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Preface

With a large and diverse Spoken Dialog research community that is characterized by its rapid progress
and innovation, the SDCTD 2012 workshop is designed to take the pulse of this community, underlining
its most advanced discoveries, charting its future directions and tracking its needs. The workshop
includes position papers from eminent researchers in the field on a variety of topics that can be grouped
under the following five topics:

• Knowledge Acquisition and Resource Creation

• Assessment

• New Technologies for Spoken Dialogue Systems

• Architectures

• Community Building

The spoken dialog research community has interests in specific topics such as belief tracking,
multimodal dialog, simulated users, dialog assessment, etc. This diversity of interests makes it difficult
to find common threads that can bind the community together. The workshop aims at discovering those
common threads. We can cite three types of existing common tools and data. One is data sharing.
Another is the Spoken Dialog Challenge, which enables many researchers to compare techniques on
a common task. Yet another is the use of a well-documented platform that can be used to teach new
researchers about spoken dialog architecture, thus enabling easier entry to our field.

The workshop will have the following structure:
In the morning, speakers will cover the main advances that have been made on each of the five topics
in the past five years and then point to specific promising areas of research. We will then have a poster
session, reviewing recent projects and tools. In the afternoon, Participants will split into breakout groups
on these topics and the groups will report back to all of the participants to attempt to define needs that are
common across topics and thus the most widespread in the community. The end of day reports will be
available from the workshop website: http://projects.ict.usc.edu/nld/SDCTD2012/

Maxine Eskenazi, Alan Black, David Traum, Workshop Chairs
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Heriberto Cuayáhuitl and Nina Dethlefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Statistical User Simulation for Spoken Dialogue Systems: What for, Which Data, Which Future?
Olivier Pietquin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

The Future of Spoken Dialogue Systems is in their Past: Long-Term Adaptive, Conversational Assistants
David Schlangen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Towards Situated Collaboration
Dan Bohus, Ece Kamar and Eric Horvitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Incremental Spoken Dialogue Systems: Tools and Data
Helen Hastie, Oliver Lemon and Nina Dethlefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

After Dialog Went Pervasive: Separating Dialog Behavior Modeling and Task Modeling
Amanda Stent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Future Directions in Spoken Dialog Systems: A Community of Possibilities
Alan W Black and Maxine Eskenazi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Bridging Gaps for Spoken Dialog System Frameworks in Instructional Settings
Gina-Anne Levow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A belief tracking challenge task for spoken dialog systems
Jason Williams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Framework for the Development of Spoken Dialogue System based on Collaboratively Constructed
Semantic Resources

Masahiro Araki and Daisuke Takegoshi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

The InproTK 2012 release
Timo Baumann and David Schlangen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



A Simulation-based Framework for Spoken Language Understanding and Action Selection in Situated
Interaction

David Cohen and Ian Lane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Mining Search Query Logs for Spoken Language Understanding
Dilek Hakkani-Tur, Gokhan Tur and Asli Celikyilmaz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

HRItk: The Human-Robot Interaction ToolKit Rapid Development of Speech-Centric Interactive Sys-
tems in ROS

Ian Lane, Vinay Prasad, Gaurav Sinha, Arlette Umuhoza, Shangyu Luo, Akshay Chandrashekaran
and Antoine Raux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

One Year of Contender: What Have We Learned about Assessing and Tuning Industrial Spoken Dialog
Systems?

David Suendermann and Roberto Pieraccini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Towards Quality-Adaptive Spoken Dialogue Management
Stefan Ultes, Alexander Schmitt and Wolfgang Minker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

viii



Workshop Program

Thursday, June 7, 2012

Position Papers

Knowledge Acquisition and resource creation

Up from Limited Dialog Systems!
Giuseppe Riccardi, Philipp Cimiano, Alexandros Potamianos and Christina Unger

Directions for Research on Spoken Dialog Systems, Broadly Defined
Nigel G. Ward

Assessment

Position Paper: Towards Standardized Metrics and Tools for Spoken and Multi-
modal Dialog System Evaluation
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Abstract

In the last two decades, information-seeking
spoken dialog systems (SDS) have moved
from research prototypes to real-life commer-
cial applications. Still, dialog systems are lim-
ited by the scale, complexity of the task and
coverage of knowledge required by problem-
solving machines or mobile personal assis-
tants. Future spoken interaction are required
to be multilingual, understand and act on large
scale knowledge bases in all its forms (from
structured to unstructured). The Web re-
search community have striven to build large
scale and open multilingual resources (e.g.
Wikipedia) and knowledge bases (e.g. Yago).
We argue that a) it is crucial to leverage
this massive amount of Web lightly structured
knowledge and b) the scale issue can be ad-
dressed collaboratively and design open stan-
dards to make tools and resources available to
the whole speech and language community.

1 Introduction

In the last two decades, interactive spoken dialog
systems (SDS) have moved from research proto-
types to real-life commercial applications (Tur and
De Mori, 2011). Generally, SDS are built for a
specific task (e.g. call routing) with ad-hoc lim-
ited knowledge base and for a predefined target lan-
guage. However, one major limitation in commer-
cial SDS prototyping is that they are not easily and
quickly extensible and portable to new domains or
languages. Such porting requirements range from
defining (or extending) a domain ontology to hand-
crafting a new grammar or training stochastic mod-

els for speech recognition and understanding. These
are the research and engineering goals motivating
the PortDial project whose objectives include the
engagement of the whole technical community. In
the PortDial project we would like to engage re-
searchers in building resources that may be gener-
ated via top-down processes (grammars), bottom-up
processes (statistical models) or via a fusion of both.
In this position paper we want to address the crit-
ical limitations of SDS systems: a) poor ability to
cover the knowledge space and its interface to the
SDS components (speech recognition, language un-
derstanding and dialog manager) and b) collabora-
tively design open standards to make tools and re-
sources available to the whole speech and language
community.

2 Exploiting top-down knowledge

There are at least three main kinds of structured
knowledge sources that SDS modules may ex-
ploit: ontologies, grammars, and lexica. Ontolo-
gies explicitly model background knowledge about
a certain domain. In the last years, many free
and open collaboratively created resources have
emerged, including large multi-lingual corpora such
as Wikipedia, and broad-coverage ontologies, e.g.
as part of the Linked Data Cloud (Bizer et al., 2009),
either created manually or extracted automatically
from existing data (such as DBpedia or Yago). How-
ever, while also lexica such as Wiktionary are avail-
able today on the Web, ontologies typically lack in-
formation about linguistic realization. For this rea-
son, ontologies available on the Web are not di-
rectly exploitable by dialog systems. Linguistic in-

1



formation is commonly captured in grammars, that
are either hand-crafted or created by means of ma-
chine learning techniques. In order to be able to
generate high-quality grammars with as little man-
ual effort as possible, we aim at (semi) automat-
ing the knowledge-based generation of lexica and
grammars. To achieve this, it is crucial to lever-
age Web resources for enriching ontologies with
lexical and linguistic information, i.e. informa-
tion about how ontological concepts are lexicalized
in different languages, capturing in particular lex-
ical and syntactic variation (Unger et al., 2010).
This knowledge-centered grammar generation pro-
cess may be merged with methods for automatically
inferring structure from lightly annotated corpus, in-
cluding data harvested from the Web, in a bottom-
up fashion (Tur and De Mori, 2011). For a dialog
system to be able to exploit ontologies, lexica and
grammars, these three resources need to be tightly
aligned, i.e. they need to share domain-relevant vo-
cabulary. For this alignment, we propose to build on
Semantic Web standards, mainly in order to support
the incorporation of already existing data, to share
resources for SDS engineering, and facilitate collab-
orative knowledge engineering. From a larger per-
spective, such an approach has the potential of cre-
ating SDS resources (ontologies, lexica and gram-
mars) that are strongly aligned with each other as
well as with other resources available on the Web,
thus fostering the creation of an eco-system of linked
resources that can be reused to facilitate the process
of engineering and porting a dialog system to new
domains and languages.

3 Collaboratively building and sharing
knowledge

Today the lack of reusable linguistic resources and
annotated data hinders the rapid development of
spoken dialog systems in industry and academia
alike. Despite progress in standardization of the
format of SDS grammars and semantic represen-
tations, the data proper has to be hand-crafted for
new applications and languages with little or no au-
tomation available. We argue above that language
engineering technology is now mature to help cre-
ate such linguistic resources automatically or semi-
automatically using data that is either harvested

from the web or via community crowdsourcing us-
ing the “collective wisdom of expert crowds”. Al-
though providing linguistic resources and tools for
cost-effective SDS development is important and
relevant, a data pool that is not openly sharable and
continuously enriched fails its purpose. It is thus im-
portant to guarantee the sustainability of the linguis-
tic SDS resources engineered via a community that
both uses and actively develops the data pool. To-
wards this end, we envision both a free and premium
data exchange targeting non-commercial users that
can maintain and enrich the free version of the data
pool, and commercial speech services developers
that can contribute to the premium data pool via
an electronic marketplace. This is the model we
are launching within the EC-funded PortDial project
and aiming at involving the research community at
large and existing communities for sharing linguistic
resources, such as METANET and METASHARE1.
We believe that the creation of sharable SDS data
and linguistic resources for both academic and com-
mercial use will lead to the democratization of spo-
ken dialog systems development, reduce the barrier
to entry for new developers, as well as lead to im-
proved technologies for authoring speech services.

References
C. Bizer, T. Heath, and T. Berners-Lee. 2009. Linked

data-the story so far. International Journal on Seman-
tic Web and Information Systems, 14:9.

G. Tur and R. De Mori, editors. 2011. Spoken Language
Understanding: Systems for Extracting Semantic In-
formation from Speech. Wiley.

Christina Unger, Felix Hieber, and Philipp Cimiano.
2010. Generating LTAG grammars from a lexicon-
ontology interface. In Srinivas Bangalore, Robert
Frank, and Maribel Romero, editors, Proceedings of
the 10th International Workshop on Tree Adjoining
Grammars and Related Formalisms (TAG+10), pages
61–68, 06/2010.

1http://www.meta-net.eu/meta-share
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Abstract

To increase impact and accelerate progress,
the spoken dialog systems research commu-
nity should work on four shareable things that
will also engage and support sister fields of
science and engineering.

1 To Reach Out to the VoiceXML
Community, a Commercial-Dialogs
Corpus

Although many people are frustrated with the com-
mercial dialog systems they use every day, spoken
dialog systems research has been only sporadically
relevant to these issues. Although service inter-
actions are pervasive in everyday life, and can be
rich and interesting, the vast majority of attempts
to model and engineer them have attempted to op-
timize efficiency and surface-goal completion. The
results are all around us, from crudely scripted up-
selling attempts at fast food restaurants to stilted di-
alog systems that tediously elicit the pieces of infor-
mation needed to complete a database query. One
reason is that the research community has come to
shun most practical dialog types, perhaps to avoid
seeming old-fashioned or being tainted by low ex-
pectations, or perhaps due to a misperception that
industry is addressing these issues. A resource that
would help progress here would be a commercial-
dialogs corpora that is shareable by all.

Personally, I would like this corpus to be one with
a truly exemplary person in the service role, some-
one who puts customers at ease, develops rapport,

∗This work was supported by NSF Award IIS-0914868.

brings humor and sparkle, and makes them want to
call back. Having several thousand short dialogs
where diverse customers call in to that person, and
modeling how she handles them, would take us a
long way to understanding responsive and adaptive
behaviors. Even prototype systems built on such di-
alogs could help set the agenda for future genera-
tions of commercial dialog systems.

2 To Reach Out to the Applied Linguistics
Communities, Dialog Analysis Tools

Although many people are fascinated by language
and dialog, spoken dialog systems research has only
sporadically tapped this enthusiasm. For example,
researchers in the conversation analysis tradition and
teachers of foreign languages, not to mention many
undergraduates, love to explore patterns of dialog.
However spoken dialog research so far has produced
scant findings about language behavior that are in-
teresting to and graspable by non-engineers.

Personally, I think the biggest opportunity here in-
volves tools to support non-technical people in dis-
covering things themselves. Even amateurs, such
as high school science fair participants, should be
able to satisfy curiosity or confirm hunches, and ex-
perience the joy of systematically examining dia-
log phenomena. Our community ought to be pro-
ducing tools and toolsets that support the complete
workflow in such inquiries, eclectically supporting
tagging, searching, juxtaposing clips and so on,
and supporting both perceptually-based analysis and
quantitative analysis in an integrated way. In par-
ticular we need to go beyond in-lab solutions (Ward
and Al Bayyari, 2006) to develop robust toolsets that
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can be used effectively without months of training.

3 To Reach Out to the Psycholinguistics
Community, Modeling-Related Goals

Although many people are curious about how com-
munication feats are achieved daily by human
minds, spoken dialog research has only sporadically
raised questions of real scientific interest. The spo-
ken dialog community ought to formulate one or two
high-profile grand-challenge problems that would
inspire and bring people together, either coopera-
tively or in competition. Rather than “dialog man-
agement” and systems-type problems, these should
be framed as “dialog modeling” problems, to make
it clear that they are true scientific problems, and
formulated so that they can be addressed more em-
pirically and/or more theoretically, without requir-
ing researchers to work with end-to-end systems.
Such purer formulations should also help focus on
questions of the fundamental human perceptions and
abilities involved here, and how they vary with age,
personality, language and culture.

Personally I think the most central and dialog-
specific issues in our field are those relating to inter-
personal coordination. Topics here have been nib-
bled at, perhaps most saliently in the study of turn-
taking phenomena. Possible grand challenges may
relate to topics such as “dialog dynamics” and “pre-
diction of the interlocutor’s actions,” but formulating
these problems so that they are general, and yet rel-
evant and tractable, has been difficult (Ward, 2010;
Ward et al., 2010).

4 To Reach Out to the Speech Processing
Community, More Open Models

First, although speech generation and speech synthe-
sis researchers are currently looking for new chal-
lenges, beyond correctness and intelligibilty, the di-
alog systems community has only sporadically of-
fered them interesting goals. These systems need
somehow to be able to express the richness of the
attitudes, structures, and intentions people convey in
dialog, in real time, and we ought to provide spec-
ifications for this. Personally I think that multi-
dimensional vector-space models of dialog states,
situations, and intentions have promise here, and
that these can best be developed by bottom-up em-

pirical studies (Ward and Vega, 2012 submitteda),
one of which suggests that the important dimensions
of dialog include, at least, in rough order of impor-
tance: who has the floor, the activity level, topic
aging and transition, turn taking, seeking vs. estab-
lishing grounding, empathy, and sympathy, lexical
access and planning processes, dominance, confi-
dence, affect and attitude, rhetorical structure and
strategy, and indications of concentration and in-
volvement.

Second, although research on emotion and other
nonverbal aspects of speech is advancing, this has
only sporadically been guided by the needs of dia-
log systems. We ought to be thinking more about
how emotion, attitude, stance, and related dimen-
sions of communication are used in dialog. Person-
ally I think that empirical studies of prosody, again,
can be informative.

Third, although speech recognition researchers
are adding flexibility and incrementality, speech rec-
ognizers’ interactions with the dialog manager are
still very limited. In particular, the role of the dialog
model in telling the recognizer what words are likely
to come next, that is, its role in language modeling,
is still underdeveloped. Personally I think we need
dialog models that track more aspects of the dialog,
and do so continuously, and supply that information
to the recognizer (Ward and Vega, 2012 submittedb).

References
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Abstract 

We argue that standardized metrics and auto-
matic evaluation tools are necessary for 
speeding up knowledge generation and devel-
opment processes for dialog systems. 

1 Introduction 

The Spoken Dialogue Challenge launched by 
CMU (Black et al., 2011) provides a common plat-
form for dialog researchers in order to test the per-
formance of their systems and components against 
the state-of-the-art. Still, evaluations are individual 
undertakings in most areas, as common metrics 
and procedures which would be applicable for a 
range of systems are sparse. In the following, it is 
argued that significant progress can be made if 
three prerequisites are available: 
 Common metrics for quantifying user and sys-

tem interaction behavior and perceived quality 
 Reliable models for predicting user judgments 

on the basis of automatically-extracted or an-
notated interaction metrics 

 Methods for realistically simulating user be-
havior in response to dialog systems 

The state-of-the-art and necessary research in these 
three areas is outlined in the following paragraphs. 
The Spoken Dialogue Challenge can contribute to 
validating such metrics and models. 

2 Common Metrics  

Whereas early assessment and evaluation cycles 

were based on ad-hoc selected metrics, approaches 
have been made to come up with a standard set of 
metrics for quantifying interactions between users 
and systems which would make evaluation exer-
cises comparable. The International Telecommuni-
cation Union (ITU-T) has standardized two sets of 
metrics: ITU-T Suppl. 24 to P-Series (2005) for 
spoken dialog systems, and ITU-T Suppl. 25 to P-
Series Rec. (2011) for multimodal dialog systems. 
These metrics describe system performance (e.g. in 
terms of error rates) and user/system interaction 
behavior (e.g. in terms of meta-communication 
acts, durations) in a quantitative way, and can thus 
serve as an input to the models discussed below. 
Input is welcome to stabilize these metrics, so that 
they are of more use to researchers and system de-
velopers. The proper conjunction between such 
metrics and standardized annotation schemes (e.g., 
Bunt et al., 2010) will strengthen the establishment 
and spreading of a specific set of metrics. 

When it comes to user-perceived quality, Hone 
and Graham (2000) have made a first attempt to 
come up with a validated questionnaire (SASSI), 
which, however, lacks a scale to assess speech out-
put quality. The approach has been put forward in 
ITU-T Rec. P.851 (2003) by including speech out-
put and dialog managing capabilities. A framework 
structure was preferred over a fixed (and validated) 
questionnaire, in order to more flexibly address the 
needs of researchers and developers. This approach 
still needs to be extended towards multimodal sys-
tems, where modality appropriateness, preference 
and perceived performance have to be considered. 
ITU-T welcomes contributions on this topic. 
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For practical usage, it is desirable to have evalu-
ation methods which provide diagnostic value to 
the system developer, so that the sources of misbe-
havior can be identified. The diagnosis can be 
based on perceptual dimensions (effectiveness, 
efficiency, mental effort, etc.) or on technical char-
acteristics (error rates, vocabulary coverage, etc.) 
or both. Approaches in this direction are welcome 
and would significantly increase the usefulness of 
evaluation exercises for the system developers. 

3 User-perceived Quality Prediction  

The first approach to predict user judgments on the 
basis of interaction metrics is the well-known 
PARADISE model (Walker et al., 1997). The main 
challenge to date is the low generalizability of such 
models. The reason is that many of the underlying 
input parameters are interdependent, and that a 
simple linear combination does not account for 
more complex relationships (e.g. there might be an 
optimum length for a dialog, which cannot be easi-
ly described by a purely linear model). 

However, other algorithms such as non-linear 
regression, classification trees or Markov models, 
have not shown a significantly improved perfor-
mance (Möller et al., 2008; Engelbrecht, 2011). 
The latter are however adequate to describe the 
evolution of user opinion during the dialog, and 
thus might have principled advantages over models 
which use aggregated interaction performance met-
rics as an input. 

4 User Behavior Simulation 

During system development, it would be useful to 
anticipate how users would interact with a dialog 
system. Reflected to the system developer, such 
anticipations help to identify usability problems 
already before real users interact with the system. 

Whereas user behavior simulation has frequently 
been used for training statistical dialog managers, 
only few approaches are documented which apply 
them to system evaluation. Early approaches main-
ly selected possible utterances from a set of col-
lected data. The MeMo workbench (Engelbrecht, 
2011) tried to combine statistical selection of prob-
able interaction paths with the knowledge of usa-
bility experts about what typically influences user 
behavior. Such knowledge can also be generated 
by a conversational analysis and categorization 

(Schmidt et al., 2010). 
A different approach has been followed in the 

SpeechEval project (Möller et al., 2009) where 
statistical dialog managers have been trained on a 
large diverse dataset to generate utterances on a 
conceptual level. The system is then amended with 
ASR and TTS to allow for a speech-based black-
box interaction with telephone-based dialog sys-
tems. Combined with diagnostic quality prediction 
models, such tools can support system developers 
to evaluate different dialog strategies early in the 
design cycle and at low costs, and thus avoid dis-
satisfied users. The approach still has to be extend-
ed towards multimodal dialog systems. 
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Abstract

We discuss a change of perspective for train-
ing dialogue systems, which requires a shift
from traditional empirical methods to online
learning methods. We motivate the applica-
tion of online learning, which provides the
benefit of improving the system’s behaviour
continuously often after each turn or dialogue
rather than after hundreds of dialogues. We
describe the requirements and advances for di-
alogue systems with online learning, and spec-
ulate on the future of these kinds of systems.

1 Motivation

Important progress has been made in empirical
methods for training spoken or multimodal dialogue
systems over the last decade. Nevertheless, a differ-
ent perspective has to be embraced if we want dia-
logue systems to learn on the spot while interacting
with real users. Typically, empirical methods op-
erate cyclically as follows: collect data, provide the
corresponding annotations, train a statistical or other
machine learning model, evaluate the performance
of the learned model, and if satisfactory, deploy the
trained model in a working system. The disadvan-
tage of this approach is that while data is still be-
ing collected subsequent to deployment, the system
does not optimize its behaviour anymore (cf. step-
wise learning, the solid blue line in Fig. 1). In con-
trast, dialogue systems with online learning tackle
this limitation by learning a machine learning model

∗This research was funded by the EC’s FP7 programmes
under grant agreement no. ICT-248116 (ALIZ-E) and under
grant agreement no. 287615 (PARLANCE).
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Figure 1: Learning approaches for dialogue systems.
Whilst offline learning aims for discontinuous learning,
online learning aims for continuous learning while inter-
acting with users in a real environment.

continuously often from unlabeled or minimally la-
beled data (cf. dotted red line in Fig. 1). So whilst
empirical methods train models after hundreds of di-
alogues, online learning methods refine the system
models after each user turn or each dialogue. In the
rest of the paper we discuss the requirements, ad-
vances and potential future of these kind of systems.

2 Online Learning Systems: Requirements

Several requirements arise for the development of
successful online learning systems. First of all, they
need to employ methods that arescalablefor real-
world systems and the modelling of knowledge in
sufficient detail. Second,efficient learning is a pre-
requisite for learning from an ongoing interaction
without causing hesitations or pauses for the user.
Third, learnt models should satisfy astability crite-
rion that guarantees that the learning agent’s perfor-
mance does not deteriorate over time, e.g. over the
course of a number of interactions, due to the newly
accumulated knowledge and behaviours. Fourth,
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systems should employ aknowledge transfer ap-
proach in which they master new tasks they are con-
fronted with over their life span by transferring gen-
eral knowledge gathered in previous tasks. Fifth, on-
line learning sytems should adopt alifelong learn-
ing approach, arguably without stopping learning.
This implies making use of large data sets, which
can be unlabeled or partially labeled due to the costs
that they imply. Finally, in the limit of updating the
learned models after every user turn, the online and
offline learning methods could be the same as long
as they meet the first three requirements above.

3 Online Learning Systems: Advances

Several authors have recognised the potential bene-
fits of online learning methods in previous work.

Thrun (1994) presents a robot for lifelong learn-
ing that learns to navigate in an unknown office en-
vironment by suggesting to transfer general purpose
knowledge across tasks. Bohus et al. (2006) de-
scribe a spoken dialogue system that learns to op-
timise its non-understanding recovery strategies on-
line through interactions with human users based on
pre-trained logistic regression models. Cuayáhuitl
and Dethlefs (2011) present a dialogue system in the
navigation domain that is based on hierarchical rein-
forcement learning and Bayesian Networks and re-
learns its behaviour after each user turn, using indi-
rect feedback from the user’s performance. Gašić et
al. (2011) present a spoken dialogue system based
on Gaussian Process-based Reinforcement Learn-
ing. It learns directly from binary feedback that
users assign explicitly as rewards at the end of each
dialogue and that indicate whether users were happy
or unhappy with the system’s performance. From
these previous investigations, we can observe that
online learning systems can take both explicit and/or
implicit feedback to refine their trained models.

4 Online Learning Systems: Future

While previous work has made important steps, the
problem of lifelong learning for spoken dialogue
systems is far from solved. Especially the follow-
ing challenges will need to receive attention: (a) fast
learning algorithms that can retrain behaviours after
each user turn with stable performance; and (b) scal-
able methods for optimizing multitasked behaviours

at different levels and modalities of communication.
In addition, we envision online learning systems

with the capability of transfering knowledge across
systems and domains. For example: a dialogue act
classifier, an interaction strategy, or a generation
strategy can be made transferable to similar tasks.
This could involve reasoning mechanisms to infer
what is known/unknown based on past experiences.
The idea of learning from scratch every time a new
system is constructed will thus be avoided. In this
regard, the role of the system developer in these
kinds of systems is not only to specify the system’s
tasks and learning environment, but to constrain and
bootstrap the system behaviour for faster learning.
All of these capabilities will be possible using on-
line learning with a lifelong learning perspective.

5 Tools and Data

Currently there are software tools for training mod-
els but they are more suitable for offline learning.1

Software tools for online learning remain to be de-
veloped and shared with the community. In addi-
tion, since building a dialogue system typically re-
quires a tremendous amount of effort, researchers
working on learning approaches should agree on
standards to facilitate system development. Finally,
since dialogue data is an often lacking resource in
the community, the online learning perspective may
contribute towards reducing the typical chicken and
egg problem, due to dialogue knowledge being more
readily transferable across domains, subject to on-
line adaption towards particular domains.
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Abstract

There has been a lot of interest for user sim-
ulation in the field of spoken dialogue sys-
tems during the last decades. User simulation
was first proposed to assess the performance
of SDS before a public release. Since the late
90’s, user simulation is also used for dialogue
management optimisation. In this position pa-
per, we focus on statistical methods for user
simulation, their main advantages and draw-
backs. We initiate a reflection about the util-
ity of such methods and give some insights of
what their future should be.

1 Introduction

User simulation for Spoken Dialogue Systems
(SDS) aims at generating artificial interactions sup-
posed to be representative of what would be an ac-
tual dialogue between a human user and a given
dialogue system. User simulation is thus different
from user modeling which is often included into the
systems to infer user goals from observable clues
(user’s utterances, intonations etc.) (Zukerman and
Albrecht, 2001). In this paper we focus on statistical
methods for user simulation, that is methods purely
based on data and statistical models and not cogni-
tive models. Also, we only address user simulations
working at the intention level, that is generating dia-
log acts and not speech or natural language (Schatz-
mann et al., 2006). User modeling, used to infer user
intentions in dialogue systems is not addressed.

∗This work as been partially funded by the INTERREG IVa
project ALLEGRO and the Région Lorraine

The aim of user simulation was initially to as-
sess the performance of a SDS before a public re-
lease (Eckert et al., 1997). Given a performance
metric and a simulation method, the natural idea of
automatically optimizing SDS (using reinforcement
learning RL) appeared in the literature in the late
90’s (Levin et al., 2000).

2 Is user simulation useful?

Initially, SDS optimisation required a lot of data be-
cause of inefficiency of RL algorithms, justifying
the use of simulation. In recent years, sample effi-
cient RL methods were applied to SDS optimization.
This allows learning optimal dialogue strategies di-
rectly from batches of data collected between sub-
optimal systems and actual users (Li et al., 2009;
Pietquin et al., 2011b) but also from online interac-
tions (Pietquin et al., 2011a; Gasic et al., 2011). Do
we have to conclude that user simulation is useless?

3 Do we need to train models?

It is commonly admitted that learning parameters of
user simulation models is hard because most of vari-
ables are hidden (user goal, mental states etc.) and
tricky to annotate. This is why current user simula-
tors are trainable but rarely trained (Pietquin, 2006;
Schatzmann et al., 2007). Do we really need to train
user simulation models? If so, which data and anno-
tation schemes do we need?

4 Does simulation reach the target?

User simulation aims at reproducing plausible inter-
actions but in contexts that were not seen in the data
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collected to train the model. It is generally hard to
assess the quality of such models. Especially, it is
hard to find a single metric to assess user simulation
performances (Pietquin and Hastie, 2011). Also, it
has been shown that user simulation affects a lot the
result of SDS strategy optimisation (Schatzmann et
al., 2005). What should be assessed? Statistical
consistency, ability to generalize, ability to generate
sequences of interactions similar to real dialogues,
ability to produce optimal strategies by RL? If one
wants to learn an optimal simulation model, there is
a need for a single optimality criterion.

5 What’s the future of user simulation for
SDS?

Whatever the use one wants to make of user simula-
tion (learning or assessment for SDS), the future of
this research field relies probably on a redefinition of
the role of user simulation. So far, user simulation
is seen as a generative systems, generating dialog
acts according to the context. Current user simula-
tion models are therefore based on a large amount of
conditional probabilities which are hard to learn, and
the training (if there is one) requires a lot of prior
knowledge, the introduction of smoothing parame-
ters etc.

We believe that user simulation should be rede-
fined as a sequential decision making problem in
which a user tries to reach a goal in a natural and ef-
ficient way, helped by an artificial agent (the SDS).
One major difference between this vision and the
common probabilistic one is that it takes into ac-
count the fact that human users adapt their behav-
ior to the performances and the strategy of the SDS.
This can be called “co-adaptation” between human
users and artificial systems and justifies that user
simulation should still be studied.

Recently, user simulation models based on inverse
reinforcement learning have been proposed (Chan-
dramohan et al., 2011). In this framework, a user
is modeled as optimizing it’s behavior according
to some unknown reward which is inferred from
recorded data. This might be an answer to the co-
adaptation problem. Yet, is user simulation still use-
ful in this framework? Knowing the reward of the
user, do we still need simulation or is it possible to
compute directly an optimal dialogue strategy?
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Abstract

A sketch of dialogue systems as long-term
adaptive, conversational agents.

1 Introduction

“Show me the lecture notes from last year”, you say
to your bow-tied virtual assistant. It does, but un-
fortunately, “this will not do. Pull up all the new
articles I haven’t read yet”. Your assistant obliges,
pointing your attention to a “new article from your
friend, Jill Gilbert”. A video call later, your lec-
ture preparation is done—Jill will actually give it,
via video link—and you go on with your day.

This of course describes the first scene from Ap-
ple’s “Knowledge Navigator” concept video (Apple
Computer Inc., 1987; Colligan, 2011). Not much
of what that video showed was actually technically
possible at the time, but it captured the promise of
personalized natural language interfaces that many
people saw and hoped would be realised soon. Hav-
ing to deal with the constraints of reality, however,
research and development of spoken dialogue inter-
faces had to set itself the more modest aim of replac-
ing, in certain settings, mouse and keyboard, rather
than personal assistants.

Recent years have seen two developments that
bring that more ambitious goal back into focus.
First, the required basic technologies such as speech
recognition and speech synthesis have matured to a
state where they begin to allow the necessary flexi-
bility of spoken in- and output. Second, it has be-
come not only possible but completely unremark-
able for large portion of the population to carry with

them sensor-rich, networked computing devices—
their smartphones—during large parts of their day.

In this position paper, I’d like to sketch what
the opportunities are that this situation offers, for
the creation of dialogue systems that are long-term
adaptive and conversational, and act as assistants,
not interfaces.

2 Long-Term Adaptive ...

The fact that users carry with them the same device
(or class of devices; it only matters that access is
constant), provides the chance of repeated interac-
tions with what is understood to be the same system.
To make use of this, the system must
• learn from errors / miscommunications, by im-

proving internal models (acoustic model, language
model, semantic models: how are tasks structured
for particular user); and it must
• build up personal common ground:

– What has been refered to previously, and how?
Which tasks have been done together, and how?
– Which situations have been shared? (Where a
multi-sensor device can have detailed situational in-
formation.)
While the first point mostly describes current prac-
tice (user adaptation of speech resources), there is
much to be explored in the building up of common
ground with a technical device.

3 ... Conversational ...

Interaction with these systems must be less driven by
fixed system-intiative, and be more conversational:
• User and system must be able to mean more

than they say, by making use of context, both from
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the ongoing conversation as well as from the com-
mon ground that was built up over previous interac-
tion.
• Systems should be responsive, incremental,

providing feedback where required; realising a tight
interaction loop, not strict turn-based exchanges.

• Things will go wrong, so error handling needs
to be graceful and natural, using the full range
of conversational repair devices (Schlangen, 2004;
Purver, 2004); including handing off tasks to other
modalities if expected success rate is low.

• Conversations express and project personality,
emotionality, sociality; systems need to model the
dynamics of this as part of their modelling of the
conversation.
Again, these are active areas of research (for re-
sponsive systems, see e.g. (Skantze and Schlangen,
2009; Buß et al., 2010; Schlangen et al., 2010); for
error handling / acting under uncertainty, see e.g.
(Williams and Young, 2007); for social aspects of
dialogue, see e.g. (Kopp, 2010)); pulling them to-
gether in this kind of application will likely provide
new challenges and insights for all of them.

4 ... Assistants

Of course, the systems will need to provide actual
services, for it at all to come to repeated conversa-
tions. While providing the services lies outside the
domain of speech research, there are some unique
requirements that conversational access poses:

• To be usefully embeddable into conversational
systems, back-end applications are needed that are
interaction-ready; e.g., by providing confindence in-
formation about their results, and, building on this,
by suggesting ways to improve quality through ad-
ditional information.

• Not all back-end services are under the control
of the application developer or provide APIs, and the
semantic web is not going to happen. The reach of a
virtual assistant can be increased if it can be taught
to do tasks like use a website to book a train. Some
promising first work in this direction exists (Allen et
al., 2007).

5 Resources

Building dialogue systems is always hard, as many
different components need to be integrated. Systems

as sketched above bring the additional challenge of
requiring work on mobile platforms; a framework
that provides the required interfaces and infrastruc-
ture would be very helpful.
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Abstract 

We outline a set of key challenges for dialog 

management in physically situated interactive 

systems, and propose a core shift in perspec-

tive that places spoken dialog in the context of 

the larger collaborative challenge of managing 

parallel, coordinated actions in the open 

world.  

Multiple models for dialog management have been 

proposed, studied, and evaluated in the research 

community (i.a. Allen et al, 2001; Bohus and Rud-

nicky, 2009; Rich and Sidner, 1998; Traum and 

Larsson, 2003; Williams and Young, 2007). In the 

process, a diverse set of problems have come to 

light and have been pursued. These include the 

challenges of modeling initiative in interaction, 

contextual interpretation and processing, the man-

agement of uncertainty, grounding, error handling 

and recovery, turn-taking and, more recently, in-

cremental processing in dialog systems. Analyses 

of existing approaches (Allen et. al, 2001; Church-

er et. al, 1997; McTear 2002; Paek and Pieraccini, 

2008) reveal a constellation of benefits but also 

shortcomings along multiple dimensions, where no 

single technique provides the benefits of all. 

While taking incremental, focused steps is im-

portant for making progress within a mature disci-

pline, we believe that the current scope and 

conceptual borders of work in spoken dialog con-

strains thinking about possibilities and gets in the 

way of achieving breakthrough advances. Research 

to date on dialog management has focused almost 

exclusively on dyadic settings, where a single user 

interacts with a system over a relatively narrow, 

speech-only channel. Characteristics of this domi-

nant and shared worldview on dialog research have 

driven modeling and architectural choices, and of-

ten done so in an implicit, hidden manner. For in-

stance, dialog is often viewed as a collection of 

dialog moves that are timed in a relatively well-

structured, sequential fashion. As a consequence, 

dialog management models typically operate on a 

“per-turn” basis: inputs are assumed to arrive se-

quentially and are processed one at a time; for each 

received input, discourse understanding is per-

formed, and a corresponding response is generated.  

In reality, interactions among actors situated in 

the open, physical world depart deeply from com-

mon assumptions made in spoken dialog research 

and bring into focus an array of important, new 

challenges (Horvitz, 2007; Bohus and Horvitz, 

2010; Bohus, Horvitz, Kanda et al., eds., 2010).  

We describe some of the challenges with respect to 

dialog management, and re-frame this problem as 

an instance of the larger collaborative challenge of 

managing parallel, coordinated actions amidst a 

dynamically changing physical world.  

As an example, consider a robot that has been 

given the responsibility of greeting, interacting, 

and escorting visitors in a building. In this setting, 

reasoning about the actors, objects and events and 

relationships in the scene can play a critical role in 

understanding and organizing the interactions. The 

surrounding environment provides rich, continu-

ously streaming situational context that is relevant 

for determining the best way an agent might con-

tribute to interactions. Because the situational con-

text can evolve asynchronously with respect to 

turns in the conversation, systems that operate in 

the open world must be able to plan continuously, 
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in stream, rather than on a “per-turn” basis. Inter-

action and collaboration in these settings is best 

viewed as a flow of coordinated, parallel actions. 

The sequential structure of turns in dyadic interac-

tions is but one example of such coordination, fo-

cused solely on linguistic actions. However, to 

successfully interact and collaborate with multiple 

participants in physically situated settings, an agent 

must be able to recognize, plan, and produce both 

linguistic and non-linguistic actions, and reason 

about potentially complex patterns of coordination 

between actions, in-stream—as they are being pro-

duced by the participants in the collaboration. 

We argue that attaining the dream of fluid, 

seamless spoken language interaction with ma-

chines requires a fundamental shift in how we view 

dialog management. First, we need to move from 

per-turn to continual in-stream planning. Second, 

we need to move from reasoning about sequential 

actions to reasoning about parallel and coordinat-

ed actions and their influence on states in the 

world. And third, we need models that can track 

and leverage the streaming situational context, 

from noisy observations, to make decisions about 

how to best contribute to collaborations.  

Spoken dialog is an important channel for ex-

pressing coordinative information. However, we 

need to recognize and begin to tackle head on the 

larger challenge of situated collaborative activity 

management.  We understand that taking this per-

spective introduces new complexities—and that 

some of our colleagues will view diving into the 

larger problems in advance of solving simpler ones 

as being unwise. However, we believe that we 

must embrace the larger goals to make significant 

progress on the struggles with the simpler ones, 

and that the investment in solving challenges with 

physically situated collaboration will have eventual 

payoffs in enabling progress in spoken dialog.   

Making progress on the broader challenge re-

quires technical innovations, tools, and data. Con-

sider for instance one sub-problem of belief 

tracking in these systems: continuously updating 

beliefs over the state of the collaborative activity 

and the situational context requires the develop-

ment of new types of models that can combine 

streaming evidence about context collected 

through sensors, with discrete evidence about the 

actions performed or the turns spoken collected 

through speech, gesture or other action-recognition 

components. In addition, progress hinges on identi-

fying a set of relevant problem domains, and coor-

dinating efforts in the community to collect data, 

and comparatively evaluate proposed approaches. 

New tools geared towards analysis, visualization 

and debugging with streaming multimodal data are 

also required.   

We propose a core shift of perspective and as-

sociated research agenda for moving from dialog 

management to situated collaborative activity 

management. We invite discussion on these ideas.  
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Abstract

Strict-turn taking models of dialogue do not
accurately model human incremental process-
ing, where users can process partial input and
plan partial utterances in parallel. We discuss
the current state of the art in incremental sys-
tems and propose tools and data required for
further advances in the field of Incremental
Spoken Dialogue Systems.

1 Incremental Spoken Dialogue Systems

For Spoken Dialogue Systems (SDS) to be more fre-
quently adopted, advances in the state-of-the-art are
necessary to enable highly responsive and conversa-
tional systems. Traditionally, the unit of speech has
been a whole utterance with strict, rigid turn-taking
determined by a voice-activity detector. However,
a large body of psycholinguistic literature indicates
that human-human interaction is in fact incremen-
tal (Tanenhaus and Brown-Schmidt, 2008; Levelt,
1989). Using a whole utterance as the unit of choice
makes dialogues longer, unnatural and stilted and ul-
timately interferes with a user’s ability to focus on
their goal (Allen et al., 2001).

A new generation of Incremental SDS (ISDS) are
being developed that deal with ‘micro-turns’ (sub-
utterance processing units) resulting in dialogues
that are more fluid and responsive. Recent work
has shown that processing smaller ‘chunks’ of input
and output can improve the user experience (Aist et
al., 2007; Skantze and Schlangen, 2009; Buss et al.,
2010; Baumann et al., 2011; Selfridge et al., 2011).
Incrementality enables the system designer to model

several dialogue phenomena that play a vital role
in human discourse (Levelt, 1989) but have so far
been absent from systems. These include more
natural turn-taking through rapid system responses,
grounding through the generation of backchannels
and feedback, and barge-ins (from both user and sys-
tem). In addition, corrections and self-corrections
through constant monitoring of user and system ut-
terances play an important role, enabling the system
to recover smoothly from a recognition error or a
change in user’s preferences. Some examples of the
phenomena we are targeting are given in Figure 1.

Parlance, a FP7 EC project1, is currently develop-
ing incremental systems for English and Mandarin.
The goal of Parlance is to develop mobile, interac-
tive, ‘hyper-local’ search through speech. Recent
trends in Information Retrieval are towards incre-
mental, interactive search. Spoken dialogue systems
can provide a truly natural medium for this type of
search, in particular for people on the move.

2 Tools and Data

The emphasis of the Parlance project is on data-
driven techniques for ISDS, thereby addressing the
problem of a lack of data for system develop-
ment. Although incremental dialogue phenomena
described in Figure 1 have been observed in human-
human dialogue, more task-based data is needed. It
is challenging to fabricate a situation where users
produce incremental discourse phenomena as in Fig-
ure 1 frequently and in a natural manner. Wizard-

1http://www.parlance-project.eu
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Backchannels (when the user pauses)
USR I want Italian food [500 ms] in the centre of town . . .
SYS uh-huh
SYS OK. I found 24 Italian restaurants in the city centre. The
restaurantRoma is in the medium price range,. . .

Self-correction (the system made a mistake)
USR I want Italian food in the centre of town . . .
SYS OK. I found 35 Indian restaurants . . .
USR No, I want Italian.
SYS oh sorry . . .
SYS I have 24 Italian restaurants in the city centre . . .

Holding the floor
USR I want cheap Italian food . . .
SYS ok let me see
SYS I have 3 cheap Italian places . . .

Figure 1: Incremental phenomena observed in human-
human dialogue that systems should be able to model.

of-Oz experiments can be used to collect data from
the system side, but user-initiated phenomena, such
as the user changing his/her mind are more difficult
to instigate. Therefore, data collections of naturally
occurring incremental phenomena in human-human
settings will be essential for further development of
incremental systems. Such data can inform user sim-
ulations which provide means of training stochastic
SDS with less initial data and can compensate for
data sparsity. For example, in Dethlefs et al. (2012)
the user simulation can change its mind and react to
different NLG strategies such as giving information
with partial input or waiting for complete input from
the user. Both the academic community and industry
would benefit from open access data, such as will be
collected in the Parlance project and made available
to the dialogue community2. There would also need
to be a clear path from academic research on ISDS
to industry standards such as VoiceXML to facilitate
adoption.

Various components and techniques of ISDS are
needed to handle ‘micro-turns’. Challenges here
include recognizing and understanding partial user
input and back-channels; micro-turn dialogue man-
agement that can decide when to back-channel, self-
correct and hold-the-floor; incremental NLG that
can generate output while the user is still talking;

2As was done for CLASSiC project data at:
http://www.macs.hw.ac.uk/iLabArchive/CLASSiCProject/Data/login.php

and finally more flexible TTS that can handle barge-
in and understand when it has been interrupted.

In summary, in order to achieve highly natural,
responsive incremental systems, we propose using
data-driven techniques, for which the main issue is
lack of data. Carefully crafted task-based human-
human data collection and WoZ studies, user simu-
lations, shared data archives, and upgraded industry
standards are required for future work in this field.

Acknowledgments

The research leading to this work has received fund-
ing from the EC’s FP7 programme: (FP7/2011-14)
under grant agreement no. 287615 (PARLANCE).

References

Gregory Aist, James Allen, Ellen Campana, Lucian
Galescu, Carlos Gomez Gallo, Scott Stoness, Mary
Swift, and Michael Tanenhaus. 2007. Software ar-
chitectures for incremental understanding of human
speech. InProceedings of SemDial / DECALOG.

James Allen, George Ferguson, and Amanda Stent. 2001.
An Architecture For More Realistic Conversational
Systems. InProc. of Intelligent User Interfaces.

Timo Baumann, Okko Buss, and David Schlangen. 2011.
Evaluation and Optimisation of Incremental Proces-
sors.Dialogue and Discourse, 2(1).

Okko Buss, Timo Baumann, and David Schlangen. 2010.
Collaborating on Utterances with a Spoken Dialogue
Systen Using an ISU-based Approach to Incremental
Dialogue Management. InProc. of SIGDIAL.

Nina Dethlefs, Helen Hastie, Verena Rieser, and Oliver
Lemon. 2012. Optimising Incremental Generation
for Spoken Dialogue Systems: Reducing the Need for
Fillers. InProc of INLG, Chicago, Illinois, USA.

Willem Levelt. 1989.Speaking: From Intenion to Artic-
ulation. MIT Press.

Ethan Selfridge, Iker Arizmendi, Peter Heeman, and Ja-
son Williams. 2011. Stability and Accuracy in Incre-
mental Speech Recognition. InProc. of SigDial.

Gabriel Skantze and David Schlangen. 2009. Incremen-
tal Dialogue Processing in a Micro-Domain. InProc.
of EACL, Athens, Greece.

M.K. Tanenhaus and S. Brown-Schmidt. 2008. Lan-
guage processing in the natural world. In B.C.M
Moore, L.K. Tyler, and W.D. Marslen-Wilson, edi-
tors,The perception of speech: from sound to meaning,
pages 1105–1122.

16



NAACL-HLT 2012 Workshop on Future directions and needs in the Spoken Dialog Community: Tools and Data, pages 17–18,
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Dialog Goes Pervasive Until recently, many dialog
systems were information retrieval systems. For ex-
ample, using a telephone-based interactive response
system a US-based user can find flights from United
(1-800-UNITED-1), get movie schedules (1-800-
777-FILM), or get bus information (Black et al.,
2011). These systems save companies money and
help users access information 24/7. However, the
interaction between user and system is tightly con-
strained. For the most part, each system only deals
with one domain, so the task models are typically
flat slot-filling models (Allen et al., 2001b). Also,
the dialogs are very structured, with system initia-
tive and short user responses, giving limited scope
to study important phenomena such as coreference.

Smart phones and other mobile devices make
possible pervasive human-computer spoken dialog.
For example, the Vlingo system lets users do web
searches (information retrieval), but also connects
calls, opens other apps, and permits voice dictation
of emails or social media updates1. Siri can also help
users make reservations and schedule meetings2.

These new dialog systems are different from tra-
ditional ones in several ways; they are multi-task,
asynchronous, can involve rich context modeling,
and have side effects in the “real world”:
Multi-task – The system interacts with the user to
accomplish a series of (possibly related) tasks. For
example, a user might use the system to order a book
and then say schedule it for book club - a different
task (e.g. requiring different backend DB lookups)
but related to the previous one by the book informa-

1www.vlingo.com
2http://www.apple.com/iphone/features/siri.html

tion. Multi-task interaction increases the difficulty
of interpretation and task inference, and so requires
new kinds of dialog model (e.g. (Lison, 2011)).
Asynchronous – the user may give the system a com-
mand (e.g. Add Hunger Games with Mary for 3 pm),
and the system may follow up on that command an
hour later, after considerable intervening dialog (e.g.
Mary texted you about the Hunger Games). Because
the dialog is multi-task, it is more free-flowing, with
less clear start and end points but more opportunities
for adaptation and personalization.
Rich context modeling – Mobile devices come
with numerous sensors useful for collecting non-
linguistic context (e.g. GPS, camera, web browser
actions), while the semi-continuous nature of the in-
teraction permits collection of rich linguistic con-
text. So far, dialog systems have used this context
only in limited ways (e.g. speech recognizer per-
sonalization). However, the opportunities for mod-
eling human interaction behavior, including multi-
modal interaction, are tremendous.
Side effects “in the real world” – the system (with
input from the user) can cause changes in the state
of the world (e.g. emails get sent, hotel rooms get
booked). This increases the importance of ground-
ing and agreement in the interaction. But it en-
ables new kinds of evaluation, for example based on
the number of successfully completed subtasks over
time, or on comparing the efficacy of alternative sys-
tem behaviors with the same user.

Dialog Challenges and Task Challenges The im-
plications for research on dialog systems are clear.
It is unsustainable to reimplement dialog behaviors
for each new task, or limit the use of context to the
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most basic semantic representations. As the field
moves forward, dialog behavior modeling will be
increasingly separated from task modeling (Allen
et al., 2001a; Allen et al., 2001b). Research on
dialog modeling will focus on dialog layers, task-
independent dialog behaviors such as (incremental)
turn-taking, grounding, and coreference that involve
both participants. Research on task modeling can fo-
cus on the design of task models that are agnostic to
the types or forms of interaction that will use them,
on general models for interactive problem-solving
(Blaylock and Allen, 2005), and on rapid acquisition
and adaptation of task models (Jung et al., 2009).

Within this space, there can be two types of (col-
laborative or competitive) “dialog challenge”:
Dialog layer-focused – Participants focus on models
for a particular dialog behavior, such as turn-taking,
grounding, alignment, or coreference. Implementa-
tions cover both the interpretation and the generation
aspects of the behavior. Evaluation may be based
on a comparison of the implemented behaviors to
human language behaviors (e.g. for turn-taking,
inter-turn silence, turn-final and turn-initial prosodic
cues), and/or on user error rates and satisfaction
scores. An initial dialog layer-focused challenge
could be on turn-taking (Baumann and Schlangen,
2011; Selfridge and Heeman, 2010).
Task modeling focused – This type of challenge will
move from modeling individual tasks, to automatic
acquisition and use of task models for interactive
tasks in dialog systems. Future challenges of this
type would build on this by incorporating (in order):
(a) tasks other than information retrieval (e.g. survey
tasks (Stent et al., 2008)); (b) task completion (tasks
with subtasks that have side effects, e.g. purchas-
ing a ticket after looking up a route); (c) task adap-
tation (during development, participants work with
one task, and during evaluation, participants work
with a different but related task); and (d) multi-task
modeling. Participating systems could learn by do-
ing (Jung et al., 2009), via user simulation (Rieser
and Lemon, 2011), from corpora (Bangalore and
Stent, 2009), or from scripts or other abstract task
representations (Barbosa et al., 2011).
Tools for the Community It has never been eas-
ier (with a little Web programming) to rapidly
prototype dialog systems as mobile apps, or to
use them to collect data. To enable researchers

to focus on dialog- and task-modeling rather
than component development, AT&T is happy
to offer its AT&T WATSONSM speech recog-
nizer and Natural VoicesTM text-to-speech syn-
thesis engine in the cloud, through its Speech
Mashup platform (Di Fabbrizio et al., 2009), to
participants in dialog challenges. The Speech
Mashup supports rich logging of both linguistic
and non-linguistic context, and is freely available at
http://service.research.att.com/smm.
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Abstract

Spoken dialog systems frameworks fill a cru-
cial role in the spoken dialog systems com-
munity by providing resources to lower bar-
riers to entry. However, different user groups
have different requirements and expectations
for such systems. Here, we consider the par-
ticular needs for spoken dialog systems toolk-
its within an instructional setting. We discuss
the challenges for existing systems in meet-
ing these needs and propose strategies to over-
come them.

1 Introduction

A key need in the spoken dialog systems community
is a spoken dialog system development framework.
Such systems fulfill fundamental roles in lowering
barriers to entry for development of spoken dialog
systems, providing baseline systems for comparabil-
ity, and supporting novel experimental extensions.
There are many characteristics that are desirable for
a shared spoken dialog system resource, including:

• Availability: Systems should be provided on
an on-going basis, with continuing support, up-
dates, and maintenance.

• Ease-of-use: Systems should be easy to use and
provide an environment in which systems are
easy to develop.

• Platform-independence: Systems be usable on
a wide variety of architectures, if installed, or
provided on an accessible platform, such as a
website.

• Application access: Systems should provide
a range of exemplar applications within the
framework.

• Flexibility and extensibility: Systems should
enable integration of diverse technology com-
ponents and facilitate a wide range of experi-
mental configurations.

• Robustness: Systems should enable state-of-
the-art performance for diverse applications.

• Affordability: Systems should be free if possi-
ble, or provided at pricing that is not prohibitive
for different user groups.

However, these systems also serve diverse groups
of users, from senior research developers to students
building their first spoken dialog systems. While
these users share many requirements, their relative
importance naturally varies. Research developers
will likely place greater emphasis on system robust-
ness, extensibility, and flexibility, for example to
incorporate alternative speech recognizers, speech
synthesizers, or dialog managers. Those using such
systems in an instructional setting will place greater
importance on ease-of-use, platform portability or
independence, availability, affordability, and access
to reference applications. Below, we will discuss
some of the challenges for systems trying to meet
these needs. Then we will describe two popular cur-
rent solutions and how they satisfy the needs of these
different groups. Lastly we will present some addi-
tional needs for spoken dialog systems frameworks
to bridge gaps in dialog systems for instructional
use.

A variety of systems have been developed that ad-
dress many of these needs, but all suffer from signif-
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icant limitations. Availability and affordability have
posed some of the knottiest problems. For example,
many of the Galaxy Communicator research sys-
tems, such as those by University of Colorado (Pel-
lom et al., 2001), MIT, and CMU, were made avail-
able to the research community. However, many of
the systems are no longer available, usable, or sup-
ported, as research groups have disbanded and sys-
tems architectures have changed. Maintaining sys-
tems over time requires group and community com-
mitment, facilitated by an open-source framework.
Other toolkits and frameworks have become prob-
lematic due to conflicts between availability and af-
fordability. The long-popular CSLU toolkit (Sutton
and Cole, 1997) has recently shifted to a commercial
footing. Similarly, several industry platforms have
provided free non-commercial VoiceXML hosting,
as a simple spoken dialog development environ-
ment. However, at least one of these systems has
recently shifted to a paid-only status. The environ-
ment changes rapidly. Of three freely available aca-
demic systems and five VoiceXML platforms listed
in a 2009 survey (Jokinen and McTear, 2009), two
have already gone to paid status as of late 2011.

Two frameworks have emerged in recent years as
popular SDS frameworks: the Ravenclaw/Olympus
framework (Bohus et al., 2007) and VoiceXML,
hosted on one of the industrial platforms, such as
Nuance’s Cafe or Voxeo1. However, they do seem
to address the needs of different user groups. Raven-
claw/Olympus has been more widely adopted in the
research community: it is robust, flexible, exten-
sible, open-source, provides diverse use cases, and
has an active support and development community.
In contrast, the VoiceXML platforms have proven
popular in an instructional setting, as attested by the
large number of online homework assignments em-
ploying VoiceXML. These VoiceXML frameworks
offer very simple, easy-to-use environments that are
largely platform-independent, include basic support
and tutorials, and provide simple baseline applica-
tions. Given VoiceXML’s extensive role in indus-
try settings, they also provide an advantage in terms
of direct practical experience for students and in
terms of broad resources and support. In an instruc-
tional setting, Ravenclaw/Olympus’ relative com-

1http://cafe.bevocal.com; http://www.voxeo.com

plexity, Windows platform and software dependence
in instructional environments where linux has be-
come predominant, and smaller resource base rep-
resent hurdles. While the VoiceXML platforms ex-
cel in these dimensions, their very simplicity and
ease-of-use are limiting. Students are often look-
ing for existing applications of moderate interesting
complexity as a basis for extension and experimenta-
tion. Most typical example applications are simpler
than those given for Olympus, and the platform is
severely limiting for more advanced users and tasks.
For example, many VoiceXML frameworks do not
even support user-defined pronunciations. Lastly,
these VoiceXML platforms rely on the generosity of
the industrial teams, which can readily evaporate as
has already happened with Tellme Studio.

Ideally, for instructional use, we would like to
bridge the gap between the too-simple, restrictive
VoiceXML frameworks and the more challenging
but more flexible and powerful Ravenclaw/Olympus
framework, to allow students and instructors to
transition more smoothly from one to the other.
On the VoiceXML side, a community-supported
VoiceXML platform would reduce dependence on
industry platforms. Access to VoiceXML applica-
tions of greater complexity, comparable to Let’s Go!
or Communicator tasks, would allow more inter-
esting experiments within a course’s limited span.
Lastly, porting Ravenclaw/Olympus to linux would
allow easier adoption in a wider range of academic
programs.
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Abstract

Belief tracking is a promising technique for
adding robustness to spoken dialog systems,
but current research is fractured across differ-
ent teams, techniques, and domains. This pa-
per amplifies past informal discussions (Raux,
2011) to call for a belief tracking challenge
task, based on the Spoken dialog challenge
corpus (Black et al., 2011). Benefits, limita-
tions, evaluation design issues, and next steps
are presented.

1 Introduction and background

In dialog systems, belief tracking refers to maintain-
ing a distribution over multiple dialog states as a di-
alog progresses. Belief tracking is desirable because
it provides robustness to errors in speech recogni-
tion, which can be quite common.

This distribution can be modeled in a variety
of ways, including heuristic scores (Higashinaka et
al., 2003), Bayesian networks (Paek and Horvitz,
2000; Williams and Young, 2007), and discrimi-
native models (Bohus and Rudnicky, 2006). Tech-
niques have been fielded which scale to realisti-
cally sized dialog problems and operate in real time
(Young et al., 2009; Thomson and Young, 2010;
Williams, 2010; Mehta et al., 2010). In lab settings,
belief tracking has been shown to improve overall
system performance (Young et al., 2009; Thomson
and Young, 2010).

Despite this progress, there are still important un-
resolved issues. For example, a deployment with
real callers (Williams, 2011) found that belief track-
ing sometimes degraded performance due to model

mis-matches that are difficult to anticipate at train-
ing time. What is lacking is a careful comparison
of methods to determine their relative strengths, in
terms of generalization, sample efficiency, speed,
etc.

This position paper argues for a belief tracking
challenge task. A corpus of labeled dialogs and scor-
ing code would be released. Research teams would
enter one or more belief tracking algorithms, which
would be evaluated on a held-out test set.

2 Corpus

The Spoken dialog challenge corpus is an attractive
corpus for this challenge. It consists of phone calls
from real (not simulated) bus riders with real (not
imagined) information needs. There have been 2
rounds of the challenge (2010, and 2011-2012), with
3 systems in each round. The rounds differed in
scope and (probably) user population. A total of 3
different teams entered systems, using different dia-
log designs, speech recognizers, and audio output.
For each system in each round, 500-1500 dialogs
were logged. While it would be ideal if the corpus
included more complex interactions such as negotia-
tions, as a publicly available corpus it is unparalleled
in terms of size, realism, and system diversity.

There are limitations to a challenge based on this
corpus: it would not allow comparisons across do-
mains, nor for multi-modal or situated dialog. These
aspects could be left for a future challenge. An-
other possible objection is that off-line experiments
would not measure end-to-end impact on a real di-
alog system; however, we do know that good be-
lief tracking improves dialog performance (Young
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et al., 2009; Thomson and Young, 2010; Williams,
2011), so characterizing and improving belief track-
ing seems a logical next step. Moreover, building an
end-to-end dialog system is a daunting task, out of
reach of many research teams without specific fund-
ing. A corpus-based challenge has a much lower
barrier to entry.

3 Evaluation issues

There are many (not one!) metrics to evaluate. It
is crucial to design these in advance and implement
them as computer programs for use during develop-
ment. Specific metrics could draw on the follow-
ing core concepts. Baseline accuracy measures the
speech recognition 1-best – i.e., accuracy without
belief tracking. 1-best accuracy measures how of-
ten the belief tracker’s 1-best hypothesis is correct.
Mean reciprocal rank measures the quality of the
ordering of the belief state, ignoring the probabili-
ties used to order; log-likelihood measures the qual-
ity of the probabilities. ROC curves measure the
1-best discrimination of the belief tracker at differ-
ent false-accept rates, or at the equal error rate.

An important question is at which turns to assess
the accuracy of the belief in a slot. For example, ac-
curacy could be measured at every turn; every turn
after a slot is first mentioned; only turns where a slot
is mentioned; only turns where a slot appears in the
speech recognition result; and so on. Depending on
the evaluation metric, it may be necessary to anno-
tate dialogs for the user’s goal, which could be done
automatically or manually. Another issue is how to
automatically determine whether a belief state value
is correct at the semantic level.

A final question is how to divide the corpus into a
training and test set in a way that measures robust-
ness to the different conditions. Perhaps some of the
data from the second round (which has not yet been
released) could be held back for evaluation.

4 Next steps

The next step is to form a group of interested re-
searchers to work through the issues above, partic-
ularly for the preparation of the corpus and evalu-
ation methodology. Once this is documented and
agreed, code to perform the evaluation can be de-
veloped, and additional labelling (if needed) can be

started.
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Abstract 

We herein introduce our project of realizing a 

framework for the development of a spoken 

dialogue system based on collaboratively con-

structed semantic resources. We demonstrate 

that a semantic Web-oriented approach based 

on collaboratively constructed semantic re-

sources significantly reduces troublesome rule 

descriptions and complex configurations, 

which are caused by the previous relational 

database-based approach, in the development 

process of spoken dialogue systems. In addi-

tion, we show that the proposed framework 

enables multilingual spoken dialogue system 

development due to clear separation of model, 

view and controller components. 

1 Introduction 

In recent years, some large scale repositories of 

collaboratively constructed semantic resources 
(CSRs), such as Freebase1 , are available online. 

Those semantically structured data enable more 

precise search than simple text matching (e.g. 

"Find a dental clinic near Kyoto station opens at 

Saturday night.") and more complex search than 

simple query to relational database (RDB) (e.g. a 

query "Find machine learning books written by a 

researcher of NLP." needs cross search on a book 

                                                           
1 http://www.freebase.com/ 

DB and a researcher DB). Since search conditions 

of such queries to the structured data become com-

plex, natural language, especially speech, for smart 

phone and tablet PC, is a promising method of que-

ry input. 

There are some previous researches on convert-

ing natural language input to the query of struc-

tured data (Lopez et al., 2006) (Tablan et al., 2008). 

These researches basically concentrated on the in-

put sentence analysis and the query construction. If 

the developer want to apply existing natural lan-

guage understanding methods to spoken dialogue 

system (SDS) for structured data search, there re-

mains fair amount of components that need to be 

implemented, such as speech input component, 

dialogue flow management, backend interface, etc. 

In order to realize a development environment 

of SDS for structured data search, we designed a 

data model driven framework for rapid prototyping 

of SDS based on CSRs. The proposed framework 

can be regarded as an extension of existing Rails 

framework of Web application to (1) enabling 

speech interaction and (2) utilizing a benefit of 

CSRs. By using CSRs and the extended Rails 

framework, the troublesome definitions of rules 

and templates for SDS prototyping can be reduced 

significantly compared with the ordinary RDB-

based approach.  

As this data model driven approach is independ-

ent of language for interaction, the proposed 

framework has a capability of easily implementing 

multilingual SDS. 
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The remainder of the present paper is organized 

as follows. Section 2 describes the proposed ap-

proach to a data modeling driven development 

process for SDS based on CSRs and explains the 

automatic construction of the spoken query under-

standing component. Section 3 demonstrates the 

multilingual capability of the proposed framework. 

In Section 4, the present paper is concluded, and a 

discussion of future research is presented. 

2 Data modeling driven approach based 

on CSRs 

2.1 Object-oriented SDS development 

framework 

We previously proposed a data modeling driven 

framework for rapid prototyping of SDS (Araki 

2011). We designed a class library that is based on 

class hierarchy and attribute definitions of an exist-

ing semantic Web ontology, i.e., Schema.org2. This 

class library is used as a base class of an applica-

tion-specific class definition. An example of class 

definition is shown in Figure 1. 
 

 
Figure 1: Example of class definition. 

 

In this example, the "MyBook" class inherits all 

of the attributes of the "Book" class of Schema.org 

in the same manner as object-oriented program-

ming languages. The developer can limit the at-

tributes that are used in the target application by 

listing them in the constraints section of the class 

definition. On the other hand, the developer can 

add additional attributes (ranking attributes as the 

type of Integer, which is not defined in original 

"Book" class) in the definition of the class. 

The task type and dialogue initiative type are in-

dicated as annotations at the beginning of the class 

                                                           
2 http://schama.org/ 

definition. In this example, the task type is DB 

search and the initiative type is user initiative. This 

information is used in generating the controller 

code (state transition code, which is equivalent to 

Figure 2) and view codes of the target SDS. 

 

Input
query

Display
result

Help

submit

help

modify
query

exit

Home

 
Figure 2: Control flow of the DB search task. 

 

Using Grails3, which is a Rails Web application 

framework, the proposed framework generates the 

dialogue controller code of the indicated task type 

and the view codes, which have speech interaction 

capability on the HTML5 code from this class def-

inition. The overall concept of the data modeling 

driven framework is shown in Figure 3. 
 

Data model
definition

Mix-in of
traits

embed
application
logic

State
definition

generate

convert

Grails

Data model
definition

Groovy

generate

HTML5
code

Model

Controller

View

 
Figure 3: Overview of the data modeling driven 

SDS development framework. 

2.2 Using CSRs 

The disadvantage of our previous framework, de-

scribed in the previous subsection, is the high de-

pendence on the dictation performance of the 

speech recognition component. The automatically 

generated HTML5 code invokes dictation API, 

irrespective of the state of the dialogue and initia-

tive type. In order to improve speech recognition 

accuracy, grammar rules (in system initiative dia-

logue) and/or the use of a task/domain-dependent 

language model (in mixed/user initiative dialogue) 

                                                           
3 http://grails.org/ 

@DBSearch 

@SystemInitiative 

class MyBook extends Book { 

  Integer ranking 

  static constraints = { 

    name(onsearch:"like") 

    author(onsearch:"like") 

    publisher() 

    ranking(number:true) 

  } 

} 
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are key factors. In our previous framework, the 

developer had to prepare these ASR-related com-

ponents using language resources, which are be-

yond the proposed data-driven framework. 

In order to overcome this defect, we add the 

Freebase class library, which is based on large-

scale CSRs, because Freebase already includes the 

contents of the data. These contents and a large-

scale Web corpus facilitate the construction of 

grammar rules and a language model that is specif-

ic to the target task/domain. 

For example, the Film class of Freebase has 

more than 191 thousand entries (as of May 2012), 

most of which have information about directors, 

cast members, genres, etc. These real data can be 

used as resources to improve ASR accuracy. 

In system initiative type dialogue, the contents 

of each attribute of the target class can construct 

word entries of the grammar rule for each attribute 

slot. For example, the grammar rule for the user's 

response to "Which genre of movie are you search-

ing for?" can be constructed from the contents of 

the genres attribute of the Film class. We imple-

mented a generator of the set of content words 

specified in the data model definition from the data 

of Freebase. The generator is embedded as one 

component of the proposed framework. 

In the mixed/user initiative type tasks, since 

content words and functional words make up the 

user's utterance, we need a language model for 

speech recognition and a semantic frame extractor 

for the construction of query to semantic data. We 

designed and implemented a language model gen-

erator and a semantic frame extractor using a func-

tional expression dictionary that corresponds to the 

attributes of Freebase (Araki submitted). The flow 

of the language model generation is shown in Fig-

ure 4. 

Freebase
data

Web
corpus

Data model
definition

content
words

in-domain
entries

domain
dependent

LM

example
sentences

 
Figure 4: Construction process of LM. 

2.3 Helper application for data definition 

In order to facilitate the data-model definition pro-

cess, we implemented a helper application called 

MrailsBuilder. A screenshot of one phase of the 

definition process is shown in Figure 5, which 

shows the necessary slots for data definition in the 

GUI and a list of properties once the developer 

selects the parent class of the target class. 

 

 
Figure 5: Screenshot of MrailsBuilder. 

3 Multilingual extension of the framework 

With the internationalization capability of the 

Grails base framework and multilingual data re-

sources provided as CSRs, we can generate a mul-

tilingual SDS from the data model definition. All 

of the language-dependent information is stored in 

separated property files and is called at the time of 

the dynamic view code generation process in the 

interaction, as shown in Figure 6. 

 

Please input 
search 

conditions.

Book of AI.

Below items are 
found.

 
 

Figure 6: Example of realized interaction. 
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We also implemented a contents extractor from 

Freebase data. In Freebase, each class (called 

"type") belongs to one domain. For example, the 

"Dish" type belongs to the "Food & Drink" domain 

(see Figure 7). Although it assigned to a two-level 

hierarchy, each type has no inherited properties. 

Therefore, it is easy for Freebase data to represent 

a set of property values as a string instead of a uni-

form resource identifier (URI). Each instance has 

the name property and its value is written in Eng-

lish. For some instances, it also has the name de-

scription in another language with the language 

code. Therefore, we can extract the name of the 

instance in various languages. 

 

• Books
• Business
• Film
• Food&Drink
• ...

Domain

• Ingredient
• Restaurant
• Dish
• ...

Type

• 2,421 Instances
• Properties

Dish

Property Expected Type

Type of dish /food/type_of_dish

Cuisine /dining/cuisine

Typical ingredients /food/ingredient

Recipes /food/recipe

 
Figure 7: Domain and type of Freebase. 

 

The input of the contents extractor is the model 

definition code as in Figure 1 and the language 

code (e.g., "ja" for Japanese). As an example, the 

"MyDish" class is defined as shown in Figure 8. 

 

 
Figure 8: Model definition of the "MyDish" class. 

 

The contents extractor outputs the instance rec-

ords of the given language code and this instance 

can be used for LM generator explained in section 

2.2. For example, the extracted words in the case 

of "de" (German) is shown in Figures 9. 

 
Figure 9: German contents of the "MyDish" class. 

4 Conclusions and future research 

We have proposed a framework for development 

of a SDS on CSRs and have explained rapid con-

struction method of spoken query understanding 

component and showed its multilingual capability. 

In future research, we plan to evaluate the quan-

titative productivity of the proposed framework. 
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class MyDish extends Dish { 

  static constraints = { 

    name() 

    type_of_dish1(nullable:true) 

    cuisine(nullable:true) 

    ingredients(nullable:true) 

    recipes(nullable:true) 

  } 
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Abstract

We describe the 2012 release of our “Incremen-
tal Processing Toolkit” (INPROTK)1, which
combines a powerful and extensible architec-
ture for incremental processing with compo-
nents for incremental speech recognition and,
new to this release, incremental speech syn-
thesis. These components work fairly domain-
independently; we also provide example imple-
mentations of higher-level components such as
natural language understanding and dialogue
management that are somewhat more tied to a
particular domain. We offer this release of the
toolkit to foster research in this new and excit-
ing area, which promises to help increase the
naturalness of behaviours that can be modelled
in such systems.

1 Introduction

As recent work has shown, incremental (or online)
processing of user input or generation of system
output enables spoken dialogue systems to produce
behaviour that is perceived as more natural than
and preferable to that produced by systems that are
bound by a turn-based processing mode (Aist et
al., 2006; Skantze and Schlangen, 2009; Buß et al.,
2010; Skantze and Hjalmarsson, 2010). There is still
much left to find out about the best ways of mod-
elling these behaviours in such systems, however.
To foster research in this area, we are releasing a
new version of our “Incremental Processing Toolkit”
(INPROTK), which provides lower-level components
(such as speech recognition and speech synthesis,

1The code of the toolkit and some example applications
have been released as open-source at http://inprotk.
sourceforge.net.

but also a general modular processing architecture)
and allows researchers to concentrate on higher-level
modules (such as natural language understanding and
dialogue modelling; for which we provide example
implementations).2 We describe these components
in the following, pointing out the differences and
extensions to earlier releases (Baumann et al., 2010).

2 An Incremental Processing Architecture

INPROTK realises the IU-model of incremental pro-
cessing (Schlangen and Skantze, 2009; Schlangen
and Skantze, 2011), where incremental systems are
conceptualised as consisting of a network of pro-
cessing modules. Each module has a left buffer, a
processor, and a right buffer, where the normal mode
of processing is to take input from the left buffer, pro-
cess it, and provide output in the right buffer, from
where it goes to the next module’s left buffer. (Top-
down, expectation-based processing would work in
the opposite direction.) Modules exchange incremen-
tal units (IUs), which are the smallest ‘chunks’ of
information that can trigger connected modules into
action. IUs typically are part of larger units; e.g.,
individual words as parts of an utterance, or frame
elements as part of the representation of an utterance
meaning. This relation of being part of the same
larger unit is recorded through same level links; the
units that were used in creating a given IU are linked
to it via grounded in links. Modules have to be able
to react to three basic situations: that IUs are added
to a buffer, which triggers processing; that IUs that
were erroneously hypothesised by an earlier module

2An alternative to the toolkit described here is jindigo
(Skantze and Hjalmarsson, 2010), http://www.jindigo.
net.
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are revoked, which may trigger a revision of a mod-
ule’s own output; and that modules signal that they
commit to an IU, that is, won’t revoke it anymore (or,
respectively, expect it to not be revoked anymore).

INPROTK offers flexibility on how tightly or
loosely modules are coupled in a system. It pro-
vides mechanisms for sending IU updates between
processes via a light-weight remote procedure call
protocol,3 as well as for using shared memory within
one (Java) process. INPROTK follows an event-based
model, where modules create events, for which other
modules can register as listeners. Module networks
are configured via a system configuration file which
specifies which modules listen to which.

As opposed to our previous release (Baumann et
al., 2010), INPROTK module communication is now
completely encapsulated in the IUModule class. An
implementing processor is called into action by a
method which gives access both to the edits to IUs
in the left buffer since the last call, and to the list of
IUs directly. The implementing processor must then
notify its right buffer, either about the edits to the
right buffer, or giving the content directly. Modules
can be fully event-driven, only triggered into action
by being notified of a hypothesis change, or they
can run persistently, in order to create endogenous
events like time-outs. Event-driven modules can run
concurrently in separate threads or can be called se-
quentially by another module (which may seem to
run counter the spirit of incremental processing, but
can be advantageous for very quick computations
for which the overhead of creating threads should be
avoided). In the case of separate threads, which run
at different update intervals, the left-buffer view will
automatically be updated to its most recent state.

INPROTK also comes with an extensive set of mon-
itoring and profiling modules which can be linked
into the module network at any point and allow to
stream data to disk or to visualise it online through a
viewing tool (von der Malsburg et al., 2009), as well
as different ways to simulate input (e.g., typed or
read from a file) for debugging. All IUmodules can
also output loggging messages to the viewing tool
directly (to ease graphic debugging of error cases in
multi-threaded applications).

3In an earlier release, we used OAA (Cheyer and Martin,
2001), which however turned out to be too slow.

3 Incremental Speech Recognition

Our speech recognition module is based on the
Sphinx-4 (Walker et al., 2004) toolkit and comes with
acoustic models for German.4 The module queries
the ASR’s current best hypothesis after each frame of
audio and changes its output accordingly, adding or
revoking WordIUs and notifying its listeners. Addi-
tionally, for each of the WordIUs, SyllableIUs and
SegmentIUs are created and bound to the word (and
to the syllable respectively) via the grounded-in hier-
archy. Later modules in the pipeline are thus able to
use this lower-level information (e.g. to disambiguate
meaning based on prosodic aspects of words). For
prosodic processing, we inject additional processors
into Sphinx’ acoustic frontend which provide features
for further prosodic processing (pitch, loudness, and
spectral tilt). In this way, IUs are able to access the
precise acoustic data (in raw and processed forms).

An ASR’s current best hypothesis frequently
changes during the recognition process with the ma-
jority of the changes not improving the result. Every
such change triggers all listening modules (and pos-
sibly their listeners), resulting in a lot of unnecessary
processing. Furthermore, changes may actually dete-
riorate results, if a ‘good’ hypothesis is intermittently
changed for worse. Therefore, we developed hypoth-
esis smoothing approaches (Baumann et al., 2009)
which greatly reduce spurious edits in the output at
the cost of some timeliness: With a lag of 320 ms we
reduced the amount of spurious edits to 10 % from an
initial 90 %. The current implementation of hypothe-
sis smoothing is taylored specifically towards ASR
output, but other input modules (like gesture or facial
expression recognition) could easily be smoothed
with similar methods.

4 Incremental NLU and DM

As mentioned above, the more “higher-level” com-
ponents in our toolkit are more domain-specific than
the other components, and in any case are proba-
bly exactly those modules which users of the toolkit
may want to substitute with their own. Neverthe-
less, we provide example implementations of a sim-
ple keyword-spotting ‘NLU’, as well as statistically

4Models for English, French and other languages
are available from the Sphinx’ distribution and from
http://www.voxforge.org.
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trained ones (Schlangen et al., 2009; Heintze et al.,
2010).

We have recently built a somewhat more traditional
NLU component which could be more easily ported
to other domains (by adapting lexicon and grammar).
It consists of a probabilistic, beam-search top-down
parser (following (Roark, 2001)), which produces
a principled semantic representation in the formal-
ism robust minimal recursion semantics (Copestake,
2006). This component is described in more detail in
(Peldszus et al., 2012).

5 Incremental Speech Synthesis

Rounding out the toolkit is our new component for in-
cremental speech synthesis, which has the following
properties:
(a) It makes possible changes to the as-yet unspoken

part of the ongoing utterance,
(b) allows adaptations of delivery parameters such

as speaking rate or pitch with very low latency.
(c) It autonomously makes delivery-related deci-

sions (such as producing hesitations), and
(d) it provides information about delivery status (e. g.

useful in case of barge-ins).
(e) And, last but not least, it runs in real time.

Figure 1 provides a look into the internal data
structures of the component, showing a triangular
structure where on successive levels structure is built
just-in-time (e.g., turning target phoneme sequences
into vocoding parameters) and hence can be changed
with low cost, if necessary. We have evaluated the
component in an application scenario where it proved
to increase perceived naturalness, and have also stud-
ied the tradeoff between look-ahead and prosodic
quality. To this end, Figure 2 plots the deviation of
the prosodic parameters pitch and timing from that
of a non-incremental synthesis of the same utterance
versus the amount of look-ahead, that is, how far into
the current phrase the next phrase becomes known. It
shows that best results are achieved if the next phrase
that is to be synthesized becomes known no later than
one or two words into the current phrase (w0 or w1).

6 Evaluation of Incremental Processors

While not part of the toolkit proper, we think that it
can only be useful for the field to agree on common
evaluation metrics. Incremental processing brings

Figure 1: Hierarchic structure of incremental units describ-
ing an example utterance as it is being produced during
delivery, showing the event-based just-in-time processing
strategy.
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Figure 2: Deviation of pitch and timing plotted against
lookahead (right context available for incremental synthe-
sis). The more lookahead available, the better the results.

new considerations of dynamics into the assessment
of processing quality, and hence requires additional
metrics compared to non-incremental processing. In
(Baumann et al., 2011) we have proposed a family
of such metrics, and we provide an evaluation frame-
work for analysing incremental ASR performance as
part of our distribution.

7 Conclusions

We have sketched the major features of our “Incre-
mental Processing Toolkit” INPROTK. While it is far
from offering ‘plug-and-play’ ease of constructing
incremental dialogue systems, we hope it will prove
useful for other researchers insofar as it offers solu-
tions to the more low-level problems that often are
not one’s main focus, but which need solving any-
ways before more interesting things can be done. We
look forward to what these interesting things may be
that others will build.
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Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

A Simulation-based Framework for Spoken Language Understanding 
and Action Selection in Situated Interaction 

 
David Cohen Ian Lane 

Carnegie Mellon University Carnegie Mellon University 
Nasa Research Park Nasa Research Park 
Moffett Field, CA Moffett Field, CA 

david.cohen@sv.cmu.edu  lane@cs.cmu.edu 
 

Abstract 

This paper introduces a simulation-based 
framework for performing action selection 
and understanding for interactive agents. By 
simulating the objects and actions relevant to 
an interaction, an agent can semantically 
ground natural language and interact consid-
erately and on its own initiative in situated 
environments. The framework proposed in 
this paper leverages models of the environ-
ment, user and system to predict possible fu-
ture world states via simulation. It leverages 
understanding of spoken language and multi-
modal input to estimate the state of the ongo-
ing interaction and select actions based on the 
utility of future outcomes in the simulated 
world. In this paper we introduce this frame-
work and demonstrate its effectiveness for in-
car navigation. 

1 Introduction 

Speech and multimodal interactive systems have 
many challenges to overcome before they can ef-
fectively interact with users in the real world. The-
se challenges include semantically grounding 
vague and ambiguous natural language utterances, 
understanding the user’s knowledge and capabili-
ties, and acting on their own initiative to plan and 
take appropriate actions in complex environments. 
To overcome these challenges, interactive agents 
require more than just models of the environment, 
user goals, and attention, they need the ability to 
infer the consequences of both their and the users’ 
actions – a capability which simulation provides.   

For each given task, an agent must plan the best 
way to carry it out. In many cases, a simple set of 
context-dependent behavior templates will not be 
sufficient. For example, if an in-car navigation as-
sistant is trying to direct a driver to his destination, 

it should probably not give directions within the 
driver’s own neighborhood, with which he is al-
ready familiar. However, it should inform the driv-
er if there is road construction in the area of which 
he/she is unaware. Alternatively, if the driver is 
having an important conversation and the cost of 
the detour is outweighed by the cost of interrupting 
the conversation, perhaps the system should re-
main quiet. Understanding all the contexts that af-
fect interaction is difficult and defining a set of 
heuristics to choose the appropriate behavior will 
quickly become unmanageable. An agent in the 
real world will be faced with complicated situa-
tions that will require planning and an understand-
ing of the effects its actions will have.  

To capture the full context necessary to perform 
understanding and planning in situated interaction, 
this paper argues for a unified model of the envi-
ronment, the user’s knowledge, attention and 
goals, and the simulated consequences of different 
courses of action. 
 
2 Related Work 

Early work in deep natural language understand-
ing (Schank and Abelson, 1977; Wilensky, 1983) 
formed cognitive theories and developed software 
to reinforce the idea that understanding an agent’s 
words requires an understanding of that agent’s 
plans, goals, and planning mechanisms. Other 
work (Allen and Perrault, 1980) focused on identi-
fying these plans and goals from the partial infor-
mation available; interpreting speech acts as 
primitive actions in a STRIPS planner (Fikes and 
Nilsson, 1971), and using heuristics to determine 
an agent’s plan based on their speech acts. Traum 
(1994) adopted a similar definition of speech acts, 
and developed a computational theory of ground-
ing whereby multiple agents come to understand 
each other’s plans and meaning. 
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Figure 1: Overview of the proposed simulation-based understanding and action selection framework. 

 
Previous work on considerate mixed-initiative 

systems has placed an emphasis on modeling the 
user’s mental state, particularly attention and cog-
nitive loading. Horvitz et al. (2003) treat attention 
as critical to reasoning about the value of taking 
action and potentially disrupting users. Multiple 
modalities such as speech and gesture recognition, 
as well as mouse and keyboard behavior all con-
tribute to their models of attention. Their work also 
stressed the importance of attention cues in effec-
tive collaborative communication. Other work 
from the same author (Horvitz, 1999) probabilisti-
cally tracked a belief in the user’s goal based on 
attentional cues, specifically trying to determine if 
a behavior from the system was desired. This work 
all reinforces the idea that close attention to the 
user’s mental state must be paid to act considerate-
ly with mixed initiative, but never attempts to en-
dow a system with the ability to reason about the 
consequences of its actions. 

There are several existing paradigms for spoken 
dialogue systems. RavenClaw (Bohus and Rud-
nicky, 2009) uses a human-engineered task tree to 
guide the logic of an interaction, which allows for 
well-understood behavior, but does not permit the 
flexibility of planning needed for complex, dynam-
ic interaction. The collaborative agent framework, 
COLLAGEN (Rich and Sidner, 1996), specifies 
the data structures for recipes and attention models 
based off the SharedPlan collaborative discourse 
framework. The framework proposed by Allen and 
et al. (2002) is built on a collaborative discourse 
framework similar to SharedPlan, and is similar to 
our work in its situation theoretic world model and 
focus on user goal and plan modeling. However, to 
the best of our knowledge, these frameworks have 
never been successfully applied to a situated agent 
in a dynamic environment with many interacting 
objects and a wealth of multi-modal input as is 

available within an in-car assistant environment. It 
is in these situations that we believe our framework 
will demonstrate its applicability compared to prior 
approaches. 
 
3 A Simulation-based Framework for Un-

derstanding Situated Interaction1 

In this paper, we propose a framework in which 
an interactive agent leverages a model of the ongo-
ing situated interaction and simulations of possible 
future scenarios to perform understanding and de-
cision-making (Figure 1). The model supports 
complex inference about natural language as well 
as other modalities of input, and provides a suita-
ble environment for the system to evaluate possible 
courses of action. As an example, we evaluated the 
effectiveness of this framework for planning and 
interacting in an in-car navigation assistant.  
 
Simulated Interaction and Environment 
The system models its environment in terms of an 
object-oriented probabilistic model that allows for 
multiple simultaneous actions. It is assumed that 
the model is an incomplete view of the world, and 
there are objects that the model is unaware of. In-
cluded in this model is the set of primitive actions 
all the objects in the world can take, defined by 
their pre-conditions and post-conditions. Through 
simulation, the system can project the current 
world state forward in time in an attempt to predict 
possible futures. Within each simulated scenario, 
the system, user, and any number of other actors 
will interact. At each time step, every object selects 
a primitive action, which is applied to the world if 
its pre-conditions have been met.  
 

                                                             
1 An initial version of the simulator used in the work can be 
download from: http://speech.sv.cmu.edu/SimInteraction  
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Programs for Modeling High-Level Actions 
In order to make inferences about the long-term 
behavior of objects in the simulator, plans and 
high-level actions need a representation within the 
simulator. To do this, programs are defined for 
several realistic behaviors for each actor. These 
programs are a specific form of options (Sutton et 
al., 1999), which in the context of a Markov Deci-
sion Process are closed-loop policies for choosing 
action over an extended period of time. 

In the current implementation, programs are fi-
nite state machines, which are resumed at each 
time interval, changing state based on the actor’s 
internal state until a primitive action is selected.  
 
Modeling User Knowledge and Awareness 
An actor carrying out a program will choose a dif-
ferent sequence of actions depending on their in-
ternal mental state. That is why the world model 
must contain this information to make accurate 
predictions. In particular, a user’s knowledge and 
attention play critical roles in their decision-
making, and thus must be modeled.  

 
Tracking and Parsing 
The tracker maintains the current world model in-
cluding the set of objects that are relevant for 
simulation and estimated distributions over uncer-
tain variables such as the user’s mental state and 
the programs being run by all relevant objects. The 
tracker is responsible for initiating simulations to 
project the situation model into the future. The 
tracker also manages and interfaces to a set of 
mini-parsers which interpret input across multiple 
modalities in various ways. 

In the proposed framework, the tracker also uses 
information from the parsers to add new objects to 
the world model, and modify the parameters of the 
objects already in the model. Additional parsers 
can be spawned based on simulation results. For 
example, if a simulated scenario predicts the car 
running out of gas, the tracker might spawn a new 
parser to interpret the driver’s awareness of their 
gas level based on gaze. 
 
Utility Estimation and Action Selection 
The desirability of every simulated scenario is de-
termined by a utility score, defined by the system 
designer to maximize the system’s usefulness. The 
system includes itself and its own possible pro-
grams in each simulation it runs, and picks the 

Table 1: Description of three evaluation tasks. 
TaskID Task Description 

1 Destination is a business in downtown area, 
mostly a straight path as a warm-up task. 

2 Destination is a residence in Palo Alto, in-
sufficient gas to get to destination. 

3 Destination is a residence in Mountain 
View, retrace much of the path from Task 2. 

 
Table 2: Average number of system turns for base-
line and the proposed system. System turns include 
questions, notifications, and instructions. 

TaskID Novice Intermediate Expert 
1 7.0 7.0 3.0 
2 13.0 15.8 9.0 
3 12.0 12.8 9.0 

 
 
program that gives the best expected utility. 
 
4 Demonstration Example 

We demonstrate the effectiveness of the pro-
posed framework for an in-car navigation assistant. 
We tested this demonstration with ten test subjects 
each navigating through three the tasks listed in 
Table 1. The subjects navigated through Mountain 
View and Palo Alto, California in Google EarthTM 
while a supervisor observed their progress, entered 
it into the system and relayed messages between 
the subject and system. Some subjects had been in 
the area only a few times and some were current 
residents of Mountain View and neighboring cities. 
Based off the subjects’ initial self-assessment, the 
system was given one of three different starting 
familiarity map estimates - novice, medium, and 
expert. These initial estimates reflected our intui-
tive assessment of the likelihood that a driver 
would know major streets and neighborhoods. 

For users with different levels of familiarity we 
counted the number of system turns, which include 
questions, notifications, and instructions required 
to complete the task. These counts are shown in 
Table 2 show a decrease in the number of system 
turns across all tasks for users who were more fa-
miliar with the area. This is a direct result of the 
system’s ability to direct these users to waypoints 
they were familiar with along the route, saving un-
necessary directions. Example interactions ob-
tained from the experiments are shown in Figure 1. 
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Figure 2: Sample interactions from subjects with different starting familiarity estimates. 

 
5 Conclusions 

This paper introduces a simulation-based frame-
work for performing action selection and under-
standing in an interactive agent. The framework 
uses a simulator to predict possible future world 
states incorporating and updating models of the 
environment, user and system based on observed 
input. Understanding of spoken language and mul-
timodal input is performed leveraging the past, 
current and future world states in the simulator. 
Action selection is performed based on the utility 
of future world states and the expected user goal. 
In this paper we introduce this framework and 
demonstrate its effectiveness for in-car navigation. 

References  
James Allen, Nate Blaylock, George Ferguson 2002. A 

Problem Solving Model for Collaborative Agents. 
Proc. AAMAS. 

James F. Allen and C. Raymond Perrault. 1980. Analyz-
ing Intention in Utterances. Artificial Intelligence. 

Dan Bohus and Eric Horvitz. 2011. Multiparty Turn 
Taking in Situated Dialog: Study, Lessons, Direc-
tions Proc. SIGdial. 

 
 

 
Dan Bohus and Alexander I. Rudnicky. 2009. The 

RavenClaw Dialog Management Framework: Archi-
tecture and Systems. Computer Speech and Lan-
guage. 

Richard E. Fikes and Nils J. Nilsson 1971. STRIPS: A 
New Approach to the Application of Theorem Prov-
ing to Problem Solving. IJCAI. 

Eric Horvitz. 1999. Principles of Mixed-Initiative User 
Interfaces Proc. SIGCHI. 

Eric Horvitz, Carl Kadie, Tim Paek, David Hovel. 2003. 
Models of Attention in Computing and Communica-
tion: From Principles to Applications. Communica-
tions of ACM.  

Charles Rich and Candace L. Sidner 1996. 
COLLAGEN: When Agents Collaborate with Peo-
ple. Mitsubishi Electric Research Laboratories Inc. 

Roger Schank and Robert Abelson. 1977. Scripts Plans 
Goals and Understanding: an Inquiry into Human 
Knowledge Structures. Lawrence Erlbaum Associ-
ates, Inc., Publishers. 

Richard S. Sutton, Doina Precup, Satinder Singh. 1999. 
Between MDPs and semi-MDPs: A Framework for 
Temporal Abstraction in Reinforcement Learning. 
Artificial Intelligence. 

David R. Traum. 1994. A Computational Theory of 
Grounding in Natural Language Conversation Ph.D. 
Thesis 

Robert Wilensky. 1983. Planning and Understanding: A 
Computational Approach to Human Reasoning. The 
Addison-Wesley series in artificial intelligence. 

36



NAACL-HLT 2012 Workshop on Future directions and needs in the Spoken Dialog Community: Tools and Data, pages 37–40,
Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

Mining Search Query Logs for Spoken Language Understanding

Dilek Hakkani-Tür, Gokhan Tür, Asli Celikyilmaz
Microsoft, Mountain View, CA 94041, USA
dilek|gokhan.tur|asli@ieee.org

Abstract

In a spoken dialog system that can handle nat-
ural conversation between a human and a ma-
chine, spoken language understanding (SLU)
is a crucial component aiming at capturing
the key semantic components of utterances.
Building a robust SLU system is a challeng-
ing task due to variability in the usage of lan-
guage, need for labeled data, and requirements
to expand to new domains (movies, travel, fi-
nance, etc.). In this paper, we survey recent
research on bootstrapping or improving SLU
systems by using information mined or ex-
tracted from web search query logs, which
include (natural language) queries entered by
users as well as the links (web sites) they click
on. We focus on learning methods that help
unveiling hidden information in search query
logs via implicit crowd-sourcing.

1 Introduction
Building a robust spoken dialog system involves hu-
man language technologies to cooperate to answer
natural language (NL) user requests. First user’s
speech is recognized using an automatic speech
recognition (ASR) engine. Then a spoken language
understanding (SLU) engine extracts their meaning
to be sent to dialog manager for taking the appropri-
ate system action.

Three key tasks of an SLU system are domain
classification, intent determination and slot filling
(Tur and Mori, 2011). While the state-of-the-art
SLU systems rely on data-driven methods, collect-
ing and annotating naturally spoken utterances to
train the required statistical models is often costly

and time-consuming, representing a significant bar-
rier to deployment. However, previous work shows
that it may be possible to alleviate this hurdle by
leveraging the abundance of implicitly labeled web
search queries in search engines. Large-scale en-
gines, e.g., Bing or Google, log more than 100M
queries every day. Each logged query has an associ-
ated set of URLs that were clicked after the users en-
tered the query. This information can be valuable for
building more robust SLU components, therefore,
provide (noisy) supervision in training SLU mod-
els. Take domain detection problem: Two users who
enter different queries but click on the same URL
(www.hotels.com) would probably be searching for
concepts in the same domain (”hotels” in this case).

The use of click information obtained through
massive search query click logs has been the fo-
cus of previous research. Specifically, query logs
have been used for building more robust web search
and better information retrieval (Pantel and Fuxman,
2011; Li et al., 2008), improve personalization expe-
rience and understand social networking behaviors
(Wang et al., 2011), etc. The use of query logs in
spoken dialog research is fairly new. In this paper,
we will survey the recent research on utilizing the
search query logs to obtain more accurate and ro-
bust spoken dialog systems, focusing on the SLU.
Later in the discussion section, we will discuss the
implimications on the dialog models.

The paper is organized as follows: In § 2, we
briefly describe query click logs. We then summa-
rize recent research papers to give a snapshot of how
user search queries are being used in § 3, and how
information from click-through graphs (queries and
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Figure 1: A sample query click graph. The squared queries
are samples from training data which are natural language ut-
terances. Edges include click frequencies from query to link.

clicked links) are exploited to boost the SLU perfor-
mance. Lastly, we discuss possible future directions.

2 What are Query Click Logs (QCL)?

QCL are logs of unstructured text including both the
users queries sent to a search engine and the links
that the users clicked on from the list of sites re-
turned by that search engine. A common representa-
tion of such data is a bi-partite query-click graph as
shown in (Fig 1), where one set of nodes represents
queries, and the other set of nodes represents URLs,
and an edge is placed between two nodes represent-
ing a query q and a URL u, if at least one user who
typed the q clicked on u.

Traditionally, the edge of the click graph is
weighted based on the raw click frequency (number
of clicks) from a query to a URL. Some of the chal-
lenges in extracting useful information from QCL is
that the feature space is high dimensional (there are
thousands of url clicks linked to many queries), and
there are millions of queries logged daily.

3 Exploiting NL Search Queries for SLU

Previous work on web search has benefited from the
use of query click logs for improving query intent
classification. Li et al. use query click logs to de-
termine the domain of a query (typically keyword
search queries), and then infer the class member-
ships of unlabeled queries from those of the labeled
search queries using the URLs the users clicked (Li
et al., 2009; Li et al., 2008). QCL have been used to
extract named-entities to improve web search and ad
publishing experience (Hillard and Leggetter, 2010)
using (un)supervised learning methods on keyword
based search queries. Different from previous re-

search, in this paper we focus on recent research that
utilize NL search queries to boost the performance
of SLU components, i.e., domain detection, intent
determination, and slot filling.

In (Hakkani-Tur et al., 2011a), they use the search
query logs for domain classification by integrat-
ing noisy supervision into the semi-supervised la-
bel propagation algorithm, and sample high-quality
query click data. Specifically, they extract a set of
queries, whose users clicked on the URLs that are
related to their target domain categories. Then they
mine query click logs to get all instances of these
search queries and the set of links that were clicked
on by search engine users who entered the same
query. They compare two semi-supervised learn-
ing methods, self-training and label propagation, to
exploit the domain information obtained form the
URLs user have clicked on. The analysis indicate
that query sampling through semi-supervised learn-
ing enables extracting NL queries for use in domain
detection. They also argue that using raw queries
with and without the noisy labels in semi-supervised
learning reduces domain detection error rate by 20%
relative to supervised learning which uses only the
manually labeled examples.

The search queries found in click logs and the NL
spoken utterances are different in the sense that the
search queries are usually short and keyword based
compared to NL utterances that are longer and are
usually grammatical sentences (see Fig. 1). Hence,
in (Hakkani-Tur et al., 2012), they choose a statis-
tical machine translation (SMT) approach to search
query mining for SLU as sketched in Fig. 2. The
assumption is that, users typically have conceptual
intents underlying their requests when they inter-
act with web search engine or use a virtual assis-
tance system with built in SLU engine, e.g., ”avatar
awards” versus ”which awards did the movie avatar
win?”. They translate NL queries into search queries
and mine similar search queries in QCL. They also
exploit QCL for bootstrapping domain detection
models, using only the NL queries hitting to seed
domain indicator URLs (Hakkani-Tur et al., 2011c).
Specifically, if one needs to detect a domain detector
for the hotels domain, the queries hitting hotels.com,
or tripadvisor.com, may be used to mine.

Query click logs have been explored for slot fill-
ing models as well. The slot filling models of SLU

38



Figure 2: Using natural language to query language translation
for mining query click logs.

aim to capture semantic components given the do-
main and a common way is to use gazetteer features
(dictionaries specific to domain such as movie-name
or actors in movie domain). In (Hillard et al., 2011),
they propose to mine and weight gazetteer entries
using query click logs. The gazetteer entries are
scored using a function of posterior probabilities for
that entry hitting a URL (compared to others URLs)
and for that URL being related to the target domain.
In such a schema the movie name “gone with the
wind” gets higher score than the movie “up”.

In (Tur et al., 2011), an unsupervised approach is
presented to implicitly annotate the training data us-
ing the QCL. Being unsupervised, this method auto-
matically populates gazetteers as opposed to man-
ually crafted gazetteers. Specifically they use an
abundant set of web search query logs with their
click information (see Fig. 1). They start by de-
tecting target URLs (such as imdb.com/title
for the movie names). Then they obtain a list
of entities and their target URLs (for example,
www.imdb.com/title/tt047723 can be the target URL
for the movie ”the count of monte carlo”. Then they
extract all queries hitting those links if they include
that entity. This method enables automatically ob-
taining annotated queries such as: ”review of the
hand” or ”mad men season one synopsis” (bold
terms are automatically discovered entities.)

4 Mining Click Graph Features for SLU

In the previous section, we presented examples of
recent research that use queries obtained from QCL
to bootstrap and improve SLU models. Note that

each query in QCL is linked to one or many web
sites (links), which indicate a certain feature of the
query (queries that the hotels.com linked are clicked
after they are entered might indicate hotels domain).
Such features extracted from QCL data (called click-
through features) has been demonstrated to signifi-
cantly improve the performance of ranking models
for Web search applications (Gao et al., 2009), es-
timating relations between entities and web search
queries (Pantel and Fuxman, 2011), etc.

In SLU research community, only recently the use
of click-through features has shown to improve the
performance of domain and intent of NL user utter-
ances. In one study (Hakkani-Tur et al., 2011b), in-
stead of mining more data to train a domain clas-
sifier with lexical features, they enrich their fea-
tures using the click-through features with the in-
tuition that the queries with similar click patterns
should be semantically similar. They search all the
NL utterances in the training data set amongst the
search queries. Once they obtain search queries,
they pull the list of clicked URLs and their frequen-
cies for each query which represent the click fea-
tures. To reduce the number of features, they ex-
tract only the base URLs (such as opentable.com or
wikipedia.com), as is commonly done in the web
search literature. T use the list of the 1000 most fre-
quently clicked base URLs for extracting classifica-
tion features (QCL features). For each input user
utterance, xj , they compute P (URLi|xj), where
i = 1..1000. They compute the click probability dis-
tribution distance between a query and the queries in
a target domain, Dk, using the KL divergence:

KLk = KL(P (URLi|xj)||P (URLi|Dk)) (1)

Thus, for a given domain Dk, the KLk and the do-
main with the lowest KL divergence are used as ad-
ditional features.

Although the click-through are demonstrated to
be beneficial for SLU models, such benefits, how-
ever, are severely limited by the data sparseness
problem, i.e., many queries and documents have no
or very few clicks. The SLU models thus cannot rely
strongly on click-through features. In (Celikyilmaz
et al., 2011), the sparsity issue of representing the
queries with click-through features are investigated.
They represent each unlabeled query from QCL as
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a high dimensional sparse vector of click frequen-
cies. Since the true dimensionality of a query is un-
known (the number of clicks are infinitely many),
they utilize an unbounded factor analysis approach
and build an infinite dimensional latent factor anal-
ysis, namely the Indian Buffet Process (IBP) (Grif-
fiths and Ghahramani, 2005), specifically to model
the latent factor structure of the given set of queries.
They implement a graph summarization algorithm
to capture representative queries from a large set of
unlabeled queries that are similar to a rather smaller
set of labeled queries. They capture the latent factor
structure of the labeled queries via IBP and reduce
the dimensionality of the queries to manageable size
and collect additional queries in this latent factor
space. They use the new set of utterances boost the
intent detection performance of SLU models.

5 Discussions and Future Directions

This paper surveyed previous research on the usage
of the query click logs (the click through data) pro-
vide valuable statistics that can potentially improve
performance of the SLU models. We presented sev-
eral methods that has been used to extract infor-
mation in the form of additional vocabulary, unla-
beled utterances and hidden features to represent ut-
terances. The current research is only the beginning,
and most approaches such as query expansion, sen-
tence compression, etc. can be easily adopted for
dialog state update processes. Thus, the state-of-the
art in NL understanding can be improved by:
• clustering of URLs as well as queries for extract-
ing better features as well as to extend ontologies.
The search community has access to vast amounts
of search data that would benefit natural language
processing research,
• mining multi-lingual data for transferring dialog
systems from one language to others,
• mining information from search sessions, for ex-
ample, users rephrasing of their own search queries
for better results.

One issue that has been the topic of recent discus-
sions is the accessibility of QCL data to researchers.
Note that, QCL is not a crowd-source data that only
large web search organizations like Google or Mi-
crosoft Bing can mine and exploit for NL under-
standing, but various other forms may be imple-
mented by interested researchers by using a simple

web service or a mobile app (such as AT&T SpeakIt
or Dragon Go) or using a targeted search engine.
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Abstract 

Developing interactive robots is an extremely 
challenging task which requires a broad range 
of expertise across diverse disciplines, includ-
ing, robotic planning, spoken language under-
standing, belief tracking and action 
management. While there has been a boom in 
recent years in the development of reusable 
components for robotic systems within com-
mon architectures, such as the Robot Operat-
ing System (ROS), little emphasis has been 
placed on developing components for Human-
Robot-Interaction. In this paper we introduce 
HRItk (the Human-Robot-Interaction toolkit), 
a framework, consisting of messaging proto-
cols, core-components, and development tools 
for rapidly building speech-centric interactive 
systems within the ROS environment. The 
proposed toolkit was specifically designed for 
extensibility, ease of use, and rapid develop-
ment, allowing developers to quickly incorpo-
rate speech interaction into existing projects. 

1 Introduction 
Robots that operate along and with humans in settings 
such as a home or office are on the verge of becoming a 
natural part of our daily environment (Bohren et al., 
2011, Rosenthal and Veloso 2010, Kanda et al., 2009, 
Srinivasa et al., 2009). To work cooperatively in these 
environments, however, they need the ability to interact 
with people, both known and unknown to them. Natural 
interaction through speech and gestures is a prime can-
didate for such interaction, however, the combination of 
communicative and physical actions, as well as the un-
certainty inherent in audio and visual sensing make such 
systems extremely challenging to create. 

Developing speech and gesture-based interactive 
robots requires a broad range of expertise, including, 
robotic planning, computer vision, acoustic processing, 
speech recognition, natural language understanding, 
belief tracking, as well as dialog management and ac-
tion selection, among others. This complexity makes it 

difficult for all but very large research groups to devel-
op complete systems. While there has been a boom in 
recent years in the development and sharing of reusable 
components, such as path planning, SLAM and object 
recognition, within common architectures, such as the 
Robot Operating System (ROS) (Quigley, 2009), little 
emphasis has been placed on the development of com-
ponents for Human-Robot Interaction although despite 
the growing need for research in this area.  

Prior work in Human-Robot Interaction has gener-
ally resulted in solutions for specific robotic platforms 
(Clodic et al., 2008) or standalone frameworks (Fong et 
al., 2006) that cannot be easily combined with standard 
architectures used by robotics researchers. Earlier work 
(Kanda et al., 2009, Fong et al., 2006) has demonstrated 
the possibilities of multimodal and multiparty interac-
tion on robotic platforms, however, the tasks and inte-
ractions explored until now have been extremely 
limited, due to the complexity of infrastructure required 
to support such interactions and the expertise required to 
effectively implement and optimize individual compo-
nents. To make significant progress, we believe that a 
common, easy to use, and easily extensible infrastruc-
ture, similar to that supported by ROS, is required for 
multi-modal human-robot interaction. Such a frame-
work will allow researchers to rapidly develop initial 
speech and gesture-based interactive systems, enabling 
them to rapidly deploy systems, observe and collect 
interactions in the field and iteratively improve system 
components based on observed deficiencies. By using a 
common architecture and messaging framework, com-
ponents and component models can easily be upgraded 
and extended by a community of researchers, while not 
affecting other components. 

Towards this goal we have developed HRItk1 
(Human-Robot-Interaction toolkit), an infrastructure 
and set of components for developing speech-centric 
interactive systems within the ROS environment. The 
proposed toolkit provides the core components required 
for speech interaction, including, speech recognition, 
natural language understanding and belief tracking. Ad-
ditionally it provides basic components for gesture rec-
ognition and gaze tracking. 
                                                           

1 HRItk is available for download at: 
http://speech.sv.cmu.edu/HRItk 
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Figure 1: Overview of core understanding and tracking components within HRItk 

 
2 Framework Overview 
An overview of the core components in the toolkit are 
highlighted in Figure 1. We introduce two classes of 
components required for speech and multimodal interac-
tion into the ROS framework, understanding nodes and 
tracking services. Understanding nodes are perceptual 
components that recognize and understand interaction 
events. Using input from sensors, intermediate 
processing nodes or other understanding components, 
these nodes generate hypotheses about current user in-
put. Tracking services monitor the long term and conti-
nuous aspects of interaction, including user dialog goals 

. These services are 
leveraged by components including Dialog Manage-
ment and Action Selection to perform interaction. Addi-
tionally, these services provide context to understanding 
nodes enabling them to apply context-specific 
processing during the understanding phase. 

2.1 Data Processing Nodes 

The understanding components implemented in this 
work heavily leverage existing components developed 
in ROS (Quigley et al., 2009). T open-
ni_kinect processes depth-images from 
the Microsoft Kinect sensor, the openni_tracker
which performs skeletal tracking, and uvccam
which processes color images from external USB cam-
eras. In the near future we also plan to support far-field 
speech recognition using the HARK_ROS toolkit (Na-
kadai et al., 2010). 

2.2 Understanding Nodes 

Understanding nodes recognize and understand events 
observed during interaction. As input they use either 
data obtained directly from sensors, preprocessed data 
from intermediate processing nodes or output from oth-
er understanding components. They either perform 
processing on explicit interaction events, such as speech 
or gesture input, or process continuous input such as 
joint position or gaze direction. The current understand-
ing nodes implemented within HRItk are listed in Table 
1 along with the ROS topics on which they publish.  

Understanding nodes publish two forms of messag-
state READY, START and STOP}, in-

dicating the state of the node and whether an interaction 
event has been detected, hypothesis ges 
which enumerate the most likely observed events along 
with a likelihood measure for each. The specific struc-

hypothesis is dependent on the 
event being observed. 

2.3 State Tracking Services 

In addition to understanding specific events such as 
utterances or gestures, an interactive system needs to 
track longer term and/or continuous aspects of interac-
tion. Such aspects include user goals, which can span 

attention (using, e.g., gaze and posture information). 
These can be defined as characterizing the state of the 
world (i.e. the user, the interaction, or the environment) 
at a given time, with possible reference to history.
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Table 1: ROS nodes, Topics, Services and Messages implemented within HRItk 
ROS Node Topic / Service (* ) Description of Messages  

Speech Detection 
and Recognition 

speech/state 
speech/hypothesis 
speech/hypothesis/best 
speech/hypothesis/final 
speech/context 

State identifying interaction event, each with a unique eventID 
Partial and final hypotheses generated during speech recognition. 
Outputs include 1-best, N-best hypotheses and confusion net-
works. All output contains confidence or component model scores 
Context indicating dialog-state, domain, task of current interaction 

Natural Language 
Understanding 

dialogact/hypothesis 
dialogact/context 

Hypotheses of Concept/Value-pairs generated during NLU 
Context indicating dialog-state, domain, task of current interaction 

Gesture Recognition hand/hypothesis 
hand/context 

Hypothesis set of Gesture-Actions with confidence measure 
Context indicating domain or task of current interaction 

Gaze Tracking gaze/hypothesis 
hand/context 

Estimate of gaze direction 
Context listing visually salient objects within users field of view 

Dialog State  
Tracking 

dialogstate/state 
belief * 
dialogstate/context 

Receives an UPDATED message when the belief changes 
Belief over the concept set specified in the service request 
Context indicating system actions potentially affecting belief 

 
In addition, states can be significantly larger objects 

than individual event understanding results, which could 
unnecessarily consume significant bandwidth if con-
stantly broadcast. Therefore, state tracking modules use 
ROS services rather than topics to communicate their 
output to other modules. Any module can send a mes-
sage to the tracking service containing a specific query 
and will receive in response the matching state or belief 
over states. 

In order to allow components to react to changes in 
the state, each state-tracking module publishes an 
UPDATED message to its state topic whenever a new 
state is computed. 

2.4 Component Implementations 

Speech Detection and Recognition is performed using 
a ROS node developed around the Julius Speech Rec-
ognition Engine (Lee and Kawahara, 2009). We se-
lected this engine for its compatibility with HARK 
(Nakadai et al, 2010), and its support of common model 
formats. A wrapper for Julius was implemented in C++ 
to support the ROS messaging architecture listed in Ta-
ble 1. Partial hypotheses are output during decoding, 
and final hypotheses are provided in 1-best, N-best and 
Confusion Network formats. Context is supported via 
language model switching. 

In order to develop a Speech Recognition compo-
nent for a new task at minimum two component models 
are required, a pronunciation dictionary, and a language 
model (or recognition grammar). Within HRItk we pro-
vide the tools required to generate these models from a 
set of labeled example utterances. We describe the rapid 
model building procedure in Section 4. 
 

Natural Language Understanding is implemented 
using Conditional Random Fields (Lafferty et al. 2001) 
similar to the approach described in (Cohn, 2007). For 
example, given Take this tray to 
the kitchen listed in Table 3, three concept/value pairs 

are extracted: Action{Carry},  Object{tray},  
Room{kitchen}.  Similar to the speech recognition 
component, the NLU component can be rapidly re-
trained using a set of tagged example sentences. 
 

Gesture Recognition of simple hand positions is im-
plemented using a Kinect depth sensor and previous 
work by Fujimura and Xu (2007) for palm/finger seg-
mentation. Currently, the module publishes a hypothesis 
for the number of fingers raised by the user, though 
more complex gestures can be implemented based on 
this model. 
 

Gaze Tracking is implemented using ASEF filters 
(Bolme et al., 2009) and geometric projection. Separate 
ASEF filters were training to locate the pupils of the left 
and right eye as well as their inner and outer corners. 
Filters were trained on hand-labeled images we col-
lected in-house.  
 

Dialog State Tracking is in charge of monitoring as-
pects of dialog that span multiple turns such as user 
goal. Our implementation is based on the Hound dialog 
belief tracking library developed at Honda Research 
Institute USA. Currently, our belief tracking model is 
Dynamic Probabilistic Ontology Trees (Raux and Ma 
2011), which capture the hidden user goal in the form of 
a tree-shaped Bayesian Network. Each node in the Goal 
Network represents a concept that can appear in lan-
guage and gesture understanding results. The structure 
of the network indicates (assumed) conditional indepen-
dence between concepts. With each new input, the net-
work is extended with evidence nodes according to the 
final understanding hypotheses and the system belief is 
estimated as the posterior probability of user goal nodes 
given the evidence so far. 

A request to the dialog state tracking service takes 
the form of a set of concept names, to which the service 
responds with an m-best list of concept value assign-
ments along with the joint posterior probability. 
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3 Rapid System Build Environment 

The models required for the core interaction compo-
nents in the system can be build from a single set of 
labeled examples Examples.txt concept 

Structure.txt  used by the Dialog State 
Tracker as shown in Figure 2. Running the automatic 
build procedure on these two files will generate 3 new 
models,  

The data used to train 
the language model and pronunciation dictionary used 
by the Speech Detection and Understanding Node and 
the statistical CRF-parser applied in the Natural Lan-
guage Understanding component. Given a set of labeled 
examples, the three models listed above are trained au-
tomatically without any intervention required from the 
user. Once a system has been deployed, speech input is 
logged, and can be transcribed and labeled with seman-
tic concepts to improve the effectiveness of these com-
ponent models. 

As explained in section 3.5, our dialog state tracker 
organizes concepts in a tree structure. For a given do-
main, we specify that structure in a simple text file 
where each line contains a concept followed by the 
name of the parent concept or the keyword ROOT for 
the root of the tree. Based on this file and on the SLU 
data file, the resource building process generates the 
files required by the Hound belief tracker at runtime. 

-the-  assumes at each node a 
uniform conditional distribution of children values giv-
en the parent value. These distributions are stored in a 
human-readable text file and can thus be manually up-
dated to more informative values. 

Using the above tools, we have developed a sample 
using the proposed framework for robot navigation task. 
The entire system can be build from a single set of la-
beled examples as shown in Figure 3 used to train the 
language model and a component to perform actions on 
the SLU output. 

 

4 Conclusions  

In this paper we introduce HRItk (the Human-Robot-
Interaction toolkit), a framework, consisting of messag-
ing protocols, components, and development tools for 
rapidly building speech-centric interactive systems 
within the ROS environment. The proposed toolkit pro-
vides all the core components required for speech inte-
raction, including, speech recognition, natural language 
understanding and belief tracking and initial implemen-
tations for gesture recognition and gaze tracking. The 
toolkit is specifically designed for extensibility, ease of 
use, and rapid development, allowing developers to 
quickly incorporate speech interaction into existing 
ROS projects. 
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Examples.txt 
<Tagged example sentence> <Action> 
 

@Room{kitchen}   None  
on  the  @Floor{fifth}  floor   None  
take  this  @Object{package}    
to  @Room{room  123}     Carry  

Structure.txt 
<Node> <Parent> 
Room     ROOT  
Floor   Room  
Object   Room 
 

Figure 2: Training examples for robot navigation task 
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Abstract

A lot. Since inception of Contender, a ma-
chine learning method tailored for computer-
assisted decision making in industrial spo-
ken dialog systems, it was rolled out in over
200 instances throughout our applications pro-
cessing nearly 40 million calls. The net ef-
fect of this data-driven method is a signifi-
cantly increased system performance gaining
about 100,000 additional automated calls ev-
ery month.

1 From the unwieldiness of data to the
Contender process

Academic institutions involved in the research on

spoken dialog systems often lack access to data for

training, tuning, and testing their systems. This is

simply because the majority of systems only live in

laboratory environments and hardly get deployed to

the live user1. The lack of data can result in sys-

tems not sufficiently tested, models trained on non-

representative or artificial data, and systems of lim-

ited domains (usually restaurant or flight informa-

tion).

On the other hand, in industrial settings, spoken

dialog systems are often deployed to take over tasks

of call center agents associated with potentially very

large amounts of traffic. Here, we are speaking of

applications which may process more than one mil-

lion calls per week. Having applications log every

1One of the few exceptions to this rule is the Let’s Go bus in-

formation system maintained at the Carnegie Mellon University

in Pittsburgh (Raux et al., 2005).

action they take during the course of a call can pro-

vide developers with valuable data to tune and test

the systems they maintain. As opposed to the aca-

demic world, often, there appears to be too much

data to capture, permanently store, mine, and re-

trieve. Harddisks on application servers run full,

log processing scripts demand too much comput-

ing capacity, database queues get stuck, queries slow

down, and so on and so forth. Even if these billions

and billions of log entries are eventually available

for random access from a highly indexed database

cluster, it is not clear what one should search for

in an attempt to improve a dialog system’s perfor-

mance.

About a year and a half ago, we proposed a

method we called Contender playing the role of a

live experiment in a deployed spoken dialog sys-

tem (Suendermann et al., 2010a). Conceptually, a

Contender is an activity in a call flow which has an

input transition and multiple output transitions (al-

ternatives). When a call hits a Contender’s input

transition, a randomization is carried out to deter-

mine which alternative the call will continue with

(see Figure 1). The Contender itself does not do any-

thing else but performing the random decision dur-

ing runtime. The different call flow activities and

processes the individual alternatives get routed to

make calls depend on the Contenders’ decisions.

Say, one wants to find out which of ten possible

time-out settings in an activity is optimal. This could

be achieved by duplicating the activity in question

ten times and setting each copy’s time-out to a dif-

ferent value. Now, a Contender is placed whose ten

alternatives get connected to the ten competing ac-
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Figure 1: Contender with three alternatives.

tivities. Finally, the outbound transitions of the com-

peting activities have to be bundled to make the rest

of the application be independent of the Contender.

A Contender can be used for all sorts of exper-

iments in dialog systems. For instance, if system

designers are unsure about which of a number of

prompts has more expressive power, they can imple-

ment all of them in the application and have the Con-

tender decide at runtime which one to play. Or if it is

unclear which actions to perform in which order, dif-

ferent strategies can be compared using a Contender.

The same applies to certain parameter settings, error

handling approaches, confirmation strategies, and so

on. Every design aspect with one or more alterna-

tives can be implemented by means of a Contender.

Once an application featuring Contenders starts

taking live production traffic, an analysis has to be

carried out, to determine which alternative results

in the highest average performance. In doing so,

it is crucial to implement some measure of statisti-

cal significance as, otherwise, conclusions may be

misleading. If no statistical significance measure

was in place, processing two calls in a two-way

Contender, one routed to Alternative 1 and ending

up automated and one routed to Alternative 2 end-

ing up non-automated, could lead to the conclu-

sion that Alternative 1’s automation rate is 100%

and Alternative 2’s is 0. To avoid such potentially

erroneous conclusions, we are using two-sample t-

tests for Contenders with two alternatives and pair-

wise two-sample t-tests with probability normaliza-

tion for more alternatives as measures of statistical

significance. A more exact but computationally very

expensive method was explained in (Suendermann

et al., 2010a), but for the sake of performing statis-

tical analysis with acceptable delays given the vast

amount of data, we primarily use the former in pro-

duction deployments.

If an alternative is found to statistically signifi-

cantly outperform the other alternatives, it is deemed

the winner, and it would be advisable routing most

(if not all) calls to that alternative. While this hard

reset maximizes performance induced by this Con-

tender going forward, it sometimes takes quite a

while before the required statistical significance is

actually reached. Hence, in the time span before

this hard reset, the Contender may perform subop-

timally. Furthermore, even though statistical mea-

sures could indicate which alternative the likely win-

ner is, this fact is potentially subject to change over

time depending upon alterations in the caller popu-

lation, the distribution of call reasons, or the appli-

cation itself. For this reason, it is recommendable to

keep exploring seemingly underperforming alterna-

tives by routing a very small portion of calls to them.

The statistical model we discussed in (Suender-

mann et al., 2010a) presents a solution to the above

listed issues. The model associates each alternative

of a Contender with a weight controlling which per-

centage of traffic is routed down this alternative on

average. As derived in (Suendermann et al., 2010a),

the weight for an alternative is generated based on

the probability that this alternative is the actual win-

ner of the Contender given the available historic

data. The weights are subject to regular updates

computed by a statistical analysis engine that con-

tinuously analyzes the behavior of all Contenders in

production deployment. In order to do so, the en-

gine accesses the entirety of available application

logs associating performance metrics, such as au-

tomation rate (the fraction of processed calls that

satisfied the call reason) or average handling time

(average call duration), with Contenders and their

alternatives. This is relatively straightforward since

the application can log call category (to tell whether

a call was automated or not), call duration, the Con-

tenders visited and the results of the randomization

at each of the Contender. In Figure 2, a high-level

diagram of the Contender process is shown.
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Figure 2: Contender process.

Since statistical analysis of Contenders involves

data points of hundreds of thousands of calls, per-

formance measurement needs to be based on autom-

ically derivable, i.e. objective, metrics. Popular ob-

jective metrics are automation rate, average handling

time, “speech errors”, retry rate, number of hang-ups

or opt-outs (Suendermann et al., 2010c). There are

also techniques correlating objective metrics to sub-

jective ones in an attempt to predict user or caller ex-

perience, i.e., to evaluate interaction quality as per-

ceived by the caller (Walker et al., 1997; Evanini et

al., 2008; Möller et al., 2008). Despite the impor-

tance of making interactions as smooth and pleasant

as possible, stakeholders of industrial systems often

insist on using metrics directly tied to the savings

generated by the deployed spoken dialog system. As

we introduced in (Suendermann et al., 2010b), sav-

ings mainly depend on automation rate (A) and av-

erage handling time (T ) and can be expressed by the

reward

R = TAA− T

where TA is a trade-off factor that depends on aver-

age agent salary and hosting and telecommunication

fees.

2 A snapshot of our last year’s experiences

Shortly after setting the mathematical foundations of

the Contender process and establishing the involved

software and hardware pieces, the first Contenders

were implemented in production applications. Un-

der the close look of operations, quality assurance,

engineering, speech science, as well as technical ac-

count management departments, the process under-

went a number of refinement cycles. In the mean-

time, more and more Contenders were implemented

into a variety of applications and released into pro-

duction traffic. Until to date, 233 Contenders were

released into production systems processing an total

call volume of 39 million calls. Table 1 shows some

statistics of a number of example Contenders per ap-

plication. These statistics are drawn from spoken di-

alog systems for technical troubleshooting of cable

services as discussed e.g. in (Acomb et al., 2007).

Such applications assist callers fixing problems with

their cable TV or Internet (such as no, slow, or inter-

mittent connection, e-mail issues). In addition to the

application and a short description of the Contender,

the table shows three quantities:

• the number of calls processed by the Contender

since its establishment (# calls),

• the reward difference between the highest- and

lowest-performing alternative of a Contender

∆R (a high value indicates that the best-

performing alternative is substantially better

than the worst-performing one, that is, the Con-

tender is very effective), and

• an estimate of the number of automated calls

gained or saved per month by running the Con-

tender ∆At [mo−1] (this value indicates the

net effect of having all calls route through

the best-performing alternative vs. the worst-

performing one, that is, the upper bound of how

many calls were gained or saved). This metric
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Table 1: Statistics of example Contenders.

application Contender # calls ∆At [mo−1] ∆R

TV problem capture 13,477,810 40,362 0.05

TV cable box reboot order 4,322,428 28,975 0.11

TV outage prediction 2,758,963 08,198 0.04

TV on demand 485,300 08,123 0.17

TV input source troubleshooting 1,162,445 03,487 0.05

TV account lookup 9,627 03,201 0.02

Internet troubleshooting paths I 275,248 05,568 0.02

Internet troubleshooting paths II 1,389,489 03,530 0.01

Internet computer monitor instruction 1,500,010 03,271 0.01

TV/Internet opt in 6,865,929 31,764 0.05

is calculated by multiplying the observed dif-

ference in automation rate ∆A with the number

of monthly calls hitting the Contender (t).

3 Conclusion

We have seen that the use of Contenders (a method

to assess and tune arbitrary components of indus-

trial spoken dialog systems) can be very benefi-

cial in multiple respects. Applications can self-

correct as soon as reliable data becomes available

without additional manual analysis and intervention.

Moreover, performance can increase substantially

in applications implementing Contenders. Looking

at only the 10 best-performing Contenders out of

233 running in our applications to-date, the number

of automated calls increased by about 100,000 per

month.

However, multiple Contenders that are active in

the same call flow cannot always be regarded inde-

pendent of each other. A routing decision made in

Contender 1 earlier in the call can potentially have

an impact on which decision is optimal in Contender

2 further down the call. In this respect, reward gains

of Contenders installed in the same application are

not necessarily additive. Not only can optimal deci-

sions in a Contender depend on other Contenders but

also on other runtime parameters such as time of the

day, day of the week, geographic origin of the caller

population, or the equipment used by the caller. Our

current research focuses on evaluating these depen-

dencies and accordingly optimize the way decisions

are made in Contenders.
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Abstract

Information about the quality of a Spoken Di-
alogue System (SDS) is usually used only for
comparing SDSs with each other or manually
improving the dialogue strategy. This infor-
mation, however, provides a means for inher-
ently improving the dialogue performance by
adapting the Dialogue Manager during the in-
teraction accordingly. For a quality metric to
be suitable, it must suffice certain conditions.
Therefore, we address requirements for the
quality metric and, additionally, present ap-
proaches for quality-adaptive dialogue man-
agement.

1 Introduction

For years, research has been focused on enabling
Spoken Dialogue Systems (SDSs) to behave more
adaptively to the user’s expectations and needs.
Möller et al. (2009) presented a taxonomy for qual-
ity of human-machine interaction, i.e., Quality of
Service (QoS) and Quality of Experience (QoE). For
QoE, several aspects are identified. They contribute
to good user experience, e.g., interaction quality, us-
ability and acceptability. These aspects can be com-
bined to the term User Satisfaction (US), describ-
ing the degree by which the user is satisfied with the
system’s performance. The dialogue community has
been investigating this aspect for years. Most promi-
nently is the PARADISE framework by Walker et al.
(2000) which maps objective performance metrics
of an SDS to subjective user ratings.

Recent work mostly discusses how to evaluate
Spoken Dialogue Systems. However, the issue of

how this information can be useful for improv-
ing dialogue performance remains hardly addressed.
Hence, we focus on exploring techniques for incor-
porating dialogue quality information into the Dia-
logue Manager (DM). This is accompanied by the
problem of defining characteristics of a suitable dia-
logue quality metric.

In Section 2, we present related work both on
measuring dialogue quality and on approaches for
incorporating user state information into the DM.
In Section 3, requirements for a quality metric are
presented along with a suitable example. Section 4
presents our ongoing and future work on incorpo-
rating quality measures into dialogue strategies. Fi-
nally, Section 5 concludes this work.

2 Related Work

In recent years, several studies have been published
on determining the qualitative performance of a
SDS. Engelbrecht et al. (2009) predicted User Sat-
isfaction on a five-point scale at any point within the
dialogue using Hidden Markov Models (HMMs).
Evaluation was based on labels the users applied
themselves during a Wizard-of-Oz experiment. To
guarantee for comparable conditions, the dialogue
flow was controlled by predefined scenarios creat-
ing transcripts with equal length for each scenario.

Further work based on HMMs was presented by
Higashinaka et al. (2010). The HMM was trained on
US rated at each exchange. These exchange ratings
were derived from ratings for the whole dialogue.
The authors compare their approach with HMMs
trained on manually annotated exchanges achieving
a better performance for the latter.
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In order to predict US, Hara et al. (2010) created
n-gram models from dialogue acts (DA). Based on
dialogues from real users interacting with a music
retrieval system, overall ratings for the whole dia-
logue have been labeled on a five point scale after
the interaction. An accuracy (i.e., rate of correctly
predicted ratings) of 34% by a 3-gram model was
the best performance which could be achieved.

Dealing with true User Satisfaction, Schmitt et al.
presented their work about statistical classification
methods for automatic recognition of US (Schmitt
et al., 2011b). The data was collected in a lab
study where the users themselves had to rate the
conversation during the ongoing dialogue. Labels
were applied on a scale from 1 to 5. Perform-
ing automatic classification using a Support Vector
Machine (SVM), they achieved an Unweighted Av-
erage Recall (UAR) of 49.2 (i.e., average rate of
correctly predicted ratings, compensated for unbal-
anced data).

An approach for affective dialogue modeling
based on Partially Observable Markov Decision
Processes (POMDPs) was presented by Bui et al.
(2007). Adding stress to the dialogue state enables
the dialogue manager to adapt to the user. To make
belief-update tractable, the authors introduced Dy-
namic Decision Networks as means for reducing
complexity.

Pittermann et al. (2007) presented another ap-
proach for adaptive dialogue management. The au-
thors incorporated emotions by modeling the dia-
logue in a semi-stochastic way. Thus, an emotional
dialogue model was created as a combination of a
probabilistic emotional model and probabilistic dia-
logue model defining the current dialogue state.

3 Interaction Quality Metric

In order to enable the Dialogue Manager to be
quality-adaptive, the quality metric must suffice cer-
tain criteria. In this Section, we identify the impor-
tant issues and render the requirements for a suitable
quality metric.

3.1 General Aspects

For adapting the dialogue strategy to the quality of
the dialogue, the quality metric is required to imple-
ment certain characteristics. We identify the follow-

ing items:

• exchange-level quality measurement,

• automatically derivable features,

• domain-independent features,

• consistent labeling process,

• reproducible labels and

• unbiased labels.

The performance of a Spoken Dialogue System
may be evaluated either on the dialogue level or on
the exchange level. As dialogue management is per-
formed after each system-user exchange, dynamic
adaption of the dialogue strategy to the dialogue
performance requires exchange-level performance
measures. Therefor, Dialogue-level approaches are
of no use. Furthermore, previous presented meth-
ods for exchange-level quality measuring could not
achieve satisfying accuracy in predicting dialogue
quality (Engelbrecht et al., 2009; Higashinaka et al.,
2010).

Features serving as input variables for a classi-
fication algorithm must be automatically derivable
from the dialogue system modules. This is impor-
tant because other features, e.g., manually annotated
dialogue acts (Higashinaka et al., 2010; Hara et al.,
2010), produce high costs and are also not available
immediately during run-time in order to use them as
additional input to the Dialogue Manager. Further-
more, for creating a general quality metric, features
have to be domain-independent, i.e., not depending
on the task domain of the dialogue system.

Another important issue is the consistency of the
labels. Labels applied by the users themselves are
subject to large fluctuations among the different
users (Lindgaard and Dudek, 2003). As this results
in inconsistent labels, which do not suffice for creat-
ing a generally valid quality model, ratings applied
by expert raters yield more consistent labels. The
experts are asked to estimate the user’s satisfaction
following previously established rating guidelines.
Furthermore, expert labelers are also not prone to be
influenced by certain aspects of the SDS, which are
not of interest in this context, e.g., the character of
the synthesized voice. Therefore, they create less bi-
ased labels.
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3.2 Interaction Quality

As metric, which fulfills all previously addressed
requirements, we present the Interaction Quality
(IQ) metric, see also (2011a). Based on dialogues
from the “Let’s Go Bus Information System” of the
Carnegie Mellon University in Pittsburgh (Raux et
al., 2006), IQ is labeled on a five point scale. The
labels are (from best (5) to worst (1)) “satisfied”,
“slightly unsatisfied”, “unsatisfied”, “very unsatis-
fied” and “extremely unsatisfied”. They are applied
by expert raters following rating guidelines, which
have been established to allow consistent and repro-
ducible ratings.

Additionally, domain-independent features used
for IQ recognition have been derived from the di-
alogue system modules automatically for each ex-
change grouped on three levels: the exchange level,
the dialogue level, and the window level. As parame-
ters like ASRCONFIDENCE or UTTERANCE can di-
rectly be acquired from the dialogue modules they
constitute the exchange level. Based on this, counts,
sums, means, and frequencies of exchange level pa-
rameters from multiple exchanges are computed to
constitute the dialogue level (all exchanges up to the
current one) and the window level (the three previous
exchanges).

A corpus containing the labeled data has been
published recently (Schmitt et al., in press) contain-
ing 200 calls annotated by three expert labelers, re-
sulting in a total of 4,885 labeled exchanges. Us-
ing statistical classification of IQ based on SVMs
achieves an Unweighted Average Recall of 0.58
(Schmitt et al., 2011a).

4 Quality-Adaptive Spoken Dialogue
Management

The goal of our work is to enable Dialogue Man-
agers to directly adapt to information about the qual-
ity of the ongoing dialogue. We present two differ-
ent approaches that outline our ongoing and future
work.

4.1 Dialogue Design-Patterns for Quality
Adaption

Rule-based Dialogue Managers are still state-of-the-
art for commercial SDSs. It is hardly arguable that
making the rules quality-dependent is a promising

way for dialogue improvement. However, the num-
ber of possibilities for adapting the dialogue strategy
to the dialogue quality is high. Based on the Speech-
Cycle RPA Dialogue Manager, we are planning on
identifying common dialogue situations in order to
create design-patterns. These patterns can be ap-
plied as a general means of dealing with situations
that arise by introducing quality-adaptiveness to the
dialogue.

4.2 Statistical Quality-Adaptive Dialogue
Management

For the incorporation of Interaction Quality into a
statistical DM, two approaches have been found.

First, based on work on factored Partially Observ-
able Markov Decision Processes by Williams and
Young (2007) and similar to Bui et al. (2006), we
presented our own approach for incorporating addi-
tional user state information (Ultes et al., 2011).

In the factored POMDP by Williams and Young
(2007), the state of the underlying process is de-
fined as s = (u, g, h). To incorporate IQ, it is
extended by adding the IQ-state siq, resulting in
s = (u, g, h, siq).

Following the concept of user acts, we further in-
troduce IQ-acts iq that describe the current qual-
ity predicted by the classification algorithm for the
current exchange. Incorporating IQ acts into obser-
vation o results in the two-dimensional observation
space

O = U × IQ,

where U denotes the set of all user actions and IQ
the set of all possible Interaction Quality values.

Second, for training an optimal policy for ac-
tion selection in POMDPs, a reward function has
to be defined. Common reward functions are task-
oriented and based on task success and dialogue
length. As an example, a considerable positive re-
ward is given for reaching the task goal, a consider-
able negative reward for aborting the dialogue, and a
small negative reward for each exchange in order to
keep the dialogue short. Interaction Quality scores
offer an interesting and promising way of defining a
reward function, e.g., by rewarding improvements in
IQ. By that, strategies that try to keep the quality at
an overall high can be trained allowing for a better
user experience.
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5 Conclusion

For incorporating information about the dialogue
quality into the Dialogue Manager, we identified
characteristics of a quality metric defining neces-
sary prerequisites for being used during dialogue
management. Further, the Interaction Quality met-
ric has been proposed as measure, which suffices all
requirements. In addition, we presented concrete ap-
proaches of incorporating IQ into the DM outlining
our ongoing and future work.
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Sebastian Möller, Klaus-Peter Engelbrecht, C. Kühnel,
I. Wechsung, and B. Weiss. 2009. A taxonomy of
quality of service and quality of experience of multi-
modal human-machine interaction. In Quality of Mul-
timedia Experience, 2009. QoMEx 2009. International
Workshop on, pages 7–12, July.

Johannes Pittermann, A. Pittermann, Hong Meng, and
W. Minker. 2007. Towards an emotion-sensitive
spoken dialogue system - classification and dialogue
modeling. In Intelligent Environments, 2007. IE 07.
3rd IET International Conference on, pages 239 –246,
September.

Antoine Raux, Dan Bohus, Brian Langner, Alan W.
Black, and Maxine Eskenazi. 2006. Doing research
on a deployed spoken dialogue system: One year of
lets go! experience. In Proc. of the International Con-
ference on Speech and Language Processing (ICSLP),
September.

Alexander Schmitt, Benjamin Schatz, and Wolfgang
Minker. 2011a. Modeling and predicting quality in
spoken human-computer interaction. In Proceedings
of the SIGDIAL 2011 Conference, Portland, Oregon,
USA, June. Association for Computational Linguis-
tics.

Alexander Schmitt, Benjamin Schatz, and Wolfgang
Minker. 2011b. A statistical approach for estimat-
ing user satisfaction in spoken human-machine inter-
action. In Proceedings of the IEEE Jordan Confer-
ence on Applied Electrical Engineering and Comput-
ing Technologies (AEECT), Amman, Jordan, Decem-
ber. IEEE.

Alexander Schmitt, Stefan Ultes, and Wolfgang Minker.
in-press. A parameterized and annotated corpus of the
cmu let’s go bus information system. In International
Conference on Language Resources and Evaluation
(LREC).

Stefan Ultes, Tobias Heinroth, Alexander Schmitt, and
Wolfgang Minker. 2011. A theoretical framework for
a user-centered spoken dialog manager. In Proceed-
ings of the Paralinguistic Information and its Integra-
tion in Spoken Dialogue Systems Workshop, pages 241
– 246. Springer, September.

Marilyn Walker, Candace Kamm, and Diane Litman.
2000. Towards developing general models of usabil-
ity with paradise. Nat. Lang. Eng., 6(3-4):363–377.

Jason D. Williams and Steve J. Young. 2007. Par-
tially observable markov decision processes for spo-
ken dialog systems. Computer Speech and Language,
(21):393–422.

52



Author Index

Araki, Masahiro, 25

Baumann, Timo, 29
Black, Alan W, 19
Bohus, Dan, 13

Celikyilmaz, Asli, 37
Chandrashekaran, Akshay, 41
Cimiano, Philipp, 1
Cohen, David, 33
Cuayáhuitl, Heriberto, 7

Dethlefs, Nina, 7, 15

Engelbrecht, Klaus-Peter, 5
Eskenazi, Maxine, 19

Hakkani-Tur, Dilek, 37
Hastie, Helen, 15
Horvitz, Eric, 13

Kamar, Ece, 13
Kretzschmar, Florian, 5

Lane, Ian, 33, 41
Lemon, Oliver, 15
Levow, Gina-Anne, 21
Luo, Shangyu, 41

Minker, Wolfgang, 49
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