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Abstract Briscoe, 1994) and various kinds of bracketing con-
straints (Naseem and Barzilay, 2011; Spitkovsky et
We show that orthographic cues can be helpful  al., 2010b; Pereira and Schabes, 1992). We propose
for unsupervised parsing. In the Penn Tree-  aqding capitalization to this growing list of sources
bank, transitions between upper- and lower- - o o ia| hracketings. Our intuition stems from En-

case tokens tend to align with the boundaries lish wh imal f italized d
of base (English) noun phrases. Such signals glish, where (maximal) spans of capitalized words

can be used as partial bracketing constraintsto ~ — SUch asApple II, World War |, Mayor William H.
train a grammar inducer: in our experiments, Hudnut 11, International Business Machines Corand
directed dependency accuracy increased by Alexandria, Va— tend to demarcate proper nouns.
2.2% (average over 14 languages having case Consider a motivating example (all of our exam-
information). Combining capitalization with ples are from WSJ) without punctuation, in which all

punctuation-induced constraints in inference
further improved parsing performance, attain-
ing state-of-the-art levels for many languages.

(eight) capitalized word clumps and uncased numer-
als match base noun phrase constituent boundaries:

[np Jay Stevensof [yp Dean Wittef actually cut his
per-share earnings estimate[t@ $9 from [yp $9.5
for [yp 1989 and to [yp $9.50 from [yp $10.3
in [yp 1990 because he decided sales would be even

. . eaker than he had expected.
Dependency grammar induction and related prol:\)’Y AP

lems of unsupervised syntactic structure discove@'r;d anothgr I('Whgse first V\I/ord happens to b_e a Ieaf).,
are attracting increasing attention (Rasooli and Faill/"€"€ capitalization complements punctuation cues:

. < . i ; [np Jurorsin [yp U.S. District Courtin [yp Miami]
2012; Marecek and Zabokrtsky, 201ibter alia). cleared[yp Harold Hershhensdna former executive

Since sentence structure is underdetermined by raj¢e president]yp John Pagonesa former vice presi-
text, there have been efforts to simplify the task, viaent; andyp Stephen Vadasand[yp Dean Ciporkin,

(i) pooling features of syntax across languages (C4!ho had been engineers wige Cordis.
hen et al., 2011; McDonald et al., 2011; Cohereould such chunks help bootstrap grammar induc-
and Smith, 2009); as well as (ii) identifying uni-tion and/or improve the accuracy of already-trained
versal rules (Naseem et al., 2010) — such as verbgnsupervised parsers? In answering these questions,
centricity (Gimpel and Smith, 2011) — that need notve will focus predominantly on sentence-internal
be learned at all. Unfortunately most of these tecteapitalization. But we will also show that first words
niques do not apply to plain text, because they re= those capitalized by convention — and uncased
quire knowing, for example, which words are verbssegments — whose characters are not even drawn
As standard practice shifts away from relying orfrom an alphabet — could play a useful role as well.
gold part-of-speech (POS) tags (Seginer, 2007; Pop- . T
vert et al., 2010; Sggaard, 2011b; Spitkovsky et aI.E, English Capitalization from a Treebank
2011c,inter alia), lighter cues to inducing linguistic We began our study by consulting the 51,558 parsed
structure become more important. Examples of ussentences of the WSJ corpus (Marcus et al., 1993):
ful POS-agnostic clues include punctuation bound30,691 (59.5%) of them contain non-trivially capi-
aries (Ponvert et al., 2011; Spitkovsky et al., 2011lalized fragments— maximal (hon-empty and not
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Count POS Sequence Frac Cum markup | punct.|| capital| initial] uncased
1| 27,524 NNP 44.6% thread 98.5 95.0 99.5 98.4 99.2
2| 17,222 NNP NNP 279 725 tear 97.9 94.7 98.6 98.4 98.5
3 4,598 NNP NNP NNP 75 79.9 sprawl 95.1 92.9 98.2 97.9 96.4
4 2,973 3] 48 84.8 loose 87.5 74.0 97.9 96.9 96.4
5 1,716 NNP NNP NNP NNP 28 875 strict’ 32.7 35.6 38.7 40.3 55.6
6 1,037 NN 1.7 89.2 strict 35.6 39.2 59.3| 66.9 61.1
7 932 PRP 15 90.7
8 846 NS L4 921 Table 2: Several sources of fragments’ end-points and
9 604 NP RS 10931 %-correctness of their derived constraints (for English)
10 526 NNP NNP NNP NNP NNP | 0.9 939 .

wsJ +3,753 more with Count< 498 6.1% ) ] )
notations, punctuation or HTML tags in web pages).

Table 1: Top 10 fragments of POS tag sequences in WSJ. For example, in the sentence about Cordis, the
strict hypothesis would be wrong about five of the
sentence-initial) consecutive sequences of wordight fragments:Jurorsattachesn; Courttakes the
that each differs from its own lower-cased formsecondin; Hershhenso@nd Pagonedlerive their ti-
Nearly all — 59,388 (96.2%) — of the 61,731 frag-tles, president and (at least in our referenc®¥adas
ments are dominated by noun phrases; slightly legétachesand Ciporkin andwho. Based on this, we
than half — 27,005 (43.8%) — perfectly align withwould considerstrict to be 37.5%-accurate. But
constituent boundaries in the treebank; and about g9se— and the rest of the more relaxed constraints
many — 27,230 (44.1%) are multi-token. Table — would get perfect scores. (Arstrict’ would re-

shows the top POS sequences comprising fragmentict the mistake abouturorsbut also the correct
guesses aboMliami andCordis scoring only 20%.)

3 Analytical Experimentswith Gold Trees Table 2 ¢tapital) shows scores averaged over the

N TR ntire treebank. Colummaarkup(Spitkovsky et al.,
We gauged the suitability of capitalization-induced, ), v 0 v spitkovsky et al., 2011b) indicate
fragments for guiding dependency grammar inducs

. ) . . that capitalization yields across-the-board more ac-
tion by assessing accuracy, in WSdf parsing con- . . .
. . . . . curate constraints (for English) compared with frag-
straints derived from their end-points. Following the . . .
. : . - . ments derived from punctuation or markup (i.e., an-
suite of increasingly-restrictive constraints on how - . .
. . . . chor text, bold, italics and underline tags in HTML),
dependencies may interact with fragments, intro:

duced by Spitkovsky et al. (201162.2), we tested for which such constraints were originally intended.
thread only asks that no dependency path from the

root to a leaf enter the fragment twidear requires To further test the potential of capitalization-induced
any incoming arcs to come from the same side dgionstraints, we applied them in the Viterbi-decoding
the fragmentsprawl demands that there be exactlyphase of a simple (unlexicalized) supervised depen-
one incoming arcloosefurther constrains any out- dency parser — an instance of DBM-1 (Spitkovsky
going arcs to be from the fragment’s head; atritt etal., 2012§2.1), trained on WSJ sentences with up

— the most stringent constraint — bans external
punct.: thread| tear|| sprawl| loose

dependents. Since onStrict is binding for single none-71.8 T 7431 744 —28 733
words, we experimented also witltrict': applying ~capitaithread || 72.3 | 74.6| 74.7] 749  73.6
strict solely to multi-token fragments (ignoring sin- tear || 72.4 | 74.7| 74.7 749 736
gletons). In sum, we explored six ways in which sprawl || 72.4\\ 74.7| 74.7 749 734
dependency parse trees can be constrained by frag- loose || 72.4 | 74.8) 74.7) 749 | 733

. : : strict || 714 73.7 | 73.7 73.9| 727
ments whose end-points could be defined by capital- strict || 7101l 7311 73.1 739 721

ization (or in other various ways, e.g., semantic an-

We converted labeled constituents into unlabeled deperd@PI® 3: Supervised (directed) accuracy on Section 23
dencies using deterministic “head-percolation” ruleslfes, ~ Of WSJ using capitalization-induced constraints (vetyica
1999), discarding any empty nodes, etc., as is standartigeac J0intly with punctuation (horizontal) in Viterbi-decodin
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CoNLL Year Filtered Training Directed Accuracies with laltConstraints Fragments

& Language Tokeng Sentences{ none thredd telr sprawl lodse Stricktrict | Multi | Single
German 2006| 139,333 12,2 36.3 36.3 363391 | 36.2| 36.31 30.1| 3,287| 30,435
Czech ‘6| 187,505 20,37 51.8 51{3 513 51.352.5 52.5 : 51.4| 1,831 6,722
English 7 74,023: 5,087 29.ﬁ 28.5| 28.3 29.0| 293 283, 27.7| 1,135| 2,218
Bulgarian '6 46,599, 5,241 59.4 59.3| 59.3 59.4 | 59.1 59.31 59.5 184 | 1,506

Danish 6 14,1501 1,599 21.$ 17.7 | 22.7 21.5| 21.4 31.4: 27.9 113 317

o7

Greek  '7| 11,943 ~ 842 281 46l 463  46[3464 | 311, 310| 113 456
Dutch 6| 72043, 7,107 459 ' 458|459| 458| 458 457 294 89| 4335
ltalian 7 || 9,142'  921|| 417 526 527 | 52.6| 44.2| 526 458 41 296

Catalan 7 62,811: 4,087 61.38 613 613 61.3 61.361.3 , 36.5 28 2,828
Turkish 6 17,610, 2,835 329 32.932.2 33.0| 33.0 33.6! 33.9 27 590

Portuguese '6|| 24,494 2,042 6819 67.1| 69.1| 692 | 689| 689 385 9| 953
Hungarian '7|| 10,343, 1,258 43.2  43[243.1| 432 432 437, 255 7| 217
Swedish '6| 41918 4,105 486  48lp 486 48.5| 485| 485 488 3| 29
Slovenian ‘6|  3,627' 477| 304 305 305 304 305 30308 1 63

Median: 4251 46.0| 46.1 46.0 | 45.0 447 325
Mean: 42.8'! 44.4| 448 450 | 443 44.6' 36.9

Table 4: Parsing performance for grammar inducers traintdeapitalization-based initial constraints, testediagfa
14 held-out sets from 2006/7 CoNLL shared tasks, and ordsredimber of multi-token fragments in training data.

to 45 words (excluding Section 23). Table 3 show®therwise, unconstrained baselines would not yield
evaluation results on held-out data (all sentencedje strongest possible alternative, and hence not the
using “add-one” smoothing. All constraints othemost interesting comparison. Second, to the extent
thanstrictimprove accuracy by about a half-a-point,that presence of punctuation may correlate with sen-
from 71.8 to 72.4%, suggesting that capitalizatiotence complexity (Frank, 2000), there are benefits to
is informative of certain regularities not captured by'starting small” (Elman, 1993): e.g., relegating full
DBM grammars; moreover, it still continues to bedata to later stages helps training (Spitkovsky et al.,
useful when punctuation-based constraints are al2010a; Cohn et al., 2011; Tu and Honavar, 2011).
enforced, boosting accuracy from 74.5 to 74.9%. Our base systems induced DBM-1, starting from
uniformly-at-random chosen parse trees (Cohen and
5 Multi-Lingual Grammar Induction Smith, 2010) of each sentence, followed by inside-
outside re-estimation (Baker, 1979) with “add-one”
So far, we showed only that capitalization informasmoothing? Capitalization-constrained systems dif-
tion can be helpful in parsing a very specific genr@ered from controls in exactly one way: each learner
of English. Next, we tested its ability to generallygot a slight nudge towards more promising struc-
aid dependency grammar induction, focusing on sityres by choosing initial seed trees satisfying an ap-
uations when other bracketing cues are unavailablgyopriate constraint (but otherwise still uniformly).
We experimented with 14 languages from 2006/7 Table 4 contains the stats for all 14 training sets,
CoNLL shared tasks (Buchholz and Marsi, 2006prdered by number of multi-token fragments. Fi-
Nivre et al., 2007), excluding Arabic, Chinese anthal accuracies on respective (disjoint, full) evalua-
Japanese (which lack case), as well as Basque afigh sets are improved by all constraints other than
Spanish (which are pre-processed in a way that losegict, with the highest average performance result-
relevant capitalization information). For all remain-ing from sprawt 45.0% directed dependency accu-
ing languages we trained only on simple sentencegcy? on average. This increase of about two points
— those lacking sentence-internal punctuation —over the base system’s 42.8% is driven primarily by
from the relevant training sets (for blind evaluation)improvements in two languages (Greek and Italian).
Restricting our attention to a subset of the avail-———— _ oo
able taining cata serves a dual purpose. Ffst it a1 1580 e oppig fteen E1y (Gntiovsly o o,
lows us to estimate capitalization’s impact where N0 sgiarting from five parse trees for each sentence (using con-
other (known or obvious) cues could also be usedtraintsthreadthroughstrict’) was no better, at 44.8% accuracy.
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6 Capltal |Z| ng on Punctuatlon |n | nfer ence CoNLL Year thiS; State-of-the-Art Systems: POS-
& Language Worki (i) Agnostic (ii) Identified

Until now we avoided using punctuation in grammar Bulgarian 2006[ 645 = 44.3 SCAJ | 703 Spt
induction, except to filter data. Yet our pilot exper- €2t@an 7| 61.5 638 SCAL | 56.3 MZ\g

: . ) ) . Czech 6| 535 1 50.5 SCAJ | 33.3 MZn\R
iments indicated that both kinds of information are panigp 6| 206' 460 RF 565 Sar
helpful in the decoding stage of a supervised systemDutch '6 || 46.7 | 32.5 SCAJ | 621 MPHg

We took trained models obtained using #pgawl ~ English "7 || 29.21 50.3 SAJ 45.7 MPH,
. ’ |
nudge (from§5) and proceeded to again apply con- €man 6 426 11335 SCAJ | 558 MPHy,
TR . o Greek 7| 493, 39.0 MZ 63.9 MPHen
_stramts in mfert_ance (as itd). Caplta_lllzatlon alone Hungarian 7| 537 | 48.0 MZ 48.1 MZR
increased parsing accuracy only slightly, from 45.0 |talian 7 || 505! 575 Mz 69.1 MPHpt
to 45.1%, on average. Using punctuation constraintsPortuguese 6| 72.4 | 432 MZ 76.9 Sy
instead led to more improved performance: 46.5%.§'°V39'ﬁ” 'g gg-g | gg-g ggﬁj gg-g I\'>|/|§I|\I_|R
. . . wedis! ’ . . . pt
_Corr_lblnlng_both types of_ cqnstra|(r)1ts again result(—:‘dTurkish 6| 344! 209 SAJ 613 RF,
in slightly higher accuracies: 46.7%. Table 5 breaks Median: 485 | 45.2 530
down our last average performance number by lan- Mean: 46.7 ' 45.2 57.2*
guage and shows the combined approach to be com-
petitive with state-of-the-art. We suspect that furthefable 5: Unsupervised parsing with both capitalization-

improvements could be attained by also incorpora@nd punctuation-induced constraints in inference, tested
ing both constraints in training and with full data. against the 14 held-out sets from 2006/7 CoNLL shared
tasks, and state-of-the-art results (all sentence lejfgths

systems that: (i) are also POS-agnostic and monolingual,
including SCAJ (Spitkovsky et al., 2011a, Tables 5-6)

Our discussion, thus far, has been English-centri@nd SAJ (Spitkovsky et al., 2011b); and (ii) rely on gold

Nevertheless, languages differ in how they use Cad?_OS—tag identities to (a) discourage noun roots (Marecek

talization (and even the rules governing a given larfind Zabokrtsky, 2011, MZ), (b) encourage verbs (Ra-

d h ) I ooli and Faili, 2012, RF), or (c) transfer delexicalized
guage tend to change over time — generally towar rsers (Sggaard, 2011a, S) from resource-rich languages

having fe_wer capitalized terms). For instancez ac_ijeq\-,ith parallel translations (McDonald et al., 2011, MPH).
tives derived from proper nouns are not capitalized

in French, German, Polish, Spanish or Swedish, uithe German particleon is not capitalized, although
like in English (see Table 113). And while English  the Dutchvanis, unless preceded by a given name or
forces capitalization of the first-person pronoun innitial — henceVan Gogh yet Vincent van Gogh
the nominative case,(see Table 1PRP), in Danish
it is the plural second-person pronoun (al¥dhat
is capitalized; further, formal pronouns (and theiiSince even related languages (e.g., Flemish, Dutch,
case-forms) are capitalized in Germa&ie@ndlhre, German and English) can have quite different con-
lhres..), Italian, Slovenian, Russian and Bulgarian. ventions regarding capitalization, one would not ex-
In contrast to pronouns, single-word proper nounpect the same simple strategy to be uniformly useful
— including personal names — are capitalized ir— or useful in the same way — across disparate lan-
nearly all European languages. Such shortest bragjdages. To get a better sense of how universal our
etings are not particularly useful for constrainingconstraints may be, we tabulated their accuracies for
sets of possible parse trees in grammar inductiothe full training sets of the CoNLL datafter all
however, compared to multi-word expressions; frongrammar induction experiments had been executed.
this perspective, German appears less helpful thanTable 6 shows that the less-strict capitalization-
most cased languages, because of houn compouiduced constraints all fall within narrow (yet high)
ing, despite prescribing capitalization of all nounsbands of accuracies of just a few percentage points:
Another problem with longer word-strings in many99-100% in the case dhread 98-100% fortear,
languages is that, e.g., in French (as in Englisi95-99% forsprawland 94-99% fotoose By con-
lower-case prepositions may be mixed in with contrast, the ranges for punctuation-induced constraints
tiguous groups of proper nouns: even in surnameare all at least 10%. We do not see anything partic-
19
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7.1 Constraint Accuracies Across Languages



CoNLL Year Total Training Capitalization-Induced Congtita Punctuation-Induced Constraints
& Language || Tokeng Sentenceq| thr-d | tear | spr-l| loose| stf. | strict || thr-d | tear | spr-l| loose| st | strict

Arabic 2006 52,752, 1,460 — — — — | — — [/ 89.6| 89.5] 81.9] 61.2] 29.7| 33.4
7 102,3751  2,912| — — — — | — — || 90.9 | 90.6| 83.1] 61.2 | 295 | 35.2
Basque 7 41,013: 3,190 — — — — | — — || 96.2| 95.7| 92.3] 81.9 428 | 50.6

Bulgarian '6 162,985, 12,823 99.8 | 99.5| 96.6| 96.4 51.8 | 81.0| 97.6| 97.2| 96.1 | 74.7 | 36.7 | 41.2
Catalan 7 380,5251 14,958 100 | 99.5| 95.0 | 94.6 | 158 | 57.9| 96.1| 955 94.4 73.736.0| 42.6
Chinese 6 337,162: 56,957 — | — | — — | — — — | =] = — | — —
7 337,175, 56,957 — — —_ — —_ —_ — —_ —_ —_ —_ —_

Czech '6 || 1,063,413 72,703 99.7 | 98.3| 96.2] 95.4 42.4| 68.0| 89.4 | 89.2| 87.7| 68.9| 37.2 | 41.7
7 368,624 : 25,364( 99.7 | 98.3| 96.1| 95.4 426 | 67.6| 89.5| 89.3] 87.8 69.337.4| 41.9
Danish 6 80,743, 5,190| 99.9 | 99.4| 98.3] 97.0 590 | 69.7 || 96.9| 96.9] 95.2 68.339.6| 40.9
Dutch '6 172,9581 13,349| 99.9 | 99.1| 98.4| 96.6 16.6 | 46.3 | 89.6| 89.5| 86.4 69.6 425 | 46.2
English 7 395,139: 18,577| 99.3 | 98.7 | 98.0| 96.0| 17.5| 24.8 || 91.5| 91.4| 90.6| 76.5 39.6 | 42.3
German 6 605,337, 39,216 99.6 | 98.0 | 96.7 | 96.4| 41.7 | 57.1| 94.5| 93.9] 90.7 71.137.2| 40.7
Greek 7 58,766! 2,7058| 99.9 | 99.3| 985 96.4 136 | 50.1 || 91.3| 91.0f 89.8 75.7 43.7| 47.0
Hungarian '7 111,464: 6,034 99.9 | 98.1| 95.7| 94.4 4656 | 62.0| 96.1| 94.00 89.0 77.1289| 32.6
Italian 7 60,653 3,110|| 99.9 | 99.6| 99.0 | 98.8 | 12.8 | 68.2 | 97.1| 96.8) 96.Q 77.8 44.7| 47.9
Japanese '6 133,927 17,044 — — — — — — 100 | 100 | 95.4 | 89.0 | 489 | 635
Portuguese '6 177,581r 9,071 100 | 99.0| 97.6| 97.0 14.4 | 37.7 | 96.0| 95.8/ 94.9 745403 | 45.0
Slovenian 6 23,779 1,534| 100 | 99.8 | 98.9| 98.9 | 52.0 | 84.7 || 93.3 | 93.3| 92.6| 72.1 42.7| 45.8
Spanish '6 78,068 3,306 — — — — — — 96.5| 96.0| 95.2| 754 33.4 | 409
Swedish 6 163,301: 11,042 99.8 | 99.6| 99.0f 97.0 24.7 | 58.4| 90.8| 90.4| 87.4 66.831.1| 33.9
Turkish 6 48,3731  4,997|| 100 | 99.8 | 96.2| 94.0 | 22.8 | 42.8| 99.8| 99.7] 95.1 76.937.7| 42.0
7 54,761 ' 5635| 100 | 99.9 | 96.1 | 94.2| 216 | 42.9| 99.8| 99.7| 94.6 76.7382]| 42.8

Max: 100 | 99.9| 99.0 98.9 59.0| 84.7| 100| 100| 96.1 89.0 48.9 | 63.5

Mean: 99.8 | 99.1| 97.4| 96.4 30.8 | 57.7 | 94.6| 94.2| 91.7 74.0 385 | 43.3

Min; 99.3 | 98.0| 95.0 94.0 12.8| 24.8| 89.4| 89.2] 819 61.2289| 32.6

Table 6: Accuracies for capitalization- and punctuatiodeiced constraints on all (full) 2006/7 CoNLL training sets

ularly special about Greek or Italian in these sumately after an initial step of constrained Viterbi EM
maries that could explain their substantial improveand supervised DBM parsers (trained on sentences
ments (18 and 11%, respectively — see Table 4yyith up to 45 words), for various languages in the
though Italian does appear to mesh best with theoNLL sets. Table 7 shows effects of capitalization
sprawlconstraint (not by much, closely followed byto be exceedingly mild, both if applied alone and in
Swedish). And English — the language from whichtandem with punctuation. Exploring better ways of
we drew our inspiration — barely improved withincorporating this informative resource — perhaps
capitalization-induced constraints (see Table 4) aramks soft features, rather than as hard constraints —
caused the lowest accuraciesiueadandstrict. and in combination with punctuation- and markup-
These outcomes are not entirely surprising: somaduced bracketings could be a fruitful direction.
best- and worst-performing results are due to noise,
since learning via non-convex optimization can bd-3 ©Oddsand Ends

chaotic: e.g., in the case of Greek, applying 113 cor@ur earlier analysis excluded sentence-initial words
straints to initial parse trees could have a significardecause their capitalization is, in a way, trivial. But
impact on the first grammar estimated in training —for completeness, we also tested constraints derived
and consequently also on a learner’s final, convergégebm this source, separately (see Tableirltials).
model instance. We expect the averages (i.e., means expected, the new constraints scored worse (de-
and medians) — computed over many data sets -spite many automatically-correct single-word frag-
to be more stable and meaningful than the OUt”erSments) except fostrict, whose binding constraints
over singletons drovaep accuracy. It turns out, most
first words in WSJ are leaves — possibly due to a
Next, we considered two settings that are less aflearth of imperatives (or just English’s determiners).
fected by training noise: grammar inducers immedi- We broadened our investigation of the “first leaf”
20
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CoNLL Year Evaluation Bracketings Unsupervised Training upedvised Parsing
& Language Tokeng Sents| capital., punct initf 1-step constraingd ndne capitgpunct. | both
Arabic 2006 || 5,215, 144§ — 101 184 206 — —t 59.8 -+ -+ —
'7 || 45371 130 —: 311} 19.0 23.4 — — 63.5 — — —
Basque 7 4,511: 334 — 541 174 2214 — — 58.4 +— +— —
Bulgarian '6 || 5,032, 398 44 552 19.4 28/9 284 -05 76.7 76.8 17878.2
Catalan 7| 4,478 167 24 398 180 2511 254 +(Q.3 7B.1 718.3 18.8.9 7
Chinese '6 5,012: 8671 —t — 235 27— — 83|7 -+ -+ —
'7 || 5,161, 690 —! —|| 19.4 250 — — 81. — — —
Czech 6 || 5,0001 365 4£§ 549 18.6 197 19.8 +0.1 649 64.8 67.09 66.
'7 || 4,029 : 286 571 466/ 18.d 21y — — 62.8 —+ —+ —
Danish 6| 4,978, 322 851 5900 19.6 2714 26.0 -3 719 72.0 14.2.3 74
Dutch '6 || 4989 386 28, 318, 18.Y 179 17.7 -Q{160.9 60.9 62.7) 62.8
English 7 4,386: 214 151 423 17.6 240 21.9-2.1| 65.2 65.6 68.5| 68.4
German 6| 4,886 357 13$ 528 16.4| 23.0| 23.7 +0.7|| 70.7 70.7 716 714
Greek 71 4,307! 197 47 374 171 17.1| 166 -05| 71.3 71.6 73.5 737
Hungarian '7 6,090: 390 2§ 898 17.1 185 18.6 +(.1 6[.3 67.2 8 69%9.6
Italian '7 || 4360, 249 71, 505, 18.6 325 | 342 +1.7 || 66.0 65.9 67.00 66.8
Japanese '§| 5,005 709 -+ D 26|5 368 — - 85.1 — — —
Portuguese '6 5,009 288 2|9 539 193 242 240 {0.BOS 80.5 81.6 | 816
Slovenian '6| 5,004 402 7 784 18.8 22/5 224 -0.1 675 67.4 10M@.9
Spanish  '6| 4,991 206 — 453 18.0 1913 — -} 69.5 +— +— —
Swedish '6 4,873: 389 14 41 202 3144 314 +0.0 749 14.9 1436 7
Turkish 6 || 6,2881 623 18, 683| 20.4 26.4| 26.7 +0.3|| 66.] 66.( 66.p 66.7
7 11/3,983' 300 4! 305|| 20.3 248 — — 67.8 — — —
Max: 20.4 325| 34.2 +1.7| 80.% 80.p 816 81.6
(aggregated as in Tables 4 and 5) Mean: 18.5 242 241 -0.1 70.1 70.p 718 71.8
Min: 16.4 17.1| 16.6 -2.1|] 60.9 60.9 627 62.8

Table 7: Unsupervised accuracies for uniform-at-randaojegtive parse trees (init), also after a step of Viterbi EM,
and supervised performance with induced constraints, 66/Z0CoNLL evaluation sets (sentences under 145 tokens).

phenomenon and found that in 16 of the 19 CoNLland Japanese). More generally, transitions between
languages first words are more likely to be leavedifferent fonts and scripts should be informative too.
than other words without dependents on the 4eft; )

last words, by contrast, areorelikely to take de- S Conclusion

pendents than expected. These propensities may Bfhography provides valuable syntactic cues. We
related to the functional tendency of languages tgnowed that bounding boxes signaled by capitaliza-
place old information before new (Ward and Birnery;,n, changes can help guide grammar induction and
2001) and could also help bias grammar induction.jy st unsupervised parsing performance. As with
Lastly, capitalization points to yet another class Ofnunctuation-delimited segments and tags from web
words: those with identical upper- and lower-casgyarkup, it is profitable to assume only that a single
forms. Their constraints too tend to be accurate (S§ford derives the rest, in such text fragments, without
Table 2:uncasedl but the underlying textis not par- frther restricting relations to external words — pos-
ticularly interesting. In WSJ, caseless multi-tokensip|y 5 useful feature for supervised parsing models.
fragments are almost exclusively percentages (€.9.,0ur results should be regarded with some cau-
the two tokens 0£0%), fractions (e.9.1 1/4) or both. - tion however, since improvements due to capitaliza-
Such boundaries could be useful in dealing with figion in grammar induction experiments came mainly
nancial data, as well as for breaking up text in lansom two languages, Greek and Italian. Further re-
guages without capitalization (e.g., Arabic, Chinesgearch is clearly needed to understand the ways that

“Arabic, Basque, Bulgarian, Catalan, Chinese, Danishc,apltallzatlon can continue to Improve parsing.

Dutch, English, German, Greek, Hungarian, Italian, Japane
Portuguese, Spanish, Swedish Czech, Slovenian, Turkish.
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