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Abstract

Prior work has shown the utility of syntactic
tree fragments as features in judging the gram-
maticality of text. To date such fragments have
been extracted from derivations of Bayesian-
induced Tree Substitution Grammars (TSGs).
Evaluating on discriminative coarse and fine
grammaticality classification tasks, we show
that a simple, deterministic, count-based ap-
proach to fragment identification performs on
par with the more complicated grammars of
Post (2011). This represents a significant re-
duction in complexity for those interested in
the use of such fragments in the development
of systems for the educational domain.

1 Introduction

Automatically judging grammaticality is an im-
portant component in computer-assisted education,
with potential applications including large-scale es-
say grading and helping to interactively improve the
writing of both native and L2 speakers. While n-
gram models have been productive throughout nat-
ural language processing (NLP), they are obviously
insufficient as models of languages, since they do
not model language structure or correspondences
beyond the narrow Markov context.

Context-free grammars (CFGs) address many of
the problems inherent in n-grams, and are there-
fore intuitively much better suited for grammatical-
ity judgments. Unfortunately, CFGs used in practice
are permissive (Och et al., 2004) and make unreal-
istic independence and structural assumptions, re-
sulting in “leaky” grammars that overgenerate and

thus serve poorly as models of language. How-
ever, approaches that make use of the CFG produc-
tions as discriminative features have performed bet-
ter. Cherry and Quirk (2008) improved upon an n-
gram baseline in grammatical classification by ad-
justing CFG production weights with a latent SVM,
while others have found it useful to use comparisons
between scores of different parsers (Wagner et al.,
2009) or the use of CFG productions in linear clas-
sification settings (Wong and Dras, 2010) in classi-
fying sentences in different grammaticality settings.

Another successful approach in grammaticality
tasks has been the use of grammars with an extended
domain of locality. Post (2011) demonstrated that
larger syntactic patterns obtained from Tree Sub-
stitution Grammars (Joshi, 1985) outperformed the
Cherry and Quirk models. The intuitions underlying
their approach were that larger fragments are more
natural atomic units in modeling grammatical text,
and that larger fragments reduce the independence
assumptions of context-free generative models since
there are fewer substitution points in a derivation.
Their grammars were learned in a Bayesian setting
with Dirichlet Process priors, which have simple for-
mal specifications (c.f., Goldwater et al. (2009, Ap-
pendix A)), but which can become quite complicated
in implementation.

In this paper, we observe that fragments used for
classification do not require an underlying proba-
bilistic model. Here, we present a simple extraction
method that elicits a classic formal non-probabilistic
grammar from training data by deterministically
counting fragments. Whereas Post parses with his
TSG and extracts the Viterbi derivation, we use an
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(a) A TSG fragment.

SBAR→ IN S
IN→ for
S→ NP VP
VP→ TO VP
TO→ to

(b) Equivalent CFG rules.

Figure 1: Equivalent TSG fragment and CFG rules.

off-the-shelf parser and pattern match the fragments
in our grammar against the tree. With enough pos-
itive and negative training data (in the form of au-
tomatic parses of good and bad sentences), we can
construct classifiers that learn which fragments cor-
relate with grammaticality. The resulting model re-
sults in similar classification accuracy while doing
away with the complexity of Bayesian techniques.

2 Tree Substitution Grammars (TSGs)

Though CFGs and TSGs are weakly equivalent,
TSGs permit nonterminals to rewrite as tree frag-
ments of arbitrary size, whereas CFG rewrites are
limited to depth-one productions. Figure 1 de-
picts an example TSG fragment and equivalent CFG
rules; note that the entire internal structure of 1a is
described within a single rewrite.

Unfortunately, learning probabilistic TSGs is not
straight-forward, in large part because TSG-specific
resources (e.g., large scale TSG-annotated tree-
banks) do not exist. Approaches to this problem be-
gan by taking all fragments Fall in a treebank (Bod,
1993; Goodman, 1996), which resulted in very large
grammars composed mostly of fragments very un-
likely to generalize.1 A range of heuristic solutions
reduced these grammar sizes to a much smaller,
more compact subset of all fragments (Zollmann
and Sima’an, 2005; Zuidema, 2007). More recently,
more principled models have been proposed, taking
the form of inference in Bayesian non-parametric
models (Post and Gildea, 2009; Cohn et al., 2009).
In addition to providing a formal model for TSGs,
these techniques address the overfitting problem of

1The n-gram analog would be something like storing all 30-
grams seen in a corpus.

all fragments grammars with priors that discourage
large fragments unless there is enough evidence to
warrant their inclusion in the grammar. The problem
with such approaches, however, is that the sampling
procedures used to infer them can be complex, dif-
ficult to code, and slow to converge. Although more
general techniques have been proposed to better ex-
plore the search space (Cohn and Blunsom, 2010;
Cohn et al., 2010; Liang et al., 2010), the complex-
ity and non-determinism of these samplers remain,
and there are no publicly available implementations.

The underlying premise behind these grammar
learning approaches was the need for a probabilis-
tic grammar for parsing. Post (2011) showed that
the fragments extracted from derivations obtained
by parsing with probabilistic TSGs were useful as
features in two coarse-grained grammaticality tasks.
In such a setting, fragments are needed for classifica-
tion, but it is not clear that they need to be obtained
from derivations produced by parsing with proba-
bilistic TSGs. In the next section, we describe a sim-
ple, deterministic, count-based approach to learn-
ing an unweighted TSG. We will then demonstrate
(§4) the effectiveness of these grammars for gram-
maticality classification when fragments are pattern-
matched against parse trees obtained from a state-of-
the-art parser.

3 Counting Common Subtrees

Rather than derive probabilistic TSGs, we employ
a simple, iterative and deterministic (up to tie-
breaking) alternative to TSG extraction. Our method
extracts F〈R,K〉, the K most common subtrees of
size at most R. Though selecting the top K-most-
frequent fragments from all fragments is computa-
tionally challenging through brute force methods,
note that if F ∈ F〈R,K〉, then all subtrees F ′ of F

must also be in F〈R,K〉.2 Thus, we may incremen-
tally build F〈R,K〉 in the following manner: given r,
for 1 ≤ r ≤ R, maintain a ranking S, by frequency,
of all fragments of size r; the key point is that S may
be built from F〈r−1,K〉. Once all fragments of size
r have been considered, retain only the top K frag-
ments of the ranked set F〈r,K〉 = F〈r−1,K〉 ∪ S.3

2Analogously, if an n-gram appears K times, then all con-
stituent m-grams, m < n, must also appear at least K times.

3We found that, at the thresholding stage, ties may be arbi-
trarily broken with neglible-to-no effect on results.
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Algorithm 1 EXTRACTFRAGMENTS (R,K)
Assume: Access to a treebank

1: S ← ∅
2: F〈1,K〉 ← top K CFG rules used
3: for r = 2 to R do
4: S ← S ∪ {observed 1-rule extensions of F ∈

F〈r−1,K〉}
5: F〈r,K〉 ← top K elements of F〈r−1,K〉 ∪ S
6: end for

Pseudo-code is provided in Algorithm 1.4

This incremental approach is appealing for two
reasons. Firstly, our approach tempers the growth
of intermediate rankings F〈r,K〉. Secondly, we
have two tunable parameters R and K, which can
be thought of as weakly being related to the base
measure and concentration parameter of (Post and
Gildea, 2009; Cohn et al., 2010). Note that by
thresholding at every iteration, we enforce sparsity.

4 Experiments

We view grammaticality judgment as a binary clas-
sification task: is a sequence of words grammatical
or not? We evaluate on two tasks of differing granu-
larity: the first, a coarse-grain classification, follows
Cherry and Quirk (2008); the other, a fine-grain ana-
logue, is built upon Foster and Andersen (2009).

4.1 Datasets
For the coarse-grained task, we use the BLLIP5-
inspired dataset, as in Post (2011), which dis-
criminates between BLLIP sentences and Kneyser-
Ney trigram generated sentences (of equal length).
Grammatical and ungrammatical examples are given
in 1 and 2 below, respectively:

(1) The most troublesome report may be the
August merchandise trade deficit due out
tomorrow .

(2) To and , would come Hughey Co. may be
crash victims , three billion .

For the fine-grained task we use a version of the
BNC that has been automatically modified to be

4Code is available at: cs.jhu.edu/˜ferraro.
5LDC2000T43

ungrammatical, via insertions, deletions or substi-
tutions of grammatically important words. As has
been argued in previous work, these automatically
generated errors, simulate more realistic errors (Fos-
ter and Andersen, 2009). Example 3 gives an origi-
nal sentence, with an italicized substitution error:

(3) The league ’s promoters hope retirees and
tourists will join die-hard fans like Mr. de
Castro and pack then stands to see the seniors .

Both sets contain train/dev/test splits with an
equal number of positive and negative examples, and
all instances have an available gold-standard parse6.

4.2 Models and Features
Algorithm 1 extracts common constructions, in the
form of count-extracted fragments. To test the ef-
ficacy of these fragments, we construct and experi-
ment with various discriminative models.

Given count-extracted fragments obtained from
EXTRACTFRAGMENTS(R,K), it is easy to define a
feature vector: for each query, there is a binary fea-
ture indicating whether a particular extracted frag-
ment occurs in its gold-standard parse. These count-
extracted features, along with the sentence length,
define the first model, called COUNT.

Although our extracted fragments may help
identify grammatical constructions, capturing un-
grammatical constructions may be difficult, since
we do not parse with our fragments. Thus,
we created two augmented models, COUNT+LEX

and COUNT+CFG, which built upon and extended
COUNT. COUNT+LEX included all preterminal and
lexical items. For COUNT+CFG, we included a bi-
nary feature for every rule that was used in the most
likely parse of a query sentence, according to a
PCFG7.

Following Post (2011), we train an `-2 regular-
ized SVM using liblinear8 (Fan et al., 2008)
per model. We optimized the models on dev data,
letting the smoothing parameter be 10m, for integral
m ∈ [−4, 2]: 0.1 was optimal for all models.

6We parsed all sentences with the Berkeley parser (Petrov et
al., 2006).

7We used the Berkeley grammar/parser (Petrov et al., 2006)
in accuratemode; all other options were their default values.

8csie.ntu.edu.tw/˜cjlin/liblinear/
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Task COUNT COUNT+LEX COUNT+CFG

coarse 86.3 86.8 88.3
fine 62.9 64.3 67.0

(a) Our count-based models, with R = 15, K = 50k.

Task 3 5 10 15
coarse 89.2 89.1 88.6 88.3

fine 67.9 67.2 67.2 67.0
(b) Performance of COUNT+CFG, with K =
50k and varying R.

Table 1: Development accuracy results.

Our three models all have the same two tunable
parameters, R and K. While we initially experi-
mented with R = 31, K ∈ {50k, 100k} — in or-
der to be comparable to the size of Post (2011)’s ex-
tracted TSGs — we noticed that very few, if any,
fragments of size greater than 15 are able to sur-
vive thresholding. Dev experimentation revealed
that K = 50k and 100k yielded nearly the same
results; for brevity, we report in Table 1a dev re-
sults for all three models, with R = 15, K =
50k. The differences across models was stark, with
COUNT+CFG yielding a two point improvement over
COUNT on coarse, but a four point improvement
on fine. While COUNT+LEX does improve upon
COUNT, on both tasks it falls short of COUNT+CFG.
These differences are not completely surprising:
one possible explanation is that the PCFG features
in COUNT+CFG yield useful negatively-biased fea-
tures, by providing a generative explanation. Due
to the supremacy of COUNT+CFG, we solely report
results on COUNT+CFG.

In Table 1b, we also examine the effect of ex-
tracted rule depth on dev classification accuracy,
where we fix K = 50k and vary R ∈ {3, 5, 10, 15},
where the best results are achieved with R = 3.
We evaluate two versions of COUNT+CFG: one with
R = 3 and the other with R = 15 (K = 50k for
both).

5 Results and Fragment Analysis

We build on Post (2011)’s results and compare
against bigram, CFG and TSG baselines. Each base-
line model is built from the same `-2 regularized

Method coarse fine
COUNT+CFG, R = 3 89.1 67.2

COUNT+CFG, R = 15 88.2 66.6
bigram 68.4 61.4
CFG 86.3 64.5
TSG 89.1 67.0

Table 2: Classification accuracy on test portions for
both coarse and fine, with K = 50k. Chance is 50%
for each task.

SVM as above, and each is optimized on dev data.
For the bigram baseline, the binary features corre-
spond with whether a particular bigram appears in
an instance, while the CFG baseline is simply the
augmentation feature set used for COUNT+CFG. For
the TSG baseline, the binary features correspond
with whether a particular fragment is used in the
most probable derivation of each input sentence (us-
ing Post’s Bayesian TSGs). All baselines use the
sentence length as a feature as well.

The results on the test portions of each dataset are
given in Table 2. When coupled with the best parse
output, our counting method was able to perform on
par with, and even surpass, Post’s TSGs. The sim-
pler model (R = 3) ties TSG performance on coarse
and exceeds it by two-tenths on fine; the more com-
plex model (R = 15) gets within a point on coarse
and four-tenths on fine. Note that both versions of
COUNT+CFG surpass the CFG baseline on both sets,
indicating that (1) encoding deeper structure, even
without an underlying probabilistic model, is use-
ful for grammaticality classifications, and (2) this
deeper structure can be achieved by a simple count-
ing scheme.

As PCFG output comprises a portion of our fea-
ture set, it is not surprising that a number of the
most discriminative positive and negative features,
such as flat NP and VP rules not frequent enough
to survive thresholding, were provided by the CFG
parse. While this points out a limitation of our
non-adaptive thresholding, note that even among
the highest weighted features, PCFG and count-
extracted features were interspersed. Further, con-
sidering that both versions of COUNT+CFG outper-
formed CFGs, it seems our method adds discrimina-
tive power to the CFG rules.
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(a) Coarse (b) Fine
Grammatical Ungrammatical Grammatical Ungrammatical

1 (S NP VP (. .)) (S NP (VP (VBP are)
PP))

10 (SBAR (IN if) S) (SBAR (S VP))

2 (S (S (VP VBG NP))
VP)

(VP VBZ (S VP)) 11 (NP (DT these) NNS) (SBAR DT (S NP
VP))

3 (SBAR (IN while) S) (SBAR (S VP) ) 12 (VP (VBG being) VP) (S (VP VB NP))
4 (VP (VBD called) S) (VP VBN (S VP)) 13 (PP IN (S NP (VP

VBG NP)))
(S (VP VBZ NP))

5 (VP (VB give) NP NP) (NP (NP JJ NN)
SBAR)

14 (S (VP VBG VP)) (VP VB (S VP))

6 (NP NNP NNP NNP
(NNP Inc.))

(VP NN (PP IN NP)) 15 (PP IN (SBAR (IN
whether) S))

(S (VP VBP VP))

7 (PP (IN with) (S NP
VP))

(S (VP MD VP)) 16 (VP (VBD had) (VP
VBN S))

(S NP (VP (VBD
said)))

8 (SBAR (IN for) (S NP
(VP (TO to) VP)))

(SBAR (S (NP NNS)
VP))

17 (VP MD (VP VB NP
(PP IN NP) PP))*

(PP (PP IN NP) (CC
and) PP)*

9 (PRN (-LRB- -LRB-)
NP (-RRB- -RRB-))*

(S (ADJP JJ))* 18 (NP (DT no) NNS)* (PP (IN As) NP)*

Table 3: Most discriminative count-based features for COUNT+CFG on both tasks. For comparability to Post
(2011), R = 15, K = 50k, are shown. Asterisks (*) denote fragments hand-selected from the top 30.

Table 5 presents top weighted fragments from
COUNT+CFG on both coarse and fine, respectively.
Examining useful grammatical features across tasks,
we see a variety of fragments: though our fragments
heavily weight simple structure such as proper punc-
tuation (ex. 1) and parentheticals (ex. 9), they also
capture more complex phenomena such as lexical
argument descriptions (e.g., give, ex. 5). Our ex-
tracted fragments also describe common construc-
tions and transitions (e.g., 3, 8 and 15) and involved
verb phrases (e.g., gerunds in 2 and 14, passives in
16, and modals in 17).

Though for both tasks some ungrammatical frag-
ments easily indicate errors, such as sentence frag-
ments (e.g., example 6) or repeated words (ex. 11),
in general the analysis is more difficult. In part, this
is because, when isolated from errors, one may con-
struct grammatical sentences that use some of the
highest-weighted ungrammatical fragments. How-
ever, certain errors may force particular rules to be
inappropriately applied when acquiring the gold-
standard parse. For instance, example 10 typically
coordinates with larger VPs, via auxiliary verbs or
expletives (e.g., it). Affecting those crucial words
can significantly change the overall parse structure:
consider that in “said it is too early. . . ,” it provides a

crucial sentential link; without it, “is too early” may
be parsed as a sentence, and then glued on to the
former part.

6 Conclusion

In this work, we further examined TSGs as useful
judges of grammaticality for written English. Us-
ing an iterative, count-based approach, along with
the most likely PCFG parse, we were able to train a
discriminative classifier model — COUNT+CFG —
that surpassed the PCFG’s ability to judge gram-
maticality, and performed on par with Bayesian-
TSGs. Examining the highest weighted features, we
saw that complex structures and patterns encoded by
the count-based TSGs proved discriminatively use-
ful. This suggests new, simpler avenues for frag-
ment learning, especially for grammaticality judg-
ments and other downstream tasks.
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