturally occurring text will always have
to deal to some degree with the problem of un-
known or out of vocabulary (OOV) items. Whether
these items are neologisms, errors or names, they
need to be handled in some way. Solutions to this
particular problem are unlikely to have a large sta-
tistical impact on the success rates of the pro-
cessing applications, but that does not mean that
they are not worth finding. While it is undoubtedly
the case that many applications will work perfectly
well with a word recognition rate of, say, 95%,
supported by statistical approaches which provide
syntactic information, there are other applications
for which full semantic interpretation is desirable,
if not necessary. It is such applications that the cur-
rent paper addresses. We are only addressing a part
of the problem, as this approach does not help rec-
ognise names or errors.

The particular approach described in this paper is
based on the observation that a native speaker who
encounters a word they have not seen before may,
if that word is related to others that they do know,
be able to make an educated guess at not only the
syntactic category, but also the meaning of that
word. To a large degree, that guesswork involves
the specific context that the word occurs in, but
native speakers will also have more abstract struc-
tural knowledge about their language which allows
them to make guesses about words on the basis of
their internal structure. For example, if an English
speaker knows the word “confuse” and hears the
word “confuser”, even though they have most like-
ly never before come across the latter, they will be
able to at least guess that it means “someone/thing
that confuses”. Of course, with derivation the
meaning relationship is not always transparent. So
a person encountering the word “decider” for the
first time may be surprised to find that it does not
mean “one who decides” but rather a deciding
match/game etc.. Such issues and other limitations
of this approach will be discussed later.

2 Previous approaches

There has been a lot of work on how to handle
OOV items, largely based on statistical approach-
es. Some are language independent (see e.g. Attia
et al (2010), Adler et al (2008)) while others focus
on specific languages (see e.g. Habash and
Rambow (2005, 2007) and Marsi et al (2005) on
Arabic and Adler and Elhadad (2006) on Hebrew,

another Semitic language with similar morphologi-
cal structure). The work by Habash and Rambow,
for example, employs a form of morphological
expansion to handle OOV items, but only makes
use of the inflectional morphology of Arabic, not
the derivational morphology as in the current ap-
proach.

Other approaches to morphological analysis in Ar-
abic include methods to deal with OOV items. For
example, Beesley and Karttunen (2003), describe a
two-level approach which includes a general meth-
od for guessing OOV words which could certainly
apply to some degree to Arabic, but it would not be
able to take into account the linguistic (specifically
semantic) information which is at the heart of the
present approach.

3 PolyLex/PolyOrth

The PolyLex project (Cahill and Gazdar, 1999)
developed multilingual lexicons of the morphology
and phonology of English, German and Dutch, im-
plemented in the lexical representation language
DATR (Evans and Gazdar, 1996) which allows for
default inheritance. Therefore, aspects of these
languages that were shared could be inherited by
default by each language.

In addition to the aspects of inter- and intra-
language default inheritance, the other aspect of
the PolyLex framework which contributes to the
unknown word processing proposed here is the use
of phonological structures, specifically syllables, to
define morphological structures and relationships.
Thus, in PolyLex, the lexical entries consist of
specifications of the phonological forms of the syl-
lable constituents (onset, peak and coda). These
can be determined by morpho-syntactic features.
For example, the English word man has default
values for the onset (/m/), peak (/æ/) and coda
(/n/), but a further value for the peak in the plural
(/ɛ/). This is represented in DATR as1:

<phn syl1 onset> == m
<phn syl1 peak> == {
<phn syl1 coda> == n
<phn syl1 peak plur> == E.

The PolyOrth project (Cahill et al. 2006) further
developed the representation so that orthographic

1 In the DATR code, the SAMPA machine readable alphabet
(Wells, 1989) is used.

36

forms are derived by means of a combination of
phoneme-grapheme mappings and spelling rules.
Both types of information include phonological
and morphological determinants, so that, for ex-
ample, the default mapping for any particular pho-
neme will depend on both its phonological position
(is it in the onset or coda?) and on its morphologi-
cal position (is it in a stem or an affix?). Both types
of information are defined by means of Finite State
Transducers (FSTs) 2 . This framework has been
implemented and tested on English, German and
Dutch, and now extended to Arabic (Cahill, 2010).
The Arabic lexicon allows for forms to be defined
in Arabic script, Roman transliteration or phono-
logical representation.

4 Arabic verbal morphology

The Arabic languages have around 280 million
speakers. They belong to the Semitic language
family, and share many linguistic features with
other Semitic languages, such as Hebrew and Mal-
tese. Much work in both theoretical and computa-
tional linguistics has focused on the so-called
templatic morphology of the Semitic languages.

The key area of Arabic morphology addressed in
this paper is the verbal derivation. Verbs in Arabic
are typically based on a tri-literal root, consisting
of three consonants. Inflectional variation involves
interdigitating these consonants with vowels which
indicate the tense, aspect and mood. In addition,
the three consonants can be differently arranged
(doubled, swapped etc.) to form distinct Forms (or
measures, also known as binyanim 3 , especially
when applied to Hebrew). These are essentially
derivations and form distinct verbs with different
meanings. For example, the tri-literal root k-t-b has
the core meaning “write”. The forms katabtu and
aktubtu, represent the active perfective and active
imperfective first person singular forms of “write”,
namely, “I wrote” and “I write”. The second Form
or measure verb k-tt-b also has the inflectional var-
iations, but has the meaning “cause to write”, thus
the two actual forms kattabtu and akttabtu have the

2 The PolyOrth project was inspired by Herring (2006). How-
ever, while Herring uses one-stage FSTs, the PolyOrth project
used two levels of FST, including a separate treatment of
“post-lexical” spelling rules.
3 We will use the term “Form”, capitalised to avoid confusion
with the more usual use of “form”.

meanings “I caused (someone) to write” and “I
cause (someone) to write” respectively.

There are fifteen different Forms in CA, but fewer
in the modern varieties. In MSA there are ten that
are commonly found, although two more are found
rarely. The regional varieties all make use of few-
er. While some of the Forms have clear transparent
meanings, others have far less clear or apparently
random meaning relations.

The following descriptions of the meanings of the
ten Forms is adapted from Scheindlin (2007):

I. The basic Form – all verbs have this form.
May be transitive or intransitive.

II. Almost always transitive. If a verb exists
in both Form I and II then I will often be
intransitive and II transitive (write (I) →
cause to write (II)). If I is transitive then II
may be ditransitive. II may also involve an
intensifying of the meaning on I, e.g. kill
(I) → massacre (II).

III. May involve reciprocity, e.g. follow (I) →
alternate (III).

IV. Like II, mostly transitive, and often
matched with intransitive in I.

V. Often involves a reflexive element, e.g.
know (I) → teach (II) → learn (V).

VI. Like III, often involves reciprocity, e.g.
fight (I) → fight each other (VI).

VII. Mostly reflexive, resultative or passive.
Roots that are transitive in I are intransi-
tive in VII. E.g. break (I) → be broken
(VII).

VIII. Often reflexive for verbs that are transitive
in I, e.g. divide (I) → part (VIII).

IX. Very restricted in application, only apply-
ing to verbs indicating colours and de-
fects, e.g. turn yellow.

X. Often associated with asking for some-
thing associated with the Form I verb, e.g.
pardon (I) → apologise (ask for pardon)
(X).

As is clear from these descriptions, the meaning
relationships are not fully predictable, but they can
give some hints as to the likely meaning of an un-
known verb. As the framework relies on default
inheritance, the assumption that any definitions
may be overridden by more specific information
means that even very approximate definitions are
still valuable.

37

5 Arabic in syllable-based morphology

A small sample lexicon of Arabic in the PolyLex
framework is presented in Cahill (2007). What
makes this account different from most accounts of
the morphology of the Semitic languages is that it
requires no special apparatus to allow for the defi-
nition of so-called “templatic” morphology, but
makes use of the same kind of equations as are
required for ablaut and consonant devoicing, for
example, that are found in English, German and
Dutch.

5.1 The default, Form I root

The main part of the account addresses a single
verb root, namely k.t.b, ‘write’, and generates all
possible Form stems for perfective, imperfective
and participle, active and passive. The approach is
based on defining the leaves of syllable-structure
trees, with the consonants of the triliteral stems
occupying the onset and coda positions, and the
vowels (syllable peaks) being defined according to
the morphosyntactic specification, as in the exam-
ple of man above. To illustrate this, the figure be-
low shows the default structure for a triliteral root,
with no vowels specified. The default structure is a
disyllabic root, with the first consonant occupying
the onset of the first syllable, the second consonant
occupying the onset of the second syllable and the
third consonant occupying the coda of the second
syllable4.

Figure 1: the structure of /katab/

4 The syllable position is indicated by simple numbering. Syl-
lables can be counted from either right of left. For languages
which largely use suffixation, it makes more sense to count
from the right, as for Arabic here.

5.2 The other Form stems

As described in Cahill (2007), the remaining nine
forms have their default structure defined in simi-
lar terms. Figure 2 depicts the inheritance of forms
from each other. This inheritance is for the syllable
structure definitions, so the Form II structure is the
same as the Form I structure except that the first
coda has the value of the second root consonant,
the same as the onset of the second syllable. The
definitions are all incremental, so that each Form
specification only supplies one or two pieces of
information.

5.3 Meanings

The original lexicon was designed to demonstrate
that the complex relationships between phonologi-
cal, morphological and orthographic forms in Ara-
bic could be captured in the PolyLex/PolyOrth
architecture. There was no semantic information in
the lexicons at all. For the present experiment, we
have added very basic semantic information for the
100 verbs we have included. Most of these are
Form I verbs, but there are some Form II, Form IV
and Form V verbs. Where possible, we have repre-
sented the meanings of the verbs of Forms other
than I in terms that can be generalised. For exam-
ple, the verb apologise has the meaning expressed
as ASK FOR PARDON5.

The lexical hierarchy, in addition, defines a default
meaning expression for each Form. For Form VIII,
for example, this is:

<meaning> == ask for “<formI meaning>”

which says that the meaning is simply the string
“ask for” followed by the meaning for Form I for
the root6.

5.4 The full lexicon

5 For this small experiment, the exact representation of the
meanings is not important. It is assumed that in a genuine
application will have its representations which would be in-
cluded in the lexicon, or for which a mapping can be defined.
6 The quotes around the path <form1 meaning> indicate that it
is to be evaluated at the original query node, i.e. the root node
in DATR.

root

syl2 syl1

t

b

k

38

As stated above, the lexicon we are working from
has only 100 verbs. There are no verb roots for
which we have more than one Form. This is a very
small number, but for each verb in the lexicon
there are a theoretically possible further nine verbs
which may be derived from the same root. The
lexicon will recognise any theoretically possible
verb from the roots it knows about, although it
does not have semantic information explicitly pro-
vided for a large proportion of these verbs.

6 Using the lexicon for word recognition

The highly structured, hierarchical lexicons are not
designed to be used as they are within NLP appli-
cations. The information in them is cached in a
lookup table which can be used for either genera-
tion or comprehension, with entries which look
like this:

-k-t كتب

b
katab stem p,

a
k-
t-
b

I write

 كتتب

k-
tt-b

kattab stem p,
p

k-
t-
b

II [cause
to
write]

The first column is the form in Arabic script, the
second is the transliteration, the third is one possi-
ble full (vowelised) form, the fourth and fifth give
the morphological analysis, the sixth is the triliteral
root it is derived from, the seventh is the Form and
the last is the translation. The first row, which has
the Form I entry, has a translation which was pro-

vided explicitly in the lexicon but the second gets
its meaning by default. This is indicated by the
square brackets. In use in an application, these
meanings would be used more cautiously, possibly
in conjunction with other methods, especially mak-
ing use of context.

The lookup table often provides more than one
possible entry for a single form, especially when
the form is unvowelised.

6.1 Testing

In order to test the approach, we tested the recogni-
tion of all verbs in the NEMLAR written corpus
(Attiyya et al., 2005). The corpus provides versions
with POS tagging, which enabled us to extract
each verb. There were a total of just over 40,000
forms tagged as verbs, approximately 11,000 of
them unique forms. Initial tests only took those
forms which were tagged as having neither prefix
nor suffix, a total of 1274 verb forms7. These in-
cluded forms which were inflectionally distinct,
and once these forms were collapsed, the total
number of verb forms is 577. Of these, 32 occurred
in our initial lexicon of 100 verbs.

These tests showed that of the remaining 545 un-
known verbs, 84 could apparently be analysed as
derived forms of one of our existing verbs. This

7 The decision to use only those forms without prefix of suffix
was simply made to make the testing process simpler and to
ensure that the results were not skewed by the presence of
consonants in prefixes or suffixes.

Figure 2: The inheritance of Forms

Verb/Form I

Form II Form III Form IV Form V

Form VI

Form VII Form VIII

Form IX Form X

39

was determined by checking the main entries in an
online Arabic dictionary and comparing the mean-
ings given to those generated by the lexicon. This
was a very promising figure, given the very small
size of the lexicon.8

In the next testing phase we looked more closely at
these forms. There are two ways in which the anal-
yses may not be appropriate. The analysis might
not be an appropriate (or at least not the most ap-
propriate) one. This is not a major problem since
we are dealing with a situation in which we fre-
quently have multiple possible analyses for a word,
so generating a number of possibilities from which
an application must choose is exactly what is re-
quired. The second issue is the question of whether
the meanings generated are useful. In order to
check this we manually compared the generated
meanings against the actual meanings for a sample
of the verbs in question. We found that just over
half of the verbs we checked had meanings which
were at least clearly connected to the generated
meaning. For example, the stem عللم (teach) is
clearly related to the stem علم (know), and turns out
to be the second Form (“cause to X”) of the root
for which know is the first Form.

6.2 Analysis of results

The verbs for which meanings were generated fit
into three broad categories. First there are verbs for
which the derived Form appears in dictionaries
with the same meaning as that for Form I, possibly
as one of its meanings. Thus, for example, the
Form VIII verb ktatab had the meaning “wrote”,
the same as the Form I katab. There were 23 verbs
in our set of 84 for which this was the case.

The second category consists of verbs for which
the meaning is related in the way suggested by our
earlier analysis. 22 of the verbs came into this cat-
egory.9

Finally, the last category consists of verbs whose
meaning is not related in the way suggested. This
is the most problematic class, and unfortunately the
largest in the small test set we are working with.

8 There were some difficulties with transliteration which mean
that these figures may not be fully accurate.
9 This is clearly a case of subjective judgement, and from a
non-native speaker these judgements may not be accurate.

However, in most, indeed nearly all, of these cases,
the generated meaning was not wildly different
from that in the dictionary. Closer inspection sug-
gests that simply improving the meaning relations,
and allowing more than one additional possible
lexicon entry for some Forms would improve the
performance significantly.

7 Discussion and conclusion

This paper has described a small experiment to test
a novel rule-based approach to unknown word
recognition in Arabic. Although testing is at an
early stage, the initial results are promising.

The experiment described is intended to address a
small part of the overall problem of unknown
words. In some respects it can be viewed as more
of a technique for extending an existing lexicon
than for dealing with OOV items at runtime. How-
ever, it would be possible to enable an application
to have access to the default lexical information at
runtime, to allow this.

Another area in which the above technique may
prove particularly useful is in the processing of
regional varieties of Arabic. As stated above,
Khoja (2001) found that even texts apparently
written in MSA were twice as likely to have un-
known words in texts from Egypt and Qatar than
from Saudi Arabia. This suggests some variation in
the vocabulary, most likely involving “leakage” of
vocabulary items from Egyptian and Qatari Arabic
into the MSA used by those speakers. As the mor-
phological patterns of derived verbs are different in
the different regional varieties, taking these pat-
terns into account will provide further possible in-
terpretations. The PolyLex structure allows the
definition of similarities and differences between
the lexicons of languages and dialects that are
closely related.

7.1 Limitations and future work

The experiment described here is a very small
scale one, and the lexicon is extremely small. The
representation of meaning is also extremely simpli-
fied. It is possible that the approach described
simply could not be scaled up to a size useful for
an application. However, there is a range of ways

40

of representing meaning, including linking to an
external ontology, which could also be implement-
ed in the lexicon described.

The next phase of work is to fully evaluate the re-
sults of the initial tests, followed by further more
extensive testing. It is envisaged that an iterated
cycle of testing and extension of the lexicon could
lead to a lexicon large enough to be useful and ro-
bust enough to handle significant (if still small)
numbers of OOV items.

Subsequently, and further down the line, develop-
ment of a lexicon (or lexicons) for the vocabulary
of regional varieties, linked to the MSA lexicon in
the PolyLex framework will help to exploit the
similarities. That is, the lexicon for, say, Egyptian
Arabic assumes that, by default, words are the
same as in MSA, with only those words (mor-
phemes, phonemes etc.) which differ requiring
specification.

Acknowledgements

The work described here was partly supported by
the ESRC (Economic and Social Research Coun-
cil, UK) as part of the project: RES-000-22-3868
Orthography, phonology and morphology in the
Arabic lexicon. We are grateful to the anonymous
reviewers for their helpful comments.

References

Adler, Meni and Michael Elhadad. () An Unsupervised

Morpheme-Based HMM for Hebrew Morphologi-
cal Disambiguation. COLING-ACL 2006, pp. 665-
672.

Adler, Meni, Yoav Goldberg, David Gabay and Michael
Elhadad. (2008) Unsupervised Lexicon-Based Re-
solution of Unknown Words for Full Morphologi-
cal Analysis. ACL-08 : HLT, pp. 728-36.

Atiyya, Muhammed, Khalid Choukri and Mustafa Ya-
seen. (2005) The NMELAR Written Corpus ELDA.

Attia, Mohammed, Jennifer Foster, Deirdre Hogan, Jo-
seph Le Roux, Lamia Tounsi and Josef van Gena-
bith. (2010) Handling Unknown Words in
Statistical Latent-Variable Parsing Models for
Arabic, English and French. NAACL HLT
Workshop on Statistical Parsing of Morphologi-
cally Rich Languages. pp. 67-75.

Beesley, Kenneth and Lauri Karttunen. (2003) Finite
State Morphology Chicago : CSLI.

Cahill, Lynne. (2010) A Syllable-based Approach to
verbal Morphology in Arabic. Workshop on Semi-
tic Languages, LREC2010, Malta, 2010.

Cahill, Lynne. (2007) A Syllable-based Account of
Arabic Morphology. In Abdelhadi Soudi, Antal
van der Bosch and Günther Neumann (eds.) Ara-
bic Computational Morphology Dordrecht : Sprin-
ger. pp. 45-66.

Cahill, Lynne, Jon Herring and Carole Tiberius,
“PolyOrth: Adding Orthography to a Phonological
Inheritance Lexicon”, Fifth International Work-
shop on Writing Systems, Nijmegen, Netherlands,
October 2006 (available at
http://www.nltg.brighton.ac.uk/projects/polyorth).

Cahill, Lynne and Gazdar, Gerald. (1999) The PolyLex
architecture : multilingual lexicons for related lan-
guages. Traitement Automatique des Langues,
40 :2, pp. 5-23.

Evans, Roger and Gazdar, Gerald. (1996) DATR : a
language for lexical knowledge representation.
Computational Linguistics, 22 :2, pp. 167-216.

Habash, Nizar and Owen Rambow. (2007) Arabic
Diacritization through Full Morphological Tag-
ging. NAACL HLT 2007pp. 53-56.

Habash, Nizar and Owen Rambow. (2005) Arabic To-
kenization, Part-of-Speech Tagging and Morpho-
logical Disambiguation in One Fell Swoop. ACL
2005, pp. 573-80.

Herring, J. (2006) Orthography and the lexicon, PhD
dissertation, University of Brighton.

Khoja, Shereen. (2001) APT: Arabic Part-of-speech
Tagger. Proceedings of the Student Workshop at
the Second Meeting of the North American Chap-
ter of the Association for Computational Linguis-
tics (NAACL2001).

Marsi, Erwin, Antal van den Bosch and Abdelhadi
Soudi. (2005) Memory-based morphological anal-
ysis, generation and part-of-speech tagging of Ar-
abic. ACL Workshop on Computational
Approaches to Semitic Languages. pp. 1-8.

Scheindlin, Raymond P. (2007) 501 Arabic verbs
Haupage: Barron.

Wells, John. (1989) Computer-coded phonemic notation
of individual languages of the European Community.
Journal of the International Phonetic Association,
19 :1, pp. 31-54.

41

Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology (SIGMORPHON2012), pages 42–51,
Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

Bounded copying is subsequential: Implications for metathesis and
reduplication∗

Jane Chandlee
Linguistics and Cognitive Science

University of Delaware
Newark, DE

janemc@udel.edu

Jeffrey Heinz
Linguistics and Cognitive Science

University of Delaware
Newark, DE

heinz@udel.edu

Abstract

This paper first defines the conditions under
which copying and deletion processes are sub-
sequential: specifically this is the case when
the process is bounded in the right ways.
Then, if we analyze metathesis as the compo-
sition of copying and deletion, it can be shown
that the set of attested metathesis patterns fall
into the subsequential or reverse subsequential
classes. The implications of bounded copying
are extended to partial reduplication, which is
also shown to be either subsequential or re-
verse subsequential.

1 Introduction

This paper presents a computational analysis of
copying and deletion in metathesis and partial redu-
plication and establishes the necessary conditions
for such patterns to be subsequential. More specif-
ically, it is shown that such patterns fall into the
subsequential or reverse subsequential classes if the
copying (for both cases) and deletion (for the case of
metathesis only) are bounded in the right ways.

The classification of natural language patterns by
the Chomsky Hierarchy (Chomsky, 1956) is one
means of distinguishing the complexity of the pat-
terns found in various linguistic domains. Syn-
tactic patterns, for example, may be context-free
(e.g. English nested embedding, (Chomsky, 1956))
or context-sensitive (e.g. Swiss German crossing

∗We thank the anonymous reviewers for useful questions
and suggestions.This research is supported by grant #1035577
from the National Science Foundation.

dependencies (Schieber, 1985)), while phonologi-
cal patterns (i.e. patterns that can be described
with rewrite rules of the form A ⇒ B / C D,
where A, B, C, and D are regular expressions) have
been shown by Johnson (1972) and Kaplan and Kay
(1994) to be regular.

The regular class of patterns, however, is in fact
too large to correspond exactly to phonology (Heinz,
2007; Heinz, 2009; Heinz, 2010). Rather, it seems
that phonological patterns fit into a subclass of the
regular patterns. Since the subsequential class is
a proper subset of the regular class (Oncina et al.,
1993; Mohri, 1997), it is therefore a useful candi-
date, especially because of its attractive computa-
tional properties (Mohri, 1997). Restricting the class
of phonological patterns in this way has implications
for learning, since the subsequential but not the reg-
ular class is identifiable in the limit from positive
data (Oncina et al., 1993).

Using the formalism of finite state transducers
(FSTs), we will show that metathesis and partial
reduplication patterns can be described with subse-
quential FSTs. Subsequential FSTs are determinis-
tic weighted transducers in which the weights are
strings and multiplication is concatenation.

The analysis defines generally the conditions nec-
essary for metathesis and partial reduplication to
be subsequential. Representative examples of the
empirical phenomena that can be so classified are
shown in (1). (1-a) is an example of local metathe-
sis, (1-b) is an example of metathesis around an in-
tervening segment, and (1-c) is an example of partial
reduplication.

42

(1) a. Rotuman:
hosa⇒ hoas ‘flower’

b. Cuzco Quechua:
yuraq⇒ ruyaq ‘white’

c. Tagalog:
sulat⇒ susulat ‘will write’

This kind of analysis sheds light on the nature
of the relation itself independent of the particular
theory used to account for it. It does not matter
whether the metathesized or reduplicated forms ex-
emplified here are derived via a series of SPE-style
rules or with ranked constraints in OT. The mapping
(e.g. <hosa, hoas> for Rotuman) remains the same
in either case. Additionally, the analysis has im-
plications for any model beyond the phonological
domain that uses finite-state methodology, includ-
ing (but not limited to) artificial intelligence (Rus-
sell and Norvig, 2009), bioinformatics (Durbin et
al., 1998), natural language processing (Jurafsky and
Martin, 2008), and robotics (Belta et al., 2007; Tan-
ner et al., 2012).

The structure of the paper is as follows. Section
two provides the formal definitions necessary for the
analysis. Section three presents an analysis of subse-
quential copying, and section four presents an anal-
ysis of subsequential deletion. Section five turns
to the analysis of metathesis as the composition of
copying and deletion and proves the conditions for
metathesis to be subsequential. Section six extends
this analysis to partial reduplication. Section seven
discusses the implications of the distinctions drawn
by the computational analysis for both typology and
learning. Section eight concludes.

2 Preliminaries

If Σ is a fixed finite set of symbols (an alphabet),
then Σ* is the set of all finite length strings formed
over this alphabet, and Σ≤k is the set of all strings of
length less than or equal to k. A language is a subset
of Σ∗. ε is the empty string. The length of a string s
is |s|; thus |ε| = 0. The prefixes of a string s, written
Pr(s), are {u ∈ Σ∗ : ∃v ∈ Σ∗ such that s = uv}. The
suffixes of a string s, written Suf (s), are {u ∈ Σ∗ :
∃v ∈ Σ∗ such that s = vu}. Sufn(s) is a suffix of s of
length n. The nonempty, proper prefixes of a string
s is written Prprop(s).

If L is a language then the prefixes of L are

Pr(L) =
⋃
s∈L Pr(s) and the nonempty proper

prefixes of L are Prprop(L) =
⋃
s∈L Prprop(s). A

language L is finite iff there exists some k such that
L ⊆ Σ≤k. For any w ∈ Σ∗, the good tails of w
in L is TL(w) = {v ∈ Σ∗|wv ∈ L}. Two pre-
fixes u1 and u2 are Nerode equivalent with respect
to some language L iff they share the same good
tails: u1 ∼L u2 ⇔ TL(u1) = TL(u2). In fact, a lan-
guage L is regular iff the partition induced over Σ∗

by ∼L has finite cardinality. Note that every finite
language is regular. If L1 and L2 are languages then
L1L2 = {uv | u ∈ L1 and v ∈ L2}.
Definition 1. (Oncina et al., 1993) A subsequential
finite state transducer (SFST) is a six-tuple (Q, Σ,
∆, q0, δ, σ), where Q is a finite set of states, Σ is the
input alphabet, ∆ is the output alphabet, q0 ∈ Q is
the initial state, δ ⊂ (Q ×Σ×∆∗× Q) is the transi-
tion function, and σ: Q⇒ ∆∗ is a partial function
that assigns strings to the states in Q. The edges, E,
of the SFST are a finite subset of (Q×Σ∗×∆∗× Q).
SFSTs are deterministic, meaning they are subject to
the condition (q,a,u,r),(q,a,v,s) ∈ E⇒ (u=v ∧ r=s).

Definition 2. (Oncina et al., 1993) A path in
an SFST τ is a sequence of edges in τ , π =
(q0, x1, y1, q1)(q1, x2, y2, q2) · · · (qn−1, xn, yn, qn).
Πτ is the set of all possible paths over τ . A path
π can also be expressed as (q0, x, y, qn) where x
= x1x2...xn and y = y1y2 · · · yn. The transduction
τ realizes is the function t: Σ∗ ⇒ ∆∗ such that
∃(q0,x,y,q)∈Πτ and t(x) = yσ(q).

A relation describable with an SFST is a subse-
quential relation. If f and g are relations, ◦ denotes
the composition, where (g ◦ f)(x) = g(f (x)). Subse-
quential relations are closed under composition:

Theorem 1 ((Mohri, 1997) Theorem 1). Let f : Σ∗

⇒ ∆∗ and g : ∆∗ ⇒ Ω∗ be subsequential functions,
then g ◦ f is subsequential.

Let R be a relation. The reverse relation Rr =
{<xr,yr>: <x,y> ∈ R }. A relation is reverse sub-
sequential if its reverse relation is subsequential.

3 Subsequential copying

This paper will ultimately prove the conditions un-
der which metathesis and partial reduplication, two
processes which can be analyzed as involving copy-
ing, are subsequential relations. To do this it is

43

first necessary to define a copy relation in gen-
eral. A copy can be place either before or after the
original—these two processes can be distinguished
as pre-pivot or post-pivot copying (where the pivot
is an intervening string from the set U).

Definition 3. Let L,U,X,R be languages.

1. The rule ∅ ⇒ X / LXU R is a post-pivot copy
relation.

2. The rule ∅ ⇒ X / L UXR is a pre-pivot copy
relation.

Kaplan and Kay (1994) show that if L,X,U, and
R are regular languages, then the copy relations
above are regular relations. One goal of this paper is
to identify the conditions on L,X,U, and R which
make the above relations subsequential.

Further distinctions can be drawn among regu-
lar copy relations based on which of the surround-
ing contexts of the copy and original are of bounded
length.

Definition 4. Let L,X,U, and R be regular lan-
guages.

1. A pre-pivot or post-pivot copy relation is I-
bounded iff U is a finite language (I is for ‘in-
tervening’).

2. A pre-pivot copy relation is L-bounded iff L is
a finite language (L is for ‘left-context’).

3. A post-pivot copy relation is R-bounded iff R is
a finite language (R is for ‘right-context’).

4. A copy relation is T-bounded iff X is a finite
language (T is for ‘target’).

Theorem 2 below states that a pre-pivot, T-
bounded, I-bounded, and R-bounded copy relation
is subsequential. To understand the idea behind
the proof, consider the abstract pre-pivot relation
schematized in the following SFST for a particular
l ∈ L, u ∈ U , x ∈ X , and r ∈ R.1 Note that each

1Following (Beesley and Karttunen, 2003), in this and all
other FSTs in the paper, ‘?’ represents any symbol or string
except for those for which other transitions out of that state are
defined. The states of the machine are labeled with the string
mapped to them by the σ function.

transition in the figure represents a series of tran-
sitions and states (depending on the lengths of the
strings involved).

ε

?
εl

?

u

u:ε

?:u?

ux

x:ε?:ux?

r:xuxr

Figure 1: An SFST schematizing a pre-pivot T-bounded,
I-bounded, and R-bounded copy relation.

The transitions for which the output is the empty
string can be thought of as the machine withhold-
ing the output until it verifies that it has found the
context for copying. Thus, out of the state labelled
‘ux’ the output on ‘r’ is ‘xuxr’, which is the copy fol-
lowed by the segments for which there was no output
(i.e. the segments in u and x that were being ‘held’).
This mechanism of holding is why the bounds on the
lengths of the strings are necessary. If there were
no upper bound on the length of the words in U,X,
or R, the machine would have to hold a potentially
infinite number of strings, which would in turn re-
quire infinitely many states. Without these bounds,
no SFST can be constructed.

Theorem 2. A regular pre-pivot copy relation that
is T-bounded, I-bounded, and R-bounded is subse-
quential.

Proof. Let C be a pre-pivot, T-bounded, I-bounded,
and R-bounded regular copy relation. Then there ex-
ists a regular language L and finite languages U , X ,
and R such that C is described by the rewrite rule
∅ ⇒ X / L UXR.

An SFST is constructed for C as follows. The
states Q are the set of good tails of L and the non-
empty proper prefixes of UXR. Formally, let πL =
{TL(w) | w ∈ Pr(L)}. Then

Q = (πL ∪ Prprop(UXR))

SinceL is a regular language, there are finitely many
elements of πL. Since U,X, and R are finite lan-

44

guages, Prprop(UXR) is also finite. Therefore Q is
finite.

The initial state q0 = TL(ε).
The sigma function is defined as follows. ∀q ∈ Q,

σ(q) =

{
ε iff q ∈ πL
q otherwise

The transition function is defined in two parts.
First, for all s ∈ Pr(L) and a ∈ Σ:

(TL(s), a, a, TL(sa)) ∈ E iff s, sa ∈ Pr(L)
and s 6∈ L

(TL(s), a, ε, a) ∈ E iff s ∈ L and a ∈ Pr(UXR)
(TL(s), a, a, TL(ε)) ∈ E otherwise

Second, for all s in the nonempty proper prefixes
of UXR and a ∈ Σ:

(s, a, ε, sa) ∈ E iff s, sa ∈ Prprop(UXR)
(s, a, xuxra, TL(ε)) ∈ E iff (∃x ∈ X)
(∃u ∈ U)(∃r ∈ Prprop(R))[s = uxr, ra ∈ R]
(s, a, σ(s)a, TL(ε)) ∈ E otherwise

It follows directly from this construction that the
SFST recognizes the specified copy relation.

Theorem 3 below states that a post-pivot copy re-
lation need only be T- and R-bounded to be subse-
quential. The idea behind the proof is demonstrated
by the abstract post-pivot copy relation schematized
in the following SFST for a particular x, u, and r.

ε

?
εl

?

ε

x

?

ε

u?

r:xr

Figure 2: An SFST for a post-pivot T-bounded and R-
bounded copy relation.

Since the machine finds the original x before it has
to produce the copy, the segments in u do not have to
be held. The bounding is only necessary for x itself,
and for the right context of the copy r. Thus when
the original precedes the copy, the bounding on u is
no longer a necessary condition for subsequentiality.

Theorem 3. A regular post-pivot copy relation that
is T-bounded and R-bounded is subsequential.

The proof of the Theorem 3 (omitted) is similar to
the one for Theorem 2 but slightly more complicated
by the fact that U can be any regular language.

The reverse of the relation in the proof of The-
orem 3 would be a pre-pivot copy relation that is
T-bounded and L-bounded. This would reverse the
pattern in Figure 2, except the left context and not
the right context would be bounded. Such a pattern
is not subsequential, but it is reverse subsequential.

Corollary 1. A regular pre-pivot copy relation that
is T-bounded and L-bounded is reverse subsequen-
tial.

4 Subsequential deletion

As with copying, the deletion relations relevant
for metathesis come in two flavors, depending on
whether the deleted string precedes or follows the
one that remains.

Definition 5. Let L,U,X,R be languages.

1. The rule X⇒ ∅ / LXU R is a post-pivot dele-
tion relation.

2. The rule X⇒ ∅ / L UXR is a pre-pivot dele-
tion relation.

Kaplan and Kay (1994) show that if L,X,U, and
R are regular languages, then the deletion relations
above are regular relations. Another goal of this pa-
per is to identify the conditions on L,X,U, and R
which make the relations above subsequential.

We can thus provide parallel definitions for T-
bounded, I-bounded, and R-bounded deletion rela-
tions.

Definition 6. Let L,X,U,R be regular languages.

1. A pre-pivot or post-pivot deletion relation is I-
bounded iff U is a finite language.

2. A pre-pivot deletion relation is L-bounded iff L
is a finite language.

3. A post-pivot deletion relation is R-bounded iff
R is a finite language.

4. A deletion relation is T-bounded iff X is a finite
language.

45

Figure 3 schematizes a pre-pivot regular dele-
tion relation that is T-bounded, I-bounded, and R-
bounded.

ε

?

εl

?

x

x:ε

?:x?

xu

u:ε
?:xu?

xux

x:ε

?:xux?

r:uxr

Figure 3: An SFST for a pre-pivot T-bounded, I-bounded,
and R-bounded deletion relation.

As with the copying, due to the need for ε-
transitions, the possibility of constructing this ma-
chine depends on the bounding of the length of the
deleted string, the intervening string, and the string
that makes up the right context.

Theorem 4. A regular pre-pivot deletion relation
that is T-bounded, I-bounded, and R-bounded is sub-
sequential.

Proof. Let D be a pre-pivot, T-bounded, I-bounded,
and R-bounded regular deletion relation. Then there
exists a regular language L and finite languages X ,
R, and U such that D is defined by the rewrite rule
X⇒ ∅ / L UXR.

An SFST is constructed for D as follows. The
states Q are the set of good tails of L and the non-
empty proper prefixes of XUXR. Formally, let πL =
{TL(w) | w ∈ Pr(L)}. Then

Q = (πL ∪ Prprop(XUXR))

Since L is regular, πL is finite. Since U,X, and R
are finite languages, Prprop(XUXR) is also finite.
Therefore Q is finite.

The initial state q0 = TL(ε). The sigma function
is defined as in Theorem 2.

Also as in Theorem 2, the transition function is
defined in two parts. The first part, where all s ∈
Pr(L) and a ∈ Σ are considered, is the same as in
Theorem 2 except for one case below.

(TL(s), a, ε, a) ∈ E iff s ∈ L and
a ∈ Pr(XUXR)

The second part, where all s in the nonempty
proper prefixes of XUXR and a ∈ Σ are considered,
is constructed as follows.

(s, a, ε, sa) ∈ E iff s, sa ∈ Prprop(XUXR)
(s, a, uxra, TL(ε)) ∈ E iff(∃x, x′ ∈ X)
(∃u ∈ U)(∃r ∈ Prprop(R))[s = xux′r, ra ∈ R]
(s, a, σ(s)a, TL(ε)) ∈ E otherwise

It follows directly from this construction that the
SFST recognizes the deletion relation D.

As for a post-pivot deletion relation, the proper-
ties of T-bounding and R-bounding are sufficient for
subsequentiality since the intervening set U occurs
before the deletion. As with Theorem 3, the proof of
Theorem 5 is omitted.

Theorem 5. A regular post-pivot deletion relation
that is T-bounded and R-bounded is subsequential.

Lastly, if u is not bounded in a pre-pivot deletion
relation, but l and x are, the relation is reverse sub-
sequential.

Corollary 2. A regular pre-pivot deletion relation
that is T-bounded and L-bounded is reverse subse-
quential.

5 Metathesis as the composition of copying
and deletion

Metathesis has traditionally been viewed as an op-
eration of transposition, in which segments switch
positions. Under another view, metathesis can be
considered as the result of two separate processes,
a copy process followed by deletion of the original
segment the copy was made from (Blevins and Gar-
rett, 1998; Blevins and Garrett, 2004). Take, for ex-
ample, the metathesis process in Najdi Arabic (Ab-
boud, 1979) in which a word with a CaCCat tem-
plate surfaces as CCaCat:

(2) /naQéat/⇒ [nQaéat] ‘ewe’

An independent process of deletion (CaCaC ⇒
CCaC) is also observed in Arabic dialects. So the
change in (2) could be achieved via the two pro-
cesses in (3). The result after both processes cor-
responds to metathesis (4).

(3) a. Copy: CV1CC⇒ CV1CV1C
b. Delete: CV1CV1C⇒ CCV1C

46

(4) Metathesis: CV1CC⇒ CCV1C

This analysis provides a way of classifying attested
patterns according to the type of copying and dele-
tion involved. Cross-linguistic surveys (Blevins and
Garrett, 1998; Blevins and Garrett, 2004; Hume,
2000; Buckley, 2011; Chandlee et al., to appear) re-
veal that in a large number of metathesis patterns
there is some bound on the length of the string that
intervenes between the copied segment and its orig-
inal. A classic example is found in the Rotuman
language, in which the incomplete form of a word
is derived from the complete form via word-final
consonant-vowel metathesis (Churchward, 1940).
The general rule for the example in (5-a) is in (5-b).

(5) a. hosa⇒ hoas ‘flower’
b. CV⇒ VC / V #

If we decompose this metathesis into its compo-
nent copy and deletion operations, the copy portion
would be as in (6):2

(6) V1CV2#⇒ V1V2CV2#

Applying Definitions 3 and 4 to this example, we
first classify the Rotuman pattern as pre-pivot copy-
ing. Since the length of the string between the orig-
inal segment and the copy (u = C) is bounded by
1, the copying is I-bounded. The copying is also T-
bounded, since a single vowel is copied (x = V2).
And it is R-bounded, since the original vowel is
word-final (r = ε). An FST for this pattern is shown
in Figure 4. Note that when the right context is the
empty string, the copying is achieved via the σ func-
tion rather than a transition.

!

C !
V

V

C

C:!

C:CC VCVV:!

C:CVC

V:CVV

Figure 4: An SFST for the copy process of Rotuman CV-
metathesis.

2This analysis assumes that it is the vowel that metathesizes.
The same surface form would obtain if the consonant metathe-
sized (C1V⇒C1VC1⇒VC1). For evidence that the vowel is in-
deed the segment involved in CV metathesis, see (Heinz, 2005).

Another example of I-bounded copying is in an
optional metathesis process in Cuzco Quechua, in
which sonorants metathesize across an intervening
vowel (Davidson, 1977):

(7) yuraq⇒ ruyaq ‘white’

Under a copy+deletion analysis of metathesis, this
pattern would involve two copy processes followed
by two deletions, one for the ‘r’ and one for the ‘y’.
Schematizing just the process for ‘r’, we can see in
(8) that the length of the intervening string is again
bounded by 1 (the ‘y’ is removed for clarity).3 The
copied string x (the liquid) is also bound by 1.

(8) uraq⇒ ruraq

L-bounded copying is exemplified in a diachronic
metathesis pattern found in a South Italian dialect of
Greek (Rohlfs, 1950):

(9) Classical South Italian Greek
gambros⇒ grambo4 ‘son-in-law’

In this pattern, a non-initial liquid surfaces in the ini-
tial onset cluster. The original position of the liquid
varies, which means there is no bound on the length
of the intervening string. However, the location of
the copy is always the initial cluster, which means
the left context of the copy is bounded by the length
of the maximum onset.

The copying in metathesis is only the first step -
the second is deletion of the original. The deletion
rule must be complementary to the copying, in the
sense that if the copying is pre-pivot, the deletion
will be post-pivot (10), and vice versa (11).

(10) a. Copy: ∅ ⇒ x / v uxw
b. Delete: x⇒ ∅ / vxu w

(11) a. Copy: ∅ ⇒ x / vxu w
b. Delete: x⇒ ∅ / v uxw

As stated in section 2, if two relations are subse-
quential, then the composition of these relations will
also be subsequential. Thus, whether or not the
metathesis is subsequential depends on its compo-
nent copy and deletion processes. This result is es-

3This assumes the two copy-deletions occur simultaneously.
If one were to precede the other, then the bound would be 2.

4The [s] is deleted in an unrelated process.

47

tablished in the following theorem.

Theorem 6. If a copy relation f is either (1)
post-pivot, T-bounded, I-bounded and R-bounded
or (2) pre-pivot, T-bounded, and R-bounded, and
a deletion relation g is either (1) post-pivot, T-
bounded, I-bounded and R-bounded or (2) pre-pivot,
T-bounded, and R-bounded, then the metathesis re-
lation g ◦ f is subsequential.

Proof. By Theorems 2 and 3, f is subsequential. By
Theorems 4 and 5, g is subsequential. By Theorem
1, g ◦ f is subsequential.

6 Partial Reduplication

Unlike metathesis, reduplication is analyzed by pho-
nologists of all stripes as involving copying. Tradi-
tionally, two categories of reduplication have been
described: full (or total) and partial. Full reduplica-
tion involves copying the entire string and affixing
it to the original. A classic example is found in In-
donesian (Sneddon, 1996), to express the plural:

(12) a. buku ‘book’
b. buku-buku ‘books’

In contrast, partial reduplication involves copying a
designated portion of the string and affixing it as ei-
ther a prefix, suffix, or infix. These options can be
schematized as in (13)(Riggle, 2003), in which local
means the reduplicant attaches adjacent to the ma-
terial it copies and nonlocal means the reduplicant
copies a non-adjacent portion of the string:5

(13) a. local prefixation: CV-CVZ
b. nonlocal prefixation: CV-ZCV
c. local suffixation: ZCV-CV
d. nonlocal suffixation: CVZ-CV
e. infixation: C1VC1Z

An example of local prefixation is found in Tagalog,
in which the future of a verb is derived from the stem
with a CV reduplicative prefix (Blake, 1917):

(14) sulat⇒ susulat ‘will write’

An example of the infixation shown in (13-e) can
be found in Pima, in which the plural is derived by

5These schemas assume CV reduplication, but the analy-
sis would proceed the same for any reduplicant template, CC,
CVC, etc.

infixing a copy of the initial consonant after the first
vowel (Riggle, 2006):

(15) sipuk⇒ sispuk ‘cardinals’

Since under the current analysis of metathesis as
copy+delete, the only difference between a metathe-
sis pattern and partial reduplication is that the latter
does not involve the second process of deletion, we
should predict that partial reduplication patterns will
also be subsequential if the copying is bounded as
per the definitions given above. We can clearly see
that in the local patterns (13-a) and (13-c), the orig-
inal and the copy are adjacent and therefore (vac-
uously) they are I-bounded. For the infixation, the
copy likewise appears at a fixed distance from the
original. In all three cases, the amount of material
to be copied fits a template and is thus bounded by
the length of the template (i.e. they are T-bounded).
Therefore by Theorem 2, these partial reduplication
patterns are subsequential. The SFST for local pre-
fixation (13-a) is shown in Figure 5.

!

!C
!

V

V:VCV

C

?

Figure 5: An SFST for CV-CVZ partial reduplication.
The SFST for local suffixation (13-c) is shown in
Figure 6.

!

V
!C

C CV

V

V
C

Figure 6: An SFST for ZCV-CV partial reduplication.
And the SFST for infixation (13-e) is shown in Fig-
ure 7.

!

!C
!

V

V:VC
C

?

Figure 7: An SFST for C1VC1Z partial reduplication.

As for the nonlocal patterns, first consider the case
of suffixation, (13-d). The string represented by Z

48

is not bounded, and therefore this pattern is not I-
bounded. It is, however, R-bounded, since the copy
is always affixed to the end of the word. The right
context is the empty string, which is (vacuously)
bounded. Thus, by Theorem 3 this pattern is also
subsequential; the FST is presented in Figure 8.

!

!C

!
V

C

CV
V

?

?

Figure 8: An SFST for a CVZ-CV pattern.

As for the last pattern, nonlocal prefixation, we
have the opposite situation: the machine does have
to hold a potentially infinite number of segments
while it searches for the original, which means the
pattern is not subsequential. However, this par-
tial reduplication pattern is reverse subsequential
by Corollary 1: reversing the string CV-ZCV gives
VCZ-VC, which is R-bounded and identical to the
nonlocal suffixation that was already argued to be
subsequential.

To summarize, the attested partial reduplication
patterns all appear to be subsequential or reverse
subsequential.

This leaves us with full reduplication. Full redu-
plication is non-regular—although the position of
the copy is fixed, the amount of material that is
copied is not: full reduplication is not T-bounded.
Again, with no principled upper limit on the length
of words, a machine that copies an entire string can-
not be finite state, much less subsequential. This
distinction separates full and partial reduplication
in terms of computational complexity—the implica-
tion being that these processes may be better viewed
as distinct phenomena rather than subclasses of a
single process.

7 Discussion

The analyses of subsequential copying and deletion
presented above have revealed the conditions under
which metathesis and partial reduplication patterns

are subsequential. Under a copy+deletion analysis
of metathesis, all metathesis patterns are T-bounded,
since only one segment is copied (and then deleted)
at a time. Partial reduplication is also T-bounded, as-
suming what is copied fits a certain template. Thus
the T-bounded requirement on subsequential copy-
ing excludes only full reduplication from the subse-
quential class.

The analysis of metathesis relied on generalized
representations of such patterns that appear to be
typologically justified. A large number of attested
metathesis patterns are considered ‘local’, which
amounts to being I-bounded by 1. Metathesis pat-
terns described as ‘long distance’ are also either I-
bounded or else L-bounded - patterns such as Ro-
mance liquid movement (Vennemann, 1988) and
Romani aspiration displacement (Matras, 2002) are
striking in that they all affect the initial onset of the
word.6 A type of logically possible pattern that ap-
pears to be unattested is one in which no context of
the copying - left, right, or intervening - is bounded.
Such a pattern would not be subsequential, and in
fact could not be described with any FST (i.e. it is
non-regular). In this way the restriction of metathe-
sis to the subsequential class finds support in the ty-
pological evidence. Also (apparently) unattested is
an R-bounded metathesis pattern - one which targets
the end of the word - though this is readily found in
the typology of partial reduplication. It remains for
future work whether such a metathesis pattern does
exist, and if not, whether further distinctions need
to be drawn to account for why R-bounded copying
only appears as partial reduplication.

Narrowing the computational bound of possible
phonological patterns from the regular class to the
subsequential class also has implications for learn-
ing. It is known that the class of regular languages is
not identifiable in the limit from positive data (Gold,
1967), but the subsequential class is: Oncina et al.
(1993) have shown this class to be learnable by the
OSTIA algorithm. Although (without modification)
OSTIA does not do so well in practice on real data
sets (Gildea and Jurafsky, 1996), future work may
reveal algorithms that fare better if the hypothesis
space can be restricted even further (i.e. to a sub-

6The L-bounded patterns also appear to be restricted to the
diachronic domain. See (Chandlee et al., to appear)

49

class of the subsequential relations).

8 Conclusion

This paper has argued for an analysis of metathesis
as the composition of copying and deletion. Such
an analysis provides a computational link between
metathesis and partial reduplication, which extends
into a classification of these patterns as subsequen-
tial based on the bounded nature of the copying and
(in the case of metathesis) deletion. The typology
of attested patterns aligns well with the classifica-
tions proposed here, suggesting a tighter computa-
tional bound on phonological patterns than the one
established by Johnson (1972) and Kaplan and Kay
(1994).

Thus we can add metathesis and partial redupli-
cation to the phonological processes that have previ-
ously been shown to be subsequential - see (Koirala,
2010) for substitution, insertion, and deletion, and
Gainor et al. (to appear) for vowel harmony. It
will be interesting to see to what extent morpholog-
ical processes, including templatic morphology, and
prosodic circumscription, also fit into this class.

References

P. F. Abboud. 1979. The verb in Northern Najdi Arabic.
Bulletin of the School of Oriental and African Studies,
42:467-499.

K.R. Beesley and L. Karttunen. 2003. Finite State Mor-
phology. Stanford: CSLI Publications.

C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins
and G. J. Pappas. 2007 Symbolic planning and con-
trol of robot motion. IEEE Robotics and Automation
Magazine, 14(1): 61–71.

F. R. Blake. 1917. Reduplication in Tagalog. The Amer-
ican Journal of Philology, 38: 425-431.

J. Blevins and A. Garrett. 1998. The origins of
consonant-vowel metathesis. Language, 74(3):508-
556.

J. Blevins and A. Garrett. 2004. The evolution of
metathesis. In B. Hayes, R. Kirchner, and D. Steri-
ade (eds.) Phonetically Based Phonology. Cambridge:
Cambridge UP, 117-156.

E. Buckley. 2011. Metathesis. In M. van Oostendorp,
C.J. Ewen, E. Hume, and K. Rice (eds.) The Black-
well Companion to Phonology, Volume 3. Wiley-
Blackwell.

J. Chandlee, A. Athanasopoulou, and J. Heinz. to appear
Evidence for classifying metathesis patterns as subse-
quential. Proceedings of the 29th West Coast Confer-
ence on Formal Linguistics Somerville: Cascadilla.

N. Chomsky. 1956. Three models for the description
of language. IRE Transactions on Information Theory
113124. IT-2.

C. M. Churchward. 1940. Rotuman grammar and dictio-
nary. Sydney: Methodist Church of Australasia, De-
partment of Overseas Missions.

J. O. Davidson, Jr. 1977. A Contrastive Study of
the Grammatical Structures of Aymara and Cuzco
Quechua Ph.D. dissertation. University of California,
Berkeley.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison 1998
Biological Sequence Analysis: Probabilistic Models
of Proteins and Nucleic Acids Cambridge University
Press.

B. Gainor, R. Lai, and J. Heinz. to appear Compu-
tational characterizations of vowel harmony patterns
and pathologies. Proceedings of the 29th West Coast
Conference on Formal Linguistics. Somerville: Cas-
cadilla.

D. Gildea and D. Jurafsky. 1996. Learning bias and
phonological-rule induction. Computational Linguis-
tics22, 497-530.

E.M. Gold. 1967. Language identification in the limit.
Infomation and Control10, 447-474.

J. Heinz. 2005. Optional partial metathesis in Kwara’ae.
Proceedings of AFLA 12, UCLA Working Papers, 91-
102.

J. Heinz. 2007. The inductive learning of phonotactic
patterns. Doctoral dissertation, University of Califor-
nia, Los Angeles.

J. Heinz. 2009. On the role of locality in learning stress
patterns. Phonology 26: 303-351.

J. Heinz. 2010. Learning long-distance phonotactics.
Linguistic Inquiry 41, 623-661.

E. Hume. 2000. Metathesis Website. www.ling.ohio-
state.edu/ ehume/metathesis.

C. D. Johnson. 1972. Formal Aspects of Phonological
Description The Hague: Mouton.

D. Jurafsky and J.H. Martin 2008 Speech and Language
Processing, 2nd edition. Pearson Prentice Hall.

R. Kaplan and M. Kay. 1994. Regular models of phono-
logical rules systems. Computational Linguistics 20:
331-378.

C. Koirala. 2012. Strictly Local Relations. Ms. Univer-
sity of Delaware.

Y. Matras. 2002. Romani: a linguistic introduction.
Cambridge: Cambridge UP.

M. Mohri. 1997. Finite-state transducers in language
and speech processing. Computational Linguistics,
23: 269-311.

50

J. Oncina, P. Garcia, and E. Vidal. 1993. Learning subse-
quential transducers for pattern recognition interpreta-
tion tasks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(5): 448-457.

J. Riggle. 2003. Nonlocal reduplication. Proceedings of
the 34th annual meeting of the North Eastern Linguis-
tic Society.

J. Riggle. 2006. Infixing reduplication in Pima and its
theoretical consequences. Natural Language and Lin-
guistic Theory, 24: 857-891.

G. Rohlfs. 1950. Historische grammatik der unterital-
ienischen Gräzität, München: Verlag der Bayerischen
Akademie der Wissenchaften.

S. Russell and P. Norvig. 2009 Artificial Intelligence: a
modern approach. Upper Saddle River, NJ: Prentice
Hall

S. Schieber. 1985 Evidence against the context-freeness
of natural language. Linguistics and Philosophy 8:
333-343.

J. N. Sneddon. 1996. Indonesian: a comprehensive
grammar, Routledge.

H. G. Tanner, C. Rawal, J. Fu, J. L. Piovesan, and C. T.
Abdallah. 2012 Finite abstractions for hybrid systems
with stable continuous dynamics. Discrete Event Dy-
namic Systems ,22(1):83-99.

T. Vennemann. 1988. Preference laws for syllable struc-
ture and the explanation of sound change. Berlin:
Mouton de Gruyter.

51

Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology (SIGMORPHON2012), pages 52–61,
Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

An approximation approach to the problem of the acquisition of
phonotactics in Optimality Theory

Giorgio Magri
Laboratoire de Linguistique Formelle, CNRS and University of Paris 7

magrigrg@gmail.com

Abstract

The problem of the acquisition of phono-
tactics in Optimality Theory is intractable.
This paper offers a way to cope with this
hardness result: the problem is reformu-
lated as a well known integer program (the
Assignment problem with linear side con-
straints) paving the way for the applica-
tion to phonotactics of approximation al-
gorithms recently developed for integer
programming.

Knowledge of the phonotactics of a language
is knowledge of its distinction between licit and
illicit forms. The acquisition of phonotactics rep-
resents a distinguished and important stage of lan-
guage acquisition. In fact, in carefully controlled
experimental conditions, nine-month-old infants
already react differently to licit and illicit sound
combinations (Jusczyk et al., 1993). They thus
display knowledge of phonotactics already at an
early stage of language development.

Usually, the problem of the acquisition of the
phonotactics of a language given a finite set of lin-
guistic data is formalized as the problem of find-
ing a smallest language in the typology that is
consistent with the data (Berwick, 1985; Manzini
and Wexler, 1987; Prince and Tesar, 2004; Hayes,
2004; Fodor and Sakas, 2005). Section 1 for-
mulates the problem of the acquisition of phono-
tactics along these lines within the mainstream
phonological framework of Optimality Theory
(Prince and Smolensky, 2004; Kager, 1999).

Unfortunately, (such a formulation of) the prob-
lem of the acquisition of phonotactics in OT turns
out to be intractable (NP-complete): for any at-
tempted efficient solution algorithm, there are
some instances of the problem where the algo-
rithm fails (Magri, 2010; Magri, 2012b). This
hardness result holds for the universal formulation
of the problem, in the sense of Heinz et al. (2009):

there are no restrictions on the constraint set that
defines the OT typology and indeed the OT typol-
ogy itself figures as an input to the problem.

There are two strategies to cope with this hard-
ness result. One approach weakens the formu-
lation of the problem through proper restrictions
on the constraint set: certain constraint sets are
implausible from a phonological perspective, and
should therefore be ignored in the proper formula-
tion of the problem (Magri, 2011; Magri, 2012c).
This approach raises interesting challenges, as it
requires a through investigation of the algorith-
mic implications of various generalizations devel-
oped by phonologists on what counts as a “plausi-
ble” OT constraint set. Another approach is to by-
pass this difficulty, and weaken the formulation of
the problem by lowering the standard for success:
we settle on an approximate solution, namely a
“small” language rather than a smallest language.
This paper paves the way for the latter approach.

I focus on the specific formulation of the prob-
lem of the acquisition of OT phonotactics devel-
oped in Prince and Tesar (2004). In Sections 2 and
3, I show that this formulation of the problem can
be restated as a classical integer program, namely
the Assignment problem with liner side constraints
(AssignLSCsPbm). The theory of approximation
algorithms for integer programing is a blooming
field of Computer Science (Bertsimas and Weis-
mantel, 2005). In particular, powerful approxi-
mation algorithms have been recently developed
for the AssignLSCsPbm. A state-of-the-art algo-
rithm is due to Arora et al. (2002). The integer
programming formulation developed in this paper
thus paves the way for a new approximation ap-
proach to the problem of modeling the acquisition
of phonotactics within OT. In Magri (2012a), I re-
port simulation results with Arora’s et. al. (2002)
algorithm on various instances of the problem of
the acquisition of phonotactics.

52

1 Formulation of the problem

1.1 Basic formulation
A typology in Optimality Theory (OT) is defined
through a 4-tuple τ = (X ,Y, Gen,C), where X
is the set of underlying forms; Y is the set of
candidate surface forms; Gen is the generating
function that pairs an underlying form x ∈ X
with a set Gen(x) ⊆ Y of surface forms called
the candidates for x; and C is the set of n con-
straints C1, . . . , Cn. Each constraint Ci is a func-
tion that maps a pair (x, y) of an underlying form
x ∈ X and a candidate y ∈ Gen(x) into a num-
ber Ci(x, y), called the corresponding number of
violations. The constraint set is split into the sub-
setM of markedness constraints and the subset F
of faithfulness constraints. As the constraint set is
finite and can therefore only distinguish among a
finite number of forms, I can assume that the set of
underlying forms X is finite, as well as the candi-
date set Gen(x) for any underlying form x ∈ X .

Let π be a ranking, namely a total order over
the constraint set. I denote by OTπ : X → Y the
OT grammar corresponding to the ranking π, as
defined in Prince and Smolensky (2004). And I
denote by L(π) the language corresponding to the
ranking π, namely the range of the correspond-
ing grammar OTπ (or, more explicitly, the set of
all and only those surface forms ŷ ∈ Y such that
there exists an underlying form x ∈ X such that
OTπ(x) = ŷ). Throughout the paper, I use x for an
underlying form, ŷ for a surface form which is an
intended winner, and y for a surface form which is
an intended loser.

The Problem of the acquisition of phonotactics
in OT can be stated as in (1) in its universal for-
mulation (Berwick, 1985; Manzini and Wexler,
1987; Prince and Tesar, 2004; Hayes, 2004). We
are given an OT typology as well as a finite set
P ⊆ X × Y of linguistic data. These data consist
of pairs (x, ŷ) of an underlying form x ∈ X and a
corresponding intended winner form ŷ ∈ Gen(x).
I assume that P is consistent, namely that there
exists at least a ranking π such that OTπ(x) = ŷ
for every pair (x, ŷ) ∈ P . We are asked to return
a ranking π which has two properties. First, π is
consistent: the corresponding OT grammar maps
x into ŷ for every pair (x, ŷ) ∈ P . Second, π is
restrictive: there exists no other ranking π′ consis-
tent with P too such that the language L(π′) cor-
responding to π′ is a proper subset of the language
L(π) corresponding to π. A solution algorithm

needs to run in time polynomial in the number of
constraints |C| and the numbers of forms |X |, |Y|
(recall that X and Y are finite).

(1) given: an OT typology τ = (X ,Y, Gen,C)
and a finite set P ⊆ X × Y of data;

find: a ranking π s.t. P ⊆ OTπ and there is
no π′ s.t. P ⊆ OTπ′ and L(π′) ⊂ L(π);

time: max{|C|, |X |, |Y|}.

Problem (1) is NP-complete: there exists no effi-
cient algorithm that is able to solve any instance of
the problem (Magri, 2010; Magri, 2012b).

An interesting variant of the problem (1) as-
sumes that we are given only the surface forms but
not the corresponding underlying forms. Prince
and Tesar (2004) and Hayes (2004) suggest that
we can circumvent this difficulty as follows. As-
sume that the set of underlying forms and the
set of surface forms coincide, namely X = Y .
Assume furthermore that the typology is output
driven (Tesar, 2008): a surface form ŷ belongs to
the languageL(π) corresponding to a ranking π iff
the corresponding grammar OTπ maps that form ŷ
(construed as an underlying form) into itself (con-
strued as a surface form), as stated in (2)

(2) ŷ ∈ L(π) ⇐⇒ OTπ(ŷ) = ŷ.

In this case, a way to cope with the lack of the
underlying forms is to assume that the underlying
form corresponding to a given surface form ŷ is
the completely faithful underlying form ŷ itself.
For this reason, I stick with the formulation (1) of
the problem, whereby we are provided with both
surface and underlying forms.

1.2 ERC notation

Consider an underlying form x ∈ X and two dif-
ferent candidate forms y, ŷ ∈ Gen(x), with the
convention that ŷ is the intended winner for x
while y is a loser. Following Prince (2002), all
the relevant information concerning the underly-
ing/winner/loser form triplet (x, ŷ, y) can be sum-
marized into the corresponding elementary rank-
ing condition (ERC), namely the n-tuple e with
entries e1, . . . , en ∈ {L, e,W} defined as in (3).

(3) (x, ŷ, y) =⇒ e = e1 . . . ei . . . en

ei
.
=


W if Ci(x, ŷ) < Ci(x, y)
L if Ci(x, ŷ) > Ci(x, y)
e if Ci(x, ŷ) = Ci(x, y)

53

In words, The ith entry ei is ei = W iff con-
straint Ci assigns more violations to (x, y) than to
(x, ŷ) and thus favors the intended winner ŷ over
the loser y; ei = L iff the opposite holds; finally,
ei = e iff the constraint Ci assigns the same num-
ber of violations to the two pairs (x, y) and (x, ŷ).

A ranking π can be represented as a permuta-
tion over {1, . . . , n}, with the understanding that
π(i) = j means that the ranking π assigns con-
straint Ci to the jth stratum of the ranking, with
the convention that the stratum corresponding to
j = n (to j = 1) is the top (bottom) of the rank-
ing. For every such permutation π, let eπ be the
n-tuple e with the components reordered accord-
ing to π in decreasing order, as in (4).

(4) eπ
.
= (eπ(n), . . . , eπ(1))

The ERC e is OT-consistent with π provided the
left-most component of eπ different from e is a W.

For each of the pairs (x, ŷ) in the set P given
with an instance of the problem (1), consider each
loser candidate y ∈ Gen(x) different from ŷ,
construct the ERC corresponding to the underly-
ing/winner/loser form triplet (x, ŷ, y) as in (3) and
organize all these ERCs one underneath the other
into an ERC matrix with n columns and many
rows (the order of the ERCs does not matter). I
denote a generic ERC matrix by E and I say that
a ranking π is OT-consistent with E provided it is
consistent with each of its ERCs. The problem of
the acquisition of phonotactics in (1) can thus be
equivalently restated in ERC notation as in (5).

(5) given: an OT typology τ = (X ,Y, Gen,C)
and an ERC matrix E;

find: a ranking π s.t. π is OT-consistent with
E and there is no π′ consistent with E
too s.t. L(π′) ⊂ L(π);

time: max{|C|, |X |, |Y|}.

The latter formulation of the problem is only par-
tially stated in terms of ERC notation, as the con-
dition L(π′) ⊂ L(π) still requires knowledge of
the entire OT typology. This difficulty is tackled
in the next Subsection.

1.3 Restrictiveness measures
Let a restrictiveness measure be a function µ
which takes a ranking π and returns a number
µ(π) ∈ N that provides a relative measure of the
size of the language L(π) corresponding to π, in
the sense that the (strict) monotonicity property in

(6) holds for any two rankings π, π′.

(6) If L(π′) ⊂ L(π), then µ(π′) < µ(π).

Any solution of the optimization problem (7) is a
solution of the corresponding instance (5) of the
problem of the acquisition of phonotactics. In fact,
if π solves (7) then there cannot exist any other
ranking π′ consistent with the ERC matrix that
corresponds to a smaller language L(π′) ⊂ L(π),
since (6) would imply that µ(π′) < µ(π), contra-
dicting the hypothesis that π is a solution of (7).

(7) minimize: µ(π);
subject to: π is OT-consistent with the given

ERC matrix E;
time: number of columns and rows of E.

As problem (7) is stated completely in terms of
the ERC matrix E, the time required by a solution
algorithm needs to scale just with the size of E.

From now on, I will focus on the new formu-
lation (7). Thus, I need a restrictiveness measure
(6). Of course, not just any restrictiveness mea-
sure will do. For instance, the function (8), which
pairs a ranking π with the cardinality of its lan-
guage L(π), trivially satisfies (6).

(8) µ(π)
.
= |L(π)|.

Yet, this is not a good restrictiveness measure, be-
cause there seems to be no way to compute µ(π)
without actually computing the language L(π),
which requires knowledge of the entire typology.

Prince and Tesar (2004) suggest a better can-
didate, which is defined for any ranking π as in
(9). Recall that the constraint set C = F ∪ M
is split up into the subset F of faithfulness con-
straints and the subset M of markedness con-
straints. For each faithfulness constraint F ∈ F ,
determine the number µ(F) of markedness con-
straints M ∈ M ranked by π below that faithful-
ness constraint, i.e. π(F) > π(M). Finally, add
up all these numbers µ(F) together to determine
the value µ(π).

(9) µ(π)
.
=
∑
F∈F

∣∣∣{M ∈M|π(F) > π(M)}
∣∣∣︸ ︷︷ ︸

µ(F)

Is the function µ defined in (9) is a restrictive-
ness measure? namely, does it satisfy condition
(6)? Prince and Tesarconjecture that it is, based
on the following intuition. Markedness (faith-

54

fulness) constraints work against (towards) the
preservation of the underlying contrasts. Thus, a
small (large) language should arise by ranking the
markedness (faithfulness) constraints as high as
possible. And a ranking that ranks the markedness
(faithfulness) constraints as high (low) as possi-
ble is a ranking that minimizes Prince and Tesar’s
function (9).

I endorse Prince and Tesar’s conjecture that (9)
is a restrictiveness measure, at least for the cases of
interest.1 In Magri (2012a), I backup this claim by
looking at a case study, namely the typology cor-
responding to the large constraint set considered in
Pater and Barlow (2003). In the rest of this paper, I
thus focus on the reformulation (7) of the problem
of the acquisition of phonotactics, with µ defined
as in (9). The latter formulation of the problem of
the acquisition of phonotactics is NP-complete too
(Magri, 2010; Magri, 2012b). In the rest of this
paper, I thus develop an integer programming for-
mulation of the latter problem, that allows approx-
imation algorithms for integer programming to be
used in order to tackle the problem of the acquisi-
tion of phonotactics. The reasoning is split up into
two steps. In Section, 2, I develop an integer pro-
gramming formulation of the objective function,
namely the alleged restrictiveness measure in (9).
And in Section 3, I turn to an integer programming
formulation of the OT-consistency condition.

2 An integer programming restatement
of the restrictiveness measure

A square matrix of order n is a collection of
n2 real numbers displayed into n columns and

1 Prince and Tesar’s conjecture that (9) is a restrictive-
ness measure runs into a straightforward problem when the
constraint set C contains both positional and faithfulness con-
straints. Yet, there are various ways to circumvent this diffi-
culty posed by positional constraints. One way could be to
weigh differently the two types of faithfulness constraints in
the determination of restrictiveness. Thus, we could switch
from the definition in (9) to the variant in (i), where Fpos is
the set of positional faithfulness constraints,Fgen is the set of
general faithfulness constraints and α is a positive coefficient.

(i) µα(π)
.
=

∑
F∈Fpos

∣∣∣∣{M ∈M ∣∣∣π(F) > π(M)
}∣∣∣∣+

+α
∑

F∈Fgen

∣∣∣∣{M ∈M ∣∣∣π(F) > π(M)
}∣∣∣∣

Another way to deal with positional faithfulness constraints
could be to ignore altogether rankings where a positional
faithfulness constraint is ranked below the corresponding
general faithfulness constraint. This is trivial to obtain, by
adding a proper ERC to the ERC matrix given with an in-
stance of the problem (7).

n rows. I denote a square matrix of order n as
X = [xi,j]

n
i,j=1, with the understanding that xi,j

is the element of the matrix X which sits in the
ith row and the jth column. I denote by Rn×n the
vector space of all square matrices of order n.

A square matrix X = [xi,j]
n
i,j=1 is called a per-

mutation matrix iff its elements xi,j satisfy the fol-
lowing three conditions: (i) they are all 0 or 1; (ii)
each column contains a unique 1; (iii) each row
contains a unique 1. I denote by Pn the set of all
n! permutation matrices of order n. To illustrate, I
list Pn with n = 3 in (10).

(10)

[
1 0 0
0 1 0
0 0 1

] [
1 0 0
0 0 1
0 1 0

] [
0 1 0
1 0 0
0 0 1

]
[

0 0 1
1 0 0
0 1 0

] [
0 1 0
0 0 1
1 0 0

] [
0 0 1
0 1 0
1 0 0

]

Permutation matrices play a special role in convex
geometry (Webster, 1984, par. 5.8).

There is a natural correspondence between per-
mutation matrices of order n and rankings over n
constraints C1, . . . , Cn. Recall that a ranking π
is a permutation over {1, 2, . . . , n}, with the un-
derstanding that π(i) = j means that the rank-
ing π assigns the constraint Ci to the jth stratum,
with the convention that the stratum correspond-
ing to j = n is the top stratum. I use i as the
index ranging over constraints and j as the in-
dex ranging over strata. Thus, a ranking π can
be identified with that (unique) permutation ma-
trix X = [xi,j]

n
i,j=1 ∈ Pn such that xi,j = 1 iff the

ranking π assigns the constraint Ci to the jth stra-
tum, namely π(i) = j. To illustrate, I list in (11)
the rankings over {C1, C2, C3} corresponding to
the six permutation matrices in (10), respectively.

(11) C3�C2�C1, C2�C3�C1, C3�C1�C2,
C1�C3�C2, C2�C1�C3, C1�C2�C3

I denote by πX the ranking corresponding to a per-
mutation matrix X ∈ Pn and by Xπ ∈ Pn the
permutation matrix corresponding to a ranking π.
Prince and Tesar’s restrictiveness measure (9) of
a ranking π can be straightforwardly read off the
corresponding permutation matrix Xπ, as follows.

Define the scalar product 〈X,Y〉 ∈ R
between two arbitrary square matrices X =
[xi,j]

n
i,j=1,Y = [yi,j]

n
i,j=1 ∈ Rn×n as in (12)

(namely as the Euclidean scalar product of Rn2
).

55

(12) 〈X,Y〉 .=
n∑

i,j=1

xi,jyi,j .

A function f : Rn×n → R is called linear iff there
exists a square matrix Σ ∈ Rn×n such that (13)
holds for any square matrix X ∈ Rn×n.

(13) f(X) = 〈Σ,X〉.

Linear functions are the “simplest” possible con-
vex functions, namely the ones that yield the easi-
est optimization problems.

Let me assume that the first m constraints in
C are the faithfulness constraints while the re-
maining n − m constraints are the markedness
constraints, namely that F = {C1, . . . , Cm} and
M = {Cm+1, . . . , Cn}. Consider the matrix
Σn,m ∈ Rn×n defined as follows: its first m rows
each have the form [0, 1, . . . , n− 2, n− 1]; the re-
maining n − m rows are all null. To illustrate, I
give in (14) the matrix Σn,m with n = 7,m = 4.

(14) Σ7,4
.
=



0 1 2 3 4 5 6
0 1 2 3 4 5 6
0 1 2 3 4 5 6
0 1 2 3 4 5 6

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


The following Claim 1 explains how to compute

the restrictiveness µ(π) of a ranking π according
to (9) out of the corresponding permutation ma-
trix Xπ; see Appendix A.1. This Claim shows an
important property of Prince and Tesar’s restric-
tiveness measure: it can be described as a linear
function over the set of permutation matrices.

Claim 1 The restrictiveness µ(π) of a ranking π
according to (9) can be computed as follows:

(15) µ(π) = 〈Σn,m,Xπ〉 −
1

2
m(m− 1)

namely as the scalar product 〈Σn,m,X〉 between
the matrix Σn,m and the corresponding permuta-
tion matrix Xπ, minus the constant 1

2m(m − 1)
which does not depend on the ranking.2 �

2I have noted in footnote 1 that the conjecture that the
function µ in (9) is a restrictiveness measure runs into prob-
lems for constraint sets that contain both general and posi-
tional faithfulness constraints. And I have suggested that a
possible way out is to to switch from the definition (9) to the
variant in (i). Let me now point out that the latter variant too
can be described as a linear function over permutation ma-
trices. In fact, let Σn,m,α be as the matrix Σn,m defined

The problem of the acquisition of phonotactics
(7) with Prince and Tesar’s alleged restrictiveness
measure (9) can thus be restated as the optimiza-
tion problem (16).

(16) minimize: 〈Σn,m,X〉;
subject to: X ∈ Pn and πX is consis-

tent with the given ERC ma-
trix E.

Here, I have dropped the constant 1
2m(m − 1)

which appears in (15), as it does not affect the op-
timization problem.

3 An integer programming formulation
of the OT-consistency condition

The reformulation in (16) makes use of the notion
of OT-consistency with a given ERC matrix and
this notion is currently stated in terms of rankings
rather than in terms of the corresponding permu-
tation matrices. We need to restate the latter con-
dition directly in terms of permutation matrices.
In this Section, I point out two strategies for do-
ing that. The first approach hinges on a classical
observation by Prince and Smolensky (2004) that
OT consistency can be restated as linear consis-
tency in the case of exponentially spaced weights.
The second approach requires a larger number of
linear conditions, but is shown to provide a better
reformulation (i.e. a tighter relaxation).

3.1 An initial formulation of OT-consistency

Given an ERC e = [e1, . . . , en], consider the
corresponding square matrix Ae = [ai,j]

n
i,j=1 ∈

Rn×n defined in (17). Here, ti is the sign of the
ERC’s entry ei, namely ti is equal to −1, 0 or
+1 depending on whether ei is equal to L, e or
W. Thus, the entry ai,j in the ith row and the jth
column of the matrix (17) consists of the sign ti
multiplied by 2j .

(17) Ae =


21t1 22t1 . . . 2jt1 . . . 2nt1

...
21ti 22ti . . . 2jti . . . 2nti

...
21tn 22tn . . . 2jtn . . . 2ntn


Intuitively, this entry ai,j = 2jti is the weight of
the sign ti under the assumption that the constraint

above, but with the rows corresponding to general faithful-
ness constraints multiplied by α. Then, µα(X) coincides
with 〈Σn,m,α,X〉, but for a constant.

56

Ci is assigned to the jth stratum.
The following claim offers a restatement of

OT-consistency between an ERC and a ranking
in terms of the permutation matrix correspond-
ing to that ranking. This claim is just a re-
statement in matrix form of the observation by
Prince and Smolensky (2004) that OT consistency
is equivalent to a linear condition with exponen-
tially spaced weights; see Subsection A.2.

Claim 2 A ranking π is OT-consistent with an
ERC e iff 〈Ae,Xπ〉 ≥ 0, where 〈Ae,Xπ〉 is the
scalar product (12) between the matrix Ae corre-
sponding to the ERC e and the permutation matrix
Xπ corresponding to the ranking π. �

The current formulation (16) of the problem of
the acquisition of phonotactics can thus be restated
as the optimization problem in (18).

(18) FIRST INTEGER REFORMULATION:
minimize: 〈Σn,m,X〉;

subject to: X∈Pn s.t. 〈Ae,X〉 ≥ 0 for ev-
ery ERC e of the ERC matrix E.

Problem (18) is an optimization problem over per-
mutation matrices X∈Pn. The objective function
is the linear function 〈Σn,m,X〉. And the feasi-
ble set is defined in terms of linear side condi-
tions 〈Ae,X〉 ≥ 0. Problem (18) is thus an in-
teger program. In particular, it is an Assignment
problem with linear side constraints (AssignLSC-
sPbm) (Bertsimas and Weismantel, 2005).

3.2 Another formulation of OT-consistency

Let `(e) be the number of entries equal to L in
an ERC e = [e1, . . . , en]. Assume without loss
of generality that `(e) > 0, as ERCs with no L’s
can be ignored. For every stratum  ∈ {1, . . . , n},
consider the square matrix A

e = [ai,j]
n
i,j=1 with

n rows and n columns whose generic element ai,j
is defined as in (19).

(19) ai,j
.
=


1 if ei = L, j ≥ 
−1 if ei = W, j ≥ + `
0 otherwise

The following claim offers another restatement
of OT-consistency between an ERC and a ranking
in terms of the permutation matrix corresponding
to that ranking; see Subsection A.3.

Claim 3 A ranking π is OT-consistent with an
ERC e iff 〈A

e,Xπ〉 ≤ 0 for every  ∈ {1, . . . , n},

where 〈A
e,Xπ〉 is the scalar product (12) be-

tween the matrix A
e corresponding to the ERC e

and the stratum  and the permutation matrix Xπ

corresponding to the ranking π. �

The current formulation (16) of the problem of
the acquisition of phonotactics can thus be alter-
natively restated as the optimization problem (20).

(20) SECOND INTEGER REFORMULATION:
minimize: 〈Σn,m,X〉;
subject to: X ∈ Pn s.t. 〈A

e,X〉 ≤ 0 for
every ERC e of the ERC matrix
E and every  ∈ {1, . . . , n}.

Again, (20) is another instance of the AssignLSC-
sPbm. The feasible set in the latter formulation
(20) involves n times more inequalities than the
formulation (18).

3.3 Comparing the two formulations

Problems (18) and (20) are two different formula-
tions of the original problem (16) of the acquisi-
tion of phonotactics. They are thus equivalent, in
the sense that a solution to any of the two prob-
lems is also a solution to the other and further-
more to the original problem. This Subsection
explains why, nonetheless, the latter formulation
(20) is better than the former formulation (18).

Both (18) and (20) are optimization problems
over permutation matrices X ∈ Pn. The latter
condition on the matrix X = [xi,j]

n
i,j=1 means that

conditions (21) hold for any i, j = 1, . . . , n.

(21) xi,j ∈ {0, 1}
n∑
i=1

xi,j = 1,
n∑
j=1

xi,j = 1

Problems (18) and (20) are integer optimization
problems because of the condition xi,j ∈ {0, 1}
in (21). This condition can be relaxed, requiring
the entires xi,j to be not necessarily 0 or 1 but in-
stead any number in between 0 and 1. Thus, let
Pnrel be the set of matrices that satisfy the relaxed
conditions (22), known as the Birkhoff polytope.

(22) xi,j ∈ [0, 1]
n∑
i=1

xi,j = 1,
n∑
j=1

xi,j = 1

Relaxing the integer constraint X ∈ Pn into the
continuous constraint X ∈ Pnrel, yields the two
corresponding problems (23) and (24).

57

(23) FIRST RELAXATION:
minimize: 〈Σn,m,X〉;

subject to: X ∈ Pnrel s.t. 〈Ae,X〉 ≤ 0 for
any ERC e of the ERC matrix.

(24) SECOND RELAXATION:
minimize: 〈Σn,m,X〉;

subject to: X ∈ Pnrel s.t. 〈A
e,X〉 ≥ 0 for

any ERC e of the ERC matrix
and any stratum  ∈ {1, . . . , n}.

These linear programs (23) and (24) are the relax-
ations of the two integer programs (18) and (20).

The relaxation of an integer program provides
a lower bound on the solution of that integer pro-
gram. This lower bound is used by solution al-
gorithms for the integer program. Of course, lin-
ear relaxations that provide tight bounds yield im-
proved solution algorithms for the original integer
problem (Bertsimas and Weismantel, 2005). De-
spite the fact that the two original integer programs
(18) and (20) are equivalent, the two correspond-
ing relaxations (23) and (24) are not. Claim 4 en-
sures that the feasible set of the relaxation (24) is
a subset of that of the relaxation (23), so that the
lower bound provided by a solution of the former
will be at least as tight as the lower bound provided
by a solution of the latter.

Claim 4 If a matrix X belongs to the feasible set
of problem (24), then it also belongs to the feasible
set of problem (23). �

The following counterexample shows that the
lower bound provided by the relaxation (24) is
not just as tight as but actually tighter than the
bound provided by the relaxation (23). Given the
ERC matrix (25), the solution to the corresponding
problem (7) is the ranking F2 � M � F1: the
faithfulness constraint F1 is redundant and should
therefore be ranked at the bottom.

(25) E =

[F1 F2 M

W W L

e W L

]
The solutions of the two corresponding relaxations
(23) and (24) are provided in (26).3

3These solutions have been computed with the Mat-
lab codes RelaxedSubPbmFirstFormulation.m and
RelaxedSubPbmSecondFormulation.m, that solve
the two relaxations (23) and (24), respectively. These codes
are available on the author’s website. The two codes use the
two subroutines MatrixToVectorConverter.m and
VectorToMatrixConverter.m, that are available on
the author’s website too.

(26) X(23) =


st1st2st3

F1 1 0 0
F2 0 1

2
1
2

M 0 1
2

1
2

X(24) =


st1st2st3

F1 1 0 0
F2 0 0 1
M 0 1 0


The relaxation (23) has a non-integral solution; the
relaxation (24) is thus stronger because its solution
is integral. The latter solution indeed represents
the desired ranking, as it assigns F2 to the top 3rd
stratum (because of the 1 in the second column
and third row) and F1 to the bottom 1st stratum
(because of the 1 in the first row and first column).

4 Conclusion

In this paper, I have focused on Prince and Tesar’s
(2004) formulation (7) of the problem of the ac-
quisition of phonotactics, in terms of the alleged
restrictiveness measure (9). This problem is NP-
complete. To cope with this hardness result, in this
paper I have looked for an integer programming
formulation of the latter problem. The formulation
in (20) has emerged as the best formulation among
those considered, namely the one that yields the
tightest relaxation. This problem (20) is an in-
stance of a classical integer program, namely the
Assignment problem with linear side constraints
(AssignLSCsPbm). The result obtained in this pa-
per thus paves the way for the efficient application
of approximation algorithms for the AssignLSC-
sPbm to the problem of the acquisition of phono-
tactics in OT. In Magri (2012a), I report simula-
tion results with Arora’s et. al. (2002) algorithm,
a state-of-the-art approximation algorithm for the
AssignLSCsPbm.

Acknowledgments

I wish to thank A. Albright for endless discussion
on the problem of the acquisition of phonotac-
tics. This work was supported in part by a ‘Euryi’
grant from the European Science Foundation to P.
Schlenker, by a grant from the Fyssen Research
Foundation, and by the LABEX-EFL grant.

Appendix: proof of the main results

A.1 Proof of claim 1

Consider the example of the permutation matrix X
in (27). There are seven constraints (hence n = 7),
four of which are faithfulness constraints (hence
m = 4). I have fringed each row of X with the
name of the constraint it corresponds to and I have

58

fringed each column of X with the stratum it cor-
responds to.

(27) X =



st1 st2 st3 st4 st5 st6 st7

F1 0 1 0 0 0 0 0
F2 0 0 0 0 0 1 0
F3 0 0 1 0 0 0 0
F4 0 0 0 0 0 0 1
M5 0 0 0 1 0 0 0
M6 1 0 0 0 0 0 0
M7 0 0 0 0 1 0 0


As prescribed by our conventions, the first four
rows correspond to the four faithfulness con-
straints, the bottom three rows correspond to the
markedness constraints; the leftmost column cor-
responds to the bottom stratum and the rightmost
column corresponds to the top stratum.

The ranking πX that corresponds to X can be
obtained as follows: the 1 in the first column of
X says that the markedness constraint M6 is as-
signed by πX to the bottom stratum j = 1; the 1
in the second column of X says that the faithful-
ness constraint F1 is assigned to the next stratum
j = 2; and so on. Thus, πX is the ranking (28).

(28) F4 � F2 �M7 �M5 � F3 � F1 �M6

According to (9), the restrictiveness µ(πX) of this
ranking πX is 8 = 3+3+1+1: 3 markedness con-
straints underneath F4, another 3 underneath F2, 1
underneath and F3 as all as underneath F1. Here
is a way to quickly compute this number directly
from the permutation matrix X.

Consider the matrix (29) obtained from the ma-
trix (27) through the following two steps. First, all
1’s which appear in the bottom three rows of X
(and thus correspond to markedness constraints)
are replaced with 0’s.

(29)



st1 st2 st3 st4 st5 st6 st7

F1 0 1 0 0 0 0 0
F2 0 0 0 0 0 5 0
F3 0 0 2 0 0 0 0
F4 0 0 0 0 0 0 6
M1 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 0
M3 0 0 0 0 0 0 0


Second, each 1 which appears in one of the top
four rows of X (and thus corresponds to a faith-
fulness constraint) is replaced with the number
which identifes the corresponding column, dimin-
ished by 1. Thus for example, the 1 in the second

row in the matrix X in (27) is replaced by a 5 in
(29), since it occurs in the sixth column.

Next, let’s scan the columns of the matrix (29)
from left to right, assigning to each column which
is not all zeros a progressive index k starting from
k = 0, as made explicit in (30).

(30)



k1=0 k3=1 k2=2 k4=3

F1 0 1 0 0 0 0 0
F2 0 0 0 0 0 5 0
F3 0 0 2 0 0 0 0
F4 0 0 0 0 0 0 6
M1 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 0
M3 0 0 0 0 0 0 0


Now we can straightforwardly read out of (30) the
number of markedness constraints ranked by πX

below each faithfulness constraint: F1 has only
one markedness constraint ranked below it, which
is precisely the number i1 = 1 which appears in
the row corresponding to F1 diminished by the
value k1 = 0 which corresponds to the column
where that number appears; F2 has three marked-
ness constraints ranked below it, which is pre-
cisely the number i2 = 5 which appears in the
row corresponding to F2 diminished by the value
k2 = 2 which corresponds to the column where
that number appears; and so on.

Since µ(πX) is defined in (9) as the sum
over each faithfulness constraint of the number of
markedness constraints ranked below that faithful-
ness constraint, we get the right result as in (31).

(31) µ(πX) =
=µ(F1) + µ(F2) + µ(F3) + µ(F4)
=(i1−k1) + (i2−k2) + (i3−k3) + (i4−k4)
=(1− 0) + (5− 2) + (2− 1) + (6− 3)
=8

Note that the sum in the second line of (31) can be
rearranged as follows:

(32) µ(πX) =
=(i1 + i2 + i3 + i4)− (k1 + k2 + k3 + k4)
=(i1 + i2 + i3 + i4)− (0 + 1 + 2 + 3)

It is trivial to check directly from the definition
(12) of scalar product that the first term i1 + i2 +
i3 + i4 in the second line of (32) is the scalar prod-
uct 〈Σ7,4,X〉 between the permutation matrix X
in (27) and the matrix Σ7,4 in (14). Thus, the first
term in the second line of (32) corresponds to the
first term in (15). It is also trivial to check that the

59

second term 0 + 1 + 2 + 3 in the second line of
(32) is equal to 1

2m(m− 1) for m = 4. Thus, the
second term in the second line of (32) corresponds
to the second term in (15).

A.2 Proof of claim 2

Consider a ranking π, namely a permutation over
{1, . . . , n}. Let π−1 be its inverse. Recall that
π(i) = j means that constraint Ci is assigned
by the ranking π to the jth stratum, with the top
stratum being the one corresponding to j = n.
Thus, π−1(j) is the constraint assigned by π to the
jth stratum. Given an ERC e = [e1, . . . , en], let
k = k(e) ∈ {1, . . . , n} be univocally defined by
conditions (33): they say that the constraints as-
signed by π to the top strata k + 1, . . . , n all have
an e in the ERC e so that the constraint assigned
by π to the kth stratum is the highest one that does
not have an e in the ERC.

(33) a. eπ−1(k+1) = . . . = eπ−1(n) = e.
b. eπ−1(k) 6= e.

Thus, π is OT-consistent with the ERC e iff
eπ−1(k) = W. To prove Claim 2, I thus prove
the equivalence (34), where Xπ = [xi,j]

n
i,j=1 is

the permutation matrix corresponding to π and
Ae = [ai,j]

n
i.j=1 is the matrix defined in (17).

(34) 〈Ae,Xπ〉 > 0 ⇐⇒ eπ−1(k) = W.

Assume that eπ−1(k) = W; then I can reason as
follows, following Prince and Smolensky (2004):

(35)〈Ae,Xπ〉 =
n∑

i,j=1

xi,jai,j =

n∑
i,j=1

xi,j2
jti

=
n∑
i=1

ti

n∑
j=1

xi,j2
j =

n∑
i=1

ti2
π(i)

=
n∑
j=1

tπ−1(j)2
j > 2k −

k−1∑
j=1

2j > 0

The proof of the reverse implication is analogous.

A.3 Proof of claim 3

To illustrate why claim 3 holds, consider the con-
crete case of the ERC e in (36).

(36) t =
[C1 C2 C3 C4 C5

W W e e L
]

A ranking π is OT-consistent with this ERC e pro-
vided it ranks either C1 or C2 above C5. This con-
dition is equivalent to the set of implications (37).
For example, the the third implication says that if,
π assigns C5 to either stratum 3, or 4 or 5 (the
latter being the top stratum), then π must assign
either C1 or C2 to either stratum 4 or 5.

(37) C5 ∈ {1, 2, 3, 4, 5} =⇒ C1 ∈ {2, 3, 4, 5} ∨ C2 ∈ {2, 3, 4, 5}
C5 ∈ {2, 3, 4, 5} =⇒ C1 ∈ {3, 4, 5} ∨ C2 ∈ {3, 4, 5}
C5 ∈ {3, 4, 5} =⇒ C1 ∈ {4, 5} ∨ C2 ∈ {4, 5}
C5 ∈ {4, 5} =⇒ C1 ∈ {5} ∨ C2 ∈ {5}
C5 ∈ {5} =⇒ C1 ∈ ∅ ∨ C2 ∈ ∅

Consider the permutation matrix X = [xi,j]
n=5
i,j=1.

Recall that xi,j = 1 iff the corresponding rank-
ing π satisfies the condition π(i) = j namely it
assigns constraint Ci to the jth stratum. Thus,
the implications in (37) can be restated in terms
of permutation matrices rather than rankings as in
(38), in the sense that a ranking π satisfies (37) iff
the corresponding permutation matrix Xπ satisfies
(38). The five inequalities (38) can be written in

(38) x5,1 +x5,2 +x5,3 +x5,4 +x5,5 ≤ x1,2 +x1,3 +x1,4 +x1,5 +x2,2 +x2,3 +x2,4 +x2,5

x5,2 +x5,3 +x5,4 +x5,5 ≤ x1,3 +x1,4 +x1,5 +x2,3 +x2,4 +x2,5

x5,3 +x5,4 +x5,5 ≤ x1,4 +x1,5 +x2,4 +x2,5

x5,4 +x5,5 ≤ x1,5 +x2,5

x5,5 ≤ 0

(39) 2x5,1+4x5,2+8x5,3+16x5,4≤2x1,1+4x1,2+8x1,3+16x1,4+32x1,5+2x2,1+4x2,2+8x2,3+16x2,4+32x2,5

(40) 4x5,1 +4x5,2 +4x5,3 +4x5,4 ≤ 4x1,2 +4x1,3 +4x1,4 +4x1,5 +4x2,2 +4x2,3 +4x2,4 +4x2,5

4x5,2 +4x5,3 +4x5,4 ≤ 4x1,3 +4x1,4 +4x1,5 +4x2,3 +4x2,4 +4x2,5

8x5,3 +8x5,4 ≤ 8x1,4 +8x1,5 +8x2,4 +8x2,5

16x5,4 ≤ 16x1,5 +16x2,5

(41) 4x5,1 +8x5,2 +16x5,3 +32x5,4 ≤ 4x1,2 +8x1,3 +16x1,4 +32x1,5 +4x2,2 +8x2,3 +16x2,4 +32x2,5

60

matrix notation as 〈A
e,X〉 ≤ 0 for  = 1, . . . , 5.

A.4 Proof of claim 4
To illustrate why claim 4 holds, consider again the
concrete case of the ERC (36). As just noted, the
conditions 〈A

e,X〉 ≤ 0 for  = 1, . . . , 5 enforced
by the relaxation (24) boil down to the inequali-
ties (38). The condition 〈Ae,X〉 ≥ 0 enforced
by the relaxation (23) boils down to the inequal-
ity (39). In order to prove claim 4 in this specific
case, I thus need to show that, if X ∈ Pnrel satis-
fies inequalities (38), then it also satisfies inequal-
ities (39). Indeed, the last inequality in (38) says
that x5,5 is null, and can thus be dropped from the
other four inequalities (38). Multiplying the first
inequality in (38) by 4, the second by 4, the third
by 8 and the fourth by 16, I get (40). Summing
the inequalities (40) together, I get the inequality
(41). As xi,j ≥ 0, I can weaken the inequality (41)
by dividing the left hand side by 2 and by adding
2x1,1 and 2x2,1 to the right hand side, thus obtain-
ing the desired inequality (39).

References
Sanjeev Arora, Alan Frieze, and Haim Kaplan. 2002.

A New Rounding Procedure for the Assignment
Problem with Applications to Dense Graph Ar-
rangement Problems. Mathematical Programming,
92.1:1–36.

Dimitris Bertsimas and Robert Weismantel. 2005. Op-
timization over Integers. Dynamic Ideas, Belmont,
Massachusetts.

Robert Berwick. 1985. The acquisition of syntactic
knowledge. MIT Press, Cambridge, MA.

Janet Dean Fodor and William Gregory Sakas. 2005.
The subset principle in syntax: costs of compliance.
Linguistics, 41:513–569.

Bruce Hayes. 2004. Phonological Acquisition in Op-
timality Theory: The Early Stages. In R. Kager,
J. Pater, and W. Zonneveld, editors, Constraints
in Phonological Acquisition, pages 158–203. Cam-
bridge University Press.

Jeffrey Heinz, Gregory M. Kobele, and Jason Rig-
gle. 2009. Evaluating the Complexity of Optimality
Theory. Linguistic Inquiry, 40:277–288.

P. W. Jusczyk, A. D. Friederici, J. M. I. Wessels, V. Y.
Svenkerud, and A. Jusczyk. 1993. Infants’ sensitiv-
ity to the sound patterns of native language words.
Journal of Memory and Language, 32:402–420.

René Kager. 1999. Optimality Theory. Cambridge
University Press.

Giorgio Magri. 2010. Complexity of the Acquisi-
tion of Phonotactics in Optimality Theory. In Jef-
frey Heinz, Lynne Cahill, and Richard Wicentowski,
editors, Proceedings of SIGMORPHON 11: the
11th biannual meeting of the ACL Special Interest
Group on Computational Morphology and Phonol-
ogy, pages 19–27, Uppsala, Sweden. Association for
Computational Linguistics.

Giorgio Magri. 2011. An online model of the acqui-
sition of phonotactics within Optimality Theory. In
L. Carlson, C. Hölscher, and T. Shipley, editors, Pro-
ceedings of CogSci 33: the 33rd annual conference
of the Cognitive Science Society, Austin, TX:. Cog-
nitive Science Society.

Giorgio Magri. 2012a. An approximation approach to
the problem of the acquisition of phonotactics in op-
timality theory. manuscript available on the author’s
website; this is a longer version of the present paper.

Giorgio Magri. 2012b. Complexity of the acquisition
of Phonotactics in Optimality Theory. Accepted at
Linguistic Inquiry.

Giorgio Magri. 2012c. Restrictiveness of error-
driven ranking algorithms: an initial assessment.
Manuscript in progress.

M. Rita Manzini and Ken Wexler. 1987. Parame-
ters, Binding Theory, and Learnability. Linguistic
Inquiry, 18.3:413–444.

Joe Pater and Jessica A. Barlow. 2003. Constraint
conflict in cluster reduction. Journal of Child Lan-
guage, 30:487–526.

Alan Prince and Paul Smolensky. 2004. Optimality
Theory: Constraint Interaction in Generative Gram-
mar. Blackwell. As Technical Report CU-CS-696-
93, Department of Computer Science, University of
Colorado at Boulder, and Technical Report TR-2,
Rutgers Center for Cognitive Science, Rutgers Uni-
versity, New Brunswick, NJ, April 1993. Rutgers
Optimality Archive 537 version, 2002.

Alan Prince and Bruce Tesar. 2004. Learning Phono-
tactic Distributions. In R. Kager, J. Pater, and
W. Zonneveld, editors, Constraints in Phonological
Acquisition, pages 245–291. Cambridge University
Press.

Alan Prince. 2002. Entailed Ranking Arguments.
ROA 500.

Bruce Tesar. 2008. Output-Driven Maps. ms., Rutgers
University; ROA-956.

Roger Webster. 1984. Convexity. Oxford University
Press.

61

Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology (SIGMORPHON2012), pages 62–71,
Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

Learning probabilities over underlying representations

Joe Pater*

pater@linguist.umass.edu

Karen Jesney†
jesney@usc.edu

*Department of Linguistics
University of Massachusetts Amherst

Amherst, MA 01003 USA

Robert Staubs*

rstaubs@linguist.umass.edu

Brian Smith*

bwsmith@linguist.umass.edu

†Department of Linguistics
University of Southern California

Los Angeles, CA 90089 USA

Abstract

We show that a class of cases that has been
previously studied in terms of learning of
abstract phonological underlying representa-
tions (URs) can be handled by a learner that
chooses URs from a contextually conditioned
distribution over observed surface representa-
tions. We implement such a learner in a Max-
imum Entropy version of Optimality Theory,
in which UR learning is an instance of semi-
supervised learning. Our objective function
incorporates a term aimed to ensure general-
ization, independently required for phonotac-
tic learning in Optimality Theory, and does
not have a bias for single URs for morphemes.
This learner is successful on a test language
provided by Tesar (2006) as a challenge for
UR learning. We also provide successful re-
sults on learning of a toy case modeled on
French vowel alternations, which have also
been previously analyzed in terms of abstract
URs. This case includes lexically conditioned
variation, an aspect of the data that cannot be
handled by abstract URs, showing that in this
respect our approach is more general.

1 Introduction

Phonological underlying representations (URs) in-
troduce structural ambiguity. For example, a mor-
pheme that alternates in voicing, like the one mean-
ing ‘cat’ in Table 1, could have as its underlying
representation /bet/ or /bed/, amongst other possibil-
ities. Underlying /bed/ for surface [bet] requires fi-
nal devoicing, while intervocalic voicing is required
for underlying /bet+a/ for [beda] (/-a/ marks the plu-
ral). The ambiguity can often be resolved on the

UR SR Meaning
a. /bed/ [bet] cat
b. /bed+a/ [beda] cats
c. /mot/ [mot] dog
d. /mot+a/ [mota] dogs

Table 1: Standard URs for final devoicing

basis of further data. For example, if the language
includes both voiced and voiceless consonants inter-
vocalically, as in our toy language which also con-
tains [mota], then intervocalic voicing cannot apply
across-the-board. The standard phonological anal-
ysis, proposed by Jakobson (1948) for similar data
from Russian, would thus posit /bed/ as the underly-
ing form for ‘cat’, as in Table 1, along with a phono-
logical grammar that generates final devoicing.

An alternating morpheme can also be given a UR
that encodes only the fixed aspects of its structure.
For example, ‘cat’ could have as its UR /beT/, where
/T/ represents an alveolar plosive unspecified for
voicing. The grammar would then fill in its voicing
specification appropriately in both contexts, adding
[−voice] finally, and [+voice] intervocalically. One
use of this underspecification is to capture instances
of three-way contrast. For example, the language in
Table 2 has consonants that alternate in voicing, as
in the singular and plural of ‘cat’, as well as conso-
nants that are both fixed voiceless (‘dog’/‘dogs’) and
voiced (‘pig’/‘pigs’). Given the URs shown in Table
2, the surface forms are generated if a grammar fills
in voicing on underspecified consonants, and does
not change specified ones, as in the analysis of Turk-
ish in Inkelas et al. (1997).

62

UR SR Meaning
a. /beT/ [bet] cat
b. /beT+a/ [beda] cats
c. /mot/ [mot] dog
d. /mot+a/ [mota] dogs
e. /wid/ [wid] pig
f. /wid+a/ [wida] pigs

Table 2: Underspecified URs and ternary contrast

There are alternatives to this sort of underspec-
ification. For example, the analysis of Turkish in
Becker et al. (2011) posits lexically specific intervo-
calic voicing, applying to some words but not others.
Here we pursue the learning consequences of a pro-
posal in Kager (2008), which involves a grammar
that chooses different URs across surface contexts.
In this example, /bet/ would be chosen when the
morpheme occurs word-finally as in [bet], and /bed/
when it occurs prevocalically, as in [beda] (see Table
3 rows a. and b.). This is a kind of over-specification
in that the meaning ‘cat’ has two phonological URs.
The non-alternating morphemes /mot/ and /wid/ dif-
fer in having only a single UR, with voiceless and
voiced final consonants respectively, thus yielding
the three-way contrast.

Grammars must be able to choose between URs
across surface contexts in order to handle phonolog-
ically conditioned suppletive allomorphy - i.e. al-
ternation between forms of a morpheme that are not
relatable by a phonological derivation even though
the contexts in which each occurs is phonologically
defined. The alternation between the forms of the in-
definite determiner ‘a’ and ‘an’ in English is some-
times analyzed as UR choice, since there is no gen-
eral process in English of [n] insertion or deletion,
but the conditioning context is phonological (vowel-
vs. consonant-initial following word). That gram-
mars have the power to choose URs in this way
is uncontroversial; the only controversies concern
the proper formalization of UR choice, and whether
particular cases involve UR choice or derivation
(Nevins, 2011).

Kager’s proposal for ternary contrast is unusual
in that it uses UR choice for cases that do seem rel-
atively amenable to analysis in terms of derivations
from single URs. Phonologists tend to regard a UR

UR SR Meaning
a. /bet/ [bet] cat
b. /bed+a/ [beda] cats
c. /mot/ [mot] dog
d. /mot+a/ [mota] dogs
e. /wid/ [wid] pig
f. /wid+a/ [wida] pigs

Table 3: UR choice and ternary contrast

choice analysis as more of a last resort, but as far as
we know, there exists no explicit proposal for when
an analyst, or a learner, should adopt an analysis
with multiple URs for a single morpheme, and when
a single UR analysis is required.

One worry about a multiple UR analysis is that it
could fail to generalize appropriately. If a learner
simply memorized which phonological forms of
each morpheme appeared in which contexts, it could
fail to extract generalizations, such as the restriction
against voicing of word-final consonants in our lan-
guage in Table 1. This is of course a familiar general
issue in learning, and it is the focus of our attention
here. We consider a learner to have successfully ac-
quired a language if it finds a grammar that general-
izes appropriately, irrespective of the extent to which
the learner uses a single phonological UR for each
meaning.

Presumably, the assumption that multiple UR
analyses of alternations are incompatible with gen-
eralization is the basis for their traditional last resort
status in phonological theory. However, in at least
the grammatical framework that we adopt, and prob-
ably in many others, it is possible to construct analy-
ses in which alternations are handled by UR choice,
and in which generalizations are still captured. A
concrete example is provided by the analysis of the
final devoicing language illustrated in Tables 4 and
5, and also by each of the results of the learning sim-
ulations presented in sections 3 and 4.

Table 4 shows the distribution over URs that our
learner, described with references to precedents in
the next section, posits for the final devoicing lan-
guage. The learner’s final grammar is using UR
choice to get context-appropriate surface forms of
‘cat’, as can be seen in rows a. and b. The grammar
usually picks /bet/ as the UR for ‘cat’ when it oc-

63

UR SR Meaning
a. /bet/ (0.92) /bed/ (0.08) [bet] cat
b. /bed+a/ [beda] cats
c. /mot/ [mot] dog
d. /mot+a/ [mota] dogs

Table 4: Learned URs for final devoicing

curs finally as in [bet], and almost always picks /bed/
when it occurs prevocalically as in [beda]. This anal-
ysis diverges even further from standard phonolog-
ical practice than Kager’s ternary contrast analyses,
since we have multiple URs where a single UR anal-
ysis would not require underspecification or a lexi-
cally specific grammar. Furthermore, in this anal-
ysis UR choice is probabilistic, as shown visually
in Table 4 row a: /bed/ chosen as the UR in word-
final position with probability 0.08. Probabilistic
UR choice, which also diverges from the analytic
norm in phonology, does not have any observable
effect here since the URs neutralize to [bet], but we
put it to use in the analysis of French in section 4.

These choices of URs and SRs are being made by
a probabilistic weighted constraint version of Opti-
mality Theory (OT) (Prince and Smolensky, 2004),
described in the next section. The Input is a string of
morphemes (‘meanings’), and a candidate is a (UR,
SR) pair. Throughout this paper, the candidate URs
for a morpheme are all and only its forms observed
as SRs (given morphologically segmented words).
For the current languages, we include as candidate
SRs the identity maps from the URs, and the SRs
formed by devoicing any final consonant, or voicing
any intervocalic one.

There are three types of constraint. UR con-
straints (Zuraw, 2000; Boersma, 2001) demand a
particular UR for a given morpheme, and are vi-
olated when a UR differs from the specified one
(Boersma and Zuraw’s own formalizations differ
somewhat). In Table 5, there are two such con-
straints, CAT→/bed/ and CAT→/bet/. We omit UR
constraints for non-alternating morphemes, since
their candidate (UR, SR) pairs always have the same
UR, and they always satisfy the single UR con-
straint. Faithfulness constraints demand (UR, SR)
fidelity; here we employ only IDENT-VOICE, which
requires a match in voicing specification (McCarthy

Constraint Devoicing Contrast
CAT→/bed/ 3.65 0
CAT→/bet/ 0 0
IDENT-VOICE 6.05 43.62
NO-CODA-VOICE 401.41 39.83
INTER-V-VOICE 1.94 39.83

Table 5: Learned weights

and Prince, 1999). Finally, Output constraints (AKA
Markedness constraints) place demands on the SRs.
Here we use NO-CODA-VOICE, which penalizes fi-
nal voicing, and INTER-V-VOICE, which penalizes
an intervocalic voiceless consonant.

Table 5 shows the weights for the constraints that
were found for the final devoicing language (De-
voicing), and for the language with ternary con-
trast (Contrast); these yield with high probability
the (UR, SR) choices for Tables 4 and 3 respec-
tively. The competition between (/bet/, [bet]) and
(/bed/, [bet]) as (UR, SR) pairs for ‘cat’ illustrates
the effects of the first three constraints. The two UR
constraints obviously differ in their assessments of
the two candidates, as does IDENT-VOICE, which
prefers the faithful mapping (/bet/, [bet]) over a voic-
ing change in (/bed/, [bet]). For the final devoic-
ing language, the summed weight of IDENT-VOICE

and CAT→/bet/ (6.05) is greater than the weight
of CAT→/bed/ (3.65), and so the grammar assigns
higher probability to (/bet/, [bet]), as shown in Ta-
ble 4. For the ternary contrast language on the other
hand, the UR constraints have zero weight, and so
the decision is fully determined by the relatively
high weighted IDENT-VOICE, favoring (/bet/, [bet]).

Even though the learner of the final devoicing lan-
guage has not acquired the single UR of the tradi-
tional phonological analysis, it has acquired a con-
textually conditioned distribution over UR choices
that is appropriate for the learning data. There are
weights on the UR constraints that would fail to
yield this result. For example, if CAT→/bet/ had
a sufficiently high weight relative to the other con-
straints, then the UR would be fixed as /bet/, and
there would be no weighting of the remaining con-
straints that would pick both [beda] as the highest
probability candidate for ‘cats’, and [mota] as the
highest probability candidate for ‘dogs’.

64

Anticipating the discussion of learning in the next
section, the weight configuration just described can
form a local minimum for our learner. In our simu-
lations, it does not fall into this minimum, nor others
like it, when weights are initialized at zero.

The effects of the Output constraints are seen in
the choice of URs for ‘cat’ across phonological con-
texts in both the final devoicing and ternary con-
trast languages. NO-CODA-VOICE prefers word-
final (/bet/, [bet]) over (/bed/, [bed]), and INTER-
V-VOICE prefers intervocalic (/bed+a/, [beda]) over
(/bet+a/, [beta]). The high weight on IDENT-VOICE

in the ternary contrast language results in very low
probability for the unfaithful (UR, SR) mappings
(/bed/, [bet]) and (/bet+a/, [beda]). The weights for
the coda devoicing language are such that a non-
negligible proportion of the probability is reserved
for unfaithful (/bed/, [bet]).

Since we have in the case of final devoicing an ex-
ample of a multiple UR analysis for a language with
a phonological regularity, we need to ask whether
the grammar generalizes appropriately. The an-
swer is yes. Because of the high weight of NO-
CODA-VOICE (401.41) and relatively low weight of
IDENT-VOICE (6.05), an underlying voiced obstru-
ent will with extremely high probability map to a
surface voiceless one in word-final position. In gen-
erating final devoicing this grammar produces pre-
dictable relationships between morphologically re-
lated words. For example, if a learner with this
grammar were to see a plural like [maga] and no sin-
gular form, it would posit only /mag/ as the UR for
the root. Nonetheless, it would predict with proba-
bility near 1 that the singular is pronounced [mak].

Given the observed data from the language in
Table 4, it would not have been necessary for the
learner to construct a grammar that generalizes in
this way. For example, the grammar learned for the
ternary contrast language also generates the alter-
nation between [bet] and [bed+a], without produc-
ing generalized final devoicing. We thus require a
learner with a bias for generalization. Our learner,
described in the next section, meets this requirement
by incorporating an independently motivated prefer-
ence for high weighted Output constraints, and low
weighted Faithfulness. After describing the learner,
we go on to provide simulations for somewhat more
complex learning problems.

2 The grammar and learning models

In Maximum Entropy or MaxEnt grammar (Gold-
water and Johnson, 2003), the probability of an in-
put/output pair (xi, yij) is determined by its har-
mony. The harmony Hij of such a pair is the
sum of constraint violations fc(xi, yij) scaled by the
weights of the constraints wc.

Hij =
∑

c

wcfc(xi, yij)

This definition of harmony is a common prop-
erty of grammars that use weighted constraints, as
in Harmonic Grammar (Smolensky and Legendre,
2006). A MaxEnt grammar maps harmonies to prob-
abilities, where the probability of a particular output
for a particular input p(yij | xi) is proportional to
the exponential of its harmony. These exponentials
are normalized within an input, yielding probability
distributions.

p(yij | xi) =
1

Zi
eHij

Zi =
∑
j′

eHij′

As discussed above, our output candidates are
more elaborate than simple surface forms. Instead,
inputs are strings of morphemes and candidates are
(UR, SR) pairs. A string of input morphemes xi

can map to an SR yij in potentially many ways—
through many possible URs. Each of these (Input,
UR, SR) triples potentially incurs distinct constraint
violations. The Input/UR pairing is controlled by
the UR constraints, while the UR/SR pairing is con-
trolled by Faithfulness. We thus expand our defini-
tion of the probability of a mapping from Input to
SR to include all options for the URs zijk.

p(yij | xi) =
∑

k

p(yij , zijk | xi)

The probabilities p(yij , zijk | xi) are defined just
as for simple input/output probabilities—they sim-
ply include a contribution from candidates on URs.
This definition encodes an idea that all URs are
potentially valid ways of reaching a particular SR,
determined only by the relevant violations of con-
straints, and does not require a single UR to exist for
every Input/SR pairing.

65

The URs zijk considered for an input xi are deter-
mined by the UR constraints. A UR zijk is included
in the probability calculation for input xi only if
there exists some constraint xi → zijk. These UR
constraints, in turn, rely on observed mappings. For
every SR yij corresponding to an input xi, we in-
clude a UR constraint xi → yij . Thus the candidate
URs are simply observed surface forms. In the case
of a non-alternating form, only one UR constraint
will be included and thus only one UR is entertained.
In such cases these constraints are always satisfied;
we therefore omit them from our analyses without
loss of correctness.

This grammatical framework allows a way of
viewing the problem of learning as somewhat ag-
nostic with respect to URs. The learner observes
some particular distribution over SRs for a partic-
ular input morpheme string and can make any con-
sistent choice about the distribution over URs. It is
in this respect that our approach diverges most im-
portantly from prior work on learning URs in Opti-
mality Theory-like frameworks. Our model incorpo-
rates ideas from Apoussidou (2007), who uses UR
constraints for on-line learning of URs in a prob-
abilistic OT framework, and Eisenstat (2009), who
uses a log-linear model very similar to ours. Our ap-
proach differs, however, in that learning of unique
URs is not taken as a goal.

With the above explicit statement of probabilities,
the learner’s problem is then to minimize the distinc-
tion between its predicted Input/SR distribution and
the observed probabilities. For the results presented
here, we minimize the Kullback-Leibler (KL) diver-
gence (Kullback and Leibler, 1951) between the pre-
dicted distribution pw and observed distribution p∗.

D(p∗ || pw) =
∑

i

∑
j

p∗(yij | xi) log
p∗(yij | xi)

pw(yij | xi)

We use an L2 (Gaussian) prior (Tychonoff and
Arsenin, 1977) on the weights. Such a prior in-
troduces a pressure for lower weights, which is es-
pecially important for categorical learning cases (in
which KL minimization reduces to likelihood max-
imization). These problems contain probabilities at
unity, causing weights to scale arbitrarily high with-
out additional restriction. We used a regularization

with σ2 = 10, 000 for all solutions presented in this
paper.

w∗ = argmin
w

D(p∗ || pw) +
1

2σ2

∑
c

w2
c

We also include in our prior a term that maximizes
the sum of the weights of Output constraints, and
minimizes the sum of the weights of Faithfulness
constraints. The objective function remains bounded
from above by the L2 prior, and is also bounded
from below by a restriction to non-negative weights.
This term is adapted from research on phonotactic
learning in OT starting with Smolensky (1996); see
further references in Jesney and Tessier (2011). It
resembles somewhat the R-measure of Prince and
Tesar (2004), but unlike the R-measure this added
prior is continuous, improving performance in opti-
mization.

λ

∑
f∈F

wf −
∑
o∈O

wo


In experimentation, we found that this term was

necessary to ensure generalization; the L2 prior
alone, even with a smaller variance for Faithfulness
than Output constraints, was insufficient. It might
be possible to create a more refined version of this
term that is sensitive to dependencies between con-
straints, but this version has sufficed for our pur-
poses. The scaling factor λ controls the relative
importance of generalization compared to KL mini-
mization. For the solutions presented here, the value
of λ was chosen on the basis of repeated optimiza-
tions. λ was decreased gradually until a criterion
level of performance was reached. For categorical
cases, this criterion level was a likelihood of greater
than 0.95. For non-categorical cases, criterion was
a sum squared error of less than 0.05. The mini-
mization problem presented here was solved using
the L-BFGS-B method (Byrd et al., 1995) as im-
plemented in R (R Development Core Team, 2010),
and all optimizations were constrained to use non-
negative weights, with weights initialized at zero.1

1Scripts and input files are available at
http://blogs.umass.edu/hgr/examples-and-other-resources-
for-perceptron-and-solver-r/.

66

/re-/ /ra:-/ /ró-/ /rú:-/
/-se/ [rése] [rá:se] [róse] [rú:se]
/-sá/ [resá] [rasá] [rósa] [rú:sa]
/-só:/ [resó:] [rasó:] [róso] [rú:so]

Table 6: Abstract UR analysis of Tesar’s language

3 Stress-length interaction

To illustrate some of the challenges of UR learning,
Tesar (2006) provides the toy language in Table 6.
The table shows the phonological results of combin-
ing four initial, perhaps root, morphemes with three
final, perhaps suffix, morphemes. The phonologi-
cally relevant differences between the vowels are in
length, marked with a colon, and stress, marked with
an acute accent. The rows and columns are labeled
with the URs that Tesar posits; we will discuss their
justification shortly.

Stressed vowels can either be short or long, but
there is an absolute surface restriction against stress-
less long vowels. The stress-alternating morphemes
that have long allomorphs, ‘ra’ and ‘so’, show a pre-
dictable alternation in length: long when stressed,
short when stressless. There is also a preference for
stress on roots. Although the suffixes ‘sa’ and ‘so’
attract stress over roots ‘re’ and ‘ra’, they lose their
stress to fixed stress roots ‘ru’ and ‘ro’, and there are
no fixed stress suffixes.

Tesar’s URs represent the contrastive properties
of the morphemes. The contrast between vowels
that are long when stressed and those that are al-
ways short is encoded as an underlying difference in
length. The contrast between the suffixes that attract
stress and those that don’t is similarly encoded as
an underlying difference in stress, as is the contrast
between roots that alternate in stress and those that
don’t. The abstract UR is /ra:/, which never surfaces
in that shape due to the restriction against unstressed
long vowels. The vowel must be long to contrast
with /re/, and stressless to contrast with /rú:/.

We adopt Tesar’s Output and Faithfulness con-
straints. STRESS-ROOT demands stress on the root,
and STRESS-SUFFIX demands stress on the suffix.
Output words are limited to a single stress, so one
of these constraints is always violated. NO-LONG-
UNSTRESS is violated by a surface long stressless
vowel. NO-LONG penalizes all long vowels. The

UR SR p UR SR p
/ré+se/ [rése] 0.98 /re+sá/ [resá] 1
/re+se/ 0.02
/re+só:/ [resó:] 1 /rá:+se/ [rá:se] 0.99

/ra+se/ [ráse] 0.01
/ra+sá/ [rasá] 1 /ra+só:/ [rasó:] 0.99

/rá:+so/ [rá:so] 0.01
/ró+se/ [róse] 1 /ró+sa/ [rósa] 0.93

/ró+sá/ 0.07
/ró+sá/ [rosá] 0.01

/ró+so/ [róso] 0.99 /rú:+se/ [rú:se] 1
/ró+só:/ [rosó:] 0.01
/rú:+sa/ [rú:sa] 0.93 /rú:+so/ [rú:so] 1
/rú:+sá/ 0.07

Table 7: Learned analysis of Tesar’s language

Faithfulness constraint IDENT-STRESS demands a
(UR, SR) match in stress, and IDENT-LONG de-
mands (UR, SR) fidelity in length. We include in
addition a set of UR constraints that demand forms
corresponding to each of the observed SRs, except
for those that have only a single SR, whose UR is
fixed. Candidate SRs for each UR were all combina-
tions of stress on either the root or suffix (not both),
and faithful and shortened long vowels.

The resulting analysis is shown in Table 7, with
probabilities rounded to two decimal points. Can-
didates whose probabilities round to zero are omit-
ted. In all cases a candidate (UR, SR) pair with the
correct SR is given highest probability, and is listed
in the first row of each cell. Subsequent rows that
contain only a UR have the same SR; identical SRs
are omitted to aid readability. Given a probabilis-
tic model like a MaxEnt grammar, one cannot de-
fine success on a categorical language like this one
in terms of granting p = 1 to the correct forms, since
this will by definition never happen (unless there is
only one candidate in a candidate set). Our objec-
tive function is stated in terms of maximizing the
summed probability of all (UR, SR) pairs that have
the correct SR, and an appropriate criterion is there-
fore to require that the summed probability over full
structures be greater for the correct SR than for any
other SR. We thus term this simulation successful.
We further note that given a MaxEnt grammar that
meets this criterion, one can make the probabilities

67

Constraint Weight
NO-LONG-UNSTRESS 26.43
STRESS-ROOT 26.05
STRESS-SUFFIX 23.50
IDENT-STRESS 7.66
IDENT-LONG 6.50
‘SA’→/sá/ 5.04
‘SO’→/só:/ 4.96
‘RE’→/re/ 3.85
‘RA’→/ra/ 3.15
‘RA’→/rá:/ 0.25
‘SO’→/so/ 0.02
‘SA’→/sa/ 0
‘RE’→/ré/ 0
NO-LONG 0

Table 8: Learned weights for Tesar’s language

of the correct forms arbitrarily close to 1 by scaling
the weights (multiplying them by some constant).

The constraint weights for the analysis are shown
in Table 8. Both of the faithfulness constraints
IDENT-STRESS and IDENT-LONG have reasonably
high weights, which is expected given the observed
contrasts in stress and vowel length across mor-
phemes. The highest probability (UR, SR) map-
pings are in fact always faithful, with alternations
arising from different URs being chosen across
phonological contexts.

The crucial case for comparison with the abstract
UR analysis is the choice between long stressed
/rá:/ and short stressless /ra/, shown with underlin-
ing in Table 7. When the morpheme ‘ra’ combines
with ‘se’, (/rá:+se/, [rá:se]) is preferred to (/ra+se/,
[rasé]), partly because it avoids an IDENT-STRESS

violation on the suffix, and also partly because of
the greater weight of STRESS-ROOT than STRESS-
SUFFIX. On the other hand, when the input is ‘ra’
and ‘sa’, IDENT-STRESS is no longer at issue since
‘sa’, unlike ‘se’, provides the option of a stressed
UR. In this case, the sum of the weights of the con-
straints preferring short stressless /ra/ in (/ra+sá/,
[rasá]) is greater than for those preferring /rá:/ in
(/rá:+sa/, [rá:sa]). The fixed stress roots differ from
‘ra’ in not providing the option of a stressless UR, so
that a violation of IDENT-STRESS would be incurred
if the suffix were stressed. While the constraint in-

teractions are more complex here, UR choice suc-
ceeds in replacing underspecification in a parallel
fashion to the simpler case of the ternary voicing
contrast discussed in the introduction.

The Output constraints sensitive to vowel length
are in the expected configuration given the restric-
tion of long vowels to stressed syllables: unviolated
NO-LONG-UNSTRESS has a relatively high weight
(the highest), while the often-violated NO-LONG,
which penalizes all long vowels, has a relatively low
weight (the lowest). IDENT-LONG is sandwiched
in between, with the result that an underlying long
vowel that surfaces in a stressed syllable will retain
its length, while one that surfaces in a stressless syl-
lable will be realized as short, with probabilities ap-
proaching 1.

Because of the availability of UR choice, the map-
ping from an underlying long vowel to a surface
short stressless one that high-weighted NO-LONG-
UNSTRESS generates is never observed in Table 7.
However, it is the high probability of this mapping
given underlying length and surface stresslessness
that ensures that the grammar generalizes appropri-
ately. One paradigmatic regularity in this language
is that stressless vowels are short, even when they
occur in morphemes whose stressed variants have
long vowels. To see how this is captured, imagine
that a learner with the grammar in Table 8 were pre-
sented with a new morpheme ‘su’ in combination
with ‘re’, which resulted in SR [resú:]. Given the
segmentation [re+sú:], it would then form the UR
/sú:/, containing the long stressed vowel of the only
alternant that it had seen. The morpheme ‘ru’ also
has a single UR, /rú:/, since it is only observed in the
learning data as [rú:]. When these are combined as
/rú:+sú:/ the resulting SR will be [rú:su], with prob-
ability near 1. That is, the grammar generalizes the
length alternations, as well as the stress alternations
that occur because of the preference for root over
suffix stress.

4 Lexically conditioned variation

Here we apply our model to a case of variation,
French vowel deletion, which is formalized in terms
of candidate SRs having probabilities intermediate
between 1 and 0. This case is of particular inter-
est because the probability of deletion varies across

68

Word UR SR p
a. femelle /fømEl/ [fømEl] 1
b. semestre /sVmEstK/ [sømEstK] 0.8

[smEstK] 0.2
c. semelle /sVmEl/ [sømEl] 0.5

[smEl] 0.5
d. Fnac /fnak/ [fnak] 1
e. breton /bKøtÕ/ [bKøtÕ] 1

Table 9: Underspecified URs for French and data

words, which can be captured in terms of differences
in weights of UR constraints.

In French, the mid-vowel [ø] is variably deleted
(this vowel is sometimes called ‘schwa’, though it
is not an IPA schwa in most varieties). Like one of
the toy voicing languages in section 1, French has
a ternary contrast, this time in vowel specification.
Words either have a non-alternating [ø] (‘femelle’),
an alternating [ø] (‘semestre’, ‘semelle’), or no [ø]
(‘Fnac’). The ternary contrast has been analyzed
by Anderson (1982) as the result of underspecifica-
tion.2 As shown in Table 9, a UR with an under-
specified vowel (/V/) is able to be deleted, while a
UR with a fully specified vowel (/ø/) is not.

The proportions in Table 9 are partially arbitrary,
but accurately reflect the relative probabilities in de-
scriptions such as Dell (1973) and in speaker judg-
ments (Racine, 2007). These show that alternating
vowels exhibit a range of deletability. Dictionaries
also find the two-way distinction between deleting
and non-deleting vowels descriptively inadequate,
and a number of experimental and corpus studies
find a range of deletion rates across words. Near-
minimal pairs in which deletion can occur in both
words but at different rates, such as ‘semaine’ and
‘semestre’, show that differences in deletion rates
cannot be attributed solely to phonological differ-
ences, and must be encoded in the the lexicon.

Although [ø]s can be optionally deleted when pre-
ceded by a single consonant as in Table 9, [ø] can
never be deleted when its deletion would create a

2Anderson (1982) argues that underspecification explains
the fact that the alternating vowels can both participate in dele-
tion and alternate with [E], while the non-alternating /ø/ can do
neither. However, Morin (1988) presents a number of examples
of words that participate in [E]-alternation without participating
in deletion.

UR V SR p UR V SR p
Y s’mestre 0.08 Y s’melle 0.04
N s’mestre 0.15 N s’melle 0.45
Y semestre 0.77 Y semelle 0.47
N semestre 0.01 N semelle 0.03
Y f’melle 0.09 N F[ø]nac 0.07
Y femelle 0.91 N Fnac 0.93
Y breton 1

Table 10: Learned analysis of French

Constraint Weight
*CCC 467.26
MAX 4.93
‘SEMESTRE’→/sømEstK/ 4.23
‘SEMELLE’→/sømEl/ 2.71
*[Ø] 2.58
‘SEMELLE’→/smEl/ 0.10
‘SEMESTRE’→/smEstK/ 0.03
DEP 0.00

Table 11: Learned weights for French

three-consonant sequence within a word, as in ‘bre-
ton’ [bKøtÕ]. There are also no words with this sort
of three-consonant sequence. In addition to learning
the differences in the deletion rates of optional [ø]s,
the learner must learn the generalization that an [ø]
must be present in the ‘breton’ environment. Given
a /CCC/ input, we want the grammar to avoid the
three-consonant cluster by inserting a vowel.

The phonological conditioning of deletion in real
French is far more complex than our simple sketch,
but this simplified version is sufficient for present
purposes. We use the following constraints. The
Output constraints *[Ø] and *CCC militate against
[ø] and three-consonant sequences in the SR, respec-
tively. The faithfulness constraint MAX requires
segments in the UR to be present in the SR (‘no dele-
tion’), while DEP requires SR segments to be in the
UR (‘no insertion’). As in the previous sections, UR
constraints are only included for morphemes with
more than one SR. The learning data consisted of
the SRs and probabilities from Table 9.

The resulting analysis is shown in Table 10, us-
ing the orthographic convention of marking the lack
of a vowel with an apostrophe. The presence of

69

an underlying vowel is indicated with a ‘Y’ in the
UR column, and its lack with an ‘N’. The analysis
captures the difference between the rates of [ø] in
‘semelle’ and ‘semestre’ as a difference in UR selec-
tion. The UR with [ø] is more likely for ‘semestre’
than ‘semelle’. The source of this difference can be
seen in the constraint weights in Table 11. The dif-
ference between the weights of the UR constraint
for ‘semestre’ requiring the vowel and the one that
omits it is greater than that for ‘semelle’. The
phonological generalization that three-consonant se-
quences are forbidden is captured by the high weight
of *CCC relative to DEP, which means that the
grammar will add a vowel to a /CCC/ input.

The contrast between the rates of deletion in
‘semelle’ and ‘semestre’ illustrates a widespread
phenomenon that is unaddressed by most OT ap-
proaches to variation and learning, termed lexically
conditioned variation (Coetzee and Pater, 2011).
That it is handled in at least this toy version of
French is a great benefit of this approach. Under-
specification, on the other hand, offers no leverage
on this problem, since it provides only a distinction
between deleting and non-deleting vowels, and not
the finer grained distinctions that the data require.

5 Conclusions

It is a generally unresolved issue how a learner de-
cides whether to use one, or more, URs in an analy-
sis of an alternation. Presumably, learners begin by
encoding the various phonological realizations of a
morpheme. How, and when, do they decide to col-
lapse these into a single UR? The problem is made
more difficult because as noted in the introduction,
learners need to consider contextually conditioned
UR choice, which is required for at least phonolog-
ically conditioned suppletive allomorphy. Previous
work on UR learning, including Tesar (2006), ab-
stracts from this issue by allowing only single URs.
As a reviewer suggests, a Minimum Description
Length criterion might create a bias for fewer URs,
but this seems not yet to have been implemented.

In the present approach, phonological general-
izations can be acquired even when multiple URs
are used, as shown in all of our simulations. This
means that the issue raised in the last paragraph can
be completely sidestepped by never requiring learn-

ers to adopt single URs for alternating morphemes.
This approach also sidesteps the difficult issues of
choosing which parts of each alternant make up the
single UR, and when to leave some structure un-
derspecified. With the French simulation, we have
further shown that UR choice handles data that es-
cape underspecification. These advantages suggest
that the single UR doctrine, in place since Jakobson
(1948), is worth reconsidering, especially in frame-
works like OT that can formalize contextual choice
of URs without loss of generalization.

One direction for further research is in model-
ing not only choice between allomorphs, but also
their discovery in morpheme segmentation, which
involves increasing the size of the hypothesized
UR constraint set. Our initial explorations show
promise, and this could lead to useful applications
in natural language processing, in which MaxEnt
models are of course already common. Another ex-
tension is to other cases of semi-supervised learn-
ing. Here we sum over all of the (UR, SR) pairs
corresponding to an observed form. Similar sum-
mations can be made over other full structures when
the learning data are incomplete: over representa-
tions such as syllable structures and syntactic trees,
and even over derivations. One such extension that
we have explored is to learning ‘opacity’ (Kiparsky,
1973); see Staubs and Pater (2012) for initial re-
sults, which do rely on a type of abstract UR. Finally,
one might attempt to model learning of paradigmatic
generalizations that are probabilistic across the lexi-
con, as in Turkish voicing (Becker et al., 2011) - see
the related MaxEnt results in Hayes et al. (2009) and
Moore-Cantwell (2012).

Acknowledgments

We especially thank Diana Apoussidou and David
Smith for their collaboration on earlier presentations
of this work, and Mark Johnson for extended discus-
sion. Thanks also to Adam Albright, Paul Boersma,
Naomi Feldman, Jeff Heinz, John McCarthy, Paul
Smolensky, Colin Wilson and three anonymous re-
viewers for helpful comments. This research was
supported by NSF Grant 0813829 to the University
of Massachusetts Amherst, by an NSF Graduate Re-
search Fellowship to Robert Staubs, and a SSHRCC
doctoral fellowship to Karen Jesney.

70

References

Stephen Anderson. 1982. The analysis of french shwa:
or how to get something for nothing. Language,
58:534–573.

Diana Apoussidou. 2007. The learnability of metrical
phonology. Ph.D. thesis, University of Amsterdam.

Michael Becker, Nihan Ketrez, and Andrew Nevins.
2011. The surfeit of the stimulus: Analytic biases fil-
ter lexical statistics in turkish laryngeal alternations.
Language, 87:84–125.

Paul Boersma. 2001. Phonology-semantics interaction
in OT, and its acquisition. In Robert Kirchner, Wolf
Wikeley, and Joe Pater, editors, Papers in Experimen-
tal and Theoretical Linguistics, volume 6, pages 24–
35. University of Alberta, Edmonton.

Richard Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou
Zhu. 1995. A limited memory algorithm for bound
constrained optimization. SIAM J. Scientific Comput-
ing, 16:1190–1208.

Andries Coetzee and Joe Pater. 2011. The place of vari-
ation in phonological theory. In John Goldsmith, Ja-
son Riggle, and Alan Yu, editors, The Handbook of
Phonological Theory, pages 401–431. Blackwell, 2nd
edition.

François Dell. 1973. Les règles et les sons. Introduc-
tion à la phonologie générative. Hermann, Paris, 2nd
edition.

Sarah Eisenstat. 2009. Learning underlying forms with
MaxEnt. Master’s thesis, Brown University.

Sharon Goldwater and Mark Johnson. 2003. Learn-
ing OT constraint rankings using a maximum entropy
model. In Proceedings of the Stockholm Workshop on
Variation within Optimality Theory, pages 111–120.

Bruce Hayes, Kie Zuraw, Peter Siptar, and Zsuzsa Londe.
2009. Natural and unnatural constraints in Hungarian
vowel harmony. Language, 85:822–863.

Sharon Inkelas, Cemil Orhan Orgun, and Cheryl Zoll.
1997. The implications of lexical exceptions for the
nature of grammar. In Derivations and Constraints in
Phonology, pages 393–418. Oxford, Clarendon.

Roman Jakobson. 1948. Russian conjugation. Word,
4:155–167.

Karen Jesney and Anne-Michelle Tessier. 2011. Biases
in Harmonic Grammar: the road to restrictive learning.
Natural Language and Linguistic Theory, 29:251–290.

René Kager. 2008. Lexical irregularity and the typology
of contrast. In Kristin Hanson and Sharon Inkelas, edi-
tors, The Nature of the Word: Studies in Honor of Paul
Kiparsky, pages 397–432. MIT Press.

Paul Kiparsky. 1973. Abstractness, opacity, and global
rules. In Osamu Fujimura, editor, Three Dimensions
of Linguistic Theory, pages 57–86. TEC, Tokyo.

Solomon Kullback and Richard Leibler. 1951. On in-
formation and sufficiency. Annals of Mathematics and
Statistics, pages 22–79.

John McCarthy and Alan Prince. 1999. Faithfulness
and identity in prosodic morphology. In René Kager,
Harry van der Hulst, and Wim Zonneveld, editors, The
Prosody-Morphology Interface, pages 218–309. Cam-
bridge University Press.

Claire Moore-Cantwell. 2012. Over- and under-
generalization in derivational morphology. In NELS
Proceedings.

Yves-Charles Morin. 1988. De l’ajustement du schwa
en syllabe fermée dans la phonologie du français. In
Hans Basbøll, Yves-Charles Morin, Roland Noske,
and Bernard Tranel, editors, La phonologie du schwa
français, pages 133–189. John Benjamins, Amster-
dam.

Andrew Nevins. 2011. Phonologically conditioned
allomorph selection. In Colin Ewen, Beth Hume,
Marc van Oostendorp, and Keren Rice, editors, The
Companion to Phonology, pages 2357–2382. Wiley-
Blackwell.

Alan Prince and Paul Smolensky. 2004. Optimality The-
ory: Constraint interaction in generative grammar.
Blackwell.

Alan Prince and Bruce Tesar. 2004. Learning phonotac-
tic distributions. In René Kager, Joe Pater, and Wim
Zonneveld, editors, Fixing Priorities: Constraints in
Phonological Acquisition, pages 245–291. Cambridge
University Press.

R Development Core Team. 2010. R: A language and
environment for statistical computing. Technical re-
port, R Foundation for Statistical Computing, Vienna,
Austria.

Isabelle Racine. 2007. Effacement du schwa dans des
mots lexicaux: constitution d’une base de données et
analyse comparative. In Proceedings of JEL‘2007,
pages 125–130. Université de Nantes.

Paul Smolensky and Géraldine Legendre. 2006.
The Harmonic Mind: From Neural Computation to
Optimality-Theoretic Grammar. MIT Press.

Paul Smolensky. 1996. The initial state and ‘Richness
of the Base’ in Optimality Theory. Technical Report
JHU-CogSci-96-4, Johns Hopkins University.

Robert Staubs and Joe Pater. 2012. Learning serial
constraint-based grammars. In John J. McCarthy and
Joe Pater, editors, Harmonic Grammar and Harmonic
Serialism. Equinox Press.

Bruce Tesar. 2006. Faithful contrastive features in learn-
ing. Cognitive Science, 30:863–903.

Andrey Nikolayevich Tychonoff and V. Y. Arsenin. 1977.
Solutions of ill-posed problems. Winston, New York.

Kie Zuraw. 2000. Exceptions and regularities in phonol-
ogy. Ph.D. thesis, UCLA.

71

Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology (SIGMORPHON2012), pages 72–81,
Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

Linguistic categorization and complexity

Katya Pertsova
UNC-Chapel Hill

Linguistics Dept, CB 3155
Chapel Hill, NC 27599, USA
pertsova@unc.edu

Abstract

This paper presents a memoryless categoriza-
tion learner that predicts differences in cate-
gory complexity found in several psycholin-
guistic and psychological experiments. In par-
ticular, this learner predicts the order of diffi-
culty of learning simple Boolean categories,
including the advantage of conjunctive cate-
gories over the disjunctive ones (an advantage
that is not typically modeled by the statistical
approaches). It also models the effect of la-
beling (positive and negative labels vs. posi-
tive labels of two different kinds) on category
complexity. This effect has implications for
the differences between learning a single cat-
egory (e.g., a phonological class of segments)
vs. a set of non-overlapping categories (e.g.,
affixes in a morphological paradigm).

1 Introduction

Learning a linguistic structure typically involves cat-
egorization. By “categorization” I mean the task
of dividing the data into subsets, as in learning
what sounds are “legal” and what are “illegal,” what
morpheme should be used in a particular morpho-
syntactic context, what part of speech a given words
is, and so on. While there is an extensive literature
on categorization models within the fields of psy-
chology and formal learning, relatively few connec-
tions have been made between this work and learn-
ing of linguistic patterns.

One classical finding from the psychological liter-
ature is that the subjective complexity of categories
corresponding to Boolean connectives follows the

order shown in figure 1 (Bruner et al., 1956; Neisser
and Weene, 1962; Gottwald, 1971). In psycholog-
ical experiments subjective complexity is measured
in terms of the rate and accuracy of learning an arti-
ficial category defined by some (usually visual) fea-
tures such as color, size, shape, and so on. This
finding appears to be consistent with the complex-
ity of isomorphic phonological and morphological
linguistic patterns as suggested by typological stud-
ies not discussed here for reasons of space (Mielke,
2004; Cysouw, 2003; Clements, 2003; Moreton and
Pertsova, 2012). Morphological patterns isomorphic
to those in figure 1 appear in figure 2.

The first goal of this paper is to derive the above
complexity ranking from a learning bias. While the
difficulty of the XOR category is notorious and it
is predicted by many models, the relative difference
between AND and OR is not. This is because these
two categories are complements of each other (so
long as all features are binary), and in this sense
have the same structure. A memorizing learner can
predict the order AND > OR simply because AND
has fewer positive examples, but it will also incor-
rectly predict XOR > OR and AND > AFF. Many
popular statistical classification models do not pre-
dict the order AND > OR (such as models based
on linear classifiers, decision tree classifiers, naive
Bayes classifiers, and so on). This is because the
same classifier would be found for both of these cat-
egories given that AND and OR differ only with re-
spect to what subset of the stimuli is assigned a pos-
itive label. Models proposed by psychologists, such
as SUSTAIN (Love et al., 2004), RULEX (Nosof-
sky et al., 1994b), and Configural Cue (Gluck and

72

AFF (affirmation) AND OR XOR/↔
• N
◦ M

• N
◦ M

• N
◦ M

• N
◦ M

circle circle AND black triangle OR white (black AND triangle)
OR (white AND circle)

Figure 1: Boolean categories over two features, shape and color: AFF > AND > OR > XOR

affirmation AND OR XOR/↔
sg pl

−part m. - -im
+part m. - -im

sg pl
−part -s -
+part - -

sg pl
−poss - -s
+poss -s -s

sg pl
acc. - -s
nom. -s -

Hebrew, verb English, verb English nouns Old French,
agreement in pres. agreement in pres. o-stem nouns

Figure 2: Patterns of syncretism isomorphic to the structure of Boolean connectives

Bower, 1988) also do not predict the order AND >
OR fore similar reasons. Feldman (2000) speculates
that this order is due to a general advantage of the
UP-versions of a category over the DOWN-versions
(for a category that divides the set of instances into
two uneven sets, the UP-version is the version in
which the smaller subset is positively labeled, and
the DOWN-version is the version in which the larger
subset is positively labeled). However, he offers no
explanation for this observation. On the other hand,
it is known that the choice of representations can af-
fect learnability. For instance, k-DNF formulas are
not PAC-learnable while k-CNF formulas describing
the same class of patterns are PAC-learnable (Kearns
and Vazirani, 1994). Interestingly, this result also
shows that conjunctive representations have an ad-
vantage over the disjunctive ones because a very
simple strategy for learning conjunctions (Valiant,
1984) can be extended to the problem of learning
k-CNFs. The learner proposed here includes in its
core a similar intersective strategy which is respon-
sible for deriving the order AND > OR.

The second goal of the paper is to provide a uni-
fied account of learning one vs. several categories
that partition the feature space (the second problem
is the problem of learning paradigms). The most
straight-forward way of doing this – treating cate-
gory labels as another feature with n values for n
labels – is not satisfactory for several reasons dis-

cussed in section 2. In fact, there is empirical ev-
idence that the same pattern is learned differently
depending on whether it is presented as learning a
distinction between positive and negative instances
of a category or whether it is presented as learning
two different (non-overlapping) categories. This ev-
idence will be discussed in section 3.

I should stress that the learner proposed here is not
designed to be a model of “performance.” It makes
a number of simplifying assumptions and does not
include parameters that are fitted to match the be-
havioral data. The main goal of the model is to pre-
dict the differences in subjective complexity of cate-
gories as a function of their logical structure and the
presence/absence of negative examples.

2 Learning one versus many categories

Compare the task of learning a phonological in-
ventory with the task of learning an inventory of
morph-meaning pairs (as in learning an inflectional
paradigm). The first task can be viewed as divid-
ing the set of sounds into attested and non-attested
(“accidental gaps”). At first glance, the second task
can be analogously viewed as dividing the set of
stimuli defined by morpho-syntactic features plus
an n-ry feature (for n distinct morphs) into pos-
sible vs. impossible combinations of morphs and
meanings. However, treating morphs as feature val-
ues leads to the possibility of paradigms in which

73

Neutral (AND/ORn)
f1 f1

f2 A B
f2 B B

Biased
ANDb ORb
f1 f1

f2 A ¬A
f2 ¬A ¬A

f1 f1
f2 ¬A A
f2 A A

Table 1: Three AND/OR conditions in Gottwald’s study

different morphs are used with exactly the same
set of features as well as paradigms with “acciden-
tal gaps,” combinations of morpho-syntactic feature
values that are impossible in a language. In fact,
however, morphs tend to partition the space of pos-
sible instances so that no instance is associated with
more than one morph. That is, true free variation
is really rare (Kroch, 1994). Secondly, system-wide
rather than lexical “accidental gaps” are also rare in
morphology (Sims, 1996). Therefore, I construe the
classification problem in both cases as learning a set
of non-overlapping Boolean formulas correspond-
ing to categories. This set can consist of just one
formula, corresponding to learning a single category
boundary, or it can consist of multiple formulas that
partition the feature space, corresponding to learn-
ing non-overlapping categories each associated with
a different label.

3 Effects of labeling on category
complexity

A study by Gottwald (1971) found interesting dif-
ferences in the subjective complexity of learning
patterns in figure 1 depending on whether the data
was presented to subjects as learning a single cat-
egory (stimuli were labeled A vs. ¬A) or whether
it was presented as learning two distinct categories
(the same stimuli were labeled A vs. B). Follow-
ing this study, I refer to learning a single category as
“biased labeling” (abbreviated b) and learning sev-
eral categories as “neutral labeling” (abbreviated n).
Observe that since the AND/OR category divides the
stimuli into unequal sets, it has two different biased
versions: one biased towards AND and one biased
towards OR (as demonstrated in table 1). The order
of category complexity found by Gottwald was

AFFn, AFFb> ANDb> AND/ORn> ORb, XORb
> XORn

These results show that for the XOR category the
neutral labeling was harder than biased labeling. On
the other hand, for the AND/OR category the neutral
labeling was of intermediate difficulty, and, interest-
ingly, easier than ORb. This is interesting because
it goes against an expectation that learning two cat-
egories should be harder than learning one category.
Pertsova (2012) partially replicated the above find-
ing with morphological stimuli (where null vs. overt
marking was the analog of biased vs. neutral label-
ing). Certain results from this study will be high-
lighted later.

4 The learning algorithm

This proposal is intended to explain the complex-
ity differences found in learning categories in the
lab and in the real world (as evinced by typologi-
cal facts). I focus on two factors that affect category
complexity, the logical structure of a category and
the learning mode. The learning mode refers to bi-
ased vs. neutral labeling, or, to put it differently,
to the difference between learning a single category
and learning a partition of a feature space into sev-
eral categories. The effect of the learning mode on
category complexity is derived from the following
two assumptions: (i) the algorithm only responds to
negative instances when they contradict the current
grammar, and (ii) a collection of instances can only
be referred to if it is associated with a positive label.
The first assumption is motivated by observations of
Bruner et. al (1956) that subjects seemed to rely less
on negative evidence than on positive evidence even
in cases when such evidence was very informative.
The second assumption corresponds to a common
sentiment that having a linguistic label for a cate-
gory aids in learning (Xu, 2002).

4.1 Some definitions

For a finite nonempty set of features F , we define
the set of instances over these features, I(F), as fol-
lows. LetRf be a set of feature values for a feature f
(e.g., Rheight = {high,mid, low}). Each instance i
is a conjunction of feature values given by the func-
tions f → Rf for all features f ∈ F . A category
is a set of instances that can be described by some

74

non-contradictory Boolean formula φ.1 Namely, φ
describes a set of instances X if and only if it is log-
ically equivalent to the disjunction of all instances
in X . For instance, in the world with three binary
features p, q, w, the formula p ∧ q describes the set
of instances {{pqw}, {pqw̄}} (where each instance
is represented as a set). We will say that a formula
ψ subsumes a formula φ if and only if the set of in-
stances that ψ describes is a superset of the set of
instances that φ describes. An empty conjunction ∅
describes the set of all instances.

The goal of the learner is to learn a set of Boolean
formulas describing the distribution of positive la-
bels (in the neutral mode all labels are positive, in
the biased mode there is one positive label and one
negative label). A formula describing the distribu-
tion of a label l is encoded as a set of entries of the
form eli (an i-th entry for label l). The distribution
of l is given by el1 ∨ . . . ∨ eln , the disjunction of n
formulas corresponding to entries for l. Each entry
eli consists of two components: a maximal conjunc-
tion φmax and an (optional) list of other formulas
EX (for exceptions). A particular entry e with two
components, e[φmax] and e[EX] = {φ1 . . . φn}, de-
fines the formula e[φmax] ∧ ¬(φ1 ∨ φ2 ∨ . . . ∨ φn).
e[φmax] can intuitively be thought of as a rule of
thumb for a particular label and EX as a list of ex-
ceptions to that rule. In the neutral mode exceptions
are pointers to other entries or, more precisely, for-
mulas encoded by those entries. In the biased mode
they are formulas corresponding to instances (i.e.,
conjunctions of feature values for all features). The
algorithm knows which mode it is in because the bi-
ased mode contains negative labels while the neutral
mode does not. Finally, an instance i is consistent
with an entry e if and only if the conjunction en-
coded by i logically implies the formula encoded by
e. For example, an instance {pqw} is consistent with
an entry encoding the formula {p}.

Note that while this grammar can describe arbi-
trarily complex patterns/partitions, each entry in the
neutral learning mode can only describe what lin-
guistics often refer to as “elsewhere” patterns (more
precisely Type II patterns in the sense of Pertsova
(2011)). And the e[φmax] component of each entry

1The set of Boolean formulas is obtained by closing the set
of feature values under the operations of conjunction, negation,
and disjunction.

by definition can only describe conjunctions. There
are additional restrictions on the above grammar: (i)
the exceptions cannot have a wider distribution than
“the rule of thumb” (i.e., an entry el cannot corre-
spond to a formula that does not pick out any in-
stances), (ii) no loops in the statement of exceptions
is possible: that is, if an entry A is listed as an ex-
ception to the entry B, then B cannot also be an ex-
ception for A (a more complicated example of a loop
involves a longer chain of entries).

When learning a single category, there is only
one entry in the grammar. In this case arbitrarily
complex categories are encoded as a complement of
some conjunction with respect to a number of other
conjunctions (corresponding to instances).

4.2 General description

The general organization of the algorithm is as fol-
lows. Initially, each positive label is assumed to cor-
respond to a single grammatical entry, and the φmax

component of this entry is computed incrementally
through an intersective generalization strategy that
extracts features invariant across all instances used
with the same label. When the grammar overgener-
alizes by predicting two different labels for at least
one instance, exceptions are introduced. The pro-
cess of exception listing can also lead to overgener-
alizations if exceptions are pointers to other entries
in the grammar. When these overgeneralizations are
detected the algorithm creates another entry for the
same label. This latter process can be viewed as
positing homophonous entries when learning form-
meaning mappings, or as creating multiple “clus-
ters” for a single category as in the prototype model
SUSTAIN (Love et al., 2004), and it corresponds to
explicitly positing a disjunctive rule. Note that if
exceptions are not formulas for other labels, but in-
dividual instances, then exception listing does not
lead to overgeneralization and no sub-entries are in-
troduced. Thus, when learning a single category the
learner generalizes by using an intersective strategy,
and then lists exceptions one-by-one as they are dis-
covered in form of negative evidence.

The problem of learning Boolean formulas is
known to be hard (Dalmau, 1999). However, it is
plausible that human learners employ an algorithm
that is not generally efficient, but can easily han-
dle certain restricted types of formulas under certain

75

simple distributions of data. (Subclasses of Boolean
formulas are efficiently learnable in various learning
frameworks (Kearns et al., 1994).) If the learning al-
gorithm can easily learn certain patterns (providing
an explanation for what patterns and distributions
count as simple), we do not need to require that it
be in general efficient.

4.3 Detailed description

First I describe how the grammar is updated in re-
sponse to the data. The update routine uses a strat-
egy that in word-learning literature is called cross-
situational inference. This strategy incrementally fil-
ters out features that change from one instance to
the next and keeps only those features that remain
invariant across the instances that have the same la-
bel. Obviously, this strategy leads to overgeneral-
izations, but not if the category being learned is an
affirmation or conjunction. This is because affirma-
tions and conjunctions are defined by a single set of
feature values which are shared by all instances of a
category (for proof see Pertsova (2007) p. 122). Af-
ter the entry for a given label has been updated, the
algorithm checks whether this entry subsumes or is
subsumed by any other entry. If so, this means that
there is at least one instance for which several labels
are predicted to occur (there is competition among
the entries). The algorithm tries to resolve competi-
tion by listing more specific entries as exceptions to
the more general ones.2 However there are cases in
which this strategy will either not resolve the com-
petition, or not resolve it correctly. In particular,
the intermediate entries that are in competition may
be such that neither subsumes the other. Or after
updating the entries using the intersective strategy
one entry may be subsumed by another based on the
instances that have been seen so far, but not if we
take the whole set of instances into account. These
cases are detected when the predictions of the cur-
rent grammar go against an observed stimulus (step
11 in the function “Update” below). Finally, excep-
tion listing fails if it would lead to a “loop” (see sec-

2This idea is familiar in linguistics from at least the times of
Pānini. In Distributed Morphology, it is referred to as the Subset
Principle for vocabulary insertion (Halle and Marantz, 1993).
Similar principles are assumed in rule-ordering systems and in
OT (i.e., more specific rules/constraints are typically ordered
before the more general ones).

tion 4.1). The XOR pattern is an example of a simple
pattern that will lead to a loop at some point during
learning. In general this happens whenever the dis-
tribution of the two labels are intertwined in such a
way that neither can be stated as a complement of
the invariant features of the other.

The following function is used to add an excep-
tion:

AddException(expEntry, ruleEntry):
1. if adding expEntry to ruleEntry[EX] leads

to a loop then FAIL
2. else add expEntry to ruleEntry[EX]

The routine below is called within the main func-
tion (presented later); it is used to update the gram-
mar in response to an observed instance x with the
label li (the index of the label is decided in the main
function).

Update
Input: G (current grammar); x (an observed in-

stance), li (a label for this instance)
Output: newG

1: newG← G
2: if ∃eli ∈ newG then
3: eli [φmax]← eli [φmax] ∩ x
4: else
5: add the entry eli to newG with values

eli [φmax] = x; eli [EX] = {}.
6: for all el′j ∈ newG (el′j 6= eli) do
7: if el′j subsumes eli then
8: AddException(eli , el′j)
9: else if eli subsumes el′j then

10: AddException(el′j , eli)
11: if ∃el′j ∈ newG (l′ 6= l) such that x is consistent

with el′j then
12: AddException(eli , el′j)

Before turning to the main function of the algo-
rithm, it is important to note that because a grammar
may contain several different entries for a single la-
bel, this creates ambiguity for the learner. Namely,
in case a grammar contains more than one entry for
some label, say two A labels, the learner has to de-
cide after observing a datum (x,A), which entry to
update, eA1 or eA2 . I assume that in such cases the
learner selects the entry that is most similar to the

76

current instance, where similarity is calculated as the
number of features shared between x and eAi [φmax]
(although other metrics of similarity could be ex-
plored).

Finally, I would like to note that the value of an
entry el(x) can change even if the algorithm has not
updated this entry. This is because the value of some
other entry that is listed as an exception in el(x)
may change. This is one of the factors contributing
to the difference between the neutral and the biased
learning modes: if exceptions themselves are entries
for other labels, the process of exception listing be-
comes generalizing.

Main
Input: an instance-label pair (x, l), previous hy-

pothesis G (initially set to an empty set)
Output: newG (new hypothesis)

1: set E to the list of existing entries for the label l
in G

2: k ← |E|
3: if E 6= {} then
4: set elcurr to eli ∈ E that is most similar to x
5: E ← E − elcurr

6: else
7: curr ← k + 1
8: if l is positive and (¬∃elcurr ∈ G or x is not

consistent with elcurr) then
9: if update(G, x, lcurr) fails then

10: goto step 3
11: else
12: newG← update(G, x, lcurr)
13: else if l is negative and there is an entry e in G

consistent with x (positive label was expected)
then

14: add x to e[EX] and minimize e[EX] to get
newG

Notice that the loop triggered when update fails
is guaranteed to terminate because when the list of
all entries for a label l is exhausted, a new entry is
introduced and this entry is guaranteed not to cause
update to fail.

This learner will succeed (in the limit) on most
presentations of the data, but it may fail to converge
on certain patterns if the crucial piece of evidence
needed to resolve competition is seen very early on
and then never again (it is likely that a human learner
would also not converge in such a case).

This algorithm can be additionally augmented by
a procedure similar to the selective attention mech-
anism incorporated into several psychological mod-
els of categorization to capture the fact that certain
hard problems become easy if a subject can ignore
irrelevant features from the outset (Nosofsky et al.,
1994a). One (not very efficient, but easy) way to
incorporate selective attention into the above algo-
rithm is as follows. Initially set the number of rel-
evant features k to 1. Generate all subsets of F of
length k, select one such subset Fk and apply the
above learning algorithm assuming that the feature
space is Fk. When processing a particular instance,
ignore all of its features except those that are in Fk.
If we discover two instances that have the same as-
signment of features in Fk but that appear with two
different labels, this means that the selected set of
features is not sufficient (recall that free variation is
ruled out). Therefore, when this happens we can
start over with a new Fk. If all sets of length k
have been exhausted, increase k to k + 1 and re-
peat. As a result of this change, patterns definable
by smaller number of features would generally be
easier to learn than those definable by larger number
of features.

5 Predictions of the model for learning
Boolean connectives

We can evaluate predictions of this algorithm with
respect to category complexity in terms of the pro-
portion of errors it predicts during learning, and in
terms of the computational load, roughly measured
as the number of required runs through the main
loop of the algorithm. Recall that a single data-point
may require several such runs if the update routine
fails and a new sub-category has to be created.

Below, I discuss how the predictions of this al-
gorithm compare to the subjective complexity rank-
ing found in Gottwald’s experiment. First, consider
the relative complexity order in the neutral learning
mode: AFF > AND/OR > XOR.

In terms of errors, the AFF pattern is predicted
to be learned without errors by the above algorithm
(since the intersective strategy does not overgener-
alize when learning conjunctive patterns). When
learning an AND/OR pattern certain orders of data
presentation will lead to an intermediate overgener-

77

alization of the label associated with the disjunctive
category to the rest of the instances. This will hap-
pen if the OR part of the pattern is processed before
the AND part. When learning an XOR pattern, the
learner is guaranteed to overgeneralize one of the
labels on any presentation of the data. Let’s walk
through the learning of the XOR pattern, repeated
below for convenience.

f1 f1
f2 A B
f2 B A

Suppose for simplicity that the space of features
includes only f1 and f2, and that the first two ex-
amples that the learner observes are (A, {f1, f2})
and (A, {f1, f2}). After intersecting {f1, f2}
and {f1, f2} the learner will overgeneralize A
to the whole paradigm. If the next example is
(B, {f1, f2}), the learner will partially correct this
overgeneralization by assuming thatA occurs every-
where except where B does (i.e., except {f1, f2}).
But it will continue to incorrectly predict A in the
remaining fourth cell that has not been seen yet.
When B is observed in that cell, the learner will at-
tempt to update the entry for B through the inter-
section but this attempt will fail (because the en-
try for B will subsume the entry for A, but we
can’t list A as an exception for B since B is al-
ready listed as an exception for A). Therefore, a
new sub-entry for B, {f1, f2}, will be introduced
and listed as another exception for A. Thus, the fi-
nal grammar will contain entries corresponding to
these formulas: B : (f1 ∧ f2) ∨ (f1 ∧ f2) and
A : ¬((f1 ∧ f2) ∨ (f1 ∧ f2)).

Overall the error pattern predicted by the learner
is consistent with the order AFF > AND/OR >
XOR.

I now turn to a different measure of complexity
based on the number of computational steps needed
to learn a pattern (where a single step is equated to a
single run of the main function). Note that the speed
of learning a particular pattern depends not only on
the learning algorithm but also on the distribution of
the data. Here I will consider two possible proba-
bility distributions which are often used in catego-
rization experiments. In both distributions the stim-
uli is organized in blocks. In the first one (which
I call “instance balanced”) each block contains all
possible instances repeated once; in the second dis-

tribution (“label balanced”) each block contains all
possible instances with the minimum number of rep-
etitions to insure equal numbers of each label. The
distributions differ only for those patterns that have
an unequal number of positive/negative labels (e.g.,
AND/OR). Let us now look at the minimum and
maximum number of runs through the main loop of
the algorithm required for convergence for each type
of pattern. The minimum is computed by finding the
shortest sequence of data that leads to convergence
and counting the number of runs on this data. The
maximum is computed analogously by finding the
longest sequence of data. The table below summa-
rizes min. and max. number of runs for the feature
space with 3 binary features (8 possible instances)
and for two distributions.

Min Max Max
(instance) (label)

AFF 4 7 7
AND/OR 4 8 11
XOR 7 9 9

Table 2: Complexity in the neutral mode

The difference between AFF and AND/OR in
the number of runs to convergence is more obvi-
ous for the label balanced distribution. On the other
hand, the difference between AND/OR and XOR is
clearer for the instance balanced distribution. This
difference is not expected to be large for the label
balanced distribution, which is not consistent with
Gottwald’s experiment in which the stimuli were
label balanced, and neutral XOR was significantly
more difficult to learn than any other condition.

We now turn to the biased learning mode. Here,
the observed order of difficulty was: AFFb>ANDb
> ORb, XORb. In terms of errors, both AFFb and
ANDb are predicted to be learned with no errors
since both are conjunctive categories. ORb is pre-
dicted to involve a temporary overgeneralization of
the positive label to the negative contexts. The same
is true for XORb except that the proportion of errors
will be higher than for ORb (since the latter category
has fewer negative instances).

The minimum and maximum number of runs re-
quired to converge on the biased categories for two
types of distributions (instance balanced and label

78

balanced) is given below. Notice that the minimum
numbers are lower than in the previous table because
in the biased mode some categories can be learned
from positive examples alone.

Min Max Max
(instance) (label)

AFFb 2 7 7
ANDb 2 8 8
ORb 4 16 22
XORb 6 16 16

Table 3: Complexity in the biased mode

The difference between affirmation and conjunc-
tion is not very large which is not surprising (both
are conjunctive categories). Again we see that the
two types of distributions give us slightly different
predictions. While ANDb seems to be learned faster
than ORb in both distributions, it is not clear whether
and to what extent ORb and XORb are on average
different from each other in the label balanced dis-
tribution. Recall that Gottwald found no significant
difference between ORb and XORb (in fact numer-
ically ORb was harder than XORb). Interestingly,
in a morphological analogue of Gottwald’s study in
which the number of instances rather than labels was
balanced, I found the opposite difference: ORb was
easier to learn than XORb (the number of people to
reach learning criterion was 8 vs. 4 correspondingly)
although the difference in error rates on the testing
trials was not significant (Pertsova, 2012). More
testing is needed to confirm whether the relative dif-
ficulty of these two categories is reliably affected by
the type of distribution as predicted by the learner.3

Finally, we look at the effect of labeling within
each condition. In the AFF condition, Gottwald
found no significant difference between neutral la-
beling and biased labeling. This could be due to
the fact that subjects were already almost at ceiling

3Another possible reason for the fact that Gottwald did not
find a difference between ORb and XORb is this: if selective at-
tention is used during learning, it will take longer for the learner
to realize that ORb requires the use of two features compared to
XORb especially when the number of positive and negative ex-
amples are balanced. In particular, a one feature analysis of
ORb can explain 5/6 of the data with label balanced stimuli,
while a one feature analysis of XORb can only explain 1/2 of
the data, so it will be quickly abandoned.

in learning this pattern (median number of trials to
convergence for both conditions was ≤ 5). In the
AND/OR condition, Gottwald observed the interest-
ing order ANDb > AND/OR > ORb. This order
is also predicted by the current algorithm. Namely,
the neutral category AND/OR is predicted to be
harder than ANDb because (1) ANDb requires less
computational resources (2) on some distributions
of data overgeneralization will occur when learn-
ing an AND/OR pattern but not an ANDb category.
The AND/OR > ORb order is also predicted and is
particularly pronounced for label balanced distribu-
tion. Since two labels are available when learning
the AND/OR pattern, the AND portion of the pat-
tern can be learned quickly and subsequently listed
as an exception for the OR portion (which becomes
the“elsewhere” case). On the other hand, when
learning the ORb category, the conjunctive part of
the pattern is initially ignored because it is not as-
sociated with a label. The learner only starts paying
attention to negative instances when it overgeneral-
izes. For a similar reason, the biased XOR category
is predicted to be harder to learn than the neutral
XOR category. This latter prediction is not consis-
tent with Gottwald’s finding, who found XORn not
just harder than other categories but virtually impos-
sible to learn: 6 out of 8 subjects in this condition
failed to learn it after more than 256 trials. In con-
trast to this result (and in line with the predictions
of the present learner), Pertsova (2012) found that
the neutral XOR condition was learned by 8 out of
12 subjects on less than 64 trials compared to only 4
out of 12 subjects in the biased XOR condition.

To conclude this section, almost all complexity
rankings discussed in this paper are predicted by the
proposed algorithm. This includes the difficult to
model AND > OR ranking which obtains in the bi-
ased learning mode. The only exception is the neu-
tral XOR pattern, which was really difficult to learn
in Gottwald’s non-linguistic experiment (but not in
Pertsova’s morphological experiment), and which is
not predicted to be more difficult than biased XOR.
Further empirical testing is needed to clarify the ef-
fect of labeling within the XOR condition.

79

Type I Type II Type III Type IV Type V Type VI

Figure 3: Shepard et. al. hierarchy

6 Other predictions

Another well-studied hierarchy of category com-
plexity is the hierarchy of symmetric patterns (4 pos-
itive and 4 negative instances) in the space of three
binary features originally established by Shepard et.
al (1961). These patterns are shown in figure 3 us-
ing cubes to represent the three dimensional feature
space.

Most studies find the following order of complex-
ity for the Shepad patterns: I > II > III, IV, V > VI
(Shepard et al., 1961; Nosofsky et al., 1994a; Love,
2002; Smith et al., 2004). However, a few studies
find different rankings for some of these patterns. In
particular, Love (2002) finds IV > II with a switch
to unsupervised training procedure. Nosofsky and
Palmeri (1996) find the numerical order I> IV> III
> V > II > VI with intergral stimulus dimensions
(feature values that are difficult to pay selective at-
tention to independent of other features, e.g., hue,
brightness, saturation). More recently Moreton and
Persova (2012) also found the order IV > III > V,
VI (as well as I > II, III, > VI) in an unsupervised
phonotactics learning experiment.

So, one might wonder what predictions does the
present learner make with respect to these patterns.
We already know that it predicts Type I (affirmation)
to be easier than all other types. For the rest of the
patterns the predictions in terms of speed of acquisi-
tion are II > III > IV, V > VI in the neutral learning
mode (similar to the typical findings). In the biased
learning mode, patterns II through VI are predicted
to be learned roughly at the same speed (since all re-
quire listing four exceptions). If selective attention
is used, Type II will be the second easiest to learn
after Type I because it can be stated using only two
features. However, based on the error rates, the order
of difficulty is predicted to be I > IV > III > V >
II > VI (similar to the order found by Nosofsky and
Palmeri (1996)). No errors are ever made with Type

I. The proportion of errors in other patterns depends
on how closely the positive examples cluster to each
other. For instance, when learning a Type VI pattern
(in the biased mode) the learner’s grammar will be
correct on 6 out of 8 instances after seeing any two
positive examples (the same is not true for any other
pattern, although it is almost true for III). After see-
ing the next instance (depending on what it is and
on the previous input) the accuracy of the grammar
will either stay the same, go up to 7/8, or go down to
1/2. But the latter event has the lowest probability.
Note that this learner predicts non-monotonic behav-
ior: it is possible that a later grammar is less accurate
than the previous grammar. So, for a non-monotonic
learner the predictions based on the speed of acqui-
sition and accuracy do not necessarily coincide.

There are many differences across the categoriza-
tion experiments that may be responsible for the dif-
ferent rankings. More work is needed to control for
such differences and to pin down the sources for dif-
ferent complexity results found with the patterns in
figure 3.

7 Summary

The current proposal presents a unified account for
learning a single category and a set of categories par-
titioning the stimuli space. It is consistent with many
predictions about subjective complexity rankings of
simple categories, including the ranking AND >
OR, not predicted by most categorization models,
and the difference between the biased and the neu-
tral learning modes not previously modeled to my
knowledge.

References

Jerome S. Bruner, Jacqueline J. Goodnow, and George A.
Austin. 1956. A study of thinking. John Wiley and
Sons, New York.

80

George N. Clements. 2003. Feature economy in sound
systems. Phonology, 20(3):287–333.

Michael Cysouw. 2003. The paradigmatic structure of
person marking. Oxford studies in typology and lin-
guistic theory. Oxford University Press, Oxford.

Vı́ctor Dalmau. 1999. Boolean formulas are hard to
learn for most gate bases. In Osamu Watanabe and
Takashi Yokomori, editors, Algorithmic Learning The-
ory, volume 1720 of Lecture Notes in Computer Sci-
ence, pages 301–312. Springer Berlin / Heidelberg.

Jacob Feldman. 2000. Minimization of Boolean com-
plexity in human concept learning. Nature, 407:630–
633.

Mark A. Gluck and Gordon H. Bower. 1988. evaluating
an adaptive network model of human learning. Jour-
nal of memory and language, 27:166–195.

Richard L. Gottwald. 1971. Effects of response labels in
concept attainment. Journal of Experimental Psychol-
ogy, 91(1):30–33.

Morris Halle and Alec Marantz. 1993. Distributed mor-
phology and the pieces of inflection. In K. Hale and
S. J. Keyser, editors, The View from Building 20, pages
111–176. MIT Press, Cambridge, Mass.

Michael Kearns and Umesh Vazirani. 1994. An intro-
duction to computational learning theory. MIT Press,
Cambridge, MA.

Michael Kearns, Ming Li, and Leslie Valiant. 1994.
Learning boolean formulas. J. ACM, 41(6):1298–
1328, November.

Anthony Kroch. 1994. Morphosyntactic variation. In
Katharine Beals et al., editor, Papers from the 30th
regional meeting of the Chicago Linguistics Soci-
ety: Parasession on variation and linguistic theory.
Chicago Linguistics Society, Chicago.

Bradley C. Love, Douglas L. Medin, and Todd M.
Gureckis. 2004. SUSTAIN: a network model of cat-
egory learning. Psychological Review, 111(2):309–
332.

Bradley C. Love. 2002. Comparing supervised and unsu-
pervised category learning. Psychonomic Bulletin and
Review, 9(4):829–835.

Jeff Mielke. 2004. The emergence of distinctive features.
Ph.D. thesis, Ohio State University.

Elliott Moreton and Katya Pertsova. 2012. Is phonolog-
ical learning special? Handout from a talk at the 48th
Meeting of the Chicago Society of Linguistics, April.

Ulrich Neisser and Paul Weene. 1962. Hierarchies in
concept attainment. Journal of Experimental Psychol-
ogy, 64(6):640–645.

Robert M. Nosofsky and Thomas J. Palmeri. 1996.
Learning to classify integral-dimension stimuli. Psy-
chonomic Bulletin and Review, 3(2):222–226.

Robert M. Nosofsky, Mark A. Gluck, Thomas J. Palmeri,
Stephen C. McKinley, and Paul Gauthier. 1994a.
Comparing models of rule-based classification learn-
ing: a replication and extension of Shepard, Hov-
land, and Jenkins (1961). Memory and Cognition,
22(3):352–369.

Robert M. Nosofsky, Thomas J. Palmeri, and Stephen C.
McKinley. 1994b. Rule-plus-exception model of clas-
sification learning. Psychological Review, 101(1):53–
79.

Katya Pertsova. 2007. Learning Form-Meaning Map-
pings in the Presence of Homonymy. Ph.D. thesis,
UCLA.

Katya Pertsova. 2011. Grounding systematic syncretism
in learning. Linguistic Inquiry, 42(2):225–266.

Katya Pertsova. 2012. Logical complexity in morpho-
logical learning. In Proceedings of the 38th Annual
Meeting of the Berkeley Linguistics Society.

Roger N. Shepard, C. L. Hovland, and H. M. Jenkins.
1961. Learning and memorization of classifications.
Psychological Monographs, 75(13, Whole No. 517).

Andrea Sims. 1996. Minding the Gaps: inflectional
defectiveness in a paradigmatic theory. Ph.D. thesis,
The Ohio State University.

J. David Smith, John Paul Minda, and David A. Wash-
burn. 2004. Category learning in rhesus monkeys:
a study of the Shepard, Hovland, and Jenkins (1961)
tasks. Journal of Experimental Psychology: General,
133(3):398–404.

Leslie G. Valiant. 1984. A theory of the learnable. In
Proceedings of the sixteenth annual ACM symposium
on Theory of computing, STOC ’84, pages 436–445,
New York, NY, USA. ACM.

Fei Xu. 2002. The role of language in acquiring object
kind concepts in infancy. Cognition, 85(3):223 – 250.

81

Author Index

Cahill, Lynne, 35
Chandlee, Jane, 42
Chen, Ruey-Cheng, 26

Eskander, Ramy, 1

Gerdemann, Dale, 17

Habash, Nizar, 1
Hawwari, Abdelati, 1
Heinz, Jeffrey, 42
Hsiang, Jieh, 26

Inumella, Abhilash, 10

Jesney, Karen, 62

Kanuparthi, Nikhil, 10

Ma, Jianqiang, 17
Magri, Giorgio, 52
Misra Sharma, Dipti, 10

Pater, Joe, 62
Pertsova, Katya, 72

Smith, Brian, 62
Staubs, Robert, 62

Tsai, Chiung-Min, 26

83

	Program
	A Morphological Analyzer for Egyptian Arabic
	Hindi Derivational Morphological Analyzer
	Phrase-Based Approach for Adaptive Tokenization
	A Regularized Compression Method to Unsupervised Word Segmentation
	A rule-based approach to unknown word recognition in Arabic
	Bounded copying is subsequential: Implications for metathesis and reduplication
	An approximation approach to the problem of the acquisition of phonotactics in Optimality Theory
	Learning probabilities over underlying representations
	Linguistic categorization and complexity

