Interactive Natural Language Query Construction for Report Generation*

Fred Popowich
School of Computing Science
Simon Fraser University
Burnaby, BC, CANADA
popowich@sfu.ca

Abstract

Question answering is an age old Al chal-
lenge. How we approach this challenge is de-
termined by decisions regarding the linguis-
tic and domain knowledge our system will
need, the technical and business acumen of
our users, the interface used to input ques-
tions, and the form in which we should present
answers to a user’s questions. Our approach
to question answering involves the interactive
construction of natural language queries. We
describe and evaluate a question answering
system that provides a point-and-click, web-
based interface in conjunction with a seman-
tic grammar to support user-controlled natural
language question generation. A preliminary
evaluation is performed using a selection of 12
questions based on the Adventure Works sam-
ple database.

1 Introduction

There is a long history of systems that allow users
to pose questions in natural language to obtain ap-
propriate responses from information systems (Katz,
1988; El-Mouadib et al., 2009). Information sys-
tems safeguard a wealth of information, but tradi-
tional interfaces to these systems require relatively
sophisticated technical know-how and do not always
present results in the most useful or intuitive way for
non-technical users. Simply put, people and com-
puters do not speak the same language. The ques-
tion answering challenge is thus the matter of devel-
oping a method that allows users with varying levels

“This research was supported in part by a discovery grant
from the Natural Sciences and Engineering Research Council

of Canada. The authors would also like to thank the referees for
their insights and suggestions.

115

Milan Mosny
Response4?2 Inc
North Vancouver, BC, Canada
Milan.Mosny
@responsed2.com

David Lindberg
School of Computing Science
Simon Fraser University
Burnaby, BC, CANADA
dll4@sfu.ca

of technical proficiency to ask questions using natu-
ral language and receive answers in an appropriate,
intuitive format. Using natural language to ask these
questions may be easy for users, but is challenging
due to the ambiguity inherent in natural language
anaylsis. Proposals involving controlled natural lan-
guage, such as (Nelken and Francez, 2000), can deal
with some of the challenges, but the task becomes
more difficult when we seek to answer natural lan-
guage questions in a way that is domain portable.

Before we can attempt to design and implement a
question answering system, we need to address sev-
eral key issues. First, we need to decide what knowl-
edge our system needs. Specifically, we must decide
what linguistic knowledge is needed to properly in-
terpret users’ questions. Then we need to consider
what kind of domain-specific knowledge the system
must have and how that knowledge will be stored
and accessed. We must address the challenges posed
by users with varying levels of technical sophistica-
tion and domain knowledge. The sophistication of
the user and the environment in which the system
is used will also affect how users will give input to
the system. Will we need to process text, speech,
or will a simpler point-and-click interface be suf-
ficient? Finally, we must decide how to best an-
swer the user’s questions, whether it be by fetch-
ing pre-existing documents, dynamically generat-
ing structured database reports, or producing nat-
ural language sentences. These five issues do not
present us with a series of independent choices that
are merely stylistic or cosmetic. The stance we take
regarding each of these issues strongly influences
design decisions, ease of installation/configuration,
and the end-user experience.

Here we solve this problem in the context of ac-

INLG 2012 Proceedings of the 7th International Natural Language Generation Conference, pages 115-119,
Utica, May 2012. (©2012 Association for Computational Linguistics

cessing information from a structured database — a
natural language interface to a database (NLIDB)
(Kapetanios et al., 2010). However, instead of treat-
ing it as a natural language analysis problem, we
will consider it as a task involving natural language
generation (NLG) where users build natural lan-
guage questions by making choices that add words
and phrases. Using our method, users construct
queries in a menu driven manner (Tennant et al.,
1983; Evans and Power, 2003) to ask questions that
are always unambiguous and easy for anyone to un-
derstand, getting answers in the form of interactive
database reports (not textual reports) that are both
immediate and consistent.

This approach retains the main advantage of tra-
ditional NLIDBs that allow input of a question in a
free form text — the ability for the user to communi-
cate with the information system in English. There
is no need for the user to master a computer query
langauge such as SQL or MDX. Many disadvant-
ges of traditional free input NLIDBs are removed
(Tennant et al., 1983). Traditional NLIDBs fail to
analyze some questions and indicate so to the user,
greatly decreasing the user’s confidence in the sys-
tem. The problem is even worse when the NLIDB
analyzes the question incorrectly and produces a
wrong or unpexpected result. In contrast, our system
is able to answer every question correctly. In tradi-
tional free input NLIDBs, the user can make gram-
matical or spelling mistakes that may lead to other
errors. Using a menu-based technique, the user is
forced to input only valid and wellformed queries.
The complexity of the system is greatly reduced as
the language that the system has to process is sim-
ple and unambiguous. Portability to other domains
is improved because there is no need for vocabulary
that fully covers the domain.

2 Our approach

We begin with an overview of our approach to this
question answering problem involving NLG. We de-
scribe how we address each of the afore-mentioned
issues and give our rationale for each of those
choices. Following a brief discussion of our use
of online analytical processing (OLAP) (Janus and
Fouche, 2009) in section 2.2, we then decribe how
we use the OLAP model as the basis for interactive

116

natural query generation, and describe the database
used in our evaluation, along with the grammar used
for NLG.

2.1 Overview

Our approach to the question answering problem is
based on the following decisions and assumptions:

Linguistic knowledge We use a semantic grammar
to support user-controlled NLG rather than language
analysis. By guiding the construction process, we
avoid difficult analysis tasks, such as resolving am-
biguities and clarifying vague language. We also
eliminate the possibility of out-of-domain queries.

Domain-specific knowledge We model domain
knowledge using an OLAP cube, a widely-used
approach to model domain-specific data. OLAP
cubes provide a standard semantic representation
that is well-suited to historical business data and
allows us to automatically generate both the lexicon
and the semantic grammar for our system.

Users The prototypical user of our system is famil-
iar with business issues but does not have a high-
degree of technical expertise. We provide a simple
and intuitive interface suitable for such users but still
powerful enough for users of any level of technical
proficiency.

Input A web-based, point-and-click interface will
guide users in the creation of a natural language
query string. Users click on words and phrases to
construct a question in plain English.

Answers We will answer questions with an interac-
tive database report. Users can click on parts of the
report to get detailed information, making it more of
an interactive dashboard rather than a report.

An approach governed by these principles offers
many benefits. It simplifies database report creation
and lowers the associated costs, allows businesses to
leverage existing investments in data warehouse and
reporting technology, offers a familiar and comfort-
able interface, does not require installation on client
machines, and is simple to install and configure.

2.2 Role of OLAP

An OLAP cube is produced as a result of process-
ing a datawarehouse into datastructures optimized

for query processing. The OLAP query language
makes reference to measure groups (that roughly
correspond to fact tables), measures (that come from
the numerical values in the fact tables) and dimen-
sions (that come from dimension tables). For ex-
ample, the order fact table might include total or-
der price, order quantity, freight cost, and discount
amount. These are the essential figures that describe
orders, but to know more we need to examine these
facts along one or more dimensions. Accordingly,
the dimension tables associated with this fact table
include time (order date, year, quarter, and month),
customer (name, address, city, and zip code), and
product (name, category, and price).

2.3 Interactive Natural Language Generation

At the heart of the system is a semantic grammar.
Our goal was to create a grammar that is suitable to
database querying application, but is simple enough
so that it can be automatically adapted to different
domains. The semantic model makes use of both
entities (unary predicates) and relationships (binary
predicates) that are automatically derived from the
OLAP model. These entities and relationships can
be directly and automatically mapped to the lexical
items and phrases that the user sees on the screen
during query construction. Once a user has com-
pleted the construction of a natural language query,
a corresponding first order logic formula is created
which can then be translated into a database query
in SQL or MDX.

Our assumption was that many database queries
can be expressed within the following template

Show <Show> and and <Show> for
each <GroupBy> and and for
each <GroupBy> limit to <LimitTo>
and and to <LimitTo>

where <Show>, <GroupBy> and <LimitTo> are
different classes of nominals. <Show> may refer to
a measure or to a level in a dimension which may
take an additional constraint in a form of a preposi-
tional clause. <GroupBy> may refer to a level in
a dimension which may take a constraint in a form
of a prepositional phrase or to a set of members of a
dimension. <LimitTo> may refer to a set of mem-
bers of a dimension. A prepositional phrase express-
ing a constraint has a form

with <NounPhrase>

117

QuestionElement

Terminal

EntityTerminal
GroupByEntityTerminal

Nonterminal
TopLevel
GroupBy
LimitTo
Show
PrepositionalClause
Determiner
NounPhrase
List

Figure 1: Semantic Grammar Element Classes

where the noun phrase consists of a determiner such
as “some”, “no”, “at least N, “exactly N” and a
noun referring to a measure.

The semantic grammar makes use of classes in an
inheritance hierarchy as shown in Figure 1. Each
question element corresponds to a parametrized ter-
minal or nonterminal. That is, it can play a role of
one of multiple terminals or nonterminals depend-
ing on its initialization parameters. There are alto-
gether 13 classes that comprise the elements of the
grammar. The implementations of the different class
elements make use of semantic constraints as appro-
priate. Only minimal human intervention is required
when adapting the system to a new OLAP cube. The
intervention consists of “cleaning up” the automat-
ically generated terminal symbols of the semantic
grammar so that the plural and singular forms that
were present in the cube metadata are used consis-
tently and so that the mass vs. countable attribute of
each measure is set appropriately.

3 Evaluation

An evaluation of this kind of system requires an
examination of three performance metrics: domain
coverage, ease of use, and query efficiency. How
well the system covers the target domain is crucially
important. In order to measure domain coverage, we
need to determine how many answerable questions
can actually be answered using the system. We can
answer this question in part by examining the user
interface. Does the interface restrict users’ access
to domain elements and relationships? A more thor-
ough assessment of domain coverage requires exten-

sive user studies.

Ease of use is often thought of as a qualitative
measure of performance, but a systematic, objective
evaluation requires us to define a quantitative mea-
sure. The primary action used to generate queries
in our system is the “click.” Users click on items to
refine their queries, so the number of clicks required
to generate queries seems like a reasonable starting
point for evaluating ease of use. The time it takes
users to make those clicks is important. A four-click
query sounds efficient, but if it takes the user two
minutes to figure out which four clicks need to be
made, not much is gained. It would be ideal if the
number of clicks and the time needed to make those
clicks grow proportionally. That is, we do not want
to penalize users who need to build longer queries.

Query efficiency is measured by the time between
the user submitting a query and the system present-
ing the answer. How long must a user wait while
data is being fetched and the report generated? Un-
like ease of use, this is objectively measurable and
easy to benchmark.

In our initial evaluation, we applied these metrics
to a selection of 12 natural language questions about
the data in the Adventure Works (Codeplex Open
Source Community, 2008) database that could be
answered by our natural language query construc-
tion system. These questions were generated by a
user with prior exposure to the Adventure Works
database but no prior exposure to the query construc-
tion software system or its design or algorithms, so
the questions are not purposely fine-tuned to yield
artificially optimal results. Eight of these questions
were directly answerable, while four were indirectly
answerable. For each of these questions, we mea-
sured the number of clicks required to generate the
query string, the time it took to make the required
clicks, and the time required to retrieve the needed
records and generate a report. The distinction be-
tween directly answerable and indirectly answerable
questions deserves a short explanation. A question
is deemed directly answerable if the answer is the
sole result returned in the report or if the answer is
included in a group of results returned. A question is
deemed indirectly answerable if the report generated
based on a related query can be used to calculate the
answer or if the information relevant to the answer
is a subset of the information returned. So, the ques-

118

tion What are the top 20 products based on inter-
net sales was directly answerable through the con-
structed query Show products with one of 20 highest
internet sales amount, while the question What is the
averagefreight cost for internet orders over $1000
could only be answered Show internet freight cost
for customers with more than 1000 dollars of inter-
net sales amount and for each date.

We found that a user was able to construct nat-
ural language queries using between 2 and 6 clicks
which required 10 and 57 seconds of elaspsed time
for the construction process. On average 3.3 clicks
were required to create a query with an average time
of 33 seconds, where the time grew in a linear man-
ner based on the number of clicks. Once a query was
constructed, the average time to generate a report
was 6.7 seconds with the vast majority of queries
producing a report from the database system in 4
seconds or less. The median values for query con-
struction was 2.5 clicks, query construction was 31.5
seconds, and report generation was 4 seconds..

4 Analysis and Conclusions

Our evaluation suggests that the menu driven NLG
approach results in the rapid creation of unambigu-
ous queries that can retrieve the relevant database
information corresponding to the query. It has been
embedded in a system that uses OLAP cubes to
produce database reports (and dashboards) that al-
low user interaction with the retrieved information.
The system was automatically adapded to a given
OLAP cube (only minimal human intervention was
required) and can be equally easily adapted to other
OLAP cubes serving other domains.

Our results build on semantic web related work
(Paiva et al., 2010) that shows that use of NLG for
guided queries construction can be an effective al-
ternative to a natural language interface to an in-
formation retrieval system. We deal with a highly
constrained natural language (cf. the analysis gram-
mars used by (Nelken and Francez, 2000; Thorne
and Calvanese, 2012)) that is effective in generation
of database queries and the generation (not analysis)
of natural language. Like (Paiva et al., 2010), we
rely on a semantic grammar, but instead build on the
information that can be automatically extracted from
the database model, rather than leveraging knowl-

edge from semantic web resources. Furthermore, we
provide a more detailed evaluation as to the effec-
tiveness of the guided query construction technique.

Use of OLAP in NLG has also been explored in
the context of content planning (Favero and Robin,
2000), and can play an important role in dealing with
domain portability issues not only in the context of
NLG but also in other natural language database ap-
plications. Our technique for leveraging the data
model and OLAP cube avoids human customization
techniques like those reported by (Minock, 2010)
where an explicit mapping between phrases and
database relations and entities needs to be provided,
and (Evans and Power, 2003) where explicit domain
information needs to be entered.

The NLG query construction approach does have
limitations, since users will likely have questions
that either cannot be constructed by the seman-
tic grammar, or that cannot be answered from the
underlying database. However, issues related to
choice or ambiguity that are frequently encountered
by NLG systems in particular, and natural language
processing systems in general, can be avoided by
having a human “in the loop.”

Efficiency and effectiveness is derived from how
we leverage human knowledge, both in query com-
position and result interpretation. In traditional,
non-intelligent query scenarios, users know what
they want to ask but not necessarily how to ask it.
By guiding the user through the NLG process, the
user can focus on the what not the how. Database
reports are generated quickly, providing unambigu-
ous answers in a clear, flexible format. and in a fa-
miliar, comfortable, un-intimidating web-based en-
vironment. Aside from usability benefits, this web-
based approach has the added benefit of minimizing
configuration and maintenance.

Our results are only suggestive, since they involve
only 12 questions. They suggest it would be worth-
while to expend the resources for a full study that
includes multiple users with different levels of ex-
perience, multiple domains and larger sets of ques-
tions. A more fine-grained analysis of the differ-
ence between the results sets of constructed English
queries and the expected answers to original ques-
tions should also be performed along with an evalu-
ation of how easy it is for the user to find the answer
to the question within the database report.

119

References

Codeplex Open Source Community. 2008. Adventure-
works SQL Database Product Samples. CODEPLEX.
http://msftdbprodsamples.codeplex.com.

Faraj A. El-Mouadib, Zakaria S. Zubi, Ahmed A. Alma-
grous, and Irdess S. El-Feghi. 2009. Generic inter-
active natural language interface to databases (GIN-
LIDB). Int Journal of Computers, 3:301-310.

Roger Evans and Richard Power. 2003. WYSIWYM
- building user interfaces with natural language feed-
back. In Proc. of EACL 2003, 10th Conf. of the Euro-
pean Chapter of the ACL, pages 203-206, Budapest,
Hungary.

Eloi Favero and Jacques Robin. 2000. Using OLAP
and data mining for content planning in natural lan-
guage generation. In NLDB 00 Proc. 5th Interna-
tional Conference on Applications of Natural Lan-
guage to Information Systems-Revised Papers, pages
164-175. Springer-Verlag, London.

Phil Janus and Guy Fouche. 2009. Introduction to olap.
In Pro SQL Server 2008 Analysis Services, pages 1—
14. Springer-Verlag.

Epaminondas Kapetanios, Vijayan Sugumaran, and Myra
Spiliopoulou. 2010. Special issue: 13th international
conference on natural language and information sys-
tems (NLDB 2008) five selected and extended papers.
Data and Knowledge Engineering, 69.

Boris Katz. 1988. Using english for indexing and re-
trieving. In Proceedings of the First RIAO Conference
on User-Oriented Content-Based Text and Image Han-
dling (RIAO ’88). CID.

Michael Minock. 2010. C-PHRASE: a system for build-
ing robust natural language interfaces to databases.
Data and Knowledge Engineering, 69:290-302.

Rani Nelken and Nissim Francez. 2000. Querying
temporal databases using controlled natural language.
In Proc 18th International Conference on Computa-
tional Linguistics (COLING 2000), pages 1076-1080,
Saarbriicken, Germany, August.

Sara Paiva, Manuel Ramos-Cabrer, and Alberto Gil-
Solla. 2010. Automatic query generation in guided
systems: natural language generation from graphically
built query. In Proc 11th ACIS Intl Conf on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD 2010), pages
165-170. IEEE Conf Publishing Services.

Harry Tennant, Kenneth Ross, Richard Saenz, Craig
Thompson, and James Miller. 1983. Menu-based
natural language understanding. In Proc 21st annual
meeting of the Association of Computational Linguis-
tics, pages 151-158. ACL.

Camilo Thorne and Diego Calvanese. 2012. Tractabil-
ity and intractability of controlled languages for data
access. Studia Logica, to appear.

