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Abstract

We present initial steps towards an interac-
tive essay writing tutor that improves science
knowledge by analyzing student essays for mis-
conceptions and recommending science web-
pages that help correct those misconceptions.
We describe the five components in this sys-
tem: identifying core science concepts, deter-
mining appropriate pedagogical sequences for
the science concepts, identifying student mis-
conceptions in essays, aligning student miscon-
ceptions to science concepts, and recommend-
ing webpages to address misconceptions. We
provide initial models and evaluations of the
models for each component.

1 Introduction

Students come to class with a variety of misconcep-
tions present in their science knowledge. For ex-
ample, science assessments developed by the Amer-
ican Association for the Advancement of Science
(AAAS)1 showed that 49% of American 6th-8th
graders believe that the Earth’s tectonic plates are
only feet thick (while in fact they are miles thick)
and that 48% of American 6th-8th graders believe
that atoms of a solid are not moving (while in fact
all atoms are in constant motion). A key challenge
for interactive tutoring systems is thus to identify and
correct such student misconceptions.

In this article, we develop an interactive essay writ-
ing tutor that tries to address these challenges. The
tutor first examines a set of science webpages to iden-
tify key concepts (Section 4) and attempts to order

1http://assessment.aaas.org/

the science concepts in a pedagogically appropriate
learning path (Section 5). Then the tutor examines a
student essay and identifies misconception sentences
(Section 6) and aligns these misconceptions to the
true science concepts (Section 7). Finally, the tutor
suggests science webpages that can help the student
address each of the misconceptions (Section 8).

The key contributions of this work are:

• Demonstrating that a summarization approach
can identify core science concepts

• Showing how a learning path model can be boot-
strapped from webpages with grade metadata

• Developing models for misconception identifi-
cation based on textual entailment techniques

• Presenting an information retrieval approach to
aligning misconceptions to science concepts

• Designing a system that recommends webpages
to address student misconceptions

2 Related work

Interactive tutoring systems have been designed for
a variety of domains and applications. Dialog-based
tutoring systems, such as Why2-Atlas (VanLehn et
al., 2002), AutoTutor (Graesser et al., 2004) and
MetaTutor (Azevedo et al., 2008), interact with stu-
dents via questions and answers. Student knowledge
is judged by comparing student responses to knowl-
edge bases of domain concepts and misconceptions.
These knowledge bases are typically manually cu-
rated, and a new knowledge base must be constructed
for each new domain where the tutor is to be used.
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Essay-based tutoring systems, such as Summary
Street (Wade-Stein and Kintsch, 2004) or CLICK
(de la Chica et al., 2008b), interact with students who
are writing a summary or essay. They compare what
the student has written to domain knowledge in the
form of textbooks or webpages. They typically do not
require a knowledge base to be manually constructed,
instead using natural language processing techniques
to compare the student’s essay to the information in
the textbooks or webpages.

The current work is inspired by these essay-based
tutoring systems, where interaction revolves around
essay writing. However, where Summary Street re-
lies primarily upon measuring how much of a text-
book a student essay has “covered”, we aim to give
more detailed assessments that pinpoint specific stu-
dent misconceptions. CLICK targets a similar goal
to ours, but assumes that accurate knowledge maps
can be generated for both the domain knowledge and
for each student essay. Our approach does not re-
quire the automatic generation of knowledge maps,
instead working directly with the sentences in the
student essays and the webpages of science domain
knowledge.

3 System overview

Our system is composed of five key components.
First, a core concept identifier examines domain
knowledge (webpages) and identifies key concepts
(sentences) that describe the most important pieces
of knowledge in the domain. Second, a concept se-
quencer assigns a pedagogically appropriate order in
which a student should learn the identified core con-
cepts. Third, a misconception identifier examines the
student essay and identifies sentences that describe
misconceptions the student has about the domain.
Fourth, a misconception-concept aligner finds a core
concept that can be used to correct each misconcep-
tion. Finally, a recommender takes all the informa-
tion about core concepts and student misconceptions,
decides what order to address the misconceptions in,
and identifies a set of resources (webpages) for the
student to read.

To assemble this system, we draw on a variety of
existing datasets (and some data collection of our
own). For example, we use data from an annotation
study of concept coreness to evaluate our model for

identifying domain concepts, and we use data from
science assessments of the American Association for
the Advancement of Science to train and evaluate our
model for identifying misconceptions. We use this
disparate data to establish baseline models for each of
the tutor’s components. In the near future, this base-
line tutoring system will be used to collect student
essays and other data that will allow us to develop
more sophisticated model for each component.

4 Identifying core concepts

This first module aims at automatically identifying a
set of core concepts in a given set of digital library
resources or webpages. Core concepts in a subject
domain are critical ideas necessary to support deep
science learning and transfer in that domain. From
a digital learning perspective, availability of such
concepts helps in providing pedagogical feedback
to learners to support robust learning and also in
prioritizing instructional intervention (e.g., deciding
the order in which to treat student misconceptions).
A concept can be materialized using different levels
of linguistic expressions (e.g. phrases, sentences or
paragraphs), but for this work, we focus only on
individual sentences as expressions of concepts.

We used COGENT (de la Chica et al., 2008a), a
multi-document summarization system to extract con-
cepts (i.e. sentences) from a given set of resources.
In the following two subsections, we describe the
COGENT system, discuss how we used it for core
concept extraction and report the results of its evalu-
ation of effectiveness.

4.1 Model

COGENT is a text summarizer that builds on MEAD
(Radev et al., 2004), a multidocument summarization
and evaluation platform . MEAD was originally de-
veloped to summarize news articles. COGENT aims
to generate pedagogically useful summaries from
educational resources.

COGENT extends MEAD by incorporating new
features in the summarization process. MEAD uses
a set of generic (i.e. domain-independent) features to
evaluate each sentence in the given set of documents.
These features include the length of the sentence, the
distance from the sentence to the beginning of the
document, etc. Individual scores of a sentence along
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these dimensions are combined to assign a total score
to the sentence. After removing redundant sentences,
MEAD then generates a summary using the sentences
that had the highest scores. A user-specified parame-
ter determines the number of sentences included in
the summary.

COGENT extends this framework by incorporat-
ing new domain-general and domain-specific features
in the sentence scoring process. The domain-general
features include a document structure feature, which
takes into account a sentence’s level in terms of
HTML headings, and a content word density fea-
ture, which computes the ratio of content words to
function words. The domain-specific features include
an educational standards feature, which uses a TF-
IDF based textual similarity score between a sentence
and nationally recognized educational goals from the
American Association for the Advancement of Sci-
ence (AAAS) Benchmarks (Project2061., 1993) and
the associated National Science Education Standards
(NRC, 1996), and a gazetteer feature, which scores
sentences highly that mention many unique names
from a gazetteer of named entities.

While in the past, COGENT was used primarily
as a summarization system, in the current work, we
evaluate its utility as a means of identifying core
concepts. That is, are the top sentences selected
by COGENT also the sentences describing the key
science concepts in the domain?

4.2 Evaluation

We evaluate the core concept extraction module by
assessing the extracted concepts against human ex-
pert annotations. We ran an annotation study where
two human experts assigned “coreness” ratings to
a selected set of sentences collected from digital
resources in three science domains: Plate Tecton-
ics, Weather and Climate, and Biological Evolution.
These experts had been recruited based on their train-
ing and expertise in the selected subject domains.

First, a set of digital resources was selected from
the Digital Library for Earth System Education
(DLESE) 2 across the three subject domains. Then
COGENT was used to extract the top 5% sentences
for each domain. The experts then annotated each
extracted sentence with its coreness rating on a scale

2http://www.dlese.org

Extraction %
0.5% 1.0% 2.5% 5.0%

Plate Tectonics 3.33 3.27 3.00 2.81
Weather and Climate 3.13 2.97 3.07 2.99
Biological Evolution 2.00 2.13 2.46 2.25

Table 1: Average coreness of sentences extracted at differ-
ent percentages in each domain

of 1 to 4, 4 being the highest. Human annotation is
a time-consuming process and this is why we had
to limit the number of extracted sentences to a mod-
erate 5% (which is still more than 400 sentences).
17% of the sentences were double annotated and the
inter-rater reliability, measured by Spearman’s rho,
was 0.38. These expert ratings of sentences form the
basis of our evaluation.

Table 1 shows the average coreness assigned by the
experts to sentences extracted by COGENT in each
domain, for different extraction percentages. For ex-
ample, if COGENT is used to extract the top 1% of
sentences from all the Plate Tectonics resources, then
the average of their coreness ratings (as assigned by
the experts) is 3.27, representing a high level of core-
ness. This is essentially a measure of the precision
of COGENT at 1% extraction. Note that we cannot
calculate a measure of recall without asking experts
to annotate all of the domain sentences, a time con-
suming task which was outside of the scope of this
study.

The performance of COGENT was the best in the
Plate Tectonics domain since the domain-aware fea-
tures (e.g. the gazetteer features) used to train CO-
GENT were selected from this domain. In the “near
domain” of Weather and Climate, the performance is
still good, but performance falls in the “far domain”
of Biological Evolution, because of the significant
differences between the training domain and the test
domain. In the two latter domains, the performance
of COGENT was also inconsistent in that with an
increase in the extraction percentage, the average
coreness increased in some cases and decreased in
others. This inconsistency and overall degradation
in performance in the two latter domains are indica-
tive of the importance of introducing domain-aware
features into COGENT.

It is evident from the values in Table 1 that the
core concepts extraction module does a decent job,
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especially when trained with appropriate domain-
aware features.

5 Sequencing core concepts

The goal of this next component is to take a set of
core science concepts (sentences), as produced by
the preceding module, and predict an appropriate se-
quence in which those concepts should be learned by
the student. Some concepts serve as building blocks
for other concepts, and thus it is essential to learn the
basic concepts first (and address any misconceptions
associated with them) before moving on to other con-
cepts that depend on the basic concepts. For example,
a student must first understand the concept of tectonic
plates before they can understand the concept of a
convergent plate boundary. The sequence of core
concepts that results from this module will serve as
input for the later module that prioritizes a student’s
misconceptions.

There may exist several different but reasonable
concept sequences (also known as learning paths) –
the goal of this component is to recommend at least
one of these. As a first step, we focus on generating
a single concept sequence that represents a general
path through the learning goals, much like textbooks
and curriculums do.

5.1 Models
Our model for concept sequencing is a pair-wise
ordering model, that takes two concepts c1 and c2,
and predicts whether c1 should come before or after
c2 in the recommended learning path. Formally,

SEQUENCE(c1, c2) =

{
0 if c1 < c2

1 if c1 ≥ c2

To generate a complete ordering of concepts, we
construct a precedence table from these pair-wise
judgments and generate a path that is consistent with
these judgments.

We learn the SEQUENCE model as a supervised
classifier, where a feature vector is extracted for each
of the two concepts and the two feature vectors, con-
catenated, serve as the input to the classifier. For each
word in each concept, we include the following two
features:

• local word count - the number of times the
word appeared in this concept

• global word count - the log of the ratio between
the number of times the word occurred in the
concept and the number of times it occurred in
a background corpus, Gigaword (Graff, 2002)

These features are motivated by the work of Tanaka-
ishii et al (2010) that showed that local and global
word count features were sufficient to build a pair-
wise readability classifier that achieved 90% accu-
racy.

For the supervised classifier, we consider naive
Bayes, decision trees, and support vector machines.

5.2 Evaluation

To evaluate our concept sequencing model, we gath-
ered learning paths from experts in high school earth
science. Using the model from Section 4, we selected
30 core concepts for the domain of plate tectonics.
We asked two earth science experts to each come up
with two learning paths for these core concepts, with
the first path following an evidence or research based
and second path following a traditional learning path.

An evidence or research based learning path, is
a pedagogy where students are encouraged to use
the scientific method to learn about a phenomena, i.e
they gather information by observing the phenomena,
form a hypothesis, perform experiment, collect and
analyze data and then interpret the data and draw
conclusions that hopefully align with the current un-
derstanding about the phenomena. A teacher that
uses this learning path acts as a guide on the side. A
traditional learning path on the other hand, is the ped-
agogy where teachers are simply trying to pass on the
correct information to students rather than letting the
students discover the information themselves. In a
classroom environment, a teacher using this learning
path would be seen as the classical sage on stage.

We used the learning paths collected from the ex-
perts to form two test sets, one for the evidence-based
pedagogy, and one for the traditional pedagogy. For
each pedagogy, we asked which of all the possible
pair-wise orderings our experts agreed upon. For ex-
ample, if the first expert said that A < B < C and
the second expert said that A < C < B, then both
experts agreed that A < B and A < C, while they
disagreed on whether B < C or C < B. Note that
we evaluate pair-wise orderings here, not a complete
ranking of the concepts, because the experts did not

15



Pedagogy Pairs (%) c1 < c2 c1 ≥ c2

Evidence 637 (68%) 48.5% 51.5%
Traditional 613 (70%) 48.5% 51.5%

Table 2: Test sets for sequencing concepts. The Pairs
column shows how many pairs the experts agreed upon
(out of a total of 30 ∗ 29 = 870 pairs).

produce a total ordering of the concepts, only a par-
tial tree-like ordering. The experts put the concepts
in levels, with concepts in the same level having no
precedence relationship, while a concept in a lower
level preceded a concept in a higher level.

For our test sets, we selected only the pairs on
which both experts agreed. Table 2 shows that experts
agreed on 68-70% of the pair-wise orderings. Table
2 also shows the percentage of each type of pair-wise
ordering (c1 < c2 vs. c1 ≥ c2) present in the data.
Note that even though all concepts are paired with all
other concepts, because the experts do not produce
complete orderings, the number of agreements for
each type of ordering may not be the same. Consider
the case where expert E1 says that concepts A and
B are on the same level (i.e., A = B) and expert E2

says that concept A is in a lower level than concept
B (i.e., A < B). Then for the pair (A, B), they
disagree on the relation (E1 says A ≥ B while E2

says A < B) but for the pair (B, A) they agree on
the relation (they both say B ≥ A). As a result, the
c1 ≥ c2 class is slightly larger than the c1 < c2 class.

Since these data sets were small, we reserved them
for testing, and trained our pair-wise classification
model using a proxy task: ordering sentences by
grade. In this task, the model is given two sentences
s1 and s2, one written for middle school and written
for high school, and asked to decide whether s1 < s2

(i.e. s1 is the middle school sentence) or s2 < s1

(i.e. s2 is the middle school sentence). We expect
that a model for ordering sentences by grade should
also be a reasonable model for ordering concepts
for a pedagogical learning path. And importantly,
getting grade ordering data automatically is easy: the
Digital Library for Earth System Education (DLESE)
contains a variety of earth science resources with
metadata about the grade level they were written for.

To construct the training data, we searched the
DLESE website for text resources that contained
the words earthquake or plate tectonics. We col-

Baseline NaiveBayes SVM
Evidence 51.5% 60.8% 53.3%
Traditional 51.5% 56.6% 49.7%

Table 3: Accuracy result from Naive Bayes and SVM for
classifying the core concepts

lected 10 such resources for each of the two grade
cohorts, middle school (we allowed anything K-8)
and high school (we allowed anything 9+). We down-
loaded the webpage for each resource, and used CO-
GENT to extract the 20 most important sentences
from each. This resulted in 200 sentences for each
of the two grade cohorts. To create pairs of grade-
ordered sentences, we paired up middle and high
school concepts both ways: middle school first (i.e.
SEQUENCE(cm, ch) = 0) and high school first (i.e.
SEQUENCE(ch, cm) = 1). This resulted in 40,000
grade-ordered sentence pairs for training.

We then used this proxy-task training data to
train our models. We extracted 1702 unique non-
stopwords from the training data, resulting in 3404
features per concept, and 6808 features per con-
cept pair (i.e. per classification instance). On the
grade-ordering task, we evaluated three models using
WEKA3, a naive Bayes model, a decision tree (J48)
model, and a support vector machine (SVM) model.
Using a stratified 50/50 split of the training data, we
found that the naive Bayes and SVM models both
achieved an accuracy of 80.2%, while the decision
tree achieved only 62%. So, we selected the naive
Bayes and SVM models for our real task, concept
sequencing.

Table 3 shows the performance of the two models
on the expert judgments of concept sequencing. We
find that the naive Bayes model produces more expert-
like concept sequences than would be generated by
chance and also outperforms the SVM model on the
concept sequencing task. For the final output of the
module, we combine the pair-wise judgments into a
complete concept sequence, breaking any ties in the
pair-wise judgments by preferring the order of the
concepts in the output of the core concept identifier.

3http://www.cs.waikato.ac.nz/ml/weka/
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6 Identifying student misconceptions

The previous components have focused on analyzing
the background knowledge – finding core concepts
in the domain and selecting an appropriate learning
sequence for these concepts. The current component
focuses on the student essay, using the collected back-
ground knowledge to help analyze the essay and give
feedback.

Given a student essay, the goal of this component
is to identify which sentences in the essay are most
likely to be misconceptions. The task of misconcep-
tion identification is closely related to the task of
textual entailment (Dagan et al., 2006), in which the
goal is to predict if a hypothesis sentence, H, can be
reasonably concluded given another sentence, T. In
misconception identification, the goal is to predict if
a student sentence can be concluded from any com-
bination of the sentences in the domain knowledge,
similar to a textual entailment task with a single H
but many Ts. A student sentence that can not be
concluded from the domain knowledge is likely a
misconception.

6.1 Models

We developed two models for identifying student
misconceptions, inspired by work in textual entail-
ment that showed that a model that simply counts the
words in H that appeared in T, after expanding the
words in T using WordNet, achieves state-of-the-art
performance (Shnarch et al., 2011)4.

The Coverage model scores a student sentence
by counting the number of its words that are also in
some domain sentence. Low-scoring sentences are
likely misconceptions. Formally:

SCORE(s) =
|s ∩ d|
|s|

d =
⋃

s′∈D

EXPAND(s′)

where s is a student sentence (a list of words), D is
the set of domain sentences, and EXPAND performs
lexical expansion on the words of a sentence.

The Retrieval model indexes the domain sen-
tences with an information retrieval system (we use

4The paper also proposes a more elaborate probabilistic
model, but shows that the “lexical coverage” model we adopt
here is quite competitive both with their probabilistic model and
with the top-performing systems of RTE5 and RTE6.

Lucene5), and scores a student sentence by querying
the index and summing the scores. Formally:

SCORE(s) =
∑
s′∈D

SCORElucene(s, EXPAND(s′))

where s, D and EXPAND are defined as before, and
SCORElucene is a cosine over TF-IDF vectors6.

For both the Coverage and Retrieval models, we
consider the following lexical expansion techniques
for defining the EXPAND function:

• tokens – words in the sentence (no expansion)

• tokens, synsets – words in the sentence, plus
all lemmas of all WordNet synsets of each word

• tokens, synsetsexpanded – words in the sentence,
plus all lemmas of all WordNet synsets of each
word, plus all lemmas of derived forms, hy-
ponyms or meroynms of the WordNet synsets

• tokens, synsetsexpanded×4 – words in the sen-
tence, plus all lemmas of all WordNet synsets of
each word, plus all lemmas of WordNet synsets
reachable by a path of no more than 4 links
through derived forms, hyponyms or meroynms

6.2 Evaluation
We evaluate the quality of our misconception identi-
fication models using data collected from the Amer-
ican Association for the Advancement of Science’s
Project 2061 Science Assessment Website7. This
website identifies the main ideas in various topics
under Life Science, Physical Science and Earth Sci-
ence, and for each idea provides several sentences
of description along with its individual concepts and
common student misconceptions.

We used 3 topics (17 ideas, averaging 6.2 descrip-
tion sentences, 7.1 concept sentences and 9.9 miscon-
ception sentences each) as a development set:

CE Cells
AM Atoms, Molecules, and States of Matter
PT Plate Tectonics

We used 11 topics (64 ideas, averaging 5.9 descrip-
tion sentences, 9.4 concept sentences and 8.6 miscon-
ception sentences each) as the test set:

5http://lucene.apache.org
6See org.apache.lucene.search.Similarity javadoc for details.
7http://assessment.aaas.org/
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Model MAP P@1
Randomly ordered 0.607 0.607
Coverage - tokens 0.647 0.471
Coverage - tokens, synsets 0.633 0.529
Coverage - tokens, synsetsexpanded 0.650 0.471
Coverage - tokens, synsetsexpanded×4 0.690 0.706
Retrieval - tokens 0.665 0.529
Retrieval - tokens, synsets 0.641 0.471
Retrieval - tokens, synsetsexpanded 0.650 0.529
Retrieval - tokens, synsetsexpanded×4 0.684 0.647

Table 4: Development set results for identifying miscon-
ceptions.

EN Evolution and Natural Selection
BF Human Body Systems
IE Interdependence in Ecosystems
ME Matter and Energy in Living Systems
RH Reproduction, Genes, and Heredity
EG Energy: Forms, Transformation, Transfer. . .
FM Force and Motion
SC Substances, Chemical Reactions. . .
WC Weather and Climate: Basic Elements
CL Weather and Climate: Seasonal Differences
WE Weathering, Erosion, and Deposition

For the evaluation, we provide all of the idea’s de-
scription sentences as the domain knowledge, and
combine all of an idea’s concepts and misconcep-
tions into a “student essay”8. We then ask the system
to rank the sentences in the essay, placing miscon-
ceptions above true concepts. Accuracy at placing
misconceptions at the top of the ranked list is then
measured using mean average precision (MAP) and
precision at the first item (P@1).

The models were compared to a chance baseline:
the expected MAP and P@1 if the concept and mis-
conception sentences were ordered randomly. Table 4
shows that on the development set, while all models
outperformed the random ordering baseline’s MAP
(0.607), only models with lexical expansion from
4-link WordNet chains outperformed the baseline’s
P@1 (0.607). The Coverage and Retrieval models us-
ing this expansion technique had comparable MAPs

8These “student essays” are a naive approximation of real
essays, but the sentences are at least drawn from real student er-
rors. In the future, we hope to create an evaluation corpus where
real student essays have been annotated for misconceptions.

Model MAP P@1
Randomly ordered 0.487 0.487
Coverage - tokens, synsetsexpanded×4 0.603 0.578
Retrieval - tokens, synsetsexpanded×4 0.644 0.625

Table 5: Test set results for identifying misconceptions.

(0.690 vs. 0.684), but the Coverage model had a
higher P@1 (0.706 vs. 0.647). These top two mis-
conception identification models were evaluated on
the test set. Table 5 shows that both models again
outperformed the random ordering baseline, and the
Retrieval model outperformed the Coverage model
(0.644 vs. 0.603 MAP, 0.625 vs. 0.578 P@1).

7 Aligning misconceptions to concepts

The goal of this component is to take the miscon-
ception sentences identified in a student essay and
align them to the core science concepts identified for
the domain. For example, a student misconception
like Earth’s plates cannot bend would be aligned to
a science concept like Mountains form when plate
material slowly bends over time.

7.1 Models
The model for misconception-concept alignment
takes a similar approach to that of the Retrieval
model for misconception identification. The align-
ment model applies lexical expansion to each word
in a core science concept, indexes the expanded con-
cepts with an information retrieval system, and scores
each concept for its relevance to a student misconcep-
tion by querying the index with the misconception
and returning the index’s score for that concept. For-
mally:

SCORE(c) = SCORElucene(m, EXPAND(c))

where m is the query misconception, c is the science
concept, and EXPAND and SCORElucene are defined
as in the Retrieval model for misconception identi-
fication. The concept with the highest score is the
concept that best aligns to the student misconception
according to the model.

For lexical expansion, we consider the same defini-
tions of EXPAND as for misconception identification:
tokens; tokens, synsets; tokens, synsetsexpanded;
and tokens, synsetsexpanded×4.
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Model MAP P@1
Randomly ordered 0.276 0.276
Alignment - Tokens 0.731 0.639
Alignment - Tokens, synsets 0.813 0.734
Alignment - tokens, synsetsexpanded 0.790 0.698
Alignment - Tokens, synsetsexpanded×4 0.762 0.639

Table 6: Development set results for aligning concepts to
misconceptions.

7.2 Evaluation

We again leverage the AAAS Science Assessments to
evaluate the misconception-concept alignment mod-
els. In addition to identifying key science ideas, and
the concepts and common misconceptions within
each idea, the AAAS Science Assessments provide
links between the misconceptions and the concepts.
Usually there is a single concept to which each mis-
conception is aligned, but the AAAS data aligns as
many as 16 concepts to a misconception in some
cases.

For the evaluation, we give the system one miscon-
ception from an idea, and the list of all concepts from
that idea, and ask the system to rank the concepts9.
If the system performs well, the concepts that are
aligned to the misconception should be ranked above
the other concepts. Accuracy at placing the aligned
concepts at the top of the ranked list is then measured
using mean average precision (MAP) and precision
at the first item (P@1).

The models were compared to a chance baseline:
the expected MAP and P@1 if the concept and mis-
conception sentences were ordered randomly. Ta-
ble 6 shows that on the development set, all models
outperformed the random ordering baseline. Lexi-
cal expansion with tokens and synsets achieved the
highest performance, 0.813 MAP and 0.734 P@1.
This model was evaluated on the test set, and Table 7
shows that the model again outperformed the random
ordering baseline, achieving 0.704 MAP and 0.611
P@1. Overall, these are promising results – given a
student misconception, the model’s first choice for a
concept to address the misconception is helpful more
than 60% of the time.

9As discussed in Section 6.2, there are on average 9.4 con-
cepts per item. This is not too far off from the 10-20 core con-
cepts we typically expect the tutor to extract for each domain.

Model MAP P@1
Randomly ordered 0.259 0.259
Alignment - Tokens, synsets 0.704 0.611

Table 7: Test set results for aligning concepts to miscon-
ceptions.

8 Recommending resources

The goal of this component is to take a set of student
misconceptions, the core science concepts to which
each misconception is aligned, and the pedagogical
ordering of the core science concepts, and recom-
mend digital resources (webpages) to address the
most important of the misconceptions. For example,
a student that believes that water evaporates into the
air only when the air is very warm might be directed
to websites about evaporation and condensation. The
recommended resources are intended to help the stu-
dent quickly locate the concept knowledge necessary
to correct each of their misconceptions.

8.1 Models

The intuition behind our model is simple: sentences
from recommended resources should contain the
same or lexically related terminology as both the
misconception sentences and their aligned concepts.
As a first approach to this problem, we focus on the
overlap between recommended sentences and the
misconception sentences, and use an information re-
trieval approach to build a resource recommender.

First, the user gives the model a set of domain
knowledge webpages, and we use an information re-
trieval system (Lucene) to index each sentence from
each of the webpages. (Note that we index all sen-
tences, not just core concept sentences.) Given a
student misconception, we query the index and iden-
tify the source URL for each sentence that is returned.
We then return the list of the recommended URLs,
keeping only the first instance of each URL if dupli-
cates exist. Formally:

SCORE(url) = max
s∈url

SCORElucene(m, s)

where url is a domain resource, s is a sentence from a
domain resource and m is the student misconception.
URLs are ranked by score and the top k URLs are
returned as recommendations.
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8.2 Evaluation

As a preliminary evaluation of the resource recom-
mendation model, we obtained student misconcep-
tion sentences that had been aligned to concepts in
a knowledge map of plate tectonics (Ahmad, 2009).
The concepts in the knowledge map were originally
drawn from 37 domain webpages, thus each concept
could serve as a link between a student misconcep-
tion and a recommended webpage. For evaluation,
we took all 11 misconceptions for a single student,
where each misconception had been aligned through
the concepts to on average 3.4 URLs. For each mis-
conception, we asked the recommender model to
rank the 37 domain URLs in order of their relevance
to the student misconception.

We expect the final interactive essay writing sys-
tem to return up to k = 5 resources for each mis-
conception, so we evaluated the performance of the
recommender model in terms of precision at five
(P@5). That is, of the top five URLs recommended
by the system, how many were also recommended
by the experts? Averaging over the 11 student mis-
conception queries, the current model achieves P@5
of 32%, an acceptable initial baseline as randomly
recommending resources would achieve only P@5
of 9%.

9 Discussion

In this article, we have presented our initial steps
towards an interactive essay writing system that can
help students identify and remedy misconceptions in
their science knowledge. The system relies on tech-
niques drawn from a variety of areas of natural lan-
guage processing research, including multi-document
summarization, textual entailment and information
retrieval. Each component has been evaluated inde-
pendently and demonstrated promising initial perfor-
mance.

A variety of challenges remain for this effort. The
core concept identification system performs well on
the plate tectonics domain that it was originally de-
veloped for, but poorer on more distant domains,
suggesting the need for more domain-independent
features. The model for sequencing science concepts
pedagogically uses only the most basic of word-based
features, and could potentially benefit from features
drawn from other research areas such as text readabil-

ity. The misconception identification and alignment
models perform well on the AAAS science assess-
ments but have not yet been evaluated on real student
essays, which may require moving from lexical cover-
age models to more sophisticated entailment models.
Finally, the recommender model considers only in-
formation about the misconception sentence (not the
aligned core concept nor the pedagogical ordering of
concepts) and recommends entire resources instead
of directing students to specifically relevant sentences
or paragraphs.

Perhaps the most important challenge for this work
will be moving from evaluating the components in-
dependently to a whole-system evaluation in the con-
text of a real essay writing task. We are currently
designing a study to gather data on students using the
system, from which we hope to derive information
about which components are most reliable or useful
to the students. This information will help guide our
research to focus on improving the components that
yield the greatest benefits to the students.
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