Memory-based text correction for preposition and determiner errors

Antal van den Bosch
Radboud University Nijmegen
P.O. Box 9103
NL-6500 HD Nijmegen, The Netherlands

a.vandenbosch@let.ru.nl p.

Abstract

We describe the Valkuil.net team entry for the
HOO 2012 Shared Task. Our systems consists
of four memory-based classifiers that generate
correction suggestions for middle positions in
small text windows of two words to the left
and to the right. Trained on the Google 1TB 5-
gram corpus, the first two classifiers determine
the presence of a determiner or a preposition
between all words in a text in which the actual
determiners and prepositions are masked. The
second pair of classifiers determines which is
the most likely correction given a masked de-
terminer or preposition. The hyperparameters
that govern the classifiers are optimized on
the shared task training data. We point out a
number of obvious improvements to boost the
medium-level scores attained by the system.

1 Introduction

Our Valkuil.net team entry, known under the abbre-
viation VA’ in the HOO 2012 Shared Task (Dale
et al., 2012), is a simplistic text correction system
based on four memory-based classifiers. The goal of
the system is to be lightweight: simple to set up and
train, fast in execution. It requires a (preferably very
large) corpus to train on, and a closed list of words
which together form the category of interest—in the
HOO 2012 Shared Task context, the two categories
of interest are prepositions and determiners.

As a corpus we used the Google 1TB 5-gram cor-
pus (Brants and Franz, 2006), and we used two lists,
one consisting of 47 prepositions and one consist-
ing of 24 determiners, both extracted from the HOO

289

Peter Berck
Tilburg University
P.O. Box 90153
NL-5000 LE Tilburg, The Netherlands
j.berck@tilburguniversity.edu

2012 Shared Task training data. Using the Google
corpus means that we restricted ourselves to a sim-
ple 5-gram context, which obviously places a limit
on the context sensitivity of our system; yet, we were
able to make use of the entire Google corpus.

Memory-based classifiers have been used for con-
fusible disambiguation (Van den Bosch, 2006) and
agreement error detection (Stehouwer and Van den
Bosch, 2009).! In both studies it is argued that
fast approximations of memory-based discrimina-
tive classifiers are effective and efficient modules for
spelling correction, particularly because of their in-
sensitivity to the number of classes to be predicted.
They can act as simple binary decision makers (e.g.
for confusible pairs: given this context, is then or
than more likely?), and at the same time they can
handle missing word prediction with up to millions
of possible outcomes, all in the same model. Van
den Bosch (2006) also showed consistent log-linear
performance gains in learning curve experiments,
indicating that more training data continues to be
better for these models even at very large amounts
of training data. The interested reader is referred to
the two studies for more details.

2 System

Our system centers around four classifiers that all
take a windowed input of two words to the left of
the focus, and two words to the right. The focus
may either be a position between two words, or a
determiner or a preposition. In case of a position

'A working context-sensitive spelling checker for Dutch
based on these studies is released under the name Valkuil.net;
see http://valkuil.net — hence the team name.

The 7th Workshop on the Innovative Use of NLP for Building Educational Applications, pages 289-294,
Montréal, Canada, June 3-8, 2012. (©)2012 Association for Computational Linguistics

no determiner

preposition?

determiner?

(o

yes

yes

which preposition?

which determiner?

determiner

Figure 1: System architecture. Shaded rectangles are the four classifiers.

between two words, the task is to predict whether
the position should actually be filled by a preposition
or a determiner. When the focus is on a determiner
or preposition, the task may be to decide whether it
should actually be deleted, or whether it should be
replaced.

The main system architecture is displayed in Fig-
ure 1. The classifiers are the shaded rectangular
boxes. They are all based on IGTree, an efficient
decision tree learner (Daelemans et al., 1997), a fast
approximation of memory-based or k-nearest neigh-
bor classification, implemented within the TIMBL?
software package (Daelemans et al., 2010).

The first two classifiers, preposition? and de-
terminer?, are binary classifiers that determine
whether or not there should be a preposition or a de-
terminer, respectively, between two words to the left
and two words to the right:

e The preposition? classifier is trained on all
118,105,582 positive cases of contexts in the
Google 1 TB 5-gram corpus in which one of the
47 known prepositions are found to occur in the
middle position of a 5-gram. To enable the clas-
sifier to answer negatively to other contexts,
roughly the same amount of negative cases of
randomly selected contexts with no preposition
in the middle are added to form a training set
of 235,730,253 cases. In the participating sys-

http://ilk.uvt.nl/timbl

290

tem we take each n-gram as a single token, and
ignore the Google corpus token counts. We
performed a validation experiment on a single
90%-10% split of the training data; the classi-
fier is able to make a correct decision on 89.1%
of the 10% heldout cases.

e Analogously, the determiner? classifier takes
all 132,483,802 positive cases of 5-grams with
a determiner in the middle position, and adds
randomly selected negative cases to arrive at a
training set of 252,634,322 cases. On a 90%—
10% split, the classifier makes the correct deci-
sion in 88.4% of the 10% heldout cases.

The second pair of classifiers perform the multi-
label classification task of predicting which preposi-
tion or determiner is most likely given a context of
two words to the left and to the right. Again, these
classifiers are trained on the entire Google 1TB 5-
gram corpus:

e The which preposition? classifier is trained on
the aforementioned 118,105,582 cases of any
of the 47 prepositions occurring in the middle
of 5-grams. The task of the classifier is to gen-
erate a class distribution of likely prepositions
given an input of the four words surrounding
the preposition, with 47 possible outcomes. In
a 90%-10% split experiment on the complete
training set, this classifier labels 59.6% of the
10% heldout cases correctly.

e The which determiner? classifier, by analogy,
is trained on the 132,483,802 positive cases of
5-grams with a determiner in the middle po-
sition, and generates class distributions com-
posed of the 24 possible class labels (the pos-
sible determiners). On a 90%-10% split of the
training set, the classifier predicts 63.1% of all
heldout cases correctly.

Using the four classifiers and the system architec-
ture depicted in Figure 1, the system is capable of
detecting missing and unnecessary cases of preposi-
tions and determiners, and of replacing prepositions
and determiners by other more likely alternatives.
Focusing on the preposition half of the system, we
illustrate how these three types of error detection and
correction are carried out.

First, Figure 2 illustrates how a missing preposi-
tion is detected. Given an input text, a four-word
window of two words to the left and two words to the
right is shifted over all words. At any word which is
not in the list of prepositions, the binary preposi-
tion? classifier is asked to determine whether there
should be a preposition in the middle. If the classi-
fier says no, the window is shifted to the next posi-
tion and nothing happens. If the classifier says yes
beyond a certainty threshold (more on this in Sec-
tion 3), the which preposition? classifier is invoked
to make a best guess on which preposition should be

inserted.

missing
preposition
suggestion

which preposition?

Figure 2: Workflow for detecting a missing preposition.

Second, Figure 3 depicts the workflow of how a
preposition deletion is suggested. Given an input
text, all cases of prepositions are sought. Instances
of two words to the left and right of each preposi-

291

tion are created, and these context windows are pre-
sented to the preposition? classifier. If this classi-
fier says no beyond a certainty threshold, the system
signals that the preposition currently in focus should
be deleted.

which preposition?

preposition

suggested
deletion of
preposition

Figure 3: Workflow for suggesting a preposition deletion.

Third, Figure 4 illustrates how a replacement sug-
gestion is generated. Just as with the detection of
deletions, an input text is scanned for all occurrences
of prepositions. Again, contextual windows of two
words to the left and right of each found preposi-
tion are created. These contexts are presented to the
which preposition? classifier, which may produce a
different most likely preposition (beyond a certainty
threshold) than the preposition in the text. If so, the
system signals that the original preposition should
be replaced by the new best guess.

Practically, the system is set up as a master pro-
cess (implemented in Python) that communicates
with the four classifiers over socket connections.
The master process performs all necessary data con-
version and writes its edits to the designated XML
format. First, missing prepositions and determin-
ers are traced according to the procedure sketched
above; second, the classifiers are employed to find
replacement errors; third, unnecessary determiners
and prepositions are sought. The system does not
iterate over its own output.

'/»

which preposition?

suggested
replacement
of preposition

Figure 4: Workflow for suggesting a preposition replace-
ment.

3 Optimizing the system

When run unfiltered, the four classifiers tend to over-
predict errors massively. They are not very accurate
(the binary classifiers operate at a classification ac-
curacy of 88—-89%; the multi-valued classifiers per-
form at 60-63%). On the other hand, they produce
class distributions that have properties that could be
exploited to filter the classifications down to cases
where the system is more certain. This enables us
to tune the precision and recall behavior of the clas-
sifiers, and, for instance, optimize on F-Score. We
introduce five hyperparameter thresholds by which
we can tune our four classifiers.

First we introduce two thresholds for the two bi-
nary classifiers preposition? and determiner?:

M — When the two binary preposition? and de-
terminer? classifiers are used for detecting
missing prepositions or determiners, the posi-
tive class must be M times more likely than the
negative class.

U — In the opposite case, when the two binary clas-
sifiers are used for signalling the deletion of an
unnecessary preposition or determiner, the neg-
ative class must be U times more likely than the
positive class.

For the two multi-label classifiers which prepo-
sition? and which determiner? we introduce three

292

Optimizing on
Task | Thresh. | Precision Recall F-Score
Prep. | M 30 10 20
U 30 4 4
DS 5 50 50
F 50 5 5
R 10 20 20
Det. | M 30 10 20
U 30 2 2
DS 5 50 20
F 50 5 20
R 10 20 20

Table 1: Semi-automatically established thresholds that
optimize precision, recall, and F-Score. Optimization
was performed on the HOO 2012 Shared Task training
data.

thresholds (which again can be set separately for de-
terminers and prepositions):

DS — the distribution size (i.e. the number of la-
bels that have a non-zero likelihood according
to the classifier) must be smaller than DS. A
large DS signals a relatively large uncertainty.

F' — the frequency of occurrence of the most likely
outcome in the training set must be larger than
F. Outcomes with a smaller number of occur-
rences should be distrusted more.

R — if the most likely outcome is different from the
preposition or determiner currently in the text,
the most likely outcome should be at least R
times more likely than the current preposition
or determiner. Preferably the likelihood of the
latter should be zero.

On the gold training data provided during the
training phase of the HOO 2012 Shared Task we
found, through a semi-automatic optimization pro-
cedure, three settings that optimized precision, re-
call, and F-Score, respectively. Table 3 displays the
optimal settings found. The results given in Sec-
tion 4 always refer to the system optimized on F-
Score, listed in the rightmost column of Table 3.

The table shows that most of the ratio thresholds
found to optimize F-Score are quite high; for ex-
ample, the preposition? classifier needs to assign

a likelihood to a positive classification that is at least
20 times more likely than the negative classification
in order to trigger a missing preposition error. The
threshold for marking unnecessary prepositions is
considerably lower at 4, and even at 2 for determin-
ers.

4 Results

The output of our system on the data provided dur-
ing the test phase of the HOO 2012 Shared Task was
processed through the shared task evaluation soft-
ware. The original test data was revised in a correc-
tion round in which a subset of the participants could
suggest corrections to the gold standard. We did not
contribute suggestions for revisions, but our scores
slightly improved after revisions. Table 4 summa-
rizes the best scores of our system optimized on F-
Score, before and after revisions. Our best score is
an overall F-Score of 14.24 on error detection, af-
ter revisions. Our system performs slightly better on
prepositions than on determiners, although the dif-
ferences are small. Optimizing on F-Score implies
that a reasonable balance is found between recall
and precision, but overall our results are not impres-
sive, especially not in terms of correction.

5 Discussion

We presented a preposition and determiner error de-
tection and correction system, the focus task of the
HOO 2012 Shared Task. Our system consists of
four memory-based classifiers and a master process
that communicates with these classifiers in a simple
workflow. It takes several hours to train our system
on the Google 1TB 5-gram corpus, and it takes in the
order of minutes to process the 1,000 training doc-
uments. The system can be trained without need-
ing linguistic knowledge or the explicit computation
of linguistic analysis levels such as POS-tagging or
syntactic analyses, and is to a large extent language-
independent (it does rely on tokenization).

This simple generic approach leads to mediocre
results, however. There is room for improvement.
We have experimented with incorporating the n-
gram counts in the Google corpus in our classi-
fiers, leading to improved recall (post-competition).
It still remains to be seen if the Google corpus is
the best corpus for this task, or for the particu-

293

lar English-as-a-second-language writer data used
in the HOO 2012 Shared Task. Another likely im-
provement would be to limit which words get cor-
rected by which other words based on confusion
statistics in the training data: for instance, the train-
ing data may tell that 'my’ should rarely, if ever, be
corrected into your’, but our system is blind to such
likelihoods.

Acknowledgements

The authors thank Ko van der Sloot for his continued
improvements of the TiMBL software. This work is
rooted in earlier joint work funded through a grant
from the Netherlands Organization for Scientific Re-
search (NWO) for the Vici project Implicit Linguis-
tics.

References

T. Brants and A. Franz. 2006. LDC2006T13: Web 1T
5-gram Version 1.

W. Daelemans, A. Van den Bosch, and A. Weijters. 1997.
IGTree: using trees for compression and classification
in lazy learning algorithms. Artificial Intelligence Re-
view, 11:407-423.

W. Daelemans, J. Zavrel, K. Van der Sloot, and A. Van
den Bosch. 2010. TiMBL: Tilburg memory based
learner, version 6.3, reference guide. Technical Report
ILK 10-01, ILK Research Group, Tilburg University.

R. Dale, I. Anisimoff, and G. Narroway. 2012. HOO
2012: A report on the preposition and determiner error
correction shared task. In Proceedings of the Seventh
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications, Montreal, Canada.

H. Stehouwer and A. Van den Bosch. 2009. Putting the
t where it belongs: Solving a confusion problem in
Dutch. In S. Verberne, H. van Halteren, and P.-A. Cop-
pen, editors, Computational Linguistics in the Nether-
lands 2007: Selected Papers from the 18th CLIN Meet-
ing, pages 21-36, Nijmegen, The Netherlands.

A. Van den Bosch. 2006. All-word prediction as the
ultimate confusible disambiguation. In Proceedings of
the HLT-NAACL Workshop on Computationally hard
problems and joint inference in speech and language
processing, New York, NY.

Before revisions After revisions
Task Evaluation Precision Recall F-Score | Precision Recall F-Score
Overall Detection 12.5 15.23 13.73 13.22 15.43 14.24
Recognition 10.87 13.25 11.94 11.59 13.53 12.49
Correction 6.16 7.51 6.77 7.25 8.46 7.8
Prepositions | Detection 13.44 14.41 13.91 14.23 14.75 14.49
Recognition 11.46 12.29 11.86 12.65 13.11 12.88
Correction 7.51 8.05 7.77 8.7 9.02 8.85
Determiners | Detection 11.04 15.21 12.79 11.71 15.28 13.26
Recognition 10.37 14.29 12.02 10.7 13.97 12.12
Correction 5.02 6.91 5.81 6.02 7.86 6.82

Table 2: Best scores of our system before (left) and after (right) revisions. Scores are reported at the overall level (top),
on prepositions (middle), and determiners (bottom).

294

