
INLG 2012 Proceedings of the 7th International Natural Language Generation Conference, pages 110–114,
Utica, May 2012. c©2012 Association for Computational Linguistics

Planning Accessible Explanations for Entailments in OWL Ontologies

Tu Anh T. Nguyen, Richard Power, Paul Piwek, Sandra Williams
The Open University

Milton Keynes, United Kingdom
{t.nguyen,r.power,p.piwek,s.h.williams}@open.ac.uk

Abstract

A useful enhancement of an NLG system for
verbalising ontologies would be a module ca-
pable of explaining undesired entailments of
the axioms encoded by the developer. This
task raises interesting issues of content plan-
ning. One approach, useful as a baseline, is
simply to list the subset of axioms relevant
to inferring the entailment; however, in many
cases it will still not be obvious, even to OWL
experts, why the entailment follows. We sug-
gest an approach in which further statements
are added in order to construct a proof tree,
with every step based on a relatively simple
deduction rule of known difficulty; we also de-
scribe an empirical study through which the
difficulty of these simple deduction patterns
has been measured.

1 Introduction

A practical problem in developing ontologies for
the semantic web is that mistakes are hard to spot.
One reason for this lies in the opacity of the stan-
dard OWL formalisms, such as OWL/RDF, which
are designed for efficient processing by computer
programs and not for fast comprehension by peo-
ple. Various tools have been proposed to address
this problem, including not only graphical interfaces
such as Protégé, but NLG (Natural Language Gener-
ation) programs that verbalise the axioms of an on-
tology as text (Kaljurand and Fuchs, 2007; Schwit-
ter and Meyer, 2007; Hart et al., 2008). Using such a
tool, a mistaken axiom presented through a sentence
like ‘Every person is a movie’ immediately leaps to
the eye.

Although there is evidence that verbalisation
helps developers to check individual axioms
(Stevens et al., 2011), there remains a more subtle
problem of undesired entailments, often based on in-
teractions among axioms. The difference between
axioms and entailments is that whereas axioms are
statements encoded by the developer, entailments
are statements inferred from axioms by automated
reasoners such as FaCT++ (Tsarkov and Horrocks,
2006). Because reasoning systems interpret state-
ments absolutely literally, it is quite common for ap-
parently innocuous axioms to lead to absurd conclu-
sions such as ‘Everything is a person’, ‘Nothing is
a person’, or indeed ‘Every person is a movie’. The
standard reasoning algorithms, based on tableau al-
gorithms, will compute these entailments efficiently,
but they provide no information that helps explain
why an undesired conclusion was drawn, and hence
which axiom or axioms need to be corrected.

To provide an explanation of an entailment, the
first step is obviously to determine which axioms are
relevant to the inference. A set of relevant axioms
is known technically as a justification of the entail-
ment, defined as any minimal subset of the ontology
from which the entailment can be drawn (Kalyan-
pur, 2006). The minimality requirement here means
that if any axiom is removed from a justification, the
entailment will no longer be inferable.

Drawing on Kalyanpur’s work, the most direct
strategy for planning an explanation is simply to
verbalise the axioms in the justification, followed
by the entailment, with no additional content. This
strategy serves as a useful baseline for comparison,
and might even be effective for some simple justi-

110



Entailment Person v Movie Every person is a movie.
1. GoodMovie ≡ ∀hasRating.FourStars 1. A good movie is anything that only has ratings of four stars.

Justification 2. Domain(hasRating) = Movie 2. Anything that has a rating is a movie.
3. GoodMovie v StarRatedMovie 3. Every good movie is a star-rated movie.
4. StarRatedMovie v Movie 4. Every star-rated movie is a movie.

Table 1: An example justification that requires further explanation

fications; however, user studies have shown that in
many cases even OWL experts are unable to work
out how the conclusion follows from the premises
without further explanation (Horridge et al., 2009).
This raises two problems of content planning that
we now address: (a) how we can ascertain that fur-
ther explanation is needed, and (b) what form such
explanation should take.

2 Explaining complex justifications

An example of a justification requiring further ex-
planation is shown in Table 1. Statements are pre-
sented in mathematical notation in the middle col-
umn (rather than in OWL, which would take up a
lot more space), with a natural language gloss in the
right column. Since these sentences are handcrafted
they should be more fluent than the output of a ver-
baliser, but even with this benefit, it is extremely
hard to see why the entailment follows.

The key to understanding this inference lies in the
first axiom, which asserts an equivalence between
two classes: good movies, and things that only have
ratings of four stars. The precise condition for an in-
dividual to belong to the second class is that all of its
ratings should be four star, and this condition would
be trivially satisfied if the individual had no ratings
at all. From this it follows that people, parrots,
parsnips, or in general things that cannot have a rat-
ing, all belong to the second class, which is asserted
to be equivalent to the class of good movies. If in-
dividuals with no rating are good movies, then by
axioms 3 and 4 they are also movies, so we are left
with two paradoxical statements: individuals with a
rating are movies (axiom 2), and individuals without
a rating are movies (the intermediate conclusion just
derived). Since everything that exists must either
have some rating or no rating, we are driven to the
conclusion that everything is a movie, from which it
follows that any person (or parrot, etc.) must also be
a movie: hence the entailment. Our target explana-

tion for this case is as follows:

Every person is a movie because the ontology
implies that everything is a movie.
Everything is a movie because (a) anything that
has a rating is a movie, and (b) anything that has
no rating at all is a movie.
Statement (a) is stated in axiom 2 in the justifica-
tion. Statement (b) is inferred because the ontology
implies that (c) anything that has no rating at all
is a good movie, and (d) every good movie is a
movie.
Statement (d) is inferred from axioms 3 and 4 in
the justification. Statement (c) is inferred from
axiom 1, which asserts an equivalence between
two classes: ‘good movie’ and ‘anything that has
as rating only four stars’. Since the second class
trivially accepts anything that has no rating at all,
we conclude that anything that has no rating at all
is a good movie.

Note that in this or any other intelligible explana-
tion, a path is traced from premises to conclusion by
introducing a number of intermediate statements, or
lemmas. Sometimes a lemma merely unpacks part
of the meaning of an axiom — the part that actually
contributes to the entailment. This is clearly what
we are doing when we draw from axiom 1 the im-
plication that all individuals with no ratings are good
movies. Alternatively a lemma could be obtained by
combining two axioms, or perhaps even more. By
introducing appropriate lemmas of either type, we
can construct a proof tree in which the root node is
the entailment, the terminal nodes are the axioms in
the justification, and the other nodes are lemmas. An
explanation based on a proof tree should be easier to
understand because it replaces a single complex in-
ference step with a number of simpler ones.

Assuming that some kind of proof tree is needed,
the next question is how to construct proof trees that
provide effective explanations. Here two conditions
need to be met: (1) the proof tree should be correct,
in the sense that all steps are valid; (2) it should be

111



accessible, in the sense that all steps are understand-
able. As can be seen, one of these conditions is logi-
cal, the other psychological. Several research groups
have proposed methods for producing logically cor-
rect proof trees for description logic (McGuinness,
1996; Borgida et al., 1999; Horridge et al., 2010),
but explanations planned in this way will not nec-
essarily meet our second requirement. In fact they
could fail in two ways: either they might employ a
single reasoning step that most people cannot fol-
low, or they might unduly complicate the text by
including multiple steps where a single step would
have been understood equally well. We believe this
problem can be addressed by constructing the proof
tree from deduction rules for which the intuitive dif-
ficulty has been measured in an empirical study.1

3 Collecting Deduction Rules

For our purposes, a deduction rule consists of a
conclusion (i.e., an entailment) and up to three
premises from which the conclusion logically fol-
lows. Both conclusion and premises are generalised
by using variables that abstract over class and prop-
erty names, as shown in Table 2, where for example
the second rule corresponds to the well-known syl-
logism that from ‘Every A is a B’ and ‘Every B is a
C’, we may infer ‘Every A is a C’.

Our deduction rules were derived through a cor-
pus study of around 500 OWL ontologies. First
we computed entailment-justification pairs using the
method described in Nguyen et al. (2010), and
collated them to obtain a list of deduction patterns
ranked by frequency. From this list, we selected pat-
terns that were simple (in a sense that will be ex-
plained shortly) and frequent, subsequently adding
some further rules that occurred often as parts of
more complex deduction patterns, but were not com-
puted as separate patterns because of certain limi-
tations of the reasoning algorithm.2 The deduction
rules required for the previous example are shown

1Deduction rules were previously used by Huang for re-
constructing machine-generated mathematical proofs; however,
these rules were not for description logic based proofs and
assumed to be intuitive to people (Huang, 1994). The out-
put proofs were then enhanced (Horacek, 1999) and verbalised
(Huang, 1994).

2Reasoning services for OWL typically compute only some
kinds of entailment, such as subclass and class membership
statements, and ignore others.

in Table 2. So far, 41 deduction rules have been ob-
tained in this way; these are sufficient to generate
proof trees for 48% of the justifications of subsump-
tion entailments in the corpus (i.e., over 30,000 jus-
tifications).

As a criterion of simplicity we considered the
number of premises (we stipulated not more than
three) and also what is called the ‘laconic’ property
(Horridge et al., 2008) — that an axiom should not
contain information that is not required for the en-
tailment to hold. We have assumed that deduction
rules that are simple in this sense are more likely to
be understandable by people; we return to this issue
in section 5, which describes an empirical test of the
understandability of the rules.

4 Constructing Proof Trees

A proof tree can be defined as any tree linking the
axioms of a justification (terminal nodes) to an en-
tailment (root node), in such a way that every local
tree (i.e., every node and its children) corresponds
to a deduction rule. This means that if the entail-
ment and justification already correspond to a de-
duction rule, no further nodes (i.e., lemmas) need
to be added. Otherwise, a proof can be sought by
applying the deduction rules, where possible, to the
terminal nodes, so introducing lemmas and grow-
ing the tree bottom-up towards the root. Exhaus-
tive search using this method may yield zero, one or
multiple solutions — e.g., for our example two proof
trees were generated, as depicted in Figure 1.3

5 Measuring understandability

To investigate the difficulty of deduction rules em-
pirically, we have conducted a survey in which 43
participants (mostly university staff and students un-
familiar with OWL) were shown the premises of the
rule, expressed as English sentences concerning fic-
titious entities, and asked to choose the correct con-
clusion from four alternatives. They were also asked
to rate the difficulty of this choice on a five-point
scale. For instance, in one problem the premises

3In the current implementation, the proof tree can also be de-
veloped by adding lemmas that unpack part of the meaning of
an axiom, using the method proposed by Horridge et al.(2008).
These steps in the proof are not always obvious, so their under-
standability should also be measured.

112



ID Deduction Rule Example Success Rate
1 ∀r.⊥ v C Anything that has no ratings at all is a movie. 65%

∃r.> v C Anything that has a rating is a movie.
→ > v C → Everything is a movie.

2 C v D Anything that has no ratings at all is a good movie. 88%
D v E Every good movie is a movie.
→ C v E → Anything that has no ratings at all is a movie.

3 C ≡ ∀r.D A good movie is anything that only has ratings of four stars. —
→ ∀r.⊥ v C → Anything that has no ratings at all is a good movie.

Table 2: Deduction rules for the example in Table 1

Figure 1: Proof trees generated by our current system

Figure 2: Results of the empirical study. In our difficulty
scale, 1 means ’very easy’ and 5 means ’very difficult’

were ‘Every verbeeg is a giantkin; no giantkin is
a verbeeg.’; to answer correctly, participants had to
tick ‘Nothing is a verbeeg’ and not ‘Nothing is a gi-
antkin’.

So far 9/41 deduction rules have been measured
in this way. Figure 2 shows the success rates and the
means of difficulty of those rules. For most prob-
lems the success rates were around 80%, confirm-
ing that the rules were understandable, although in
a few cases performance fell to around 50%, sug-
gesting that further explanation would be needed.
The study also indicates a statistically significant re-
lationship between the accuracy of the participants’
performance and their perceptions of difficulty (r =
0.82, p < 0.01). Two of the three rules in Table 2
were measured in this way. The third rule has not
been tested yet; however, its success rate is expected
to be very low as it was proved to be a very difficult
inference (Horridge et al., 2009).

6 Conclusion

This paper has reported our work in progress on con-
tent planning for explanations of entailments. The
main steps involved in the planning process are sum-

113



Figure 3: Our approach for the content planning. E, J, Pn
are entailments, justifications and proofs respectively; d1
and d2 are difficulty scores and d2 ≤ d1

marised in Figure 3. We have focused on one as-
pect: the introduction of lemmas that mediate be-
tween premises and conclusion, so organising the
proof into manageable steps. Lemmas are derived
by applying deduction rules collected through a cor-
pus study on entailments and their justifications.
Through a survey we have measured the difficulty of
some of these rules, as evidenced by performance on
the task of choosing the correct conclusion for given
premises. These measures should indicate which
steps in a proof are relatively hard, and thus perhaps
in need of further elucidation, through special strate-
gies that can be devised for each problematic rule.
Our hypothesis is that these measures will also allow
an accurate assessment of the difficulty of a candi-
date proof tree, so providing a criterion for choos-
ing among alternatives — e.g., by using the success
rates as an index of difficulty, we can sum the in-
dex over a proof tree to obtain a simple measure
of its difficulty. Our verbaliser currently translates
OWL statements literally, and needs to be improved
to make sure any verbalisations do not give rise to
unwanted presuppositions and Gricean implicatures.

Acknowledgments

This research was undertaken as part of the ongo-
ing SWAT project (Semantic Web Authoring Tool),
which is supported by the UK Engineering and
Physical Sciences Research Council (EPSRC). We
thank our colleagues and the anonymous viewers.

References
Alexander Borgida, Enrico Franconi, Ian Horrocks, Deb-

orah L. McGuinness, and Peter F. Patel-Schneider.
1999. Explaining ALC Subsumption. In DL 1999,
International Workshop on Description Logics.

Glen Hart, Martina Johnson, and Catherine Dolbear.
2008. Rabbit: developing a control natural language
for authoring ontologies. In ESWC 2008, European
Semantic Web Conference, pages 348–360.

Helmut Horacek. 1999. Presenting Proofs in a Human-
Oriented Way. In CADE 1999, International Confer-
ence on Automated Deduction, pages 142–156.

Matthew Horridge, Bijan Parsia, and Ulrike Sattler.
2008. Laconic and Precise Justifications in OWL. In
ISWC 2008, International Semantic Web Conference,
pages 323–338.

Matthew Horridge, Bijan Parsia, and Ulrike Sattler.
2009. Lemmas for Justifications in OWL. In DL 2009,
International Workshop on Description Logics.

Matthew Horridge, Bijan Parsia, and Ulrike Sattler.
2010. Justification Oriented Proofs in OWL. In ISWC
2010, International Semantic Web Conference, pages
354–369.

Xiaorong Huang. 1994. Human Oriented Proof Presen-
tation: A Reconstructive Approach. Ph.D. thesis, The
University of Saarbrücken, Germany.

Kaarel Kaljurand and Norbert Fuchs. 2007. Verbaliz-
ing OWL in Attempto Controlled English. In OWLED
2007, International Workshop on OWL: Experiences
and Directions.

Aditya Kalyanpur. 2006. Debugging and repair of OWL
ontologies. Ph.D. thesis, The University of Maryland,
US.

Deborah Louise McGuinness. 1996. Explaining reason-
ing in description logics. Ph.D. thesis, The State Uni-
versity of New Jersey, US.

Tu Anh T. Nguyen, Paul Piwek, Richard Power, and San-
dra Williams. 2010. Justification Patterns for OWL
DL Ontologies. Technical Report TR2011/05, The
Open University, UK.

Rolf Schwitter and Thomas Meyer. 2007. Sydney OWL
Syntax - towards a Controlled Natural Language Syn-
tax for OWL 1.1. In OWLED 2007, International
Workshop on OWL: Experiences and Directions.

Robert Stevens, James Malone, Sandra Williams,
Richard Power, and Allan Third. 2011. Automating
generation of textual class definitions from OWL to
English. Journal of Biomedical Semantics, 2(S 2:S5).

Dmitry Tsarkov and Ian Horrocks. 2006. FaCT++ De-
scription Logic Reasoner: System Description. In IJ-
CAR 2006, International Joint Conference on Auto-
mated Reasoning, pages 292–297.

114


