HOO 2012 Shared Task: UKP Lab System Description

Torsten Zeschi* and Jens Haase'

TUbiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universitdt Darmstadt

tUbiquitous Knowledge Processing Lab (UKP-DIPF)
German Institute for Educational Research and Educational Information

www.ukp.tu-darmstadt.de

Abstract

In this paper, we describe the UKP Lab system
participating in the HOO 2012 Shared Task on
preposition and determiner error correction.
Our focus was to implement a highly flexi-
ble and modular system which can be easily
augmented by other researchers. The system
might be used to provide a level playground
for subsequent shared tasks and enable further
progress in this important research field on top
of the state of the art identified by the shared
task.

1 Introduction

UKP Lab already participated in the previous HOO
Shared Task in 2011. Our knowledge-based system
(Zesch, 2011) was targeted towards detecting real-
word spelling errors, but performed also well on a
number of other error classes.! However, it was not
competitive for article and preposition errors where
supervised systems based on confusion sets consti-
tute the state of the art. Thus, we tailor the HOO
2011 system towards correcting article and prepo-
sition errors, but also implement a supervised ap-
proach based on confusion sets (Golding and Sch-
abes, 1996; Jones and Martin, 1997; Carlson et al.,
2001).

We decided to implement a basic system that
should be as flexible as possible and might serve as a
basis for experiments in future rounds of the shared
task. We also plan to model the most successful

Uhttp://clt.mqg.edu.au/research/projects/hoo/hoo2011/reports/
hoo2011-UDposter.pdf

302

systems in our framework as soon as the system de-
scriptions are made available.” This might provide
a level playground for subsequent shared tasks and
enable real progress in this important field on top of
the state of the art identified by the HOO shared task.

2 Supervised Error Detection

We implement a generic framework for article and
preposition error detection based on the open-source
DKPro framework.? DKPro is a collection of soft-
ware components for natural language processing
based on the Apache UIMA framework (Ferrucci
and Lally, 2004). It comes with a collection of
ready-made modules which can be combined to
form more complex applications.

Our goal is to develop a system which is as flex-
ible as possible with respect to (i) linguistic pre-
processing, (ii) the extraction of features, and (iii)
the applied classification method. We will make the
source code publicly available as part of the DKPro
infrastructure and hope that this will lower the ob-
stacles for participating in future rounds of the HOO
Shared Task.

We also provide a reference implementation of the
HOO 2012 experiments based on the DKPro Lab
framework (Eckart de Castilho and Gurevych, 2011)
which enables (i) parameter sweeping, (ii) modeling
of interdependent tasks (like e.g. training and test
cycles), (iii) generating performance reports, and
(iv) storing all experimental results in a convenient
manner.

2We invite other participating teams to help with this effort.
3http://code.google.com/p/dkpro—core—asl/

The 7th Workshop on the Innovative Use of NLP for Building Educational Applications, pages 302-300,
Montréal, Canada, June 3-8, 2012. (©)2012 Association for Computational Linguistics

2.1 Linguistic Preprocessing

For our basic implementation, we only use a few
preprocessing steps. We tokenize and sentence split
the data with the default DKPro segmenter, and
then use TreeTagger (Schmid, 2004) to POS-tag and
chunk the sentences. However, the framework al-
lows the effortless addition of other preprocessing
components, e.g. parsing or named-entity recogni-
tion.

2.2 Feature Extraction

We implement a generic feature extraction process
based on the ClearTK project (Ogren et al., 2008).
ClearTK provides a set of highly flexible feature ex-
tractors that access the annotations (e.g. POS tags,
chunks, etc.) created by the linguistic preprocessing.

One important decision during training is to de-
cide which instances should be used for feature ex-
traction. In the simplest setting, each token is used to
generate an instance, but this would result in a very
high number of negative instances for every positive
instance. For the error classes RT/UT and RD/UD, a
more balanced distribution of instances can be easily
enforced by only creating a positive instance if the
token equals an element in the corresponding confu-
sion set. We create a negative instance by removing
or changing the article/preposition.

For articles, we use the confusion set:

{a, an, the, this}*
For prepositions, we use the confusion set:

{as, at, but, by, for, from, in, of, on, out,
over, since, than, to, up, with}

The confusion set is a parameter to the feature ex-
traction method and can be changed easily. This also
makes it possible to apply the framework to other er-
ror classes, e.g. for correcting frequently confused
words like (accept, except) or (than, then).

Table 1 lists the set of basic features implemented
in the reference system. As our goal was to imple-
ment a highly flexible system, we put more effort
in the overall architecture than in the feature engi-
neering. N-gram features are computed based on the

“In the official runs, an was not part of the confusion set, but
was specially handled in a post-processing step. In the current
version of the framework, we removed this heuristic and now
treat an as a normal part of the confusion set.

303

Google WeblT n-gram corpus (Brants and Franz,
2006) which is accessed using jWeb1T.?

The listed features can be improved in many
ways, e.g. the chunk feature could also encode the
type of the chunk. As the framework allows to easily
add new feature extractors, we are going to integrate
the most successful features from the shared task.
Due to the modular architecture of ClearTK, the im-
plemented feature extractors could even be re-used
for other classification tasks unrelated to spelling
correction.

2.3 Classification

ClearTK provides a wide range of adapters to well
known machine learning frameworks and classifica-
tion tools. As of April 2012, the following adapters
are supported:

e LIBSVM®

e MALLET’ (McCallum, 2002)
e OpenNLP Maxent®

o SVMIENY (Joachims, 1999)

o SVMIENTTKI0 (Moschitti, 2006)
e Weka'!! (Hall et al., 2009)

As we can easily switch the classifier, we tried
a wide range of classifiers, but SVM worked gen-
erally best. For the official runs, we used SVM as
implemented in the Weka toolkit with the parameter
“BuildLogisticModels” which allows to base a de-
tection decision on the confidence of the classifier in
order to improve precision.

3 Knowledge-based Error Detection

Besides the supervised system described above, we
also apply our knowledge-based system from the
HOO 2011 Pilot Round (Zesch, 2011). We re-
implemented two state-of-the-art approaches: the

5code.google.com/p/jweb1 t/
Shttp://www.csie.ntu.edu.tw/~cjlin/libsvm/
"http://mallet.cs.umass.edu/
8http://opennip.apache.org/
*http://svmlight.joachims.org/
Ohttp://disi.unitn.it/moschitti/ Tree-Kernel.htm
http://www.cs.waikato.ac.nz/ml/weka/

Name Description Range of Values / Examples
PpoS_a_1 IN-NNP
PpOS_2 IN

POS_1 The neighboring POS tags. For the example we NNP
POS+1 assume “IN NNP DT NN VBD”. NN

POS 2 VBD
POS 142 NN-VBD
chunk_1 (0]
chunk.1 Whether the neighboring tokens are part of a chunk. B
chunkyo For the example, we assume “in the [United States]”. 1
chunk4i+2 B-1
vowel 41 ‘Whether the next token starts with a vowel or not. 0/1
consy1 Whether the next token starts with a consonant or not. 0/1
Stgn41 Any sign that is not an alphabetic character. 0/1

n-gram(t 1 {z — y})
n-gram({z — y}ti1)
n-gram(t_ t
£ (1{$ - y} +1) flotyatyo) flytgatyo)
E ftyitya) fltyatye)

n-gram(t_ot_1{x — y}) as
n-gram({z — y}t41t42)

Let f(n-gram) be the frequency of the n-gram in a
certain corpus. All n-gram features are then computed

n-gram(“{the — a} big house”);
f (“the big house”) = 100;
f(“abig house™) = 50;

f(“big house™) = 1000;

100 50

1000 — 1005 — 0-05

Table 1: List of features used for classification.

knowledge-based approach (Hirst and Budanitsky,
2005) and the statistical approach (Mays et al., 1991;
Wilcox-OHearn et al., 2008). Both approaches mea-
sure the contextual fitness of a word and the sur-
rounding context. For that purpose, the knowledge-
based approach computes the semantic relatedness
of a target word with all other words in a certain con-
text window. This approach is not suitable for cor-
recting article or preposition errors, as these word
classes are not linked to the context via lexical-
semantic relations. Thus, we only use the statisti-
cal approach that computes the probability of a sen-
tence based on a n-gram language model. We use
the Google Webl1T n-gram data (Brants and Franz,
20006).

Although being generally applicable to article
and preposition errors, the statistical approach needs
some adaptations in order to achieve acceptable per-
formance. In the original definition, the approach
computes the probability of all alternative sentences
where the target word is replaced with a word from
the vocabulary that has low edit distance to the tar-
get word. This results in a very high false detection
rate. Thus, we (1) limit detections to positions where
an article or preposition is already present, and (ii)
select the substitution candidate not from all tokens
with low edit distance to the original token, but only

304

from the appropriate confusion set.

As the statistical approach is purely based on n-
gram frequencies, while this is only one feature of
the supervised approach, we expect the supervised
approach to outperform our adapted knowledge-
based system by a wide margin.

4 Experimental Setup

We model all experiment pipelines in the previously
described framework. As training data, we use the
publicly available Brown corpus (Francis W. Nelson
and Kugera, 1964), but limit training to 3,700 ran-
domly selected sentences in order to speed up the
training process.

4.1 Unofficial Runs

Due to technical problems, we were not able to sub-
mit all runs in time. We therefore report also unof-
ficial runs which we evaluated on the test data that
was available for participants for a limited amount
of time.'? Although we did not tailor the unofficial
runs in any way towards the test data, they have cer-
tainly a different status than the official runs. We do
not consider this as a major problem, as our basic

2HOO 2012 test data was subject to a strict license and
needed to be deleted after the evaluation period.

Detection Recognition Correction

Description Run P R F P R F P R F
Baselines Always the - 7.09 6.13 6.58 7.09 6.13 6.58 2.00 1.69 1.81
) © Always of - 11.51 2854 1640 11.51 2854 1640 1.53 3.81 2.19
2011 Articles; o = .005 - 9.62 8.47 9.00 9.62 8.47 9.00 0.96 0.85 0.90
Unofficial 2011 Prepositions; a = .005 - 18.11 23.04 2028 18.11 23.04 2028 9.00 1142 10.05
2012 Naive Bayes - 935 3932 15.11 935 3932 1511 1.26 5.29 2.03
2012 SVM - 1046 3340 1593 1046 33.40 1593 271 8.67 4.13
Orp = 0.95;0rT = 0.8 UDO0 8.64 7.73 8.16 4.94 442 466 1.48 1.32 1.40
Official Orp = 0.8;0rr = 0.7 UD1 836 1545 10.85 4.18 7.73 543 1.19 2.21 1.55
Orp = 0.5;0rr = 0.3 UD2 894 31.13 13.88 551 19.21 857 1.20 4.19 1.87

Table 2: HOO 2012 test data: Results (in %) for article and preposition errors combined.

feature set is not competitive with the best perform-
ing systems anyway.

We implemented two baseline systems, one for
articles and one for prepositions. The baselines re-
place every occurrence of an article/preposition with
the most frequent article/preposition from the confu-
sion set (the for articles, of for prepositions).

We also apply the adapted HOO 2011 statistical
approach in two versions as described above: one
adapted towards articles, and one adapted towards
prepositions.

Finally, we use the new framework for supervised
error correction based on the basic feature set de-
scribed above with two classifiers: Naive Bayes and
SVM as implemented in the Weka toolkit version
3.7.5. We treat the correction task as a multi-class
problem and only target the error classes RD, RT,
UD, UT. The remaining error classes MD and MT
(missing articles and prepositions) are more chal-
lenging, as it is less obvious how to create good
training data from a non-error annotated corpus.

4.2 Official Runs

The three runs that were officially submitted are
also based on the SVM implementation in Weka,
but we applied the parameter “BuildLogisticMod-
els” which allows to base a detection decision on
the confidence of the classifier in order to improve
precision. We tuned parameters on the training data
and report three runs for the threshold combinations
(Orp,OrT) =(0.95, 0.8), (0.8, 0.7), and (0.5, 0.3).

305

5 Results

Table 2 summarizes the results of all runs. As ex-
pected, the basic feature set used in our experiments
is not competitive with the top-performing systems
in the shared task.'> However, some observations
can be made from the relative differences between
the scores. The thresholds applied in the official runs
are not working as expected, as precision is not in-
fluenced, while recall drops a lot. The HOO 2011
system based on the statistical approach performs
quite well for prepositions, but not for articles. Its
performance is comparable to the supervised runs,
but this is only due to the limited feature set used in
our experiment.

As mentioned above, our focus was to implement
a highly flexible and modular system for supervised
error correction which can be easily augmented by
other researchers. We plan to model the most suc-
cessful systems in our framework as soon as the sys-
tem descriptions are made available, and we invite
other participating teams to help with this effort. The
system might provide a level playground for subse-
quent shared tasks and enable further progress in this
important field of research.

Acknowledgments

This work has been supported by the Volkswagen
Foundation as part of the Lichtenberg-Professorship
Program under grant No. 1/82806.

3The best performing systems achieve about 40% F-score
for detection, 35% for recognition, and 28% for correction. See
(Dale et al., 2012) for an overview of the results.

References

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram
Version 1.

Andrew J Carlson, Jeffrey Rosen, and Dan Roth. 2001.
Scaling Up Context-Sensitive Text Correction. In Pro-
ceedings of IAAL

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. HOO 2012: A Report on the Preposition and
Determiner Error Correction Shared Task. In Proceed-
ings of the Seventh Workshop on Innovative Use of
NLP for Building Educational Applications, Montreal,
Canada.

Richard Eckart de Castilho and Iryna Gurevych. 2011.
A lightweight framework for reproducible parame-
ter sweeping in information retrieval. In Proceed-
ings of the 2011 workshop on Data infrastructurEs for
supporting information retrieval evaluation (DESIRE
"11), New York, NY, USA. ACM.

David Ferrucci and Adam Lally. 2004. UIMA: An Ar-
chitectural Approach to Unstructured Information Pro-
cessing in the Corporate Research Environment. Nat-
ural Language Engineering, 10(3-4):327-348.

Francis W. Nelson and Henry Kugera. 1964. Man-
ual of information to accompany a standard corpus of
present-day edited American English, for use with dig-
ital computers.

Andrew R. Golding and Yves Schabes. 1996. Com-
bining Trigram-based and feature-based methods for
context-sensitive spelling correction. In Proceedings
of the 34th annual meeting on Association for Com-
putational Linguistics, pages 71-78, Morristown, NJ,
USA. Association for Computational Linguistics.

Mark Hall, Fibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 11(1).

Graeme Hirst and Alexander Budanitsky. 2005. Correct-
ing real-word spelling errors by restoring lexical cohe-
sion. Natural Language Engineering, 11(1):87-111,
March.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. In B. Scholkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods - Sup-
port Vector Learning.

Michael P Jones and James H Martin. 1997. Contex-
tual spelling correction using latent semantic analy-
sis. In Proceedings of the Fifth Conference on Ap-
plied Natural Language Processing, pages 166—173,
Morristown, NJ, USA. Association for Computational
Linguistics.

Eric Mays, Fred.] Damerau, and Robert L. Mercer. 1991.
Context based spelling correction. Information Pro-
cessing & Management, 27(5):517-522.

306

Andrew Kachites McCallum. 2002. MALLET: A Ma-
chine Learning for Language Toolkit.

Alessandro Moschitti. 2006. Making tree kernels practi-
cal for natural language learning. In Proceedings of
the Eleventh International Conference on European
Association for Computational Linguistics, Trento,
Italy.

Philip V. Ogren, Philipp G. Wetzler, and Steven Bethard.
2008. ClearTK: A UIMA Toolkit for Statistical Nat-
ural Language Processing. In Towards Enhanced
Interoperability for Large HLT Systems: UIMA for
NLP workshop at Language Resources and Evaluation
Conference (LREC).

Helmut Schmid. 2004. Efficient Parsing of Highly Am-
biguous Context-Free Grammars with Bit Vectors. In
Proceedings of the 20th International Conference on
Computational Linguistics (COLING 2004), Geneva,
Switzerland.

Amber Wilcox-OHearn, Graeme Hirst, and Alexander
Budanitsky. 2008. Real-word spelling correction with
trigrams: A reconsideration of the Mays, Damerau,
and Mercer model. In Proceedings of the 9th inter-
national conference on Computational linguistics and
intelligent text processing (CICLing).

Torsten Zesch. 2011. Helping Our Own 2011: UKP
Lab System Description. In Proceedings of the Help-
ing Our Own Working Group Session at the 13th Eu-
ropean Workshop on Natural Language Generation,
pages 260-262.

