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Abstract under-generation (that is cases where the grammar

and/or the lexicon fails to provide an analysis for

_ : a given, grammatical, input) and to a lesser degree

neering has led to the development of various .
. over-generation.

tools for checking grammar coherence, com- hi h . b
pletion, under- and over-generation, in Natu- In this paper, we argue.t at generation can be ex-
ra| Langage Processing, most approaches de_ p|0|ted to addl’eSS Othel‘ ISSuUes that are I’e|evant to
veloped to improve a grammar have focused ~ grammar engineering. In particular, we claim that it
on detecting under-generation and to a much  can be used to:
lesser extent, over-generation. We argue that
generation can be exploited to address other e Check grammar completeness: for each gram-
issues that are relevant to grammar engineer- mar rule, is it possible to derive a syntactically

ing such as in particular, detecting grammar complete tree ? That is, can each grammar rule
incompleteness, identifying sources of over- . .

. ; R be used to derive a constituent.
generation and analysing the linguistic cover-

age of the grammar. We present an algorithm
that implements these functionalities and we
report on experiments using this algorithm to

While in Computer Science, grammar engi-

¢ Analyse generation and over-generation: given
some time/recursion upper bounds, what does

analyse a Feature-Based Lexicalised Tree Ad- the grammar gener_ate? HOW mgch Qf Fhe out-
joining Grammar consisting of roughly 1500 put is over-generation? Which linguistic con-
elementary trees. structions present in a language are covered by

the grammar?

1 Introduction We present a generation algorithm calleHADE

Grammar engineering, the task of developing larggGRAmmar DEbugger) that permits addressing
scale computational grammars, is known to be ethese issues. In essence, this algorithm implements
ror prone. As the grammar grows, the interactiona top-down grammar traversal guided with semantic
between the rules and the lexicon become increasenstraints and controlled by various parameteris-
ingly complex and the generative power of the gramable constraints designed to ensure termination and
mar becomes increasingly difficult for the grammalinguistic control.
writer to predict. The GRADE algorithm can be applied to any gen-
While in Computer Science, grammar engineererative grammar i.e., any grammar which uses a
ing has led to the development of various tools fostart symbol and a set of production rules to gen-
checking grammar coherence, completion, undeerate the sentences of the language described by
and over-generation (Klint et al., 2005), in Natu-that grammar. We present both an abstract descrip-
ral Langage Processing, most approaches developgah of this algorithm and a concrete implementation
to improve a grammar have focused on detectinghich takes advantage of Definite Clause Grammars
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to implement grammar traversal. We then presemtutput of this parsing process is then divided into
the results of several experiments where we use ttwo sets of parsed and unparsed sentences which are
GRADE algorithm to examine the output ofe®I- used to compute the “suspicion rate” of n-grams of
TAG, a Feature-Based Lexicalised Tree Adjoiningvord forms, lemmas or part of speech tags whereby
Grammar (FB-LTAG) for French. the suspicion rate of an item indicates how likely a
The paper is structured as follows. Section Zjiven item is to cause parsing to fail. Error mining
summarises related work. Section 3 presents thveas shown to successfully help detect errors in the
GRADE algorithm. Section 4 introduces the gramdexicon and to a lesser degree in the grammar.
mar used for testing and describes an implementa-
tion of GRADE for FB-LTAG. Section 5 presents Debugging Grammars using Generation Most
the results obtained by applying theR@DE algo- Of the work on treebank-based evaluation and error
rithm to SEMTAG. We show that it helps (i) to detect Mining target undergeneration using parsing. Re-
sources of grammar incompleteness (i.e., rules thé@ntly however, some work has been done which ex-
do not lead to a complete derivation) and (ii) to idenploits generation and more specifically, surface real-
tify overgeneration and analyse linguistic coveragdsation to detect both under- and over-generation.

Section 6 concludes. Both (Callaway, 2003) and the Surface Realisa-
tion (SR) task organised by the Generation Chal-
2 Related Work lenge (Belz et al., 2011) evaluate the output of sur-

. face realisers on a set of inputs derived from the

prove grammars: treebank-based evaluation and reE?nn Treebank. As with parsing, these approaches

= . . . . permit detecting under-generation in that an input
ror mining techniques. We briefly review this work . . .

LT for which the surface realiser fails to produce a
focusing first, on approaches that are based on pars-

. . : sentence points to shortcomings either in the sur-
ing and second, on those that exploit generation. e . . .
face realisation algorithm or in the grammar/lexicon.

Debugging Grammars using Parsing Over the The approach also permits detecting overgeneration
last two decadedreebank-Based evaluatitias be- in that a low BLEU score points to these inputs
come the standard way of evaluating parsers aridr which the realiser produced a sentence that is
grammars. In this framework (Black et al., 1991)markedly different from the expected answer.
the output of a parser is evaluated on a set of sen-Error mining approaches have also been devel-
tences that have been manually annotated with th&iped using generation. (Gardent and Kow, 2007) is
syntactic parses. Whenever the parse tree producsichilar in spirit to the error mining approaches de-
by the parser differs from the manual annotation, theeloped for parsing. Starting from a set of manu-
difference can be traced back to the parser (timeouwlly defined semantic representations, the approach
disambiguation component), the grammar and/or tgonsists in running a surface realiser on these repre-
the lexicon. Conversely, if the parser fails to resentations; manually sorting the generated sentences
turn an output, undergeneration can be traced baek correct or incorrect; and using the resulting two
to missing or erroneous information in the grammadatasets to detect grammatical structures that sys-
or/and in the lexicon. tematically occur in the incorrect dataset. The ap-
While it has supported the development of roproach however is only partially automatised since
bust, large coverage parsers, treebank based evaboth the input and the output need to be manually
ation is limited to the set of syntactic constructiongproduced/annotated. More recently, (Gardent and
and lexical items present in the treebank. It alsdblarayan, 2012) has shown how the fully automatic
fails to directly identify the most likely source of error mining technigues used for parsing could be
parsing failures. To bypass these limitatioesor adapted to mine for errors in the output of a surface
mining techniquesave been proposed which per-realiser tested on the SR input data. In essence, they
mit detecting grammar and lexicon errors by parspresent an algorithm which enumerate the subtrees
ing large quantities of data (van Noord, 2004; Sagah the input data that frequently occur in surface re-
and de la Clergerie, 2006; de Kok et al., 2009). Thalisation failure (the surface realiser fails to gener-
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ate a sentence) and rarely occur in surface realisadrrence of its left-hand side in the string by its right-
tion success. In this way, they can identify subtreelsand side until a string that contains neither the start
in the input that are predominantly associated witesymbol nor designated nonterminal symbols is pro-
generation failure. duced.

In sum, tree-bank based evaluation permits de- Since NL grammars describe infinite sets of sen-
tecting over- and under-generation while error mintences however, some means must be provided to
ing techniques permits identifying sources of ereontrol the search and output sets of sentences that
rors; Treebank-based evaluation requires a refesre linguistically interesting. Therefore, therGDE
ence corpus while error mining techniques requiralgorithm is controlled by several user-defined pa-
a way to sort good from bad ouput; and in all casesameters designed to address termination (Given that
generation-based grammar debugging requires inpNt. grammars usually describe an infinite set of sen-
to be provided (while for parsing, textual input istences, how can we limit sentence generation to
freely available). avoid non termination?), linguistic control (How can
we control sentence generation so that the sentences
produced cover linguistic variations that the linguist
is interested in ?) and readibility (How can we con-
strain sentence generation in such a way that the out-

bf‘sefjh No Otheli 'EpUt ;13 requwr?%forhth@ﬁDE put sentences are meaningful sentences rather than
algorithm to work than the grammarWhereas ex- just grammatical ones?).

isting approaches identify errors by processing large

amounts of data, &ADE identifies errors by travers- . o

) . 3.1 Ensuring termination

ing the grammar. In other words, while other ap-

proaches assess the coverage of a parser or a gengtensure termination, GADE supports three user-

tor on a given set of input data,RADE permits sys- defined control parameters which can be used simul-

tematically assessing the linguistic coverage and thaneously or in isolation namely: a time out parame-

precision of the constructs described by the grammasr; a restriction on the number and type of recursive

independently of any input data. rules allowed in any derivation; and a restriction on
Currently, the output of ®BADE needs to be man- the depth of the derivation tree.

ually examined and the sources of error manually Each of these restrictions is implemented as a re-

identified. Providing an automatic means of Sortin@triction on the grammar traversal process as fol-
GRADE ’s output into good and bad sentences is dgpyys.

veloped however, it could be combined with error
mining techniques so as to facilitate interpretation. Time out. The process halts when the time bound
is reached.

Discussion The main difference between the
GRADE approach and both error mining and tree
bank based evaluation is thatR&DE is grammar

3 The GraDE Algorithm

How can we explore the quirks and corners of gecursive Rules. For each type of recursive rule,

grammar to detect inconsistencies and incorrect oug-counter is created which is initialised to the values
put? set by the user and decremented each time a recur-

In essence, the B DE algorithm performs a top- sive rule of the corresponding type is used. When

down grammar traversal and outputs the sentenc@g counters are null, recursive rules can no longer

generated by this traversal. It is grammar neutral iHe used. The type of a recursive rule is simply the

that it can be applied to any generative grammar i. main category expanded by that rule namely, N, NP,

any grammar which includes a start symbol and %VP ang S. Iln aqgltlon,bv_vher_}ev;r%rule IS ?]pplled,
set of production rules. Starting from the string conti'® GRADE algorithm arbitrarily divides up the re-

sisting of the start symbol, the FADE algorithm cursion quotas of a symbol among the symbol'’s chil-

recursively applies grammar rules replacing one O(g_ren. I it_happens t'o d'ivide them a way tha"[ can-
not be fulfilled, then it fails, backtracks, and divides

Although some semantic input is possible. them some other way.
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Derivation Depth. A counter is used to keep track which are difficult to specify manually) and while
of the depth of the derivation tree and either halts (illowing for morphological variations (tense, num-
no other rule applies) or backtracks whenever the sber, mode and aspect can be left unspecified and will

depth is reached. be informed by the calls to the lexicon embedded in
the DCG rules) as well as variations on determin-
3.2 Linguistic Coverage and Output erg. For instance, the core semantfcsin(E M ,
Readibility man( M } is contained in, and therefore will gen-

GRADE provides several ways of controlling the lin-erate, the flat semantics for the sententke man
guistic coverage and the readibility of the outputuns, The man ran, A man runs, A man ran, This
sentences. man runs, My man runs, etc.

Modifiers. As we shall show in Section 5, the re-4
cursivity constraints mentioned in the previous sec-

tion can be used to constrain the type and the numbgy the previous section, we provided an abstract de-
of modifiers present in the output. scription of the GADE algorithm. We now describe
an implementation of that algorithm tailored for FB-

Root Rule. Second, the “root rule” i.e., the rule . . e .
! ’ uie” 1.., ! LTAGs equipped with a unification-based composi-

that is used to expand the start symbol can be co : o
strained in several ways. The user can specify whicEE]onal semantics. We start by describing the gram-
' ar used (8MTAG), we then summarise the im-

rule should be used; which features should labe ,
the Ihs of that rule; which subcategorisation type iPIementatlon of ®ADE for FB-LTAG.

should model; and whether or not it is a recursiv

rule. For instance, given the FB-LTAG we are using(?z"1 SemTAG

by specifying the root rule to be used, we can conFor our experiments, we use the FB-LTAG described
strain the generated sentences to be sentences cion(Crable, 2005; Gardent, 2008). This grammar,
taining an intransitive verb in the active voice com-<called EMTAG, integrates a unification-based se-
bining with a canonical nominal subject. If we onlymantics and can be used both for parsing and for
specify the subcategorisation type of the root rulgeneration. It covers the core constructs for non
e.g., transitive, we can ensure that the main verb ekrbal constituents and most of the verbal construc-
the generated sentences is a transitive verb; Andtibns for French. The semantic representations built
we only constrain the features of the root rule to inare MRSs (Minimal Recursion Semantic representa-
dicative mode and active voice, then we allow fotions, (Copestake et al., 2001)).

the generation of any sentence whose main verb isMore specifically, a tree adjoining grammar
in the indicative mode and active voice. (TAG) is a tuple(X, N, I, A, S) with X a set of ter-

. o minals, NV a set of non-terminals] a finite set of
Input Semantics. Third, in those cases where the. . . - SZ
. . . initial trees, A a finite set of auxiliary trees, anfi
grammar is a reversible grammar associating sen- .. .. . . i
. : a distinguished non-terminab(e N). Initial trees
tences with both a syntactic structure and a seman- . .
. . are trees whose leaves are labeled with substitution
tic representation, the content of the generated sen- . .
- : nodes (marked with a downarrow) or terminal cate-
tences can be controlled by providiniR&DE with . o L
. . _gories. Auxiliary trees are distinguished by a foot
an input semantics. Whenever a core semantics .
. o o node (marked with a star) whose category must be
is specified, only rules whose semantics mcIude%
: . . the same as that of the root node.
one or more literal(s) in the core semantics can be

used. Determiner rules however are selected inde- The rules whose semantics is not checked during derivation
pendent of their semantics. In this way, it is possiare specified as a parameter of the system and can be modified
ble to constrain the output sentences to verbalise@qWill e.g., to include adverbs or auxiliaries. Here we choosed

. . . . . . to restrict underspecification to determiners.
given meaning without having to specify their full ®Due to space limitation we here give a very sketchy defini-

Sem_antics (the semantic repres_entations used i.n £@n of FB-LTAG. For a more detailed presentation, see (Vijay-
versible grammars are often intricate representatioissanker and Joshi, 1988).

Implementation
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Two tree-composition operations are used to com- For more details, on the FB-LTAG implementa-
bine trees: substitution and adjunction. Substituion of the GRADE algorithm and of the conversion
tion inserts a tree onto a substitution node of someom FB-LTAG to DCG, we refer the reader to (Gar-
other tree while adjunction inserts an auxiliary treelent et al., 2011; Gardent et al., 2010).
into a tree. In a Feature-Based Lexicalised TAG
(FB-LTAG), tree nodes are furthermore decorate® Grammar Analysis

with two feature structures (calleédp andbottom) . .
. o . o Depending on which control parameters are used,
which are unified during derivation; and each tre

is anchored with a lexical item. Figure 1 shows an € GRADE algorithm can be used to explore the

. P . rammar from different viewpoints. In what fol-
example toy FB-LTAG with unification semantics. g . P
lows, we show that it can be used to check grammar

S, completeness (Can all rules in the grammar be used

NEY NP{\VPI’ X S0 as to _derlve a co_nstltuent?); tollnspect the vari-
| Al o, /Vpﬁ ous possible realisations of syntactic functors and of

John ../ ve often VP*, their arguments (e.g., Are all possible syntactic real-
10:proper.q(c hr hs) Uns " loofen) isations of the verb and of its arguments generated
I1:named( john) and correct?); to explore the interactions between
deq(hr 11) virun(a,) basic clauses and modifiers; and to zoom in on the

= |0:proper_q(c hr hs) I1:named(j john), geq(hr, 11), mMorphological and syntactic variants of a given core
Ivirun(a,j), Iv:often(a) semantics (e.g., Does the grammar correctly account

i ?
Figure 1: MRS for “John often runs” for all such variants ?).

5.1 Checking for Grammar Completeness
4.2 GraDe for FB-LTAG We first use ®ADE to check, for each grammar

The basic FB-LTAG implementation of \DE is rule, whether it can be used to derive a complete
described in detail in (Gardent et al., 2011; Garconstituent i.e., whether a derivation can be found

dent et al., 2010). In brief, this implementationéUCh that all leaves of the derivation tree are ter-
takes advantage of the top-down, left-to-right, gramr-nlnals (words). Can all trees anchored by a verb

mar traversal implemented in Definite Clause Gramf—Or instance, be completed to build a syntactically
mars by translating the FB-LTAG to a DCG. In thecomplete clause? Trees that cannot yield a complete

DCG formalism, a grammar is represented as asetB?nStituem points to gaps or inconsistencies in the

Prolog clauses and Prolog’s query mechanism prg_rammar. .

vides a built-in top-down, depth-first, traversal of the . To perform this check, we run ther3DE a'9°'
grammar. In addition, the DCG formalism aIIowsr_'thm on _verb rules, allowing for up to 1 adjunc-
arbitrary Prolog goals to be inserted into a rule. T jon on either a noun, a verb or a verb phrase and
implement a controlled, top-down grammar traver-

alting when either a derivation has been found or
sal of S=MTAG, we simply convert 8MTAGto a all possible rule combinations have been tried. Ta-

; )ple 1 shows the results per verb farilyAs can be
Prolog calls are used both to ground derivations witﬁ_een’ t.?here are8%tg/on% (;Irl]ffe;ence? l_)l_etwien Fhﬁj fam-
lexical items and to control Prolog’s grammar traver'—'es, W'_ e,'g" °© 0 ) € trees 6_“ |n'g oye : a
sal so as to respect the user defined constraints gﬁrlvatlon in the nOVslint (Verbs with interrogative
recursion and on linguistic coverage. In addition:c‘ememIal complement) family against 0% in the ilv
we extended the approach to handle semantic con- the notational convention for verb types is from XTAG and
straints (i.e., to allow for an input semantic to con+eads as follows. Subscripts indicate the thematic role of the
strain the traversal) as discussed in Section 3. Thwgrb argument. nindicates a nominal, Pn a PP and s a sentential

. : rgument. pl is a verbal particle. r letter ri
is, for a subset of the grammar rules, a rule will only 9757 P5 @ ¥ bal particle. Upper case letters describe
he syntactic functor type: V is a verb, A an adjective and BE

_be applied if _itS semantics subsumes a literal in th@e copula. For instance, nOVn1 indicates a verb taking two
Input semantics. nominal arguments (e.dike) .
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Tree Family| Trees| Fails | Fails/Trees We show below some of the well-formed sen-
CopulaBe 60 1 1% tences output by 8aDE for the nOV (intransitive
1\ 2 0 0% verbs) family.

:S\C/:IV 18 8 8:;2 Elle chante §he sings La 'Fatou_chante—
n0CIVN1 45 5 4% telle? (Does the armad|II_0 sm_g? ),
noCIVdeni 36 3 8% La tatou chante'l(he armadﬂlq S|ng§),
n0CIVpn1 29 3 10% L_a tatou qui chanteThe armadlllo which
A0VNn1 84 3 2% sings), Chacun chante -t'illjoes every-
NOVN1Adj2 o4 6 2504 one sing? ), Chacun chanteHveryone
noVanil g7 3 3% sings), Quand chante chacun?When
noVdeni 38 3 7% does everyone sing?, Quand c_hant(_e la
nOVpnil 30 3 10% tatou? When does the armadillo sing?
iVes] 5 0 0% ) Quand cha_nte quel tatouWhen does
n0Vesl 30 23 24% which armadillo sing? ), Quand (_:hante
nOVasl 15 10 66% Tammy? When does Tammy sing?,
NOVN1Adj2 o4 0 0% Chante-t’elle? IDo_es she sing? Chgnte
soVni 72 9 12% -t'iI? (Does he sing?), Chante! (Sln_g!
nOVsiint 15 12 80% ),_ Quel tatou chante ?V\(hICh armad_lllo
A0VNn1n2 24 0 0% sing? )_, Quel tat_ou qui chante .. 2\thich
novVnlan? 681 54 7% armadillo who sings .. Tammy chante-

telle? (Does Tammy sing?), Tammy
Table 1: Checking for Gaps in the Grammar chante Tammy sings), une tatou qui
chante chanteAn armadillo which sings
sings), C’est une tatou qui chanté (s an
(impersonal with expletive subject, “it rains”) and  armadillo which sing, ...

the nOV (intransitive, “Tammy sings”). In total, ap-  The call on this family returned 55 distinct MRSs
proximatively 10% (135/1317) of the grammar rules;nq g5 distinct sentences of which only 28 were cor-
cannot yield a derivation. rect. Some of the incorrect cases are shown below.
They illustrate the four main sources of overgener-
ation. The agreement between the inverted subject
To check grammar completeness, we need only firditic and the subject fails to be enforced (a); the in-
one derivation for any given tree. To assess the dg¥erted nominal subject fails to require a verb in the
gree to which the grammar correctly generates dindicative mode (b); the inverted subject clitic fails
possible realisations associated with a given syr0 be disallowed in embedded clauses (c); the inter-
tactic functor however, all realisations generated bfogative determineguelfails to constrain its nomi-
the grammar need to be produced. To restrict thaal head to be a noun (d,e).

output to sentences illustrating functor/argumentde- 3y Chacun chante-telle? Eyeryone
pendencies (no modifiers), we constrain adjunction  gings9 (b) Chanée chacun?Sung every-

to the minimum required by each functor. In most  oney (c) La tatou qui chante-telle7Tpe

cases, this boils down to setting the adjunction coun- 5, madillo which does she sing?d) Quel

ters to null for all categories. One exception are  chacun chante ANhich everyone sing$?

verbs taking a sentential argument which require one (e) quel tammy chante 2Which Tammy

S adjunction. We also allow for one N-adjunction  gjngg9

and one V-adjunction to allow for determiners and _ _ N

the inverted subject clitic (til). In addition, the lex- 2-3  Interactions with Modifiers

icon is restricted to avoid lexical or morphologicalOnce basic functor/argument dependencies have
variants. been verified, adjunction constraints can be used to

5.2 Functor/Argument Dependencies
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explore the interactions between e.g., basic clauses Tree Family| MRS | Sent.| S/IMRS
and modification. Allowing for N-adjunctions for iv 7 52 7.4
instance, will produce sentences including determin- ng\C/ZIV gg 12; ;g
ers a.lnd at;ijectiveg Similgr'ly,.allowing for V ad- EOCIan 20 o5 1.2'5
junction will permit for auxiliaries and adverbs to noCIVden1 10| 15 15
be used; and allowing for VP or S adjunctions will noCIVpnl 40 63 157
licence the use of raising verbs and verbs subcate- novnl 20| 110 5.5
gorising for sentential argument. nOVanl 30| 100 3.33
We queried GADE for derivations rooted in nOV nOVdenl 5| 157 300
(intransitive verbs) and with alternatively, 1N, 2N, .T\(;llspfl Zi’ 7? i'gg
1V and 1VP adju_nctlon. Again a re_strlcted IeX|cor_1 noVes 200| 660 33
was used to avoid structurally equivalent but lexi- noVasi 35| 120| 3.42
cally distinct variants. The following table shows nOVn1Adj2 10 15 15
the number of sentences output for each query. s0OvVnil 4 24 6.00
noVniln2 10 48 4.80

0 15 1vP 1V IN 2N nOVnlan2 5| 45| 9.00

36 170 111 65 132 638

As the examples below show, the generated sen-
tences unveil two further shortcomings in the gram-

mar: the inverted subject clitic fails to be constrained

to occur directly after the verb (1) and the order and'Stance, to systematically inspect all variations out-
compatibility of determiners are unrestricted (2). put by the grammar on a given input. These varia-

tions include all morphological variations supported
(1) a. Semble-til chanter? / * Semble chantePY the lexicon (number, tense, mode variations) and
til? (Does he seems to sing? the syntactic variations supported by the grammar
b. Chante-til dans Paris? / * Chante dansfor the same MRSS (e.g., active/passive).' It also in-
Paris-til? Does he sing in Parig? cludes the variations supported b)RﬁEDE.In that _
) some rules are not checked for semantic compati-
c. Chante-t'il beaucoup? [ *
beaucoup-t'il? Does he sing a loff?

Chante bility thereby allowing for additional materials to be
added. In effect, @ADE allows for the inclusion of

d. Veut-til que Tammy chante? /* Veut que arbitrary determiners and auxiliaries.

Tammy chante-til? Does he want that  1apie 2 shows the number of MRSs and sen-

Tammy sings? tences output for each verb family given a match-
ing core semantics and a morphological lexicon in-
cluding verbs in all simple tenses (3rd person only)
and nouns in singular and plufalThe ratioS/M of
sentences on MRSs produced by oneABE call
shows how the underspecified core semantics per-
) ) mits exploring a larger number of sentences gener-
In the previous sections, ADE was used 10 gen- 4aq py the grammar than could be done by gener-
erate MRSs and sentenaes nihila As mentioned  a4inq from fully specified MRSs. For the nOVnlan2
above however, a core semantics can be used to W@ass, for instance, ther@DE call permits generat-

strict the set of output sentences to sentences whqﬁg 9 times more sentences in average than generat-
MRS include this core semantics. This is useful fo[ng from a single MRS.

Table 2: Producing Variants

(2) * Un quel tatou, *Quel cette tatou, Ma quelle
tatou Un which armadillo, Which this ar-
madillo, My which armadilly

5.4 Inspecting Coverage and Correctness

SRecall that in FB-LTAG, adjunction is the operation which
permits applying recursive rules (i.e., auxiliary trees). Hence °The lexicon used in this experiment includes more mor-
allowing for adjunctions amounts to allowing for modification phological variants than in the experiment of Section 5.2 where
with the exception already noted above of certain verbs subcatie focus was on syntactic rather than morphological variants.
egorising for sentential arguments. Hence the different number of generated sentences.
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6 Conclusion strained input would be used to generate from the

grammar and the lexicon a set of correct sentences
When using a grammar for generation, it is essefysing GRADE . Next these sentences would be used
tial, not only that it has coverage (that it does nofp train a language model which could be used to

undergenerate) but also that it be precise (that dfetect incorrect sentences produced yAGE on
does not Ovel’generate). Nonetheless, relatively Iih]ore Comp|ex’ less constrained input.

tle work has been done on how to detect overgener- Other issues we are currently pursueing are the
ation. In this paper, we presented an algorithm angse of GRADE (i) for automating the creation of
a methodology to explore the sentences generat§ehmmar exercises for learners of french and (ii) for
by a grammar; we described an implementation Qfreating a bank of MRSs to be used for the evalua-
this algorithm based on DCGs (&DE ); and We  tjon and comparison of data-to-text generators. The
illustrated its impact by applying it to an existingyarious degrees of under-specification supported by
grammar. We showed thatRBDE could be used GraDE permit producing either many sentences out
to explore a grammar from different viewpoints: topf few input (e.g., generate all basic clauses whose
find gaps or inconsistencies in the rule system; tgerh is of a given subcategorisation type as illus-
systematically analyse the grammar account of fungrated in Section 5.2); or fewer sentences out a more
tor/argument dependencies; to explore the interagpnstrained input (e.g., producing all syntactic and
tion between base constructions and mOdiﬁerS; aﬂﬂorpho|ogica| variants Verba”sing a given input se-
to verify the completeness and correctness of symnantics). We are currently exploring how seman-
tactic and morphological variants. tically constrained ®ADE calls permit producing
There are many directions in which to pursuesariants of a given meaning; and how these vari-
this research. One issue is efficiency. Unsurprisants can be used to automatically construct gram-
ingly, the computational complexity of DE is mar exercises which illustrate the distinct syntac-
formidable. For the experiments reported here, runic and morphological configurations to be acquired
times are fair (a few seconds to a few minutes deby second language learners. In contrast, more un-
pending on how much output is required and on theerspecified @ADE calls can be used to automat-
size of the grammar and of the lexicon). As the comically build a bank of semantic representations and
plexity of the generated sentences and the size of tiigeir associated sentences which could form the ba-
lexicons grow, however, it is clear that runtimes willsis for an evaluation of data-to-text surface realis-
become unpractical. We are currently using YARyrs. The semantics input toR&DE are simplified
Prolog tabling mechanism for storing intermediat@epresentations of MRSs. During grammar traver-
results. It would be interesting however to compareal, GRADE reconstructs not only a sentence and
this with the standard tabulating algorithms used fags associated syntactic tree but also its full MRS.
parsing and surface realisation. As a result, it is possible to produce a generation
Another interesting issue is that of the interachank which, like the Redwook Bank, groups to-
tion between ®ADE and error mining. As men- gether MRSs and the sentences verbalising these
tioned in Section 2, @ADE could be usefully com- MRSs. This bank however would reflect the linguis-
plemented by error mining techniques as a meattis coverage of the grammar rather than the linguis-
to automatically identify the most probable cause8c constructions present in the corpus parsed to pro-
of errors highlighted by @ADE and thereby of im- duce the MRS. It would thus provide an alternative
proving the grammar. To support such an integratioway to test the linguistic coverage of existing surface
however, some means must be provided of sortingalisers.
GRADE s output into “good” and “bad” output i.e.,
into sentences that are grammatical and senten
that are over-generated by the grammar. We plan ithe research presented in this paper was partially
investigate whether language models could be ussdpported by the European Fund for Regional De-
to identify those sentences that are most probablelopment within the framework of the INTERREG
incorrect. In a first step, simple and highly con4VA Allegro Project.
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