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Abstract 

This paper introduces a simulation-based 
framework for performing action selection 
and understanding for interactive agents. By 
simulating the objects and actions relevant to 
an interaction, an agent can semantically 
ground natural language and interact consid-
erately and on its own initiative in situated 
environments. The framework proposed in 
this paper leverages models of the environ-
ment, user and system to predict possible fu-
ture world states via simulation. It leverages 
understanding of spoken language and multi-
modal input to estimate the state of the ongo-
ing interaction and select actions based on the 
utility of future outcomes in the simulated 
world. In this paper we introduce this frame-
work and demonstrate its effectiveness for in-
car navigation. 

1 Introduction 

Speech and multimodal interactive systems have 
many challenges to overcome before they can ef-
fectively interact with users in the real world. The-
se challenges include semantically grounding 
vague and ambiguous natural language utterances, 
understanding the user’s knowledge and capabili-
ties, and acting on their own initiative to plan and 
take appropriate actions in complex environments. 
To overcome these challenges, interactive agents 
require more than just models of the environment, 
user goals, and attention, they need the ability to 
infer the consequences of both their and the users’ 
actions – a capability which simulation provides.   

For each given task, an agent must plan the best 
way to carry it out. In many cases, a simple set of 
context-dependent behavior templates will not be 
sufficient. For example, if an in-car navigation as-
sistant is trying to direct a driver to his destination, 

it should probably not give directions within the 
driver’s own neighborhood, with which he is al-
ready familiar. However, it should inform the driv-
er if there is road construction in the area of which 
he/she is unaware. Alternatively, if the driver is 
having an important conversation and the cost of 
the detour is outweighed by the cost of interrupting 
the conversation, perhaps the system should re-
main quiet. Understanding all the contexts that af-
fect interaction is difficult and defining a set of 
heuristics to choose the appropriate behavior will 
quickly become unmanageable. An agent in the 
real world will be faced with complicated situa-
tions that will require planning and an understand-
ing of the effects its actions will have.  

To capture the full context necessary to perform 
understanding and planning in situated interaction, 
this paper argues for a unified model of the envi-
ronment, the user’s knowledge, attention and 
goals, and the simulated consequences of different 
courses of action. 
 
2 Related Work 

Early work in deep natural language understand-
ing (Schank and Abelson, 1977; Wilensky, 1983) 
formed cognitive theories and developed software 
to reinforce the idea that understanding an agent’s 
words requires an understanding of that agent’s 
plans, goals, and planning mechanisms. Other 
work (Allen and Perrault, 1980) focused on identi-
fying these plans and goals from the partial infor-
mation available; interpreting speech acts as 
primitive actions in a STRIPS planner (Fikes and 
Nilsson, 1971), and using heuristics to determine 
an agent’s plan based on their speech acts. Traum 
(1994) adopted a similar definition of speech acts, 
and developed a computational theory of ground-
ing whereby multiple agents come to understand 
each other’s plans and meaning. 
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Figure 1: Overview of the proposed simulation-based understanding and action selection framework. 

 
Previous work on considerate mixed-initiative 

systems has placed an emphasis on modeling the 
user’s mental state, particularly attention and cog-
nitive loading. Horvitz et al. (2003) treat attention 
as critical to reasoning about the value of taking 
action and potentially disrupting users. Multiple 
modalities such as speech and gesture recognition, 
as well as mouse and keyboard behavior all con-
tribute to their models of attention. Their work also 
stressed the importance of attention cues in effec-
tive collaborative communication. Other work 
from the same author (Horvitz, 1999) probabilisti-
cally tracked a belief in the user’s goal based on 
attentional cues, specifically trying to determine if 
a behavior from the system was desired. This work 
all reinforces the idea that close attention to the 
user’s mental state must be paid to act considerate-
ly with mixed initiative, but never attempts to en-
dow a system with the ability to reason about the 
consequences of its actions. 

There are several existing paradigms for spoken 
dialogue systems. RavenClaw (Bohus and Rud-
nicky, 2009) uses a human-engineered task tree to 
guide the logic of an interaction, which allows for 
well-understood behavior, but does not permit the 
flexibility of planning needed for complex, dynam-
ic interaction. The collaborative agent framework, 
COLLAGEN (Rich and Sidner, 1996), specifies 
the data structures for recipes and attention models 
based off the SharedPlan collaborative discourse 
framework. The framework proposed by Allen and 
et al. (2002) is built on a collaborative discourse 
framework similar to SharedPlan, and is similar to 
our work in its situation theoretic world model and 
focus on user goal and plan modeling. However, to 
the best of our knowledge, these frameworks have 
never been successfully applied to a situated agent 
in a dynamic environment with many interacting 
objects and a wealth of multi-modal input as is 

available within an in-car assistant environment. It 
is in these situations that we believe our framework 
will demonstrate its applicability compared to prior 
approaches. 
 
3 A Simulation-based Framework for Un-

derstanding Situated Interaction1 

In this paper, we propose a framework in which 
an interactive agent leverages a model of the ongo-
ing situated interaction and simulations of possible 
future scenarios to perform understanding and de-
cision-making (Figure 1). The model supports 
complex inference about natural language as well 
as other modalities of input, and provides a suita-
ble environment for the system to evaluate possible 
courses of action. As an example, we evaluated the 
effectiveness of this framework for planning and 
interacting in an in-car navigation assistant.  
 
Simulated Interaction and Environment 
The system models its environment in terms of an 
object-oriented probabilistic model that allows for 
multiple simultaneous actions. It is assumed that 
the model is an incomplete view of the world, and 
there are objects that the model is unaware of. In-
cluded in this model is the set of primitive actions 
all the objects in the world can take, defined by 
their pre-conditions and post-conditions. Through 
simulation, the system can project the current 
world state forward in time in an attempt to predict 
possible futures. Within each simulated scenario, 
the system, user, and any number of other actors 
will interact. At each time step, every object selects 
a primitive action, which is applied to the world if 
its pre-conditions have been met.  
 

                                                             
1 An initial version of the simulator used in the work can be 
download from: http://speech.sv.cmu.edu/SimInteraction  
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Programs for Modeling High-Level Actions 
In order to make inferences about the long-term 
behavior of objects in the simulator, plans and 
high-level actions need a representation within the 
simulator. To do this, programs are defined for 
several realistic behaviors for each actor. These 
programs are a specific form of options (Sutton et 
al., 1999), which in the context of a Markov Deci-
sion Process are closed-loop policies for choosing 
action over an extended period of time. 

In the current implementation, programs are fi-
nite state machines, which are resumed at each 
time interval, changing state based on the actor’s 
internal state until a primitive action is selected.  
 
Modeling User Knowledge and Awareness 
An actor carrying out a program will choose a dif-
ferent sequence of actions depending on their in-
ternal mental state. That is why the world model 
must contain this information to make accurate 
predictions. In particular, a user’s knowledge and 
attention play critical roles in their decision-
making, and thus must be modeled.  

 
Tracking and Parsing 
The tracker maintains the current world model in-
cluding the set of objects that are relevant for 
simulation and estimated distributions over uncer-
tain variables such as the user’s mental state and 
the programs being run by all relevant objects. The 
tracker is responsible for initiating simulations to 
project the situation model into the future. The 
tracker also manages and interfaces to a set of 
mini-parsers which interpret input across multiple 
modalities in various ways. 

In the proposed framework, the tracker also uses 
information from the parsers to add new objects to 
the world model, and modify the parameters of the 
objects already in the model. Additional parsers 
can be spawned based on simulation results. For 
example, if a simulated scenario predicts the car 
running out of gas, the tracker might spawn a new 
parser to interpret the driver’s awareness of their 
gas level based on gaze. 
 
Utility Estimation and Action Selection 
The desirability of every simulated scenario is de-
termined by a utility score, defined by the system 
designer to maximize the system’s usefulness. The 
system includes itself and its own possible pro-
grams in each simulation it runs, and picks the 

Table 1: Description of three evaluation tasks. 
TaskID Task Description 

1 Destination is a business in downtown area, 
mostly a straight path as a warm-up task. 

2 Destination is a residence in Palo Alto, in-
sufficient gas to get to destination. 

3 Destination is a residence in Mountain 
View, retrace much of the path from Task 2. 

 
Table 2: Average number of system turns for base-
line and the proposed system. System turns include 
questions, notifications, and instructions. 

TaskID Novice Intermediate Expert 
1 7.0 7.0 3.0 
2 13.0 15.8 9.0 
3 12.0 12.8 9.0 

 
 
program that gives the best expected utility. 
 
4 Demonstration Example 

We demonstrate the effectiveness of the pro-
posed framework for an in-car navigation assistant. 
We tested this demonstration with ten test subjects 
each navigating through three the tasks listed in 
Table 1. The subjects navigated through Mountain 
View and Palo Alto, California in Google EarthTM 
while a supervisor observed their progress, entered 
it into the system and relayed messages between 
the subject and system. Some subjects had been in 
the area only a few times and some were current 
residents of Mountain View and neighboring cities. 
Based off the subjects’ initial self-assessment, the 
system was given one of three different starting 
familiarity map estimates - novice, medium, and 
expert. These initial estimates reflected our intui-
tive assessment of the likelihood that a driver 
would know major streets and neighborhoods. 

For users with different levels of familiarity we 
counted the number of system turns, which include 
questions, notifications, and instructions required 
to complete the task. These counts are shown in 
Table 2 show a decrease in the number of system 
turns across all tasks for users who were more fa-
miliar with the area. This is a direct result of the 
system’s ability to direct these users to waypoints 
they were familiar with along the route, saving un-
necessary directions. Example interactions ob-
tained from the experiments are shown in Figure 1. 
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Figure 2: Sample interactions from subjects with different starting familiarity estimates. 

 
5 Conclusions 

This paper introduces a simulation-based frame-
work for performing action selection and under-
standing in an interactive agent. The framework 
uses a simulator to predict possible future world 
states incorporating and updating models of the 
environment, user and system based on observed 
input. Understanding of spoken language and mul-
timodal input is performed leveraging the past, 
current and future world states in the simulator. 
Action selection is performed based on the utility 
of future world states and the expected user goal. 
In this paper we introduce this framework and 
demonstrate its effectiveness for in-car navigation. 

References  
James Allen, Nate Blaylock, George Ferguson 2002. A 

Problem Solving Model for Collaborative Agents. 
Proc. AAMAS. 

James F. Allen and C. Raymond Perrault. 1980. Analyz-
ing Intention in Utterances. Artificial Intelligence. 

Dan Bohus and Eric Horvitz. 2011. Multiparty Turn 
Taking in Situated Dialog: Study, Lessons, Direc-
tions Proc. SIGdial. 

 
 

 
Dan Bohus and Alexander I. Rudnicky. 2009. The 

RavenClaw Dialog Management Framework: Archi-
tecture and Systems. Computer Speech and Lan-
guage. 

Richard E. Fikes and Nils J. Nilsson 1971. STRIPS: A 
New Approach to the Application of Theorem Prov-
ing to Problem Solving. IJCAI. 

Eric Horvitz. 1999. Principles of Mixed-Initiative User 
Interfaces Proc. SIGCHI. 

Eric Horvitz, Carl Kadie, Tim Paek, David Hovel. 2003. 
Models of Attention in Computing and Communica-
tion: From Principles to Applications. Communica-
tions of ACM.  

Charles Rich and Candace L. Sidner 1996. 
COLLAGEN: When Agents Collaborate with Peo-
ple. Mitsubishi Electric Research Laboratories Inc. 

Roger Schank and Robert Abelson. 1977. Scripts Plans 
Goals and Understanding: an Inquiry into Human 
Knowledge Structures. Lawrence Erlbaum Associ-
ates, Inc., Publishers. 

Richard S. Sutton, Doina Precup, Satinder Singh. 1999. 
Between MDPs and semi-MDPs: A Framework for 
Temporal Abstraction in Reinforcement Learning. 
Artificial Intelligence. 

David R. Traum. 1994. A Computational Theory of 
Grounding in Natural Language Conversation Ph.D. 
Thesis 

Robert Wilensky. 1983. Planning and Understanding: A 
Computational Approach to Human Reasoning. The 
Addison-Wesley series in artificial intelligence. 

36


