
Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 295–303,
Seoul, South Korea, 5-6 July 2012. c©2012 Association for Computational Linguistics

Combining Incremental Language Generation and
Incremental Speech Synthesis for Adaptive Information Presentation

Hendrik Buschmeier1, Timo Baumann3, Benjamin Dosch, Stefan Kopp1, David Schlangen2

1Sociable Agents Group, CITEC and Faculty of Technology, Bielefeld University
2Dialogue Systems Group, Faculty of Linguistics and Literary Studies, Bielefeld University

{hbuschme,bdosch,skopp,david.schlangen}@uni-bielefeld.de
3Natural Language Systems Division, Department of Informatics, University of Hamburg

baumann@informatik.uni-hamburg.de

Abstract

Participants in a conversation are normally re-
ceptive to their surroundings and their inter-
locutors, even while they are speaking and can,
if necessary, adapt their ongoing utterance. Typ-
ical dialogue systems are not receptive and can-
not adapt while uttering. We present combin-
able components for incremental natural lan-
guage generation and incremental speech syn-
thesis and demonstrate the flexibility they can
achieve with an example system that adapts to
a listener’s acoustic understanding problems
by pausing, repeating and possibly rephrasing
problematic parts of an utterance. In an eval-
uation, this system was rated as significantly
more natural than two systems representing the
current state of the art that either ignore the
interrupting event or just pause; it also has a
lower response time.

1 Introduction

Current spoken dialogue systems often produce pre-
scripted system utterances or use templates with vari-
able substitution during language generation. If a
dialogue system uses grammar-based generation at
all, it produces complete utterances that are then syn-
thesised and realised in one big chunk. As systems
become increasingly more conversational, however,
the need arises to make output generation1 more flex-
ible. In particular, capabilities for incrementally gen-
erating output become desirable, for two kinds of
reasons.

(a) In situations where fast system responses are
important, production of output can begin before the

1We will use the term ‘output generation’ here to cover both
natural language generation and speech synthesis.

content that is to be presented is fully specified – even
if what is being produced is just a turn-taking signal
(Skantze and Hjalmarsson, 2010).

(b) A system that produces its output incrementally
can react to events happening while it is realising an
utterance. This can be beneficial in domains where
the state of the world that the system relays informa-
tion about can change mid-utterance, so that a need
may arise to adapt while speaking. It should also
improve naturalness by allowing the system to react
to dialogue phenomena such as concurrent feedback
signals from the user (Buschmeier and Kopp, 2011).

We present work towards enabling such capabil-
ities. We have implemented and connected a com-
ponent for incremental natural language genera-
tion (iNLG) that works with specifications of sub-
utterance-sized communicative intentions and a com-
ponent for incremental speech synthesis (iSS) that can
handle sub-utterance-sized input and modifications
to not-yet-spoken parts of the utterance with very low
latencies. To explore whether such an output genera-
tion capability can indeed be advantageous, we have
created a test system that can react to random noise
events that occur during a system utterance by repeat-
ing and modifying the last sub-utterance chunk. In
an evaluation, we found that this system is in general
more reactive than a non-incremental variant and that
humans rate its behaviour to be more natural than
two non-incremental and non-responsive systems.

2 Related Work

Psycholinguistic research has identified incremen-
tality as an important property of human language
production early on and it has been incorporated into
several models (e. g., Kempen and Hoenkamp, 1987;

295

Levelt, 1989). Guhe (2007) presents a computational
model of incremental conceptualisation. However,
work on iNLG itself is rare, partly because NLG re-
search focusses on text (instead of spoken language).

Notable exceptions are the in-depth analysis of
requirements for and properties of incremental gen-
eration by Kilger and Finkler (1995), who describe
the LTAG-based incremental syntactic generator VM-
GEN. It takes incremental input, processes it and pro-
duces output as soon as at least a prefix of the final
sentence is syntactically complete. If VM-GEN no-
tices that it committed itself to a prefix too early, it
can initiate an overt repair. More recently, Skantze
and Hjalmarsson (2010) presented a system that per-
forms incremental generation in the context of a spo-
ken dialogue system. It can already start to produce
output when the user has not yet finished speaking
and only a preliminary interpretation exists. By flexi-
bly changing what to say and by being able to make
self-repairs the system can recover from situations
where it selected and committed on an inadequate
speech plan. Both systems, however, are not able
to flexibly adapt the language that they generate to
changing requirements due to changes in the situation
or changing needs on the side of the user.

Real-time on-the-fly control of speech synthesis
is rare, especially the full integration into a dialogue
system. Matsuyama et al. (2010) describe a system
that feeds back to the dialogue system the word at
which it has been interrupted by a barge-in. Edlund
(2008) additionally enables a system to continue at
the point where it was interrupted. He also outlines
some requirements for incremental speech synthe-
sis: to give constant feedback about what has been
delivered, to be interruptible (and possibly continue
from that position), and to run in real time. Edlund’s
system, which uses diphone synthesis, performed
non-incrementally before delivery starts. We go be-
yond this in also enabling changes during delivery
and conducting synthesis steps just-in-time.

Dutoit et al. (2011) present an incremental HMM

optimiser which allows to change pitch and tempo
of upcoming phonemes. However, as that system is
fed from a (non-incrementally produced) label file, it
cannot easily be used in an incremental system.

A predecessor of our iSS component (which was
not yet fully incremental on the HMM level) is de-
scribed in detail in (Baumann and Schlangen, 2012a).

3 Incremental and Adaptive NLG

3.1 The SPUD microplanning framework

The NLG component presented here is based on
the SPUD microplanning framework (Stone et al.,
2003) and realised in DeVault’s (2008) implemen-
tation ‘Java SPUD’. SPUD frames microplannig as
a constraint satisfaction problem, solving the tasks
that are involved in generating a sentence (lexical
and syntactic choice, referring expression generation
and aggregation) in an integrated manner. Genera-
tion starts from a communicative goal that specifies
constraints for the final utterance. The generation pro-
cess is further shaped by (a) general constraints that
model pragmatic properties of language use such as
the Gricean maxims (a principle called ‘textual econ-
omy’); (b) specific constraints imposed through the
communicative status of the propositions to be com-
municated (i. e., what knowledge can be presupposed
and what needs to be communicated explicitly); and
(c) linguistic resources (a context-free tree rewriting
formalism based on LTAG; Stone, 2002).

To deal efficiently with the infinite search space
spanned by the linguistic resources, SPUD uses a
heuristic search algorithm to find an utterance that
satisfies the imposed constraints (Stone et al., [2003]
describe the heuristic function). In each search step,
the algorithm expands the ‘provisional’ utterance by
adding the linguistic resource that maximally reduces
the estimated distance to the final utterance.

If the generation process runs into a dead-end state,
it could in principle deal with the situation by track-
ing back and expanding a different branch. This,
however, is impractical, as it becomes impossible
to project when – if at all – generation will finish.
Hence, in that case, SPUD stops without providing a
result, delegating the problem back to the preceding
component in the generation pipeline.

3.2 Partially incremental generation

SPUD generates utterances incrementally in the sense
that the completeness of the provisional utterance
increases monotonically with every step. This, how-
ever, does not mean that the surface structure of pro-
visional utterances is constructed incrementally (i. e.,
from left to right) as well, which would only be pos-
sible, if (a) the search strategy would always expand
the leftmost non-lexicalised node in the provisional

296

Utterance IC1 IC2 ICn …

Utterance
outline IMPT1 IMPT2 IMPTn …

 MCP

– {U1, …}
– KB1

– {Ui, …}
– KB2

– {Uk, …}
– KBn

 MPP

 …state

t

Figure 1: Incremental microplanning consists of two pro-
cesses, micro content planning (MCP) and microplanning-
proper (MPP). The former provides incremental microplan-
ning tasks from an utterance outline to the latter, which
incrementally transforms them into communicative intent
and intonation unit-sized chunks of natural language.

utterance first and if (b) the linguistic resources are
specified (and ordered) in a way that allows left-to-
right expansion of the trees in all possible situations.
In practice, both requirements are difficult to meet
and full word-by-word incrementality in natural lan-
guage microplanning is not within reach in the SPUD

framework. Because of this, we take a slightly more
coarse grained approach to incremental microplan-
ning and choose chunks of the size of intonation
phrases instead of words as our incremental units.
We say that our microplanner does ‘partially incre-
mental generation’.

Our incremental microplanner comprises two inter-
acting processes, micro content planning and micro-
planning-proper (MCP and MPP; schematised in Fig-
ure 1), each of which fulfils a distinct task and oper-
ates on different structures.

MCP takes as input utterance outlines that describe
the communicative goal (a set of desired updates Ux)
intended to be communicated in an utterance and the
presuppositions and private knowledge needed to do
so. Importantly, utterance outlines specify how the
communicative goal can be decomposed into an or-
dered list of incremental microplanning-tasks IMPTx.
Each such task comprises (a) a subset of the commu-
nicative goal’s desired updates that belong together
and fit into one intonation unit sized chunk of speech
and (b) knowledge KBx used in generation.

MPP takes one incremental microplanning-task at

a time and uses SPUD to generate the IMPT’s commu-
nicative intent as well as its linguistic surface form
ICx. The communiciative intent is added to a repre-
sentation (‘state’ in Figure 1) that is shared between
the two processes. While processing the IMPTs of
an utterance outline, MCP can access this representa-
tion, which holds information about all the desired
updates that were achieved before, and thus knows
that a desired update that is shared between subse-
quent IMPTs has already been communicated. MPP

can also take this information into account during
generation. This makes it possible that an utterance
is coherent and adheres to pragmatic principles even
though generation can only take local decisions.

3.3 Adaptive generation

Being able to generate language in sub-utterance
chunks makes it possible to dynamically adapt later
increments of an utterance to changes in the situa-
tion that occur while the utterance is being realised.
Decisions about these adaptations need not be taken
almost until the preceding increment finishes, mak-
ing the generation process very responsive. This is
important to be able to deal with interactive dialogue
phenomena, such as communicative feedback of the
interlocutor (Allwood et al., 1992) or compound con-
tributions (Howes et al., 2011), in a timely manner.

Adaptation may happen in both parts of incremen-
tal microplanning. In MCP, adaptation takes the form
of dynamically changing the choice of which IMPT to
generate next or changing the internal structure of an
IMPT; adaptation in MPP changes the choices the gen-
eration process makes while transforming IMPTs into
communicative intent and surface form. Adaptation
in MCP is triggered top-down, by higher-level pro-
cesses such as dialogue management. Adaptation in
MPP on the other hand depends on the task given and
on the status of the knowledge used during generation.
The details are then governed by global parameter
settings MPP uses during generation.

If there is, for example, reason for the system to
believe that the current increment was not commu-
nicated clearly because of noise in the transmission
channel, the MCP process might delay future IMPTs
and initiate a repair of the current one by re-inserting
it at the beginning of the list of upcoming IMPTs of
this utterance outline. The MPP process’ next task
is then to re-generate the same IMPT again. Due to

297

Table 1: Surface forms generated from the same IMPT (de-
sired updates = {hasSubject(event6, ‘Vorlesung
Linguistik’)}; KB = {event6}) but with different
levels of verbosity.

Verbosity Generated sub-utterance chunk

0 ‘Vorlesung Linguistik’
(lecture Linguistcs)

1 ‘Betreff: Vorlesung Linguistik’
(subject: lecture Linguistics)

2 ‘mit dem Betreff Vorlesung Linguistik’
(with the subject: lecture Linguistics)

changes in the state information and situation that
influence microplanning, the resulting communica-
tive intent and surface form might then differ from
its previous result.

3.4 Adaptation mechanisms

As a proof of concept, we integrated several adapta-
tion mechanism into our NLG-microplanning system.
The goal of these mechanisms is to respond to a dia-
logue partner’s changing abilities to perceive and/or
understand the information the system wants to con-
vey. Some of the mechanisms operate on the level of
MCP, others on the level of MPP. The mechanisms are
implemented either with the knowledge and its con-
versational status used in generation or by altering
the decision structure of SPUD’s search algorithm’s
heuristic function. Similar to the approach of flexi-
ble NLG described by Walker et al. (2007), most of
the mechanism are conditioned upon individual flags,
that in our case depend on a numeric value that repre-
sents the level of understanding the system attributes
to the user. Here we describe the two most relevant
mechanisms used to adapt verbosity and redundancy.

Verbosity The first mechanism aims at influenc-
ing the length of a sub-utterance chunk by making
it either more or less verbose. The idea is that actual
language use of human speakers seldom adheres to
the idealised principle of textual economy. This is
not only the case for reasons of cognitive constraints
during speech production, but also because words
and phrases that do not contribute much to an utter-
ance’s semantics can serve a function, for example by
drawing attention to specific aspects of an utterance
or by giving the listener time to process.

To be able to vary utterance verbosity, we anno-
tated the linguistic resources in our system with val-
ues of their verbosity (these are hand-crafted similar
to the rule’s annotation with production costs). Dur-
ing generation in MPP the values of all linguistic re-
sources used in a (provisional) utterance are added up
and used as one factor in SPUD’s heuristic function.
When comparing two provisional utterances that only
deviate in their verbosity value, the one that is nearer
to a requested verbosity level is chosen. Depend-
ing on this level, more or less verbose constructions
are chosen and it is decided whether sub-utterance
chunks are enriched with additional words. Table 1
shows the sub-utterance chunk ‘Betreff: Vorlesung
Linguistik’ (subject: lecture Linguistics) generated
with different levels of verbosity.

Redundancy The second adaptation mechanism is
redundancy. Again, redundancy is something that an
ideal utterance does not contain and by design SPUD

penalises the use of redundancy in its heuristic func-
tion. Two provisional utterances being equal, the one
exhibiting less redundancy is normally preferred. But
similar to verbosity, redundancy serves communica-
tive functions in actual language use. It can highlight
important information, it can increase the probability
of the message being understood (Reiter and Sripada,
2002) and it is often used to repair misunderstanding
(Baker et al., 2008).

In incremental microplanning, redundant informa-
tion can be present both within one sub-utterance
chunk (e. g., ‘tomorrow, March 26, . . . ’ vs. ‘tomorrow
. . . ’) or across IMPTs. For the former case, we modi-
fied SPUD’s search heuristic in order to conditionally
either prefer an utterance that contains redundant in-
formation or an utterance that only contains what is
absolutely necessary. In the latter case, redundancy
only becomes an option when later IMPTs enable the
choice of repeating information previously conveyed
and therefore already established as shared knowl-
edge. This is controlled via the internal structure of
an IMPT and thus decided on the level of MCP.

4 Incremental Speech Synthesis

In this section we describe our component for incre-
mental speech synthesis. We extend Edlund’s (2008)
requirements specification cited in Section 2, requir-
ing additionally that an iSS supports changes to as-yet

298

unspoken parts of an ongoing utterance.
We believe that the iSS’s requirements of inter-

ruptability, changeability, responsiveness, and feed-
back are best resolved by a processing paradigm in
which processing takes place just-in-time, i. e., tak-
ing processing steps as late as possible such as to
avoid re-processing if assumptions change. Before
we describe these ideas in detail, we give a short
background on speech synthesis in general.

4.1 Background on speech synthesis
Text-to-speech (TTS) synthesis functions in a top-
down processing approach, starting on the utterance
level and descending onto words and phonemes, in
order to make good decisions (Taylor, 2009). For
example, top-down modelling is necessary to assign
stress patterns and sentence-level intonation which
ultimately lead to pitch and duration contours, and to
model co-articulation effects.

TTS systems start out assigning intonation patterns
to the utterance’s words and then generate a target
phoneme sequence which is annotated with the tar-
gets’ durations and pitch contour; all of this is called
the linguistic pre-processing step. The synthesis step
proper can be executed in one of several ways with
HMM-based and unit-selection synthesis currently
producing the perceptually best results.

In HMM-based synthesis, the target sequence is
first turned into a sequence of HMM states. A global
optimisation then determines a stream of vocoding
features that optimise both HMM emission probabili-
ties and continuity constraints (Tokuda et al., 2000).
The stream may also be enhanced to consider global
variance of features (Toda and Tokuda, 2007). The
parameter frames are then fed to a vocoder which
generates the final speech audio signal.

Unit-selection, in contrast, searches for the best
sequence of (variably sized) units of speech in a
large, annotated corpus, aiming to find a sequence
that closely matches the target sequence while having
few and if possible smooth joints between units.

We follow the HMM-based approach for our com-
ponent for the following reasons: (a) even though
only global optimisation is optimal for both tech-
niques, the influence of look-ahead on the continuity
constraints of HMM-based synthesis is linear leading
to a linear loss in optimality with smaller look-aheads
(whereas unit-selection with limited look-ahead may

Figure 2: Hierarchical structure of incremental units de-
scribing an example utterance as it is being produced
during delivery.

jump erratically between completely different unit se-
quences). (b) HMM-based synthesis nicely separates
the production of vocoding parameter frames from
the production of the speech audio signal which al-
lows for fine-grained concurrent processing (see next
subsection). (c) Parameters in the vocoding frames
are partially independent. This allows us to indepen-
dently manipulate, e. g., pitch without altering other
parameters or deteriorating speech quality (in unit-
selection, a completely different unit sequence might
become optimal even for slight changes of pitch).

4.2 Incrementalising speech synthesis

As explained in the previous subsection, speech syn-
thesis is performed top-down, starting at the utterance
and progressing down to the word, target and finally,
in the HMM approach, vocoding parameter and signal
processing levels. It is, however, not necessary that
all details at one level of processing are worked out
before starting to process at the next lower level. To
be precise, some syntactic structure is sufficient to
produce sentence-level intonation, but all words need
not be known. Likewise, post-lexical phonological
processes can be computed as long as a local context
of one word is available and vocoding parameter com-
putation (which must model co-articulation effects)
should in turn be satisfied with about one phoneme of
context. Vocoding itself does not need any lookahead
at all (aside from audio buffering considerations).

Thus, we generate our data structures incremen-
tally in a top-down and left-to-right fashion with dif-
ferent amounts of pre-planning and we do this using
several processing modules that work concurrently.
This results in a ‘triangular’ structure as shown in

299

Figure 2. At the top stands a pragmatic plan for the
full utterance from which a syntactic plan can be de-
vised. This plan is filled with words, as they become
available. On the vocoding parameter level, only a
few frames into the future have been computed so
far – even though much more context is already avail-
able. That is, we generate structure just-in-time, only
shortly before it is needed by the next processor. This
holds very similarly for the vocoding step that pro-
duces the speech signal just-in-time.

The just-in-time processing approach, combined
with the increasing temporal granularity of units to-
wards the lower levels has several advantages: (a) lit-
tle utterance-initial processing (only what is neces-
sary to produce the beginning of the signal) allows for
very responsive systems; and (b) changes to the ini-
tial plan result only in a modest processing overhead
because little structure has to be re-computed.

4.3 Technical overview

As a basis, we use MaryTTS (Schröder and Trouvain,
2003), but replace Mary’s internal data structures
and processing strategies with structures from our
incremental SDS architecture, the INPROTK toolkit
(Schlangen et al., 2010; Baumann and Schlangen,
2012b), which implements the IU model for incre-
mental dialogue processing (Schlangen and Skantze,
2009). The model conceptualises – and the toolkit
implements – incremental processing as the process-
ing of incremental units (IUs), which are the smallest
‘chunks’ of information at a specific level (the boxes
in Figure 2). IUs are interconnected to form a network
(e. g., words keep links to their associated phonemes
and neighbouring words and vice-versa) which repre-
sents the system’s information state.

The component is fed with chunk IUs which con-
tain some words to be synthesised (on their own or
appended to an ongoing utterance). For simplicity,
all units below the chunk level are currently gener-
ated using Mary’s (non-incremental) linguistic pre-
processing capabilities to obtain the target phoneme
sequence. For continuations, the preceding parts of
the utterance are taken into account when generating
prosodic characteristics for the new chunk. Also, our
component is able to revoke and exchange chunks
(or unspoken parts thereof) to change what is to be
spoken; this capability however is not used in the
example system presented in Section 5.

The lowest level module of our component is what
may be called a crawling vocoder, which actively
moves along the phoneme IU layer and executes two
processing steps: (a) for each phoneme it generates
the sequence of HMM parameter frames using a local
optimisation technique (using up to four neighbour-
ing phonemes as context) similar to the one described
by Dutoit et al. (2011); and (b) vocoding the HMM

parameters into an audio stream which contains the
actual speech signal.

IUs have a ‘progress’ field which is set by the
crawling vocoder to one of ‘upcoming’, ‘ongoing’,
or ‘completed’, as applicable. IUs provide a generic
update mechanism to support notification about
progress changes in delivery. The next section de-
scribes how this is used to drive the system.

5 Integrating iNLG and iSS for Adaptive
Information Presentation

Integrating incremental microplanning with incre-
mental speech synthesis in one incremental output
generation architecture allows us to test and explore
how their capabilities act in a coordinated way. As a
first example, we implemented a system that presents
information about events in an appointment database
(e. g., new, conflicting or rescheduled appointments)
and is able to cope with external noise burst events,
as they might for example occur on a bad telephone
line or when using a dialogue system next to a busy
street. The focus is on the incremental capabilities of
the system which enable its adaptive behaviour.

5.1 Component interplay

iNLG and iSS are implemented as IU modules in the
INPROTK architecture. The control flow of the sys-
tem (Figure 3) is managed without special coupling
between the modules, relying only on the left-to-right
processing capabilities of INPROTK combined with
its generic IU update mechanism for transporting
feedback from iSS to iNLG. Both modules can be
(and have been) combined with other IU modules.

To communicate an appointment event, the iNLG

module starts by generating two initial chunk IUs,
the first to be expressed immediately, the second as
additional prosodic context (chunk lengths differ with
an average of about 4 words). The iNLG registers as a
‘progress listener’ on each chunkIU, which registers

300

Figure 3: Information flow (dashed lines) between iNLG
and iSS components (rounded boxes) and incremental
units (rectangular boxes). The vocoder crawls along with
time and triggers the updates.

as a progress listener on a phonemeIUnear its end.
Shortly before iSS finishes speaking the chunk, iNLG

is thus informed and can generate and send the next
chunk to iSS just-in-time.

If adaptation to noise is needed, iNLG re-generates
and re-sends the previous chunk, taking altered pa-
rameters into account. Again, a subsequent chunk
is immediately pre-generated for additional prosodic
context. This way of generating sub-utterance chunks
ensures that there is always one chunk lookahead to
allow the iSS module to compute an adequate in-
tonation for the current chunk, while maintaining
the single chunk as increment size for the system
and minimising redundant work on the side of iNLG

(this lookahead is not required for iSS; but if it is un-
available, sub-utterance chunks may be inadequately
connected prosodically).

5.2 Responding to a noise event

A third module, the noise detector connects to both
iSS and iNLG. On noise onset, it informs iSS to inter-
rupt the ongoing utterance after the current word (this
works by breaking the links between words so that
the crawling vocoder finishes after the currently ongo-
ing word). Once a noise burst ends, iNLG is informed,
re-generates the interrupted sub-utterance chunk with
the verbosity level decreased by one and the assumed
understanding value increased by one (this degree
of adaptation results in a noticeable difference, it is,
however, not based on empirical study). The values
are then reset, the following chunk is generated and
both chunks are sent to iSS.

It should be noted, that we have not implemented
a real noise source and noise detector. Instead, our
random noise simulator generates bursts of noise of
1000 ms after a random time interval (between 2 and

Table 2: Processing time per processing step before deliv-
ery can begin (in ms; averaged over nine stimuli taking the
median of three runs for each stimulus; calculated from
log messages; code paths preheated for optimisation).

non-incr. incr.

NLG-microplanning 361 52
Synthesis (ling. pre-processing) 217 4472

Synthesis (HMM and vocoding) 1004 21

total response time 1582 519

5 seconds) and directly informs the system 300 ms
after noise starts and ends. We think it is reasonable
to assume that a real noise detector should be able to
give accurate information with a similar delay.

6 Evaluation

6.1 Quantitative evaluation
One important argument in favour of incremental
processing is the possibility of speeding up system
response time, which for non-incremental systems
is the sum of the times taken by all processors to
do their work. An incremental system, in contrast,
can fold large amounts of its processing time into the
ongoing speech output; what matters is the sum of
the onset times of each processor, i. e., the time until
a first output becomes available to the next processor.

Table 2 summarises the runtime for the three major
steps in output production of our system using nine
utterances from our domain. Both NLG and speech
synthesis’ onset times are greatly reduced in the in-
cremental system.2 Combined, they reduce system
response time by more than a second. This is mostly
due to the almost complete folding of HMM opti-
misation and vocoding times into the spoken utter-
ance. NLG profits from the fact that at the beginning
of an utterance only two chunks have to be gener-
ated (instead of an average of 6.5 chunks in the non-
incremental system) and that the first chunk is often
very simple.

6.2 Subjective evaluation
To further test whether the system’s behaviour in
noisy situations resembles that of a human speaker

2The iSS component by mistake takes the symbolic pre-
processing step twice. Unfortunately, we found this bug only
after creating the stimuli used in the subjective evaluation.

301

in a similar situation, we let humans rate utterances
produced by the fully incremental, adaptive system
and utterances produced by two non-incremental
and less responsive variants (we have not used non-
incremental TTS in combination with iNLG as another
possible base-line as pretests showed this to sound
very unnatural due to the missing prosodic linkage be-
tween phrases). The participants were to rate whether
they agree to the statement ‘I found the behaviour of
the system in this situation as I would expect it from
a human speaker’ on a 7-point Likert-scale.

In condition A, full utterances were generated non-
incrementally, synthesised non-incrementally and
played without responding to noise-interruptions in
the channel (as if the system did not notice them).
Utterances in condition B were generated and synthe-
sised as in condition A, but playback responded to the
noisy channel, stopping when the noise was noticed
and continuing when noise ended. For condition C,
utterances were generated with the fully incremental
and adaptive system described in Section 5. Upon
noise detection, speech synthesis is interrupted and,
when the noise ends, iNLG will re-generate the in-
terrupted sub-utterance chunk – using the adaptation
strategy outlined in Section 5.2. This then triggers
iSS into action and shortly after, the system contin-
ues speaking. Nine system runs, each producing a
different utterance from the calendar domain, were
recorded in each of the three conditions, resulting in
a total of 27 stimuli.

Before the actual stimuli were presented, partici-
pants listened to two example stimuli without noise
interruptions to get an impression of how an aver-
age utterance produced by the system sounds. After
the presentation of these two examples, the 27 stim-
uli were presented in the same random order. Par-
ticipants listened once to each stimulus and rated it
immediately after every presentation.

Twelve PhD-students (3 female, 9 male; mean age
30.5 years; 11 with German as one of their first lan-
guages; none with uncorrected hearing impairment)
from Bielefeld University participated in our study
and listened to and rated the 27 stimuli.

A Friedman rank sum test revealed a highly sig-
nificant difference between the perceived human-
likeness of the three systems (χ2 = 151, p < .0001).
Median values of stimulus ratings in the conditions
A, B and C were 2, 2 and 6 respectively, indicat-

ing that the fully incremental system was rated con-
siderably more human-like. This was also shown
through a post-hoc analysis with Wilcoxon signed
rank tests which found no significant difference be-
tween condition A and B (V = 1191.5, p = .91)3.
Conditions A and C, however, differed highly signifi-
cantly (V = 82, p < .0001), as did conditions B and
C (V = 22.5, p < .0001) – even after applying a Bon-
ferroni correction to correct for a possible cumulation
of α-errors.

7 Conclusion

We have presented what is – to the best of our knowl-
edge – the first integrated component for incremental
NLG and speech synthesis and demonstrated the flex-
ibility that an incremental approach to output gener-
ation for speech systems offers by implementing a
system that can repair understanding problems.

From the evaluation we can conclude that incre-
mental output generation (both iNLG and iSS in iso-
lation or combined) is able to greatly speed up sys-
tem response time and can be used as a means to
speed up system response even in an otherwise non-
incremental system. Furthermore, we showed that the
behaviour of our fully incremental and adaptive sys-
tem was perceived as significantly more human-like
than the non-incremental and the non-incremental
but responsive baseline systems.

The understanding problem that our demonstra-
tor system tackled was of the simplest kind, namely
acoustic non-understanding, objectively detectable
as the presence of noise. In principle, however, the
same mechanisms of stopping and rephrasing can be
used to tackle more subjective understanding prob-
lems as can be signalled by linguistic feedback. Our
incremental output generation component gives us an
ideal basis to explore such problems in future work.

Acknowledgements This research is partially sup-
ported by the Deutsche Forschungsgemeinschaft
(DFG) in the Center of Excellence in ‘Cognitive Inter-
action Technology’ (CITEC) and through an Emmy
Noether Fellowship to the last author.

3This suggests that it does not matter whether a system re-
sponds to problems in the communication channel by waiting or
totally ignores these problems. Notice, however, that we did not
test recall of the calendar events. In that case, condition B should
outperform A, as some information was clearly inaudible in A.

302

References
Jens Allwood, Joakim Nivre, and Elisabeth Ahlsén. 1992.

On the semantics and pragmatics of linguistic feedback.
Journal of Semantics, 9:1–26.

Rachel Baker, Alastair Gill, and Justine Cassell. 2008.
Reactive redundancy and listener comprehension in
direction-giving. In Proceedings of the 9th SIGdial
Workshop on Discourse and Dialogue, pages 37–45,
Columbus, OH.

Timo Baumann and David Schlangen. 2012a. INPRO_iSS:
A component for just-in-time incremental speech syn-
thesis. In Proceedings of ACL System Demonstrations,
Jeju, South Korea.

Timo Baumann and David Schlangen. 2012b. The
INPROTK 2012 release. In Proceedings of the NAACL-
HLT Workshop on Future directions and needs in the
Spoken Dialog Community: Tools and Data, pages 29–
32, Montréal, Canada.

Hendrik Buschmeier and Stefan Kopp. 2011. Towards
conversational agents that attend to and adapt to com-
municative user feedback. In Proceedings of the 11th
International Conference on Intelligent Virtual Agents,
pages 169–182, Reykjavik, Iceland.

David DeVault. 2008. Contribution Tracking: Partici-
pating in Task-oriented Dialogue Under Uncertainty.
Ph.D. thesis, Rutgers, The State University of New Jer-
sey, New Brunswick, NJ.

Thierry Dutoit, Maria Astrinaki, Onur Babacan, Nicolas
d’Alessandro, and Benjamin Picart. 2011. pHTS for
Max/MSP: A streaming architecture for statistical para-
metric speech synthesis. Technical Report 1, numediart
Research Program on Digital Art Technologies, Mons,
Belgium.

Jens Edlund. 2008. Incremental speech synthesis. In
Second Swedish Language Technology Conference,
pages 53–54, Stockholm, Sweden, November. System
Demonstration.

Markus Guhe. 2007. Incremental Conceptualization for
Language Production. Lawrence Erlbaum, Mahwah,
NJ.

Christine Howes, Matthew Purver, Patrick G. T. Healey,
Gregory Mills, and Eleni Gregoromichelaki. 2011. On
incrementality in dialogue: Evidence from compound
contributions. Discourse & Dialogue, 2:279–311.

Gerard Kempen and Edward Hoenkamp. 1987. An incre-
mental procedural grammar for sentence formulation.
Cognitive Science, 11:201–258.

Anne Kilger and Wolfgang Finkler. 1995. Incremen-
tal generation for real-time applications. Technical
Report RR-95-11, Deutsches Forschungszentrum für
Künstliche Intelligenz, Saarbrücken, Germany.

Willem J. M. Levelt. 1989. Speaking: From Intention to
Articulation. The MIT Press, Cambridge, UK.

Kyoko Matsuyama, Kazunori Komatani, Ryu Takeda,
Toru Takahashi, Tetsuya Ogata, and Hiroshi G. Okuno.
2010. Analyzing user utterances in barge-in-able spo-
ken dialogue system for improving identification accu-
racy. In Proceedings of INTERSPEECH 2010, pages
3050–3053, Makuhari, Japan.

Ehud Reiter and Somayajulu Sripada. 2002. Human vari-
ation and lexical choice. Computational Linguistics,
28:545–553.

David Schlangen and Gabriel Skantze. 2009. A general,
abstract model of incremental dialogue processing. In
Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 710–718, Athens, Greece.

David Schlangen, Timo Baumann, Hendrik Buschmeier,
Okko Buß, Stefan Kopp, Gabriel Skantze, and Ramin
Yaghoubzadeh. 2010. Middleware for incremental
processing in conversational agents. In Proceedings of
SIGdial 2010: the 11th Annual Meeting of the Special
Interest Group in Discourse and Dialogue, pages 51–
54, Tokyo, Japan.

Marc Schröder and Jürgen Trouvain. 2003. The Ger-
man text-to-speech synthesis system MARY: A tool
for research, development and teaching. International
Journal of Speech Technology, 6:365–377.

Gabriel Skantze and Anna Hjalmarsson. 2010. Towards
incremental speech generation in dialogue systems. In
Proceedings of SIGDIAL 2010: the 11th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue, pages 1–8, Tokyo, Japan.

Matthew Stone, Christine Doran, Bonnie Webber, Tonia
Bleam, and Martha Palmer. 2003. Microplanning with
communicative intentions: The SPUD system. Compu-
tational Intelligence, 19:311–381.

Matthew Stone. 2002. Lexicalized grammar 101. In
Proceedings of the ACL-02 Workshop on Effective Tools
and Methodologies for Teaching Natural Language
Processing and Computational Linguistics, pages 77–
84, Philadelphia, PA.

Paul Taylor. 2009. Text-to-Speech Synthesis. Cambridge
Univ Press, Cambridge, UK.

Tomoki Toda and Keiichi Tokuda. 2007. A speech param-
eter generation algorithm considering global variance
for HMM-based speech synthesis. IEICE TRANSAC-
TIONS on Information and Systems, 90:816–824.

Keiichi Tokuda, Takayoshi Yoshimura, Takashi Masuko,
Takao Kobayashi, and Tadashi Kitamura. 2000.
Speech parameter generation algorithms for HMM-
based speech synthesis. In Proceedings of ICASSP
2000, pages 1315–1318, Istanbul, Turkey.

Marylin Walker, Amanda Stent, François Mairesse, and
Rashmi Prasad. 2007. Individual and domain adap-
tation in sentence planning for dialogue. Journal of
Artificial Intelligence Research, 30:413–456.

303

