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Abstract

In this paper we describe our participating sys-
tem for the dependency induction track of the
PASCAL Challenge on Grammar Induction.
Our system incorporates two types of induc-
tive biases: the sparsity bias and the unambi-
guity bias. The sparsity bias favors a gram-
mar with fewer grammar rules. The unambi-
guity bias favors a grammar that leads to un-
ambiguous parses, which is motivated by the
observation that natural language is remark-
ably unambiguous in the sense that the num-
ber of plausible parses of a natural language
sentence is very small. We introduce our ap-
proach to combining these two types of biases
and discuss the system implementation. Our
experiments show that both types of inductive
biases are beneficial to grammar induction.

1 Introduction

Grammar induction refers to the induction of a for-
mal grammar from a corpus of unannotated sen-
tences. There has been significant progress over
the past decade in the research of natural language
grammar induction. A variety of approaches and
techniques have been proposed, most of which are
designed to induce probabilistic dependency gram-
mars. The PASCAL Challenge on Grammar In-
duction aims to provide a thorough evaluation of
approaches to natural language grammar induction.
The challenge includes three tracks: inducing de-
pendency structures using the gold standard part-
of-speech tags, inducing both dependency structures
and part-of-speech tags directly from text, and an

open-resource track which allows other external re-
sources to be used. Ten corpora of nine different
languages are used in the challenge: Arabic (Hajič
et al., 2004), Basque (Aduriz et al., 2003), Czech
(Hajič et al., 2000), Danish (Buch-Kromann et al.,
2007), Dutch (Beek et al., 2002), English WSJ (Mar-
cus et al., 1993), English CHILDES (Sagae et al.,
2007), Portuguese (Afonso et al., 2002), Slovene
(Erjavec et al., 2010), and Swedish (Nivre et al.,
2006). For each corpus, a large set of unannotated
sentences are provided as the training data, along
with a small set of annotated sentences as the devel-
opment data; the predictions on the unannotated test
data submitted by challenge participants are evalu-
ated against the gold standard annotations.

We participate in the track of inducing depen-
dency structures from gold standard part-of-speech
tags. Our system incorporates two types of inductive
biases in learning dependency grammars: the spar-
sity bias and the unambiguity bias. The sparsity bias
favors a grammar with fewer grammar rules. We
employ two different approaches to inducing spar-
sity: Dirichlet priors over grammar rule probabili-
ties and an approach based on posterior regulariza-
tion (Gillenwater et al., 2010). The unambiguity
bias favors a grammar that leads to unambiguous
parses, which is motivated by the observation that
natural language is remarkably unambiguous in the
sense that the number of plausible parses of a natural
language sentence is very small. To induce unam-
biguity in the learned grammar we propose an ap-
proach named unambiguity regularization based on
the posterior regularization framework (Ganchev et
al., 2010). To combine Dirichlet priors with unam-
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biguity regularization, we derive a mean-field varia-
tional inference algorithm. To combine the sparsity-
inducing posterior regularization approach with un-
ambiguity regularization, we employ a simplistic ap-
proach that optimizes the two regularization terms
separately.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the two approaches that we employ
to induce sparsity. Section 3 introduces the unam-
biguity bias and the unambiguity regularization ap-
proach. Section 4 discusses how we combine the
sparsity bias with the unambiguity bias. Section 5
provides details of our implementation and training
procedure. Section 6 concludes the paper.

2 Sparsity Bias

A sparsity bias in grammar induction favors a gram-
mar that has fewer grammar rules. We employ two
different approaches to inducing sparsity: Dirichlet
priors over grammar rule probabilities and an ap-
proach based on posterior regularization (Gillenwa-
ter et al., 2010).

A probabilistic grammar consists of a set of prob-
abilistic grammar rules. A discrete distribution is de-
fined over each set of grammar rules with the same
left-hand side, and a Dirichlet distribution can be
used as the prior of the discrete distribution. De-
note vector θ of dimension K as the parameter of a
discrete distribution. Then a Dirichlet prior over θ is
defined as:

P (θ; α1, . . . , αK) =
1

B(α)

K∏
i=1

θαi−1
i

where α = (α1, . . . , αK) are the hyperparameters,
and B(α) is the normalization constant. Typically,
all the hyperparameters are set to the same value.
It can be shown that if the hyperparameters are less
than 1, then the Dirichlet prior assigns larger prob-
abilities to vectors that have more elements close
to zero. Therefore, Dirichlet priors can be used to
encourage parameter sparsity. It has been found
that when applied to dependency grammar induc-
tion, Dirichlet priors with hyperparamters set to val-
ues less than 1 can slightly improve the accuracy of
the learned grammar over the maximum-likelihood
estimation (Cohen et al., 2008; Gillenwater et al.,
2010).

Gillenwater et al. (2010) proposed a differnt ap-
proach to inducing sparsity in dependency gram-
mar induction based on the posterior regularization
framework (Ganchev et al., 2010). They added a
regularization term to the posterior of the gram-
mar that penalizes the number of unique dependency
types in the parses of the training data. More specif-
ically, their objective function is:

J(θ) = log p(θ|X)−min
q

(
KL(q(Z)||pθ(Z|X))

+ σs

∑
cp

max
i

Eq[ϕcpi(X,Z)]

)

where θ is the parameter of the grammar, X is the
training data, Z is the dependency parses of the
training data X, σs is a constant that controls the
strength of the regularization term, c and p range
over all the tags of the dependency grammar, i
ranges over all the occurrences of tag c in the train-
ing data X, and ϕcpi(X,Z) is an indicator func-
tion of whether tag p is the dependency head of the
i-th occurrence of tag c in the dependency parses
Z. This objective function is optimized using a
variant of the expectation-maximization algorithm
(EM), which contains an E-step that optimizes the
auxiliary distribution q using the projected subgra-
dient method. It has been shown that this approach
achieves higher degree of sparsity than Dirichlet pri-
ors and leads to significant improvement in accuracy
of the learned grammars.

3 Unambiguity Bias

The unambiguity bias favors a grammar that leads to
unambiguous parses on natural language sentences
(Tu and Honavar, 2012). This bias is motivated by
the observation that natural language is remarkably
unambiguous in the sense that the number of plau-
sible parses of a natural language sentence is very
small in comparison with the total number of pos-
sible parses. To illustrate this, we randomly sample
an English sentence from the Wall Street Journal and
parse the sentence using the Berkeley parser (Petrov
et al., 2006), one of the state-of-the-art English lan-
guage parsers. The estimated total number of pos-
sible parses of this sentence is 2 × 1020 (by assum-
ing a complete Chomsky normal form grammar with
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Figure 1: The probabilities of the 100 best parses of the
sample sentence.

the same number of nonterminals as in the Berke-
ley parser). However, as shown in Figure 1, most
of the parses have probabilities that are negligible
compared with the probability of the best parse.

To induce unambiguity in the learned grammar,
we derive an approach named unambiguity regu-
larization (Tu and Honavar, 2012) based on the
posterior regularization framework (Ganchev et al.,
2010). Specifically, we add into the objective func-
tion a regularization term that penalizes the entropy
of the parses given the training sentences. Let X
denote the set of training sentences, Z denote the
set of parses of the training sentences, and θ denote
the rule probabilities of the grammar. Our objective
function is

J(θ) = log p(θ|X)

−min
q

(KL(q(Z)||pθ(Z|X)) + σuH(q))

where σu is a nonnegative constant that controls the
strength of the regularization term; q is an auxiliary
distribution. The first term in the objective function
is the log posterior probability of the grammar pa-
rameters given the training corpus, and the second
term minimizes the KL-divergence between the aux-
iliary distribution q and the posterior distribution of
Z while also minimizes the entropy of q. This objec-
tive function is optimized using coordinate ascent in
our approach. It can be shown that the behavior of
our approach is controlled by the value of the pa-
rameter σu. When σu = 0, our approach reduces to
the standard EM algorithm. When σu ≥ 1, our ap-
proach reduces to the Viterbi EM algorithm, which
considers only the best parses of the training sen-

tences in the E-step. When 0 < σu < 1, our ap-
proach falls between standard EM and Viterbi EM:
it applies a softmax function to the distribution of the
parse zi of each training sentence xi in the E-step:

q(zi) = αipθ(zi|xi)
1

1−σu

where αi is the normalization factor. To compute q,
note that pθ(zi|xi) is the product of a set of grammar
rule probabilities, so we can raise all the rule prob-
abilities of the grammar to the power of 1

1−σu
and

then run the normal E-step of the EM algorithm. The
normalization of q is included in the normal E-step.
We refer to the algorithm in the case of 0 < σu < 1
as the softmax-EM algorithm.

The choice of the value of σu is important in un-
ambiguity regularization. Considering that in gram-
mar induction the initial grammar is typically very
ambiguous, the value of σu should be set large
enough to induce unambiguity. On the other hand,
natural language grammars do contain some degree
of ambiguity, so the value of σu should not be set
too large. One way to avoid choosing a fixed value
of σu is to anneal its value. We start learning with
a large value of σu (e.g., σu = 1) to strongly push
the learner away from the highly ambiguous initial
grammar; then we gradually reduce the value of σu,
possibly ending with σu = 0, to avoid inducing ex-
cessive unambiguity in the learned grammar.

4 Combining Sparsity and Unambiguity
Biases

To incorporate Dirichlet priors over grammar rule
probabilities into our unambiguity regularization ap-
proach, we derive a mean-field variational inference
algorithm (Tu and Honavar, 2012). The algorithm
alternately optimizes q(θ) and q(Z). The optimiza-
tion of q(θ) is exactly the same as in the standard
mean-field variational inference with Dirichlet pri-
ors, in which we obtain a set of weights that are sum-
marized from q(θ) (Kurihara and Sato, 2004). The
optimization of q(Z) is similar to the E-step of our
approach discussed in section 3: when 0 < σu < 1,
we raise all the weights to the power of 1

1−σu
before

running the normal step of computing q(Z) in the
standard mean-field variational inference; and when
σu ≥ 1, we use the weights to find the best parse of
each training sentence and assign probability 1 to it.
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The sparsity-inducing posterior regularization ap-
proach and our unambiguity regularization approach
are based on the same posterior regularization
framework. To combine these two approaches, the
standard method is to optimize a linear combina-
tion of the sparsity and unambiguity regularization
terms in the E-step of the posterior regularization al-
gorithm. Here we employ a simplistic approach in-
stead which optimizes the two regularization terms
separately in the E-step. Specifically, we first ignore
the sparsity regularization term and optimize q(Z)
with respect to the unambiguity regularization term
using the approach discussed in section 3. The opti-
mization result is an intermediate distribution q′(Z).
Then we ignore the unambiguity regularization term
and optimize q(Z) to minimize the sparsity regular-
ization term as well as the KL-divergence between
q(Z) and q′(Z).

5 Implementation and Experiments

Our system was built on top of the PR-Dep-Parsing
package1. We implemented both approaches intro-
duced in section 4, i.e., unambiguity regularization
with Dirichlet priors and combined posterior regu-
larization of sparsity and unambiguity. For the lat-
ter, we did not implement the σu ≥ 1 case and the
annealing of σu because of time constraint.

We preprocessed the corpora to remove all the
punctuations as denoted by the universal POS tags.
One exception is that for the English WSJ corpus
we did not remove the $ symbol because we found
that removing it significantly decreased the accuracy
of the learned grammar. We combined the provided
training, development and test set as our training set.
We trained our system on the fine POS tags except
for the Dutch corpus. In the Dutch corpus, the fine
POS tags are the same as the coarse POS tags ex-
cept that each multi-word unit is annotated with the
concatenation of the POS tags of all the component
words, making the training data for such tags ex-
tremely sparse. So we chose to use the coarse POS
tags for the Dutch corpus.

We employed the informed initialization pro-
posed in (Klein and Manning, 2004) and ran our two
approaches on the training set. We tuned the param-

1Available at http://code.google.com/p/
pr-toolkit/

eters by coordinate ascent on the development set.
The parameters that we tuned include the maximal
length of sentences used in training, the valence and
back-off strength of the E-DMV model, the hyperpa-
rameter α of Dirichlet priors, the type (PR-S or PR-
AS) and strength σs of sparsity-inducing posterior
regularization, and the strength σu of unambiguity
regularization. Sparsity-inducing posterior regular-
ization has a high computational cost. Consequently,
we were not able to run our second approach on
the English CHILDES corpus and the Czech corpus,
and performed relatively limited parameter tuning of
the second approach on the other eight corpora.

Table 1 shows, for each corpus, the approach and
the parameters that we found to perform the best on
the development set and were hence used to learn
the final grammar that produced the submitted pre-
dictions on the test set. Each of our two approaches
was found to be the better approach for five of the
ten corpora. The sparsity bias was found to be ben-
eficial (i.e., α < 1 if Dirichlet priors were used, or
σs > 0 if sparsity-inducing posterior regularization
was used) for six of the ten corpora. The unambi-
guity bias was found to be beneficial (i.e., σu > 0)
for seven of the ten corpora. This implies the use-
fulness of both types of inductive biases in gram-
mar induction. For only one corpus, the English
CHILDES corpus, neither the sparsity bias nor the
unambiguity bias was found to be beneficial, proba-
bly because this corpus is a collection of child lan-
guage and the corresponding grammar might be less
sparse and more ambiguous than adult grammars.

6 Conclusion

In this paper we have described our participating
system for the dependency induction track of the
PASCAL Challenge on Grammar Induction. Our
system incorporates two types of inductive biases:
the sparsity bias and the unambiguity bias. The
sparsity bias favors a grammar with fewer gram-
mar rules. We employ two types of sparsity biases:
Dirichlet priors over grammar rule probabilities and
the sparsity-inducing posterior regularization. The
unambiguity bias favors a grammar that leads to un-
ambiguous parses, which is motivated by the obser-
vation that natural language is remarkably unam-
biguous in the sense that the number of plausible
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Corpus Approach Parameters
Arabic Dir+UR maxlen = 20, valence = 4/4, back-off = 0.1, α = 10−5, σu = 0.75
Basque PR+UR maxlen = 10, valence = 3/3, back-off = 0.1, PR-AS, σs = 100, σu = 0
Czech Dir+UR maxlen = 10, valence = 3/3, back-off = 0.1, α = 1, σu = 1− 0.1× iter
Danish PR+UR maxlen = 20, valence = 2/1, back-off = 0.33, PR-AS, σs = 100, σu = 0.5
Dutch PR+UR maxlen = 10, valence = 3/3, back-off = 0, PR-S, σs = 140, σu = 0
English WSJ Dir+UR maxlen = 10, valence = 2/2, back-off = 0.33, α = 1, σu = 1− 0.01× iter
English CHILDES Dir+UR maxlen = 15, valence = 4/4, back-off = 0.1, α = 10, σu = 0
Portuguese PR+UR maxlen = 15, valence = 2/1, back-off = 0, PR-AS, σs = 140, σu = 0.5
Slovene PR+UR maxlen = 10, valence = 4/4, back-off = 0.1, PR-AS, σs = 140, σu = 0
Swedish Dir+UR maxlen = 10, valence = 4/4, back-off = 0.1, α = 1, σu = 1− 0.5× iter

Table 1: For each corpus, the approach and the parameters that we found to perform the best on the development set
and were hence used to learn the final grammar that produced the submitted predictions on the test set. In the second
column, “Dir+UR” denotes our approach of unambiguity regularization with Dirichlet priors, and “PR+UR” denotes
our approach of combined posterior regularization of sparsity and unambiguity. The parameters in the third column
are explained in the main text.

parses of a natural language sentence is very small.
We propose an approach named unambiguity regu-
larization to induce unambiguity based on the poste-
rior regularization framework. To combine Dirich-
let priors with unambiguity regularization, we de-
rive a mean-field variational inference algorithm. To
combine the sparsity-inducing posterior regulariza-
tion approach with unambiguity regularization, we
employ a simplistic approach that optimizes the two
regularization terms separately. We have also in-
troduced our implementation and training procedure
for the challenge. Our experimental results show
that both types of inductive biases are beneficial to
grammar induction.
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