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Abstract

The SAVE Science project is an attempt to ad-
dress the shortcomings of current assessments
of science. The project has developed two vir-
tual worlds that each have a mystery or natu-
ral phenomenon requiring scientific explana-
tion; by recording students’ behavior as they
investigate the mystery, these worlds can be
used to assess their understanding of the scien-
tific method. Currently, however, the scoring
of the assessment depends either on manual
grading of students’ written responses, or, on
multiple choice questions. This paper presents
an automated grader that can combine with
SAVE Science’s virtual worlds to provide a
cheap mechanism for assessments of the abil-
ity to apply scientific methodology. In experi-
ments on over 300 middle school students, our
best automated grader improves by over 50%
relative to the closest system from previous
work in predicting grades supplied by human
judges.

1 Introduction

Education researchers criticize current standardized
tests of science on many grounds. First, they lack
context (Behrens et al., 2007), which complicates a
student’s task of applying classroom-based learning,
as the theory of situated cognition suggests (Brown
et al., 1989). Second, many have criticized such
tests for failing to engage students long enough to
apply their understanding to the question. Further-
more and perhaps worst of all, standardized tests fail
to assess scientific inquiry—the ability of students
to apply the scientific method—authentically rather

than as scientific content (National Research Coun-
cil, 2005; Singley and Taft, 1995).

We consider an assessment conducted by the
Situated Assessment using Virtual Environments
for Science Content and Inquiry (SAVE Science)
project (Ketelhut et al., 2010; Ketelhut et al., 2009),
whose long-term goal is to address the shortcomings
of current standardized tests of science. The assess-
ments from SAVE Science have produced an abun-
dance of data on how students interact with a vir-
tual world, when trying to conduct scientific inquiry.
Observing student behavior in virtual environments
offers the potential for new insights into both how
students learn and what they know. However, this
benefit can only be realized if we can make sense of
the stream of data and text produced by the students.

In this paper, we attempt to automate the process
of grading students in SAVE Science assessments, to
make the evaluations as cost-effective as standard-
ized tests. Unlike most previous systems for au-
tomated grading (Sukkarieh and Stoyanchev, 2009;
Sukkarieh et al., 2004; Higgins et al., 2004; Wang
et al., 2008), the data for this task includes a short
paragraph (usually 50-60 words) natural language
response stating a hypothesis and evidence in sup-
port of it. In addition, there is a wealth of relational
data about student behavior in a virtual environment.
We develop novel predictors for automatically grad-
ing the written responses using a wide variety of nat-
ural language features, as well as features from the
data on student behavior in the virtual world. On
student data from two virtual worlds, our best auto-
mated grader has correlations of r = 0.58 and 0.44
with human judgments, improving over the closest
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technique from previous work by 56% for the first
world, and by 120% for the second.

The rest of the paper is organized as follows.
The next section contrasts this project with previ-
ous work. Section 3 describes the SAVE Science
project and the student data it has produced. Section
4 details our automated grading models. Section 5
reports on experiments, and Section 6 concludes.

2 Previous Work

Wang et al. (2008) have previously conducted a
study on assessing creative problem-solving in sci-
ence education by automatically grading student es-
says. Our techniques improve substantially over
theirs, as we demonstrate empirically. In part, we
improve by including more sophisticated language-
processing features in our model than the unigram
and bigram features they use; as others have noted,
bag-of-words representations and latent semantic
indexing become less useful as word order and
causal relationships become important for judging
an essay’s quality (Malatesta et al., 2002; Wiemer-
Hastings et al., 2005). A secondary reason for our
improvement is that we also have access to non-
linguistic data about the students that we can mine
for additional patterns.

Most previous research on automated grading of
written text focuses on short, factual text (Wiemer-
Hastings et al., 1999; Mohler and Mihalcea, 2009;
Leacock and Chodorow, 2003; Sukkarieh and Stoy-
anchev, 2009; Sukkarieh et al., 2004; Mitchell et al.,
2002; Pulman and Sukkarieh, 2005), whereas SAVE
Science’s texts are only partly factual. Responses
are meant to convey a scientific explanation of a
mystery, and therefore, correct responses contain in-
ferences, observations of the world, and causal links
between observations and inferences.

Automatic systems for grading longer responses
typically grade essays for coherence and discourse
structure (Burstein et al., 2001; Higgins et al., 2004),
but these global discourse criteria are only partially
indicative of the quality of a student’s response to the
SAVE Science assessments. To be considered fully
correct in these tests, student responses must contain
factually correct information, as well as causal rela-
tionships that justify the student’s inferences, such
as “The balls don’t bounce outside because it’s cold,

and lower temperatures decrease pressure.”

3 Assessing Scientific Inquiry Using
Virtual Worlds

We now give a brief overview of SAVE Science,
which aims to complement (or even replace) cur-
rent standardized tests for evaluating students’ un-
derstanding of science. We first present the project’s
goals and methodology, and then describe the chal-
lenges involved in creating an automated evalua-
tion of student performance for this new assessment
paradigm.

3.1 The SAVE Science Project

SAVE Science (Ketelhut et al., 2010; Ketelhut et al.,
2009; Ketelhut et al., 2012) is a novel project for
evaluating students’ understanding of the scientific
method — problem identification, gathering data,
analyzing data, developing a hypothesis, and com-
municating results — by asking students to solve
a mystery in a virtual world through the applica-
tion of the scientific method to a content-based prob-
lem. Using immersive virtual environments for as-
sessments is a current area of focus among educa-
tion researchers (Clarke-Midura, 2010); SAVE Sci-
ence is unique in its attempt to assess understand-
ing of both inquiry as well as content. That is, the
test is designed to assess students’ ability to apply
their knowledge of the scientific inquiry processes
to a problem they have never seen before, but within
a content area they have just studied. To be suc-
cessful, students must explore a virtual environment,
collect appropriate data about it, and find evidence
that supports their inference about the cause of the
mystery. Part of the reasoning for a particular con-
clusion draws on scientific knowledge learned in the
classroom, but for these mysteries such knowledge
of scientific content is insufficient. Students must
also be able to explore the virtual world and create a
hypothesis about the cause of the problem, based on
their observations and analysis of collected data.

For this study, we concentrate on two virtual
worlds produced by the SAVE Science project team,
Basketball and Weather Trouble. Screenshots of
the two virtual worlds are shown in Figure 1. Stu-
dents are represented by an avatar, or virtual char-
acter, whom they can control in the virtual world
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Figure 1: Screenshots from SAVE Science’s virtual environments. Left: the Basketball module. Right: the Weather
Trouble module. The bar of icons along the bottom of the screen shows various tools that students may choose to use
in the world, including a map, compass, graphing tool, note pad, and instruments like a barometer and thermometer,
among others. Glowing green arrows indicate “objects” (sometimes including people) with which the student’s avatar
may interact, by making observations, by taking measurements, or through conversation.

with a mouse or key presses. When the test be-
gins, one character in the world informs the student
of a mystery that the student needs to explain. In
the Weather Trouble world, citizens of Scientopolis
are concerned with the lack of rain recently, and ask
the avatar to determine whether it will rain soon. In
the Basketball world, a basketball tournament staffer
is concerned that students cannot play basketball on
the outdoor playground, because the balls will not
bounce high enough outdoors, even though the same
balls bounce just fine indoors.

Once informed of the mission, the student
(through her or his avatar) explores the world, and
interacts with objects or other characters in the vir-
tual world by “colliding” with them. Interactions
with characters mostly involve the character telling
the avatar some part of the story of the world through
their eyes (e.g., “It hasn’t rained here in weeks; I
hope it rains soon!”). The conversation may yield
useful clues, or it may be “folk science” (e.g., “The
sheep are lying down, so it is probably going to rain
soon”). When the avatar interacts with an object, the
student can choose from a set of tools to determine
measurements of the object. Measurements that a
student deems interesting can be recorded in the stu-
dent’s clipboard, and a graphing tool allows students
to construct charts from the data in the clipboard.

Once students have finished exploring, collect-
ing data, and analyzing the data, they are asked to
communicate the results by writing a brief expla-
nation for the cause of the mystery for the world.

In addition, students are asked to provide what they
consider to be the top three pieces of evidence for
their explanation. Both the explanation and the
ranked evidence are written in freeform text, con-
sisting of 48.5 words on average for Basketball, and
62.4 for Weather Trouble. We refer to the expla-
nation and ranked evidence collectively as the stu-
dent’s freeform response. These texts are critical
components of the overall data about the student, as
they can be used to assess the student’s ability to
communicate findings.

3.2 Assessing the ability to make scientific
inquiries

The virtual worlds from SAVE Science provide an
abundance of data about each student’s ability to
apply the scientific method, as well as their un-
derstanding of content, but the current assessment
scheme involves either manual grading of freeform
responses, or multiple choice questions. The first
is problematic because of the effort and expense in-
volved; the second is problematic because of the dif-
ficulty in designing multiple choice questions that
accurately assess everything a student has learned
(Wang et al., 2008; Chang and Chiu, 2005; Singley
and Taft, 1995). The focus of this paper is to pro-
vide an automated way of assessing students’ ability
to perform scientific inquiry based on their behav-
ior in the virtual world and their freeform responses.
We first describe the current assessment mechanisms
available in SAVE Science’s data, which we then use
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Score Criteria

4 Provides a correct hypothesis with supporting
data gathered from within the world

3 Provides a correct hypothesis with only folk
or incorrect evidence

2 Provides a somewhat correct answer
1 Provides a hypothesis
0 No hypothesis, or nonsense

Table 1: Rubric for manual scoring of freeform re-
sponses.

Score Example

3 it’s because the air outside is more colder
than the air inside here the cold air causes
the air molecules to gather up toghter tight
toghter causeing the ball to deflate and have
less bounce . . .

1 the wieght isnt up to regulations but the bouce
is ok everyball i bouce it bouced according
to regulartion but almost every ball has the
weight of 1.25 . . .

Figure 2: Example portions of two freeform responses
from Basketball, presented as written by the students.

below as gold standards for automated predictors for
assessment.

Manual grading of the freeform responses uses a
rubric of integer scores from 0 to 4. Guidelines for
the rubric scores are shown in Table 1, and two ex-
ample responses are shown in Figure 2. Two anno-
tators, the first holding a PhD in education and the
second a PhD student in computer science, indepen-
dently judged each response, achieving a high inter-
annotator agreement — for Basketball, Cohen’s κ =
0.95, Pearson’s ρ = 0.98; and for Weather Trouble
κ = 0.8, ρ = 0.93. For our experiments, we use
the judgments of the first annotator, who helped de-
sign the virtual worlds and has experience in grading
student essays, but the choice of which annotator’s
judgments to use makes little difference to the re-
sults.

The multiple choice questions, which we call quiz
questions, consist of two types, as shown in Table
2. The first type, which we call contextualized ques-
tions, directly test students’ understanding of the sci-
entific issues that arise in the virtual environment

of the module. Non-contextualized questions are re-
lated to the topic of the module, but they can be an-
swered correctly using general scientific knowledge
rather than specific knowledge gleaned from explo-
ration of the virtual world. The non-contextualized
questions are taken from the benchmark exams of a
major urban school district.

4 Predictors for Scientific Inquiry Grades

We now focus on the task of building automated pre-
dictors for assessing students’ ability to make scien-
tific inquiries. To do this, we turn the grading task
into a classical machine learning problem, in which
the system must learn from a set of training data
(students and their grades) how to predict a grade
for new students included in separate test data. We
focus on two main types of models: ones that can
grade by predicting how many multiple-choice ques-
tions (contextualized, non-contextualized, or both)
a student will answer correctly, and ones that can
predict the manual grade assigned to a freeform re-
sponse.

Unlike typical automated-grading systems for
grading written or spoken natural language, our task
includes a large additional source of evidence for the
predictions: data about the students’ behavior in the
virtual world. Our prediction models therefore make
extensive use of both the freeform response and data
from the students’ behavior in the world, which we
refer to as world data.

4.1 Models
We use Support Vector Machines with Radial Ba-
sis Function kernels (RBF-SVM) (Pang-Ning et al.,
2006; Smola and Schölkopf, 1998) for learning
non-linear regression models of grading. Let S be
the set of students evaluated through SAVE Sci-
ence’s virtual environment, and let f : S → Rn be
a vector-valued feature function providing n real-
valued features for each student, based on the stu-
dent’s freeform response and behavior in the virtual
world. Let g : S → R be the target grading func-
tion, which provides a real-valued grade for each
student. The hypothesis spaceH for RBF-SVMs in-
cludes functions h : S → R of the form

h(s) =

m∑
i=1

αiK(xi, f(s)) + b (1)
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Contextualized Questions Non-Contextualized Questions

What variable would you change to cor-
rect this basketball problem?
1. Temperature

A. Make it 75◦F
B. Make it 55◦F
C. Make it 35◦F

2. Court Type
A. Concrete only
B. Wood only
C. Court Type makes little to no differ-

ence

3. Basketball used
A. Replace one Wade Park ball with one

Jordan Gym ball
B. Purchase a new set of balls for Wade

Park
C. New basketballs will not help this

problem

1. A child riding a bicycle notices that the tires are more in-
flated on hot days than on cold days, even though no air is
being added or removed. How can this be explained?
A. A higher temperature of the air in the tires causes the par-

ticles in the air to stick together and take up more space.
B. A higher temperature of the air in the tires causes the num-

ber of particles in the air to increase.
C. A higher temperature of the air in the tires causes the pres-

sure of the air to drop and the volume of the air to increase.
D. A higher temperature of the air in the tires causes both

the pressure and volume of the air to increase.

2. A sample of oxygen is being stored in a closed container
at a constant temperature. What will happen to the gas if
it is transferred to a container with a smaller volume?
A. Its weight will increase
B. Its weight will decrease
C. Its pressure will increase
D. The size of its particles will decrease

Table 2: Complete list of Basketball contextualized and non-contextualized quiz questions. Bold indicates the correct
answer.

where the xi are the support vectors, and K is the
RBF kernel function, given by:

K(x,x′) = exp(−γ‖x− x′‖2) (2)

Here, αi, b, γ ∈ R are parameters to be learned from
the training data. We use the Weka (Hall et al., 2009)
toolkit for running standard training and prediction
algorithms with the SVM.

We train models for four distinct prediction tasks,
each defined by a different grading function g(s):
1) g(s) is the manually-assessed grade on stu-
dent s’s freeform responses; 2) g(s) is the num-
ber of correctly-answered contextualized questions;
3) g(s) is the number of correctly-answered non-
contextualized questions; and 4) g(s) is the total
number of correctly-answered quiz questions (the
sum of g(s) from 2 and 3). We use the same feature
function f for all models, which we describe next.

4.2 World Features
From the database that records a student’s activity in
the immersive virtual environment, we extract fea-
tures describing the frequency and types of activi-
ties in which students engaged. For both modules,

we include features for the number of object interac-
tions, the number of distinct objects interacted with,
the total number of measurements made, the number
of measurements saved in the student’s clipboard,
and the number of graphs made. We also include
module-specific features: for example, in the Bas-
ketball assessment module, we counted how many
distinct basketballs were interacted with, how many
measurements were made using each type of tool
available in the Basketball world, whether a given
student created graphs of temperature inside vs. out-
side, or graphs of temperature vs. pressure, etc. In
total, the model contains 69 world features in the
Weather module, and 65 in the Basketball module.
All features conform to the pattern of counts over
particular types of actions the avatar might take. We
call the features from the virtual environment world
features.

We note that the relational data in this world is
large and complex, containing temporal and sequen-
tial information which these features currently ig-
nore. This feature set serves as an initial exploration
of the world data, but we fully expect that future in-
vestigation will improve on this representation. For
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this paper we are primarily interested in features of
the freeform responses, which we now turn to.

4.3 Natural Language Features

We investigate standard text mining features from
bag-of-words representations and Latent Semantic
Analysis, as well as a variety of features tailored to
the grading task. Spelling is a major problem for
this type of prediction task, but spelling-correctors
are investigated elsewhere (Kernighan et al., 1990)
and are not a focus of this research. We therefore
manually corrected spelling errors throughout the
texts before extracting features and conducting ex-
periments. No correction of grammar or punctuation
was performed.

4.3.1 Latent Semantic Analysis Features
After removing 34 common stopwords, we

extract a bag-of-words representation from the
freeform responses (Manning and Schütze, 1999).
We apply Latent Semantic Analysis (LSA) (Lan-
dauer and Dumais, 1997; Steyvers and Griffiths,
2006) to this set of features to produce a smaller
set of 72 latent features for Basketball, and 94 for
Weather Trouble, based on a threshold of retaining
90% of the variance in the data.

4.3.2 Features from Hidden Markov Models
LSA and other topic models identify latent struc-

ture based on document-level cooccurrence statis-
tics, but the “documents” in our data are short for
topic-modeling purposes, and we have less than
200 of them for each world. As a result, stan-
dard topic modeling techniques may have difficulty
identifying the appropriate structure. We therefore
also consider Hidden Markov Models (HMMs) (Ra-
biner, 1989), generative models which rely both on
cooccurrence within a sentence and on sequence in-
formation for determining model parameters. Fol-
lowing recent work by Huang et al. (2011) on
using HMMs to build representations, we esti-
mate parameters for a fully-connected HMM with
100 latent states over the freeform responses us-
ing Expectation-Maximization. We then decode the
HMM over the corpus to produce a Viterbi-optimal
latent state for each word. Finally, we use counts of
these 100 latent states to produce 100 new features
for each freeform response.

4.3.3 Detecting disengagement
A small number of students show little enthusi-

asm for the test, and their responses and general per-
formance are quite poor. Often their freeform re-
sponses are short, or they repeat the same text mul-
tiple times. We include three features that help iden-
tify such cases: the overall length of the response,
the number of times a full sentence is repeated ex-
actly, and the number of tokens that are repeated
across multiple sentences.

4.3.4 Ngram and Pattern Features
While HMM and LSA features help combat spar-

sity in the predictive model, they may ignore the
strong signal from a few expressions that are par-
ticularly important for a domain. By soliciting ad-
vice from domain experts, we selected important
unigrams, bigrams, and trigrams for each module,
and created features that count each of these. Like-
wise, we selected important two-word and three-
word sets, which we call loose patterns, that weakly
indicate that a student understood the problem, if
they all occur in the same response but not neces-
sarily near one another. Again, these words were se-
lected as a result of combination of empirical obser-
vations and expert domain knowledge from design-
ers. For instance, if a response contains the three
words “temperature,” “pressure,” and “because,” it
would match one of these loose patterns. For each
pattern, we create a feature to count the number of
matches in a response.

The selected patterns and ngrams both consist of
three kinds of words: ones that indicate types of
measurable phenomena or properties (e.g., “temper-
ature”), locations (e.g., “outside”), or causal or com-
parative words (e.g., “causes,” “higher,” “than,” or
“decrease”). Because the responses discuss numer-
ical observations like temperature and pressure val-
ues, we also allow a wildcard for matching any num-
ber as part of the loose patterns.

4.3.5 Semantic Features
We use the Senna1 semantic role labeling (SRL)

system (Collobert et al., 2011) to automatically iden-
tify predicate-argument relationships in the freeform
responses. In general, the SRL system is only able

1http://ml.nec-labs.com/senna/
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to identify predicate-argument structures in well-
crafted sentences, which on its own is a good indi-
cator that the student will do well in the evaluation.
In addition, we extract semantic features (SFs) that
count how often certain predicate-argument struc-
tures appear which are indicative of a good answer:

SF1 Count how often the freeform response con-
tains any predicate.

SF2 Count how often the response contains predi-
cates that involve causality, such as “causes” or
change-of-value predicates like “increase.”

SF3 Count how often measurement words (e.g.,
temperature, pressure) appear as arguments to
any predicate.

SF4 Count how often measurement words appear as
arguments to the predicates related to causality.

4.4 Feature Selection

We perform feature selection using a correlation-
based technique that tries to identify maximally-
relevant and minimally-redundant features (Hall,
1998; Deng and Moore, 1998). The algorithm eval-
uates the value of a subset of features by considering
the individual correlation between each feature and
the gold standard, as well as the correlation between
features. We use the default parameter settings for
feature selection, as specified in Weka.

5 Experiments

5.1 Experimental Setup

We use a dataset collected by the SAVE Science
project, consisting of the world data, freeform re-
sponses, and quiz answers from public middle-
school students in a major urban area of the United
States. 120 students completed the Weather Trou-
ble module, and 184 students completed Basket-
ball. After manually correcting spelling errors in
the freeform responses, we extracted features as de-
scribed above.

Following Wang et al. (2008), we evaluate our re-
gression models using Pearson correlation between
the predicted outcome and the gold standard out-
come. Four different gold standards are consid-
ered for each module: manually-assigned grades for

the freeform text, and three versions of the num-
ber of correctly-answered quiz questions (contextu-
alized only, non-contextualized only, and all). We
use a χ2 test with a threshold of p < 0.05 to deter-
mine statistical significance. We train and test mod-
els using 10-fold cross-validation to reduce variabil-
ity, and the results are averaged over the folds.

We evaluate several variants of our system, in-
cluding a World variant that only includes features
from the world data; an NLP variant that only in-
cludes features from the freeform responses; and a
combined World+NLP variant that includes all fea-
tures before feature selection is performed.

Our evaluation compares against the essay grad-
ing technique by Wang et al. Like ours, their sys-
tem uses RBF-SVM regression with default param-
eter settings as implemented in Weka, and like ours
the system is trained on student texts proposing so-
lutions to a science problem (in their case, a high
school chemistry problem). The system is trained
on human judgments of the quality of the student
answers. The major difference between our tech-
nique and theirs lies in the representation of the data;
Wang et al. use two types of features: unigrams, and
bigrams that occur at least five times during train-
ing. In our implementation of their technique, we
use a lower threshold for bigrams — they must oc-
cur at least twice. This is because we have less text
to work with, and the higher threshold yields too
few bigrams. Using the lower threshold improved
performance slightly, so we report only those results
below.

5.2 Results and Discussion

The full system for automatic grading is accurate,
across both worlds and all gold standards. Figure
3 shows the results of predicting human judgments
of the freeform responses, where the World+NLP
system achieves a correlation of 0.58 for Basket-
ball and 0.44 for Weather Trouble. The same sys-
tem achieves 0.55 and 0.54 on the World ques-
tions of Basketball and Weather Trouble, respec-
tively (Figures 4 and 5). Our best models are sta-
tistically significantly different from the Wang et al.
model (for predicting contextualized questions for
basketball: p = .009, χ2 = 6.87162; for grading
freeform responses: p ≈ 0, χ2 = 14.21725). Cor-
relations from World+NLP for other quiz types —
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Figure 3: Our NLP features dramatically improve predic-
tion over the Wang et al. model for grading freeform sci-
ence essays, by a margin of 0.21 on Basketball and 0.23
on Weather Trouble.
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Figure 4: The World+NLP model outperforms both
World and NLP, and substantially outperforms the Wang
et al. system.

non-contextualized and all questions — were some-
what lower, but still statistically significant (p =
.002, χ2 = 10.05986).

The language features are currently the major fac-
tor in the predictive models for automated grad-
ing. The NLP model substantially outperforms both
the simpler Wang et al. model and the World-only
model in predicting quiz answers for both worlds.
It achieves correlations that are statistically signifi-
cantly different from the baseline, for all gold stan-
dards and both worlds.

The story in the case of grading freeform essays
is similar. Our NLP model beats the Wang et al.
model and the World-only model. Our full model
World+NLP, however, outperforms the NLP model
by only a small fraction. Also, the Wang et al. model
performs slightly better than the World-only model
on freeform responses. For Basketball, the correla-
tion coefficient of their model is greater by 0.11 and
for Weather by 0.05. We believe that the NLP-based
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Figure 5: The NLP model substantially outperforms
World and Wang et al. on predicting quiz questions for
Weather Trouble, and the combined World+NLP model
achieves a 0.54 correlation for contextualized questions.

models, including Wang et al.’s, are outperforming
the World model because the current representation
of the World data fails to capture all of the pertinent
information from students’ behavior in the virtual
environments. Our plans for future work include the
development of features that can capture temporal
patterns in student activity.

Each type of language feature appears to pro-
vide a beneficial and complementary source of ev-
idence. We tested the model using only individual
subsets of the NLP features, such as HMM features
only, LSA features only, ngrams and loose patterns
only, and features from semantic role labeling only.
On their own, each set of features provides only a
small improvement over the mean predictor. When
combined with the world features, each subset of
the NLP features again provides only a small im-
provement over the World-only model. For exam-
ple, for predicting Basketball world quiz questions,
World features achieve r = 0.34, World+HMM and
World+LSA achieve 0.35, and World+(ngrams and
loose patterns) achieves 0.39. The relative ranking
of these subsets of features is not consistent across
different tasks; for Weather contextualized ques-
tions, World+HMM is best, and for Weather non-
contextualized questions, World+LSA is best. Fea-
tures selected by the feature selection algorithm also
indicate that the different types of language features
complement one another. The feature selection al-
gorithm for the World+NLP model selects some fea-
tures for every different type we presented, although
the HMM, LSA, loose pattern, and unigram fea-
tures dominate. We believe that the best procedure
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for developing grading systems for science essays
is therefore to construct a large number of possible
features using a variety of techniques, and then train
a model for a particular task and gold standard. In-
cluding significantly more varieties of features, per-
haps from additional kinds of language models or
NLP pipeline tools, is an important future direction
for further improving the grading accuracy.

While the accuracies of the models for contextu-
alized and non-contextualized questions are broadly
similar, the models themselves are not. For the con-
textualized questions, 4 important world behavior
features were deemed important and non-redundant
by the feature selection algorithm: the number of
distinct collisions, the number of people collided
with, the number of distinct objects (basketballs or
balloons) whose pressure was measured, and the
number of distinct temperature measurements that
were recorded into clipboards. The essential task
in this virtual world is to discover that a decrease
in the temperature of several gas systems (basket-
balls and balloons filled with air) is causing their
pressure to decrease. The model for the contex-
tualized questions thus includes variables that are
highly relevant to a student’s understanding of the
core problem in the world, which in turn indicates
that automated data mining techniques are capable
of identifying when students are learning to prac-
tice the scientific method, by observing student be-
havior. On the other hand, the model for the non-
contextualized questions includes only 2 world fea-
tures: The number of collisions made and number
of different objects whose circumference was mea-
sured. The first one is an indicator of the activity
level of a student and the second variable is an indi-
cator for whether the student has identified the prob-
lem (the basketballs are not bouncing because they
are deflated), but not for the underlying cause of
the problem (the outside temperature causes a drop
in pressure, which causes the basketball circumfer-
ence to decrease). Thus the model that predicts non-
contextualized questions very accurately has little
information about whether the student understood
the core problem of the world or not; instead, it has
information about whether the student is active in
the world. These observations lend some support to
the criticism that the standardized tests are not prop-
erly assessing inquiry.

Performance on the Weather Trouble module is
consistently lower than on Basketball. In part, this
reflects the increased difficulty of this world; human
inter-annotator agreement is a bit lower (κ = 0.8
vs. 0.95 on Basketball). However, another large
part of the difference is that the world features pro-
vide far less information in Weather Trouble — the
World-only model has less than half the correlation
on Weather than on Basketball, for all quiz ques-
tion types. We suspect that the cause is the nature
of the task on the Weather Trouble world, where
temporal information plays a bigger role as measure-
ments of air pressure and wind direction may change
over time. Investigating world features that can dis-
tinguish different patterns of student behavior over
time is an important area for further investigation.

6 Conclusion

Our automated grader uses a wide variety of NLP
pipeline tools to produce features for students’ es-
says on the answers to scientific mysteries. The
grader achieves significant correlation with human
judges and multiple choice quiz evaluations, sub-
stantially outperforming a simpler grader from prior
work. The findings of this research suggest that au-
thentic assessments of scientific inquiry through vir-
tual environments can be graded purely automati-
cally, like high stakes multiple choice tests. Ongoing
work on SAVE Science is investigating the differ-
ences in how students respond to standard multiple-
choice tests and tests based on virtual environments.
But the contextualized assessments from SAVE Sci-
ence provide evaluation of scientific inquiry that
multiple choice tests currently do not, and they can
now be graded just as cheaply.
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