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Abstract

Conversational practices do not occur at a sin-
gle unit of analysis. To understand the inter-
play between social positioning, information
sharing, and rhetorical strategy in language,
various granularities are necessary. In this
work we present a machine learning model
for multi-party chat which predicts conversa-
tion structure across differing units of analy-
sis. First, we mark sentence-level behavior us-
ing an information sharing annotation scheme.
By taking advantage of Integer Linear Pro-
gramming and a sociolinguistic framework,
we enforce structural relationships between
sentence-level annotations and sequences of
interaction. Then, we show that clustering
these sequences can effectively disentangle
the threads of conversation. This model is
highly accurate, performing near human accu-
racy, and performs analysis on-line, opening
the door to real-time analysis of the discourse
of conversation.

1 Introduction

When defining a unit of analysis for studying lan-
guage, one size does not fit all. Part-of-speech tag-
ging is performed on individual words in sequences,
while parse trees represent language at the sentence
level. Individual tasks can be performed at the lex-
ical, sentence, or document level, or even to arbi-
trary length spans of text (Wiebe et al., 2005), while
rhetorical patterns are annotated in a tree-like struc-
ture across sentences or paragraphs.

In dialogue, the most common unit of analysis is
the utterance, usually through dialogue acts. Here,
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too, the issue of granularity and specificity of tags
has been a persistent issue, along with the inte-
gration of larger discourse structure. Both theory-
driven and empirical work has argued for a col-
lapsing of annotations into fewer categories, based
on either marking the dominant function of a given
turn (Popescu-Belis, 2008) or identifying a single
construct of interest and annotating only as nec-
essary to distinguish that construct. We take the
latter approach in this work, predicting conversa-
tion structure particularly as it relates to informa-
tion sharing and authority in dialogue. We use sys-
temic functional linguistics’ Negotiation annotation
scheme (Mayfield and Rosé, 2011) to identify utter-
ances as either giving or receiving information. This
annotation scheme is of particular interest because in
addition to sentence-level annotation, well-defined
sequences of interaction are incorporated into the
annotation process. This sequential structure has
been shown to be useful in secondary analysis of
annotated data (Mayfield et al., 2012a), as well as
providing structure which improves the accuracy of
automated annotations.

This research introduces a model to predict infor-
mation sharing tags and Negotiation sequence struc-
ture jointly with thread disentanglement. We show
that performance can be improved using integer lin-
ear programming to enforce constraints on sequence
structure. Structuring and annotation of conversa-
tion is available quickly and with comparatively lit-
tle effort compared to manual annotation. More-
over, all of our results in this paper were obtained
using data a real-world, chat-based internet commu-
nity, with a mix of long-time expert and first-time
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novice users, showing that the model is robust to the
challenges of messy data in natural environments.
The remainder of this paper is structured as fol-
lows. First, we review relevant work in annota-
tion at the levels of utterance, sequence, and thread,
and applications of each. We then introduce the
domain of our data and the framework we use for
annotation of conversation structure. In Section 4
we define a supervised, on-line machine learning
model which performs this annotation and structur-
ing across granularities. In Section 5, we evaluate
this model and show that it approaches or matches
human reliability on all tasks. We conclude with dis-
cussion of the utility of this conversation structuring
algorithm for new analyses of conversation.

2 Related Work

Research on multi-party conversation structure is
widely varied, due to the multifunctional nature of
language. These structures have been used in di-
verse fields such as computer-supported collabora-
tive work (O’Neill and Martin, 2003), dialogue sys-
tems (Bohus and Horvitz, 2011), and research on
meetings (Renals et al., 2012). Much work in an-
notation has been inspired by speech act theory and
dialogue acts (Traum, 1994; Shriberg et al., 2004),
which operate primarily on the granularity of indi-
vidual utterances. A challenge of tagging is the issue
of specificity of tags, as previous work has shown
that most utterances have multiple functions (Bunt,
2011). General tagsets have attempted to capture
multi-functionality through independent dimensions
which produce potentially millions of possible an-
notations, though in practice the number of varia-
tions remains in the hundreds (Jurafsky et al., 1998).
Situated work has jointly modelled speech act and
domain-specific topics (Laws et al., 2012).
Additional structure inspired by linguistics, such
as adjacency pairs (Schegloff, 2007) or dialogue
games (Carlson, 1983), has been used to build dis-
course relations between turns. This additional
structure has been shown to improve performance
of automated analysis (Poesio and Mikheev, 1998).
Identification of this fine-grained structure of an in-
teraction has been studied in prior work, with appli-
cations in agreement detection (Galley et al., 2004),
addressee detection (op den Akker and Traum,
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2009), and real-world applications, such as cus-
tomer service conversations (Kim et al., 2010).
Higher-order structure has also been explored in dia-
logue, from complex graph-like relations (Wolf and
Gibson, 2005) to simpler segmentation-based ap-
proaches (Malioutov and Barzilay, 2006). Utterance
level-tagging can take into account nearby structure,
e.g. forward-looking and backward-looking func-
tions in DAMSL (Core and Allen, 1997), while dia-
logue management systems in intelligent agents of-
ten have a plan unfolding over a whole dialogue
(Ferguson and Allen, 1998).

In recent years, threading and maintaining of mul-
tiple “floors” has grown in popularity (Elsner and
Charniak, 2010), especially in text-based media.
This level of analysis is designed with the goal of
separating out sub-conversations which are indepen-
dently coherent. There is a common ground emerg-
ing in the thread detection literature on best prac-
tices for automated prediction. Early work viewed
the problem as a time series analysis task (Bingham
et al., 2003). Treating thread detection as a cluster-
ing problem, with lines representing instances, was
given great attention in Shen et al. (2006). Subse-
quent researchers have treated the thread detection
task as based in discourse coherence, and have pur-
sued topic modelling (Adams, 2008) or entity refer-
ence grids (Elsner and Charniak, 2011) to define that
concept of coherence.

Other work integrates local discourse structure
with the topic-based threads of discourse. Ai et al.
(2007) utilizes information state, a dialogue man-
agement component which loosely parallels thread
structure, to improve dialogue act tagging. In the
context of Twitter conversations, Ritter et al. (2010)
suggests using dialogue act tags as a middle layer to-
wards conversation reconstruction. Low-level struc-
ture between utterances has also been used as a
foundation for modelling larger-level sociological
phenomena between speakers in a dialogue, for in-
stance, identifying leadership (Strzalkowski et al.,
2011) and rapport between providers and patients
in support groups (Ogura et al., 2008). These
works have all pointed to the utility of incorporat-
ing sentence-level annotations, low-level interaction
structure, and overarching themes into a unified sys-
tem. To our knowledge, however, this work is the
first to present a single system for simultaneous an-
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[M], fast question, did your son have a biopsy?

or does that happen when he comes home

i have 3 dogs.

man’s best friend

-D

and women

what kind of dogs???7?

[D], I keep seeing that you are typing and then it stops

how are you doing this week

the puppies are a maltese/yorkie mix and the full grown is a pomara-
nian/yorkie.

No, he did not have a biopsy.

The surgeon examined him and said that by feel, he did not think the
lump was cancerous, and he should just wait until he got home.

that has to be very hard

A question, however— [J], you would probably know.

He was told that they could not just do a needle biopsy, that he would
have to remove the whole lump in order to tell if it was malignant.

0 8
K1 8
K1 7

Yes.

—“ Qoo

I was waiting for [M] to answer.
That sounds odd to me

Table 1: An example excerpt with Negotiation labels, sequences, and threads structure (columns) annotated.

notation and structuring at all three levels.

3 Data and Annotation

Our data comes from the Cancer Support Commu-
nity, which provides chatrooms, forums, and other
resources for support groups for cancer patients.
Each conversation took place in the context of a
weekly meeting, with several patient participants as
well as a professional therapist facilitating the dis-
cussion. In total, our annotated corpus consists of
45 conversations. This data was sampled from three
group sizes - 15 conversations from small groups (2
patients, in addition to the trained facilitator), 15
from medium-sized groups (3-4 patients), and 15
from large groups (5 or more patients).

3.1 Annotation

Our data is annotated at the three levels of granu-
larity described previously in this paper: sentences,
sequences, and threads. In this section we define
those annotations in greater detail. Sentence-level
and sequence-level annotations were performed us-
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ing the Negotiation framework from systemic func-
tional linguistics (Martin and Rose, 2003). Once
sequences were identified, those sequences were
grouped together into threads based on shared topic.

We annotate our data using an adaptation of the
Negotiation framework. This framework has been
proven reliable and reproducible in previous work
(Mayfield and Rosé, 2011). By assigning aggregate
scores over a conversation, the framework also gives
us a notion of Authoritativeness. This metric, de-
fined later in Section 5, allows us to test whether
automated codes faithfully reproduce human judg-
ments of information sharing behavior at a per-user
level. This metric has proven to be a statistically
significant indicator of outcome variables in direc-
tion giving (Mayfield et al., 2011) and collaborative
learning domains (Howley et al., 2011).

In particular, Negotiation labels define whether
each speaker is a source or recipient of information.
Our annotation scheme has four turn-level codes
and a rigidly defined information sharing structure,
rooted in sociolinguistic observation. We describe



each in detail below.

Sentences containing new information are marked
as K1, as the speaker is the “primary knower,” the
source of information. These sentences can be gen-
eral facts and world knowledge, but can also con-
tain opinions, retelling of narrative, or other contex-
tualized information, so long as the writer acts as
the source of that information. Sentences requesting
information, on the other hand, are marked K2, or
“secondary knower,” when the writer is signalling
that they want information from other participants
in the chat. This can be direct question asking, but
can also include requests for elaboration or indirect
illocutionary acts (e.g. “I'd like to hear more.”).
In addition to these primary moves, we also use a
social feedback code, f, for sentences consisting of
affective feedback or sentiment, but which do not
contain new information. These moves can include
emoticons, fixed expressions such as “good luck,” or
purely social banter. All other moves, such as typo
correction or floor grabbing, are labelled o.

This annotation scheme is highly flexible and
adaptive to new domains, and is not specific to med-
ical topics or chatroom-based media. It also gives us
a well-defined structure of an interaction: each se-
quence consists of exactly one primary knower (K1)
move, which can consist of any number of primary
knower sentences from a single speaker. If a K2
move occurs in the sequence, it occurs before any
K1 moves. Feedback moves (f) may come at any
time so long as the speaker is responding to another
speaker in the same sequence. Sentences labeled
o are idiosyncratic and may appear anywhere in a
sequence. In section 4.3, we represent these con-
straints formally.

In addition to grouping sentences together into se-
quences structurally, we also group those sequences
into threads. These threads are based on annotator
judgement, but generally map to the idea that a sin-
gle thread should be on a single theme, e.g. “han-
dling visiting relatives at holidays.” These threads
are both intrinsically interesting for identifying the
topics of a conversation, as well as being a useful
preprocessing step for any additional, topic-based
annotation that may be desired for later analysis.

We iteratively developed a coding manual for
these layers of annotation; to test reliability at each
iteration of instructions, two annotators each inde-
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Figure 1: Structured output at each phase of the two-
pass machine learning model. In pass one, utterances are
grouped into sequences with organizational structure; the
second pass groups sequences based on shared themes.

pendently annotated one full conversation. Inter-
annotator reliability is high for sentence-level an-
notation (k = 0.75). Following Elsner and Char-
niak (2010), we use micro-averaged f-score to eval-
uate inter-rater agreement on higher-level structure.
We find that inter-annotator agreement is high for
both sequence-level structure (f = 0.82) and thread-
level structure (f = 0.80). A detailed description
of the annotation process is available in Mayfield et
al. (2012b). After establishing reliability, our entire
corpus was annotated by one human coder.

4 Conversation Structure Prediction

In previous work, the Negotiation framework has
been automatically coded with high accuracy (May-
field and Rosé, 2011). However, that work restricted
the domain to a task-based, two-person dialogue,
and structure was viewed as a segmentation, rather
than threading, formulation. At each turn, a se-
quence could continue or a new sequence could be-
gin.

Here, we extend this automated coding to larger
groups speaking in unstructured, social chat, and we
extend the structured element of this coding scheme
to structure by sequence and thread. To our knowl-
edge, this is also the first attempt to utilize functional
sequences of interaction as a preprocessing step for
thread disentanglement in chat. We now present a
comprehensive machine learning model which an-
notates a conversation by utterance, groups utter-
ances topics by local structure into sequences, and
assigns sequences to threads.



4.1 On-Line Instance Creation

This is a two-pass algorithm. The first pass la-
bels sentences and detects sequences, and the second
pass groups these sequences into threads. We follow
Shen et al. (2006) in treating the sequence detection
problem as a single-pass clustering algorithm. Their
model is equivalent to the Previous Cluster model
described below, albeit with more complex features.
In that work a threshold was defined in order for a
new message to be added to an existing cluster. If
that threshold is not passed, a new cluster is formed.
Modelling the probability that a new cluster should
be formed is similar to a context-sensitive threshold,
and because we do not impose a hard threshold, we
can pass the set of probabilities for cluster assign-
ments to a structured prediction system.

4.2 Model Definitions

At its core, our model relies on three probabilistic
classifiers. One of these models is a classification
model, and the other two treat sequence and thread
structure as clusters. All models use the LightSIDE
(Mayfield and Rosé, 2010) with the LibLinear algo-
rithm (Fan et al., 2008) for machine learning..

Negotiation Classifier (Neg)

The Negotiation model takes a single sentence as
input. The output of this model is a distribution over
the four possible sentence-level labels described in
section 3.1. The set of features for this model con-
sists of unigrams, bigrams, and part-of-speech bi-
grams. Part-of-speech tagging was performed using
the Stanford tagger (Toutanova et al., 2003) within
LightSIDE.

Cluster Classifiers (PC, NC)

We use two models of cluster assignment prob-
ability. The Previous Cluster (PC) classifier
takes as input a previous set of sentences C =
{c1,¢c2,...,cy} and set of new sentences N =
{N1, Na,...,Ny}. To evaluate whether ¢* should
be added to this cluster, we train a binary proba-
bilistic classifier that predicts the probability that the
sentences in /N belong to the same cluster as the sen-
tences already in C'. In the first pass, each input IV to
the PC classifier is a set containing a single sentence,
and each C' is the set of sentences in a previously-
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identified sequence. In the second pass, each IV is a
sequence as predicted by the first pass.

The PC model uses two features. The first is a
time-based feature, measuring the amount of time
that has elapsed between the last sentence in C' and
the first sentence in N. The time feature is repre-
sented differently between sequence prediction and
thread prediction. Elsner and Charniak (2010) rec-
ommends using bucketed nominal values based on
the log time, to group together very recent and very
distant posts. We follow this for sequence predic-
tion. Due to the more complex structure of the se-
quence grouping task in the second pass, we use a
raw numeric time feature. The second feature is a
coherence metric, the cosine similarity between the
centroid of C' and the centroid of N. We define the
centroid based on TF-IDF weighted unigram vec-
tors.

We impose a threshold after which previous clus-
ters are no longer considered as options for the
PC classifier. Because sequences are shorter than
threads, we set these thresholds separately, at 90 sec-
onds for sequences and 120 seconds for threads. Ap-
proximately 1% of correct assignments are impossi-
ble due to these thresholds.

The New Cluster (NC) classifier takes as input
a set of sentences n = {nj,na,...,ny}, and pre-
dicts the probability that a given sentence is initiat-
ing a new sequence (or, in the second pass, whether
a given sequence is initiating a new thread). This
model contains only unigram features.

At each sentence s we consider the set of possible
previous cluster assignments C' = {c1,co,...,¢n},
and define ps.(s,c) to be the probability that s
will be assigned to cluster c. We define py.(s) =
AsNC(s). The addition of a weight parameter to
the output of the NC classifier allows us to tune the
likelihood of transitioning to a new cluster. This pre-
diction structure is illustrated in Figure 2. In the
first pass, these cluster probabilities are used in con-
junction with the output of the Negotiation classifier
to form a structured output; in the second pass, the
maximum cluster probability is chosen.

4.3 Constraining Sequence Structure with ILP

In past work the Negotiation framework has bene-
fited from enforced constraints of linguistically sup-
ported rules on sequence structure (Mayfield and
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Figure 2: The output of the cluster classifier in either pass
is a set of probabilities corresponding to possible clus-
ter assignments, including that of creating a new cluster.
In the second pass, the input is a set of sentences (a se-
quence) rather than a single sentence, and output assign-
ments are to threads rather than sequences.

Rosé, 2011). Constraints on the structure of anno-
tations are easily defined using Integer Linear Pro-
gramming. Recent work has used boolean logic
(Chang et al., 2008) to allow intuitive rules about
a domain to be enforced at classification time. ILP
inference was performed using Learning-Based Java
(Rizzolo and Roth, 2010).

First, we define the classification task. Opti-
mization is performed given the set of probabilities
N (s) as the distribution output of the Neg classifier
given sentence s as input, and the set of probabilities
C(s) = Pne(s) Upse(s, c), Ve € C. Instance classi-
fication requires maximizing the objective function:

arg max n-+c
neN(s),ceC(s)

We impose constraints on sequence prediction. If
the most likely output from this function assigns
a label that is incompatible with the assigned se-
quence, either the label is changed or a new se-
quence is assigned so that constraints are met. For
each constraint, we give the intuition from sec-
tion 3.1, followed by our formulation of that con-
straint. ug is shorthand for the user who wrote
sentence s; ng is shorthand for a proposed Ne-
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gotiation label of sentence s; while c; is a pro-
posed sequence assignment for s, ¢’ is shorthand
for assignment to a new sequence, and S. =
{(nc,ly uc,l)a (nC,Qa Uc,2)7 AR (nCJi‘a uc,k)} is the set
of Negotiation labels n and users u associated with
sentences (Sc,1 - . - S¢;;) already in sequence c.

1. K2 moves, if any, occur before K1 moves.

((es = ¢) A (ns = K2))
— (Pi € S, s.t.n.; =KI1)

2. f moves may occur at any time but must be re-
sponding to a different speaker in the same se-
quence.

((Cs =c)A(ns = f))
— (Fi € Ses.t.uc; # ug)

3. Functionally, therefore, f moves may not initi-
ate a sequence).

(cs =) = (ns # 1)

4. Speakers do not respond to their own requests
for information (the speakers of K2 and K1
moves in the same sequence must be different).

((cs = ¢) N (ns = K1))
— (Vi € S¢, ((ne;; = K2) = (uei # us)))

5. Each sequence consists of at most one continu-
ous series of K1 moves from the same speaker.

(cs =c¢) = ((Fi € S¢ s.t. (ne; = K1))
= ((ues = us) A (V5 >4,
(tej = us) A (nei = K1)))

Human annotators treated these rules as hard con-
straints, as the classifier does. In circumstances
where these rules would be broken (for instance, due
to barge-in or trailing off), a new sequence begins.

5 Evaluation

5.1 Methods

To evaluate the performance of this model, we wish
to know how it replicates human annotation at each
granularity. For Negotiation labels, agreement is
measured by terms of absolute accuracy and kappa
agreement above chance. We also include a measure
of aggregate information sharing behavior per user.
This score, which we term Information Authorita-
tiveness (Auth), is defined per user as the percentage



of their contentful sentences (K1 or K2) which were
giving information (K1). To measure performance
on this measure, we measure the 2 coefficient be-
tween user authoritativeness scores calculated from
the predicted labels compared to actual labels. This
is equivalent to measuring the variance explained by
our model, where each data point represents a single
user’s predicted and actual authoritativeness scores
over the course of a whole conversation (n = 215).

Sequence and thread agreement is evaluated by
micro-averaged f-score (MAF), defined in prior
work for a gold sequence ¢ with size n;, and a pro-
posed sequence j with size n;, based on precision
and recall metrics:

P ="
&

F('L,]) _ 2XPXR

T
R_ n; P+R

MAF across an entire conversation is then a
weighted sum of f-scores across all sequences':

MAF =3 " max F (i, j)

no o

We implemented multiple baselines to test
whether our methods improve upon simpler ap-
proaches. For sequence and thread prediction, we
implement the following baselines. Speaker Shift
predicts a new thread every time a new writer adds a
line to the chat. Turn Windows predicts a new se-
quence or thread after every n turns. Pause Length
predicts a new sequence or thread every time that a
gap of n seconds has occurred between lines of chat.
For both of the previous two baselines, we vary the
parameter n to optimize performance and provide
a challenging baseline. None of these models use
any features or constraints, and are based on heuris-
tics. To compare to our model, we present both an
Unconstrained model, which uses machine learn-
ing and does not impose sequence constraints from
Section 4.3, as well as our full Constrained model.

Evaluation is performed using 15-fold cross-
validation. In each fold, one small, one medium,
and one large conversation are held out as a test set,
and classifiers are trained on the remaining 42 con-
versations. Significance is evaluated using a paired
student’s ¢-test per conversation (n = 45).
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Sentence-Level (Human x = 0.75)

Model Accuracy K Auth 72
Unconstrained 7736 5870 7498
Constrained JT777 5961 7355
Sequence-Level (Human MAF = (.82)
Model Precision Recall MAF
Speaker Shift 7178 5140 5991
Turn Windows 7207 .6233 .6685
Pause Length .8479 .6582 7411
Unconstrained .7909 7068 7465
Constrained .8557 7116 7770
Thread-Level (Human MAF = 0.80)
Model Precision Recall MAF
Turn Windows .5994 7173 6531
Pause Length .6145 .6316 .6229
Unconstrained 7132 5781 .6386
Constrained .6805 .6024 .6391

Table 2: Tuned optimal annotation performances of base-
line heuristics compared to our machine learning model.

5.2 Results

Results of experimentation show that all models
are highly accurate in their respective tasks. With
sentence-level annotation approaching 0.6 x, the
output of the model is reliable enough to allow
automatically annotated data to be included reli-
ably alongside human annotations. Performance for
sequence-based modelling is even stronger, with no
statistically significant difference in f-score between
the machine learning model and human agreement.

Table 2 reports our best results after tuning to
maximize performance of baseline models, our orig-
inal machine learning model, and the model with
ILP constraints enforced between Negotiation labels
and sequence. In all three cases, we see machine
performance approaching, but not matching, human
agreement. Incorporating ILP constraints improves
per-sentence Negotiation label classification by a
small but significant amount (p < .001).

Clustering performance is highly robust, as
demonstrated in Figure 3, which shows the effect of
changing window sizes and pause lengths and values
of A\s for machine learned models. Our thread disen-
tanglement performance matches our baselines, and

"This metric extends identically to a gold thread  and pro-
posed thread j.
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Figure 3: Parameter sensitivity on sequence-level (top)
and thread-level (bottom) annotation models.

is in line with heuristic-based assignments from EI-
sner and Charniak (2010). In sequence clustering,
we observe improvement across all metrics. The
Constrained model achieves a higher f-score than all
other models (p < 0.0001). We determine through
a two-tailed confidence interval that sequence clus-
tering performance is statistically indistinguishable
from human annotation (p < 0.05).

Error analysis suggests that the constraints are too
punishing on the most constrained labels, K2 and f.
The differences in performance between constrained
and unconstrained models is largely due to higher
recall for both K1 and o move prediction, while
recall for K2 and f moves lowered slightly. One
possibility for future work may include compensat-
ing for this by artificially inflating the likelihood of
highly-constrained Negotiation labels. Additionally,
we see that the most common mistakes involve dis-
tinguishing between K1 and f moves. While many
f moves are obviously non-content-bearing (“Wow,
what fun!”), others, especially those based in humor,
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may look grammatical and contentful (“We’ve got to
stop meeting this way.”). Better detection of humor
and a more well-defined definition of what informa-
tion is being shared will improve this aspect of the
model. Overall, these errors do not limit the efficacy
of the model for enabling future analysis.

6 Conclusion and Future Work

This work has presented a unified machine learn-
ing model for annotating information sharing acts
on a sentence-by-sentence granularity; grouping se-
quences of sentences based on functional structure;
and then grouping those sequences into topic-based
threads. The model performs at a high accuracy,
approaching human agreement at the sentence and
thread level. Thread-level accuracy matched but did
not exceed simpler baselines, suggesting that this
model could benefit from a more elaborate repre-
sentation of coherence and topic. At the level of se-
quences, the model performs statistically the same
as human annotation.

The automatic annotation and structuring of di-
alogue that this model performs is a vital prepro-
cessing task to organize and structure conversational
data in numerous domains. Our model allows re-
searchers to abstract away from vocabulary-based
approaches, instead working with interaction-level
units of analysis. This is especially important in
the context of interdisciplinary research, where other
representations may be overly specialized towards
one task, and vocabulary may differ for spurious rea-
sons across populations and cultures.

Our evaluation was performed on a noisy, real-
world chatroom corpus, and still performed very ac-
curately. Coherent interfacing between granularities
of analysis is always a challenge. Segmentation,
tokenization, and overlapping or inconsistent struc-
tured output are nontrivial problems. By incorpo-
rating sentence-level annotation, discourse-level se-
quence structure, and topical thread disentanglement
into a single model, we have shown one way to re-
duce or eliminate this interfacing burden and allow
greater structural awareness in real-world systems.
Future work will improve this model’s accuracy fur-
ther, test its generality in new domains such as spo-
ken multi-party interactions, and evaluate its useful-
ness in imposing structure for secondary analysis.
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