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Abstract 

Dialogue act modeling in task-oriented 
dialogue poses significant challenges. It is 
particularly challenging for corpora 
consisting of two interleaved 
communication streams: a dialogue stream 
and a task stream. In such corpora, 
information can be conveyed implicitly by 
the task stream, yielding a dialogue stream 
with seemingly missing information. A 
promising approach leverages rich 
resources from both the dialog and the task 
streams, combining verbal and non-verbal 
features. This paper presents work on 
dialogue act modeling that leverages body 
posture, which may be indicative of 
particular dialogue acts. Combining three 
information sources (dialogue exchanges, 
task context, and users’ posture), three 
types of machine learning frameworks 
were compared. The results indicate that 
some models better preserve the structure 
of task-oriented dialogue than others, and 
that automatically recognized postural 
features may help to disambiguate user 
dialogue moves.  

1 Introduction 

Dialogue act classification is concerned with 
understanding users’ communicative intentions as 
reflected in their utterances. It is an important first 
step toward building automated dialogue systems. 
To date, the majority of work on dialogue act 

modeling has addressed spoken dialogue (Samuel 
et al., 1998; Stolcke et al., 2000; Surendran and 
Levow, 2006; Bangalore et al., 2008; Sridhar et al., 
2009; Di Eugenio et al., 2010). However, with the 
increasing popularity of computer-mediated means 
of conversation, such as instant messaging and 
social networking services, automated analysis of 
textual dialogue holds much appeal. Dialogue act 
modeling for textual conversations has many 
practical application areas, which include web-
based intelligent tutoring systems (Boyer et al., 
2010a), chat-based online customer service (Kim 
et al., 2010), and social media analysis (Joty et al., 
2011). 

Human interaction involves not only verbal 
communication but also nonverbal communication. 
Research on nonverbal communication (Knapp and 
Hall, 2006; Mehrabian, 2007; Russell et al., 2003) 
has identified a range of nonverbal cues, such as 
posture, gestures, eye gaze, and facial and vocal 
expressions. However, the utility of these 
nonverbal cues has not been fully explored within 
the context of dialogue act classification research. 
Previous research has leveraged prosodic cues 
(Sridhar et al., 2009; Stolcke et al., 2000) and 
facial expressions (Boyer et al., 2011) for 
automatic dialogue act classification, but other 
types of nonverbal cues remain unexplored. As a 
first step toward a dialogue system that learns its 
behavior from a human corpus, this paper proposes 
a novel approach to dialogue act classification that 
leverages information about users’ posture. Posture 
has been found to be a significant indicator of a 
broad range of emotions (D’Mello and Graesser, 
2010; Kapoor et al., 2007; Woolf et al., 2009). 
Based on the premise that emotion plays an 
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important role in dialogue, this work hypothesizes 
that adding posture features will improve the 
performance of automatic dialogue act models.  

 The domain considered in this paper is task-
oriented textual dialogue collected in a human 
tutoring study. In contrast to conventional task-
oriented dialogue corpora (e.g., Carletta et al., 
1997; Jurafsky et al., 1998; Ivanovic, 2008) in 
which conversational exchanges are carried out 
within a single channel of dialogue between the 
dialogue participants, the corpus used in this work 
utilizes two separate and interleaved streams of 
communication. One stream is the textual 
conversation between a student and a tutor 
(dialogue stream). The other is the student’s 
problem-solving activity (task stream). As will be 
described in Section 3, the interface used in the 
corpus collection was designed to allow the tutor to 
monitor the student’s problem-solving activities. 
Thus, the student’s problem-solving activities and 
the tutor’s monitoring of those activities functioned 
as an implicit communication channel. This 
characteristic of the corpus poses significant 
challenges for dialogue act modeling. First, 
because the dialogue stream and the task stream 
are interleaved, the dialogue stream alone may not 
be coherent. Second, since information can be 
exchanged implicitly via the task stream, the 
dialogue likely contains substantial information 
gaps1. 

Addressing these challenges, the dialogue act 
models described in this paper combine three 
sources of information: the verbal information 
from the dialogue stream, the task-related context 
from the task stream, and information about users’ 
posture. This paper makes several contributions to 
the dialogue research community. First, it is the 
first effort to explore posture as a nonverbal cue 
for dialogue act classification. Second, the 
proposed approach is fully automatic and ready for 
real-world application. Third, this paper explicitly 
defines the notion of information gap in task-
oriented dialogue consisting of multiple 
communication channels, which has only begun to 
be explored in the context of dialogue act 
classification (Boyer et al., 2010a). Finally, this 

                                                
1 In this paper, information gap is defined as the information 
that is missing from the explicit verbal exchanges between the 
dialogue participants but conveyed by the implicit task stream. 

paper examines adaptability of previous dialogue 
act classification approaches in conventional task-
oriented domains by comparing three classifiers 
previously applied to dialogue act modeling for 
task-oriented dialogue. 

2 Related Work 

A rich body of research has addressed data-driven 
approaches for dialogue act modeling. Russell et 
al. (2003) applied a transformation-based learning 
approach for dialogue act tagging for spoken 
dialogue, using speaker direction, punctuation, 
marks, and cue phrases. Stolcke et al. (2000) 
modeled the structure of dialogue as an HMM, 
treating the dialogue acts as the observations 
emitted from the hidden states of the learned 
HMM. More recently, Bangalore et al. (2008) 
proposed a unified approach to task-oriented 
dialogue, in which both the user dialogue act 
classification and the system dialogue act selection 
were informed by a shared maximum entropy 
dialogue act classifier. Sridhar et al. (2009) also 
used a maximum entropy model, exploring the 
utility of different representations of prosodic 
features. Di Eugenio et al. (2010) used a memory-
based classifier, in combination with a modified 
latent semantic analysis (LSA) technique by 
augmenting the original word-document matrix in 
LSA with rich linguistic features. 

While most work on dialogue act modeling has 
focused on spoken dialogue, a recent line of 
investigation has explored the analysis of textual 
conversation, such as asynchronous online chat 
conversation (Wu et al., 2005; Forsyth, 2007; 
Reitter et al., 2010; Joty et al., 2011) and 
synchronous online chat conversation   (Ivanovic, 
2008; Kim et al., 2010; Boyer et al., 2010a). Wu et 
al. (2005) proposed a transformation-based 
learning approach for an asynchronous chat 
posting domain, utilizing regular expression-based 
selection rules. For a similar domain, Forsyth 
(2007) applied neural networks and Naïve Bayes 
classification technique using lexical cues. Ritter et 
al. (2010) and Joty et al. (2011) applied 
unsupervised learning approaches to dialogue act 
modeling for Twitter conversations, in which 
dialogue acts were automatically discovered by 
clustering raw utterances. Work by Ivanovic 
(2008) and Kim et al. (2010) analyzed one-to-one 
synchronous online chat dialogue in a task-oriented 
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customer service domain. Ivanovic (2008) applied 
maximum entropy, naïve Bayes, and support 
vector machines using word n-gram features. Kim 
et al. (2010) compared the CRF, HMM-SVM, and 
Naïve Bayes classifiers using word n-grams and 
features extracted from the dialogue structure, in 
which CRF achieved the highest performance. 
Boyer et al. (2010a) investigated dialogue act 
modeling for task-oriented tutorial dialogue, 
applying a logistic regression approach using 
lexical, syntactic, dialogue structure, and task 
structure features. 

Some previous dialogue act modeling work 
(Boyer et al., 2011; Sridhar et al., 2009; Stolcke et 
al., 2000) leveraged nonverbal information such as 
prosodic cues (Sridhar et al., 2009; Stolcke et al., 
2000) and facial expressions (Boyer et al., 2011). 
Stolcke et al. (2000) combined various prosodic 
features such as pitch, duration, and energy. 
Sridhar et al. (2009) represented the sequence of 
prosodic features as n-grams. Boyer et al. (2011) 
leveraged confusion-related facial expressions for 
tutorial dialogue. 

Like Boyer et al. (2010a), this work addresses 
dialogue act classification for task-oriented textual 
conversation in a web-based tutoring domain. In 
contrast to Boyer et al. (2010a), whose approach 
directly leveraged manually annotated features, 
making it challenging to apply the proposed model 
to a real-world system, the present work is fully 
automatic and ready for real-world application.  A 
novel feature of this work is its utilization of 
nonverbal cues carried by users’ posture. This is 
the first dialogue act classification work that 
leverages posture information. 

3 Data 

The corpus used in this paper consists of textual 
exchanges between a student and a tutor in a web-
based remote-tutoring interface for introductory 
programming in Java. The corpus was collected 
from a series of six tutoring lessons, covering 
progressive topics in computer science over the 
course of four weeks. The tutoring interface 
consisted of four windows: a task window 
displaying the current programming task; a code 
window in which the student writes Java code; an 
output window for displaying the result of 
compiling and running the code; and a chat 
window for instant exchange of textual dialogue 

between the student and tutor. With this tutoring 
interface, the student and the tutor were able to 
exchange textual dialogue and share a 
synchronized view of the task. Apart from sending 
dialogue messages, the only action the tutor could 
perform to affect the student’s interface was 
advancing to the next programming task.  

3.1 Data Collection 

The data collection conducted in Fall 2011 paired 
42 students with one of four tutors for six forty-
minute tutoring sessions on introductory computer 
science topics.  The students were chosen from a 
first-year engineering course and were pre-
screened to filter out those with significant 
programming experience. The tutors were graduate 
students with previous tutoring or teaching 
experience in Java programming. Students were 
compensated for their participation with partial 
course credit. The students worked with the same 
tutor for the entire study. Each lesson consisted of 
between four and thirteen distinct subtasks. 

During each tutoring session, the dialogue text 
exchanged between the student and the tutor was 
logged to a database. Additional runtime data 
including content of the student’s Java code, the 
result (e.g., success or failure) of compiling and 
running the student’s code, and the IDs of the 
subtask were logged. All logged data were time-
stamped at a millisecond precision. Students’ body 
posture was recorded at a rate of 8 frames per 
second with a Kinect depth camera, which emits 
infrared rays to measure distance for each pixel in 
a depth image frame. The camera was positioned 
above the student’s computer monitor, ensuring the 
student’s upper body is centered in the recorded 
image. Tutors were not recorded. 

3.2 Dialogue Act Annotation 

For the work described in this paper, a subset of 
the collected data was manually annotated, which 
include the first of the six tutoring lessons from 21 
students. This corpus contains 2564 utterances 
(1777 tutor, 787 student). The average number of 
utterances per tutoring session was 122 (min = 74; 
max = 201). The average number of tutor 
utterances per session was 84.6 (min = 51; max = 
137) and the average number of student utterances 
per session was 37.4 (min = 22; max = 64). 
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Extending a previous annotation scheme used 
for similar task-oriented tutorial dialogue (Boyer et 
al., 2010b), the scheme used in this work consists 
of 13 dialogue act tags (Appendix). The dialogue 
turns that contained more than one dialogue 
function were segmented into multiple utterances 
before being assigned a dialogue act tag. The 
annotation scheme did not constrain any of the 
dialogue act tags as applying either to students’ or 
tutors’ utterances only; however, the resulting 
distribution of the tags in the annotated corpus 
show certain dialogue act tags were more relevant 
to either students’ or tutors’ utterances. Figure 1 
depicts an excerpt from the corpus with the 
manually applied dialogue act annotations. 

 

 
Three human annotators were trained to apply 

the scheme. The training consisted of an iterative 
process involving collaborative and independent 
tagging, followed by refinements of the tagging 
protocol. At the initial phase of training, the 
annotators tagged the corpus collaboratively. In 
later phases annotators tagged independently. To 
compute agreement between different annotators, 
24% (5 of the 21 sessions) of the corpus were 
doubly annotated by two annotators. All possible 

pairs of the annotators participated in double 
annotation. The aggregate agreement was .80 in 
Cohen’s Kappa (Cohen, 1960). 

3.3 Posture Estimation 

Posture has been found to be a significant indicator 
of a broad range of emotions such as anxiety, 
boredom, confusion, engaged concentration (or 
flow), frustration, and joy (D’Mello and Graesser, 
2010; Kapoor et al., 2007; Woolf et al., 2009). 
Early investigations into posture utilized pressure-
sensitive chairs which provided indirect measures 
of upper-body posture (D’Mello and Graesser, 
2010; Kapoor et al., 2007; Woolf et al., 2009). 
Newer, computer vision-based techniques provide 
more detailed postural data (Sanghvi et al., 2011). 
The present work uses a posture estimation 
algorithm developed to automatically detect the 
head, mid torso, and lower torso through depth 
image recordings of seated individuals (Grafsgaard 
et al., 2012). With this estimation algorithm, 
posture is represented as a triple of head depth 
(distance between camera and head), mid torso 
depth, and lower torso depth. 

A dataset of depth camera recordings from the 
first of the six tutoring lessons consists of 512,977 
depth image frames collected across 18.5 hours of 
computer-mediated human-human tutoring among 
33 participants.2 For each depth image frame, the 
posture algorithm scanned through the three 
middle regions that corresponded to head, mid-
torso, and lower-torso of the recorded person, and 
selected a single representative depth pixel from 
each region. The boundaries for each region were 
heuristically determined relying on the placement 
of the students’ chairs in the middle of the depth 
recording view at a common distance. Given these 
constraints, the model was manually verified by 
two independent human judges to have 95.1% 
accuracy across 1,109 depth image snapshots 
corresponding to one-minute intervals across the 
dataset. The algorithm output for each depth image 
was labeled as erroneous if either judge found that 
any of the posture tracking points did not coincide 
with its target region. Example output of the 
algorithm is shown in Figure 2.  

                                                
2 The other 9 sessions were not successfully recorded because 
of technical errors. 

Tutor: hang on :) [S] 
Tutor: When we show you example code, it is not the 
code you need to write. [S] 
Tutor: Look at the task again. [H] 

Student writes programming code 
Tutor: YUP [PF] 
Tutor: Perfect [PF] 
Tutor: OK. Go ahead and test. [DIR] 
Student: And I don't need anything in the 
parentheses? [Q] 
Tutor: Line 9 is correct. You do NOT need anything 
inside the parentheses. [A] 
Student: Ok [ACK] 

Student compiles and runs code successfully 
Tutor: Good. [PF]  
Tutor: Moving on. [S] 

Tutor advances to the next task. 
Student writes programming code 

Tutor: Syntactically correct. But there is a logic error 
[LF] 
Tutor: When will the output statement display your 
request to the player? [Q] 
Student: AFTER they put in their name [A] 
Tutor: Exactly [PF] 

Figure 1. Corpus Excerpt with Dialogue Act Annotation 
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4 Features 

For web-based one-to-one dialogue systems, it is 
important to achieve efficient runtime 
performance. To maximize real-world feasibility of 
the learned dialogue act classifiers, this work only 
considers the features that can be automatically 
extracted at runtime. In addition, the use of 
linguistic analysis software, such as a part-of-
speech tagger and a syntactic parser, is 
intentionally restrained. One might argue that rich 
linguistic analysis may provide additional 
information to dialogue act classifiers, potentially 
improving the performance of learned models. 
However, there is a trade-off between additional 
information obtained by rich linguistic analysis and 
processing time. In addition, previous work (Boyer 
et al., 2010a) found part-of-speech and syntax 
features did not provide obvious benefit for 
dialogue act classification in a domain similar to 
the one considered in this work. The dialogue act 
classifiers described in this paper integrate four 
classes of features automatically extracted from 
three sources of information: the textual dialogue 
utterances, task-related runtime information logged 
into the database, and the images of the students 
recorded by depth cameras. Each feature class is 
explained in the following subsections. 

4.1 Lexical Features 

Based on previous dialogue act classification 
research (Bangalore et al., 2008; Boyer et al., 
2010a; Kim et al., 2010), this work utilizes word n-
grams as features for dialogue act classification. In 
the experiment reported in Section 5, unigrams and 

bigrams were used. Adding higher order n-grams 
did not improve model accuracies. In our corpus 
(Section 3), the nature of the student dialogues is 
informal and utterances contain many typos. To 
remove undesirable noise in the data such as typos 
and rare words, n-grams were filtered out 
according to their frequency in the training data 
(i.e., n-grams that appear less than a predefined 
cutoff threshold in the training data are not 
included as features). The value of the cutoff 
threshold was empirically determined by testing 
the values between 0 and 10 on a development data 
set that consisted of 20% of randomly selected 
dialogue sessions. The value of 3 was selected as it 
yielded the highest classification accuracy. 

4.2 Dialogue Context Features 

While lexical features characterize the intrinsic 
nature of individual utterances, the context of the 
utterance within a larger dialogue structure 
provides additional information about a given 
utterance in relation with other utterances. This 
work considers the following dialogue context 
features: 

• Utterance Position: Specifies the relative 
position of an utterance at a given turn. The 
value of this feature indicates whether the 
utterance is the first one in a given turn, the 
second or later one in a given turn, or the given 
turn consists of a single utterance. 

• Length: Specifies the number of a given 
utterance in terms of individual word tokens. 

• Previous Author: Indicates whether the author 
of the previous utterance was student or tutor. 

• Previous Tutor Dialogue Act: Specifies 
dialogue act of the most recent tutor utterance. 
The value of this feature is directly extracted 
from the manual annotation in the corpus, 
because in the broader context of our work, 
tutor dialogue moves will be determined by an 
external dialogue management module.   

4.3 Task Context Features 

In our data, students’ problem-solving activities 
(e.g., reading the problem description, writing 
computer programming code, and compiling and 
running the code) functioned as an implicit 
communication channel between students and 
tutors (Section 1). Because of the existence of this 

Figure 2. Automatically detected posture points (H = 
headDepth, M = midTorsoDepth, L = lowerTorsoDepth) 
 

 H 

 M 
 L 
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implicit communication channel, the dialogue 
exchanges between students and tutors likely 
contain substantial information gaps. To overcome 
such information gaps, it is important to identify 
effective task context features. The present work 
leverages the following task context features, 
which can be automatically extracted during 
runtime: 

• Previous Task Action: Specifies the type of the 
most recent problem-solving action performed 
by the student. The value could be message 
(writing a textual message to the tutor) code 
(writing code in the code window), or 
compile_run (compiling or running the code). 

• Task Begin Flag: A binary feature that 
indicates whether a given utterance is the first 
one since the current problem task was posted.  

• Task Activity Flag: Another binary feature 
indicating that a given utterance was preceded 
by a student’s task activity. 

• Last Compile/Run Status: Specifies the status 
(e.g., begin, stop, success, error, input sent) of 
the most recent compile/run action performed 
by the students.  

In addition to the listed task context features, the 
utility of time information was also explored, such 
as the amount of time taken for previous coding 
activity and the elapsed time since the beginning of 
the current task. However, these features did not 
positively impact the performance of the learned 
models and were thus excluded. 

4.4 Posture Features 

After preprocessing recorded image frames with 
the estimation algorithm (Section 3.3), students’ 
postures were represented as tuples of three 
different integer values, each respectively 
representing head depth, mid torso depth, and 
lower torso depth. To extract posture features, the 
time window of n seconds directly preceding a 
given utterance was compared with the previous 
time window of the same size in terms of min, 
max, median, average, and variance of each depth 
value. The indicators of whether each of these 
values has increased, decreased or remained the 
same were considered as potential posture features. 
To avoid introducing errors to the model by 
insignificant changes in posture, an error tolerance 
𝜏  was allowed (i.e., the two compared postures 

were considered the same unless the amount of the 
change in the posture was greater than 𝜏). 

Optimal values for n and 𝜏  were empirically 
determined, selecting the values that maximized 
classification accuracy on the development data 
set. For n, the values between 0 and 60 were 
compared at an interval of 10. The value of 50 was 
selected for head depth and 60 for both mid torso 
depth and lower torso depth.  Similarly, the value 
of 𝜏  was determined by comparing the values 
between 0 and 200 with an increment of 10. The 
selected value was 100.  

All the potential posture features were examined 
in an informal experiment, in which each of the 
potential posture features were added to the 
combination of the lexical, the dialogue context, 
and the task context features. The posture features 
that improved the classification accuracy after 
adding them were included in the present dialogue 
act models. The selected posture features are min 
of head depth and max, median, and average of 
lower torso depth. None of the mid torso depth 
features were selected. 

5 Experiment 

The goal of this experiment is twofold: (1) to 
evaluate the effectiveness of the feature classes and 
(2) to compare the performance of three classifiers: 
maximum entropy (ME), naïve Bayes (NB), and 
conditional random field (CRF). These classifiers 
are chosen because they have been shown effective 
for dialogue act modeling in traditional task-
oriented textual dialogue, in which conversational 
exchanges were carried out by a single channel of 
dialogue (Ivanovic, 2008; Kim et al., 2010). 
Previous result by Kim et al. (2010) suggests a 
structured model such as CRF yields more accurate 
dialogue act model compared to unstructured 
models (e.g., Naïve Bayes), because of its ability to 
model the sequential patterns in target 
classification labels. This experiment examines 
whether a similar finding is observed for our 
domain, which exhibits substantial information 
gaps due to the existence of an implicit 
communication channel, the task stream. 

5.1 Dialogue Act Modeling 

All classifiers were built using the MALLET 
package (McCallum, 2002). This experiment used 
the manually annotated portion of the data 
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described in Section 3. The original dialogue 
scheme (Section 3.2) was slightly modified by 
introducing an additional dialogue act, GR, in 
order to distinguish conventional expressions, such 
as greetings and thanks, from other information-
delivering utterances. For this modified scheme, 
annotator agreement was 0.81 in Cohen’s Kappa 
on the doubly annotated portion of the corpus. 6 
among the 21 dialogue sessions in the annotated 
data do not have accompanying images due to 
technical problems with the depth camera, thus 
these sessions were excluded from this experiment. 
Table 1 shows the distribution of the student 
dialogue act tags in the resulting corpus of 15 
dialogues used in this experiment. The most 
frequent tag was A (answer), followed by ACK 
(acknowledgement) and Q (question). The features 
were extracted by aligning three sources of 
information (the textual dialogue corpus, the task-
related runtime log data, and the recorded images) 
by timestamp. Word boundaries in the dialogue 
corpus were recognized by the surrounding white 
spaces and punctuations. 

The dialogue context features (D) leveraged in 
this paper includes previous tutor dialogue act. 
This feature takes the manually annotated value in 
the corpus, because this work assumes the 
existence of an external dialogue manager. 
However, since the external dialogue manager is 
not likely to achieve 100% accuracy in predicting 
human tutor dialogue acts, it would be informative 
to estimate a reasonable range of the accuracies of 
the student dialogue act model, taking into account 
the errors introduced by the dialogue manager. For 
this reason, two versions of the dialogue context 
features were considered in this experiment: one 
that leverages the full set of dialogue context 
features (D) and the other that excludes previous 

tutor dialogue act (D-). These respectively provide 
the maximum and the minimum expected accuracy 
of the student dialogue act model, when used with 
a dialogue manager. 

The models were trained and tested using five-
fold cross validation, in which the 15 dialogue 
sessions were partitioned into 5 non-overlapping 
sets of the same size (i.e., 3 sessions per partition). 
Each set was used for testing exactly once. 

5.2 Results 

Table 2 reports the average classification 
accuracies from the five-fold cross validation. The 
majority baseline accuracy for our data is .347, 
when the classifier always chooses the most 
frequent dialog act (A). The first group of rows in 
Table 3 report the accuracies of individual feature 
classes. All of the individual features performed 
better than the baseline. The improvement from the 
baseline was significant except for D- with CRF. 
The most powerful feature class was dialogue 
context class when the full set was used. The 
second group in Table 3 shows the effects of 
incrementally combining the feature classes. 
Adding dialogue act features to the lexical features 
(L + D) brought significant improvement in the 
classification accuracy for ME and CRF. Adding 
posture features (L + D + T + P) also improved the 
accuracy of ME by a statistically significant 
margin. The last group shows similar results for 
ME when the previous tutor dialogue act was 
excluded from the dialogue context, except that the 
improvement achieved by adding the posture 
features (L + D- + T + P) was not significant.  

Student Dialogue Act Distribution 
A (answer) 192 (34.7%) 
ACK (acknowledgement) 124 (22.4%) 
Q (question)  92 (16.6%)  
S (statement) 76 (13.7%) 
GR (greeting and thanks) 52 (9.4%) 
C (clarification) 6 (1.0%) 
RF (request for feedback) 5 (.9%) 
RC (request confirmation) 2 (.4%) 
O (other) 5 (.9%) 
Total 554 
Table 1. Student dialogue acts in the experiment data 

Features ME NB CRF 

 In
di

vi
du

al
  Lexical (L)     .696**     .703**     .599** 

 Dialogue (D)     .711**     .715**     .696** 
 Dialogue- (D-)     .477**     .473**     .405 
 Task (T)     .405**     .396*      .386* 
 Posture (P)     .382*     .385*     .399* 

 M
ax

  L + D     .772§§     .724     .692§§ 
 L + D + T     .777     .729     .694 
 L + D + T + P     .789‡     .714     .682 

 M
in

  L + D-     .724§§     .681     .606 
 L + D- + T     .733     .671     .627 
 L + D- + T + P     .750     .676     .644 

Table 2. Classification accuracies (*p < .05, **p < .01 
compared to baseline; §§p < .01 compared to L; and ‡p < 
.05 compared to L + D + T, with paired-samples t-test)  
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The highest accuracy was achieved by ME when 
using all four classes of the features, with 
maximum (L + D + T + P) .789 and minimum (L + 
D- + T + P) .750. For both the maximum and the 
minimum conditions, the differences among the 
classifiers were significant (p < .01, one-way 
repeated measure ANOVA), with post-hoc Tukey 
HSD tests revealing ME was significantly better 
than both NB (p < .05) and CRF (p < .01). There 
was no significant difference between NB and 
CRF. 

6 Discussion 

The experiment described in Section 5 compared 
the utility of lexical, dialogue context, task context, 
and posture features for dialogue act classification. 
The results indicate the effectiveness of these 
features. Particularly, adding the dialogue context 
and the posture features improved the accuracy of 
the maximum entropy model. Although the margin 
of improvement achieved by adding posture 
features was relatively small, the improvement was 
statistically significant (p < .05) for the maximum 
condition (L + D + T + P), which suggests that the 
users’ posture during computer-mediated textual 
dialogue conveys important communicative 
messages. 

The experiment also compared three classifiers: 
maximum entropy, naïve Bayes, and CRF. 
Interestingly, CRF was the worst-performing 
model for our data, contradicting the previous 
finding by Kim et al. (2010), in which CRF (a 
structured classifier) performed significantly better 
than Naïve Bayes (a non-structured classifier). 
This contradictive result suggests that, in our 
domain, the presence of an implicit communication 
channel resulted in substantial information gaps in 
the dialogue and it poses new challenges that were 
not encountered by conventional task-oriented 
domains consisting of a single communication 
channel.  

The maximum entropy classifier achieved the 
best overall performance, reaching accuracy of 
.789. This is an encouraging result compared to 
previous work in a similar domain. Boyer et al. 
(2010a) reported an accuracy of .628 for dialogue 
act classification in a similar domain. However, a 
direct comparison is not applicable since different 
data were used in their work. 

7 Conclusions and Future Work 

Dialogue act modeling for a task-oriented domain 
in which the dialogue stream is interleaved with 
the task stream poses significant challenges. With 
the goal of effective dialogue act modeling, this 
work leverages information about users’ posture as 
non-verbal features. An experiment found that 
posture is a significant indicator of dialogue acts, 
in addition to lexical features, dialogue context, 
and task context. The experiment also compared 
three statistical classifiers: maximum entropy, 
naive Bayes, and CRF. The best performing model 
was maximum entropy. Using all features, the 
maximum entropy achieved .789 in accuracy. 

Several directions for future work are promising. 
First, given the encouraging finding that nonverbal 
information plays a significant role as a 
communicative means for task-oriented dialogue, 
various types of non-verbal information can be 
investigated, such as gesture and facial 
expressions. Second, incorporating richer task 
features, such as in our case, deep analysis of 
student code, may contribute to more accurate 
dialogue act modeling. Third, it is important to 
generalize the findings to a larger data set, 
including across other task-oriented domains.  
Finally, the community is embracing a move 
toward annotation-lean approaches such as 
unsupervised or semi-supervised learning, which 
hold great promise for dialogue modeling. 
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Appendix. Dialogue Act Annotation Scheme and Inter-rater Agreement 

Tag Description Frequency Agreement (k) 
H 
 

Hint:  
The tutor gives advice to help the student proceed with the task 

Tutor:     
Student:     

133 
0 

.50 

DIR  
 

Directive:  
The tutor explicitly tells the student the next step to take 

Tutor:     
Student:     

121 
0 

.63 

ACK  
 

Acknowledgement:  
Either the tutor or the student acknowledges previous utterance; 
conversational grounding 

Tutor:       
Student:  

41 
175 

.73 

RC  
 

Request for Confirmation:  
Either the tutor or the student requests confirmation from the other 
participant (e.g., “Make sense?”) 

Tutor:       
Student:  

11 
2 

Insufficient data 

RF  
 

Request for Feedback:  
The student requests an assessment of performance or work from the tutor 

Tutor:     
Student:    

0 
5 

1.0 

PF  Positive Feedback:  
The tutor provides a positive assessment of the student’s performance 

Tutor:     
Student:     

327 
0 

.90 

LF Lukewarm Feedback:  
The tutor provides an assessment that has both positive and negative 
elements 

Tutor:      
Student:    

13 
0 

.80 

NF Negative Feedback:  
The tutor provides a negative assessment of the student’s performance 

Tutor:        
Student:     

1 
0 

.40 

Q Question:  
A question regarding the task that is not a direct request for confirmation 
or feedback 

Tutor:     
Student:  

327 
120   

.95 

A Answer:  
An answer to an utterance marked Q 

Tutor:       
Student:  

96 
295 

.94 

C Correction:  
Correction of a typo in a previous utterance 

Tutor:       
Student:  

10 
6 

.54 

S  Statement:  
A statement regarding the task that does not fit into any of the above 
categories 

Tutor:     
Student:  

681 
174 

.71 

O Other: Other utterances, usually containing only affective content Tutor:     
Student:  

6 
10 

.69 
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