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Abstract

English phonotactic learning is modeled by
means of the PHACTS algorithm, a topo-
logical neuronal receptive field implement-
ing a phonotactic activation function aimed
at capturing both local (i.e., phonemic) and
global (i.e., word-level) similarities among
strings. Limits and merits of the model are
presented.

1 Introduction

Categorical rules and probabilistic constraints of
phonotactic grammar affect speakers’ intuitions
about the acceptability of word-level units in a
number of experimental tasks, including con-
tinuous speech segmentation and word similar-
ity judgment. Several sources of information
contribute to phonotactic generalization, includ-
ing sub-segmental properties, segment transition
probabilities, lexical neighborhood effects; all
these factors have been independently or jointly
modeled in several recent accounts of phonotac-
tics and phonotactic learning (Coady and Aslin,
2004; Vitevitch, 2003; Vitevitch and Luce, 2005;
Hayes and Wilson, 2008; Albright, 2009; Coet-
zee, 2009).

In this study, we explore the word level phono-
tactics in terms of a function of ‘phonotactic ac-
tivation’ within a PHACTS environment (Celata
et al., 2011). PHACTS is a topological neu-
ronal receptive field implementing an n-gram
sampling estimate of the frequency distribution of
phonemes and a sub- lexical chunking of recur-
rent sequences of phonemes. Once this phono-
tactic knowledge has been developed, the model
generalizes it to novel stimuli to derive activation-
based representations of full lexical forms, thus

mirroring the contribution of lexical neighbor-
hood effects. Then the similarity values for pairs
of words and non-words can be calculated.

2 PHACTS: the model

PHACTS (for PHonotactic ACTivation System) is
based on the principles of a Self-Organizing Map
(SOM) (Kohonen, 2000), an associative memory
algorithm which realizes low-dimensional (gener-
ally, bi-dimensional) representations of a multidi-
mensional input space.
PHACTS simulates the formation of phonotactic
knowledge in the mind of a speaker, who is ex-
posed to a stream of phonological words and grad-
ually develops a mental representation of the sta-
tistical regularities shaping the phonotactics of a
given language. The model also performs lexi-
cal generalizations on the basis of the phonotactic
knowledge developed in the training phase.

The physical structure of PHACTS is defined
by a set S (with finite cardinality) of neurons njk

with 1 ≤ j ≤ J and 1 ≤ k ≤ K arranged in
a bi-dimensional grid of S = {n11, n12, . . . n},
‖S‖ = JK. Each neuron in the grid corresponds
to a vector (the so-called prototype vector) whose
dimension is equal to the dimension of the input
data vector. At the beginning of the learning pro-
cess, the prototype vectors assume random values
while, as learning progresses, they change their
values to fit the input data.

PHACTS works according to the two follow-
ing phases: i) the training phase, where language-
specific phonotactic knowledge is acquired; ii) the
lexical generalization phase.
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2.1 Training phase: the acquisition of
phonotactic knowledge

At the beginning, each input word iteratively hits
the system. For any iteration, the algorithm
searches for the best matching unit (BMU), that
is, the neuron which is topologically the closest to
the input vector i and which is a good candidate
to represent the input data through the prototype
vector. The search for the BMU is given by maxi-
mizing the dot product of i and ujk in the t-th step
of the iteration:

BMU((i)t) = arg max
jk

(i(t) · ujk) (1)

In other terms, the BMU((i)t) is the best aligned
prototype vector with respect to the input i. Af-
ter the BMU is selected for each i at time t,
PHACTS adapts the prototype vector ujk to the
current input according to the topological adapta-
tion equation given in (2):

∆ujk(t) = α(t)δ(t)[i(t)− ujk(t− 1)] (2)

where α(t) is a learning rate and δ(t) is the so-
called neighborhood function. The neighborhood
function is a function of time and distance be-
tween the BMU and each of its neighbors on the
bi-dimensional map. It defines a set of neurons
around the that would receive training, while neu-
rons outside this set would not be changed. In our
model the neighborhood function is defined as a
Gaussian function.

The α parameter controls for the elasticity of
the network, and δ roughly controls for the area
around each best matching where the neurons are
modified. The initial value of both parameters is
set heuristically and in general decreases as long
as the learning progresses. In order to facilitate a
training convergence, we set α → 0 and δ → 0
as t → 0. PHACTS performs a vector map-
ping of the data space in input to the output space
defined by the prototype vectors ujk on the bi-
dimensional grid of neurons S.

2.1.1 The data: Type and token frequency in
PHACTS

For the present simulations, PHACTS was
trained on a portion of the CELEX English
database (Baayen et al., 1995), and specifically
on 8266 English word types phonologically tran-
scribed and provided with their frequency of oc-
currence (only the words with token frequency

> 100 were selected). Each phoneme was phono-
logically encoded according to a binary vector
specifying place, manner of articulation and voic-
ing for consonants, roundedness, height and ante-
riority for vowels. The bi-dimensional map was
25 X 35 neurons, and thus S = 875. Input words
were sampled according to i for PHACTS is con-
stituted by the input training words with a n-gram
sampling window (with n spanning up the length
of the longest word).

During the training phase, the map takes into
account the global distribution of the n-grams
in order to realize the topological activations
of the phonotactic patterns (‘phonotactic activa-
tion’). Both token frequency (i.e., the number
of occurrences of specific n-grams) and type fre-
quency (i.e., the number of all members of an
n-gram type as defined by phonological features
shared; for instance, /tan/ and /dim/ are two re-
alizations of the trigram type stop+vowel+nasal)
play a key role in phonotactic activation. By
virtue of being repeatedly inputted to the map, a
high token frequency n-gram will exhibit high ac-
tivation state in the map. Low token frequency
n-grams, however, will exhibit activation on the
SOM only if they share phonological material
(namely, phonemes or features) with high token
frequency n-grams. Type frequency generates
entrenchment effects in the map; high type fre-
quency n-grams will occupy adjacent positions
on the bi-dimensional map, thus defining clear
phonotactic clusters. For these reasons, PHACTS
differ sharply from current models of phonotac-
tic learning, where only type frequencies are as-
sumed to play a role in phonotactic generalization
(and formalized accordingly). (Albright, 2009)

2.2 N-gram generalization and lexical
generalizations

Once PHACTS has been exposed to an input of
phonologically-encoded n-grams , an activation-
based representation of unseen words can be
derived. This phase implements a linear thresh-
olded function d in which each neuron ŤfiresŢ
as a function of its activation with respect to
the (unseen) n-grams. In this sense each neuron
acts as a ‘transfer function’Ţ of an activation
weight depending on the alignment between
the unseen n-gram vector and the best aligned
n-gram prototype vector.
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Lexical generalization in PHACTS is therefore
a word-level transfer process whereby the activa-
tion values of each word n-gram are summed ac-
cording to equation [4]:

FPHACTS(x) =
∑
jk

Φ(x) (3)

The cumulative action of n-gram activations re-
alizes a distributed representation of the word in
which both phonological similarity (at the string
level), and token frequency effects for phonotac-
tic patterns are taken into account.
Being based on an associative memory learn-
ing of phonological words inputted by a n-gram
sampling window, PHACTS develops topolog-
ical cumulative memory traces of the learned
words in which phonotactic activations emerge
as the results of repeated mnemonic superim-
positions of n-grams. This aspect is crucial
for a distributional analysis of the morphotactic
salience in a given language. In this direction,
PHACTS was successfully implemented in the
modeling of the micro- and macro-phonotactics
in Italian (Calderone and Celata, 2010). By
micro-phonotactics we mean sequential informa-
tion among segments (e.g., the fact that, in the
specific language, a phonological sequence, such
as /ato/, differs from similar sequences, such as
/uto/, /rto/, and /atu/ ). By macro-phonotactics we
mean positional information within the word, i.e.,
sub-lexical (or chunk) effects (e.g., the fact that
word-initial /#ato/ is different from word-medial
/-ato-/, as well as from word-final /ato#/ ). In En-
glish language as well, PHACTS seems to distri-
butionally distinguish a positional relevance for
highly attested phonological sequences such as
/ing/. Figure 1 reports the phonotactic activation
states outputted for the sequence /ing/ in initial
and final word position (training corpus and pa-
rameters described in 2.1.1).

3 The experiments

According to the literature, the speakers in judg-
ing the wordlikeness of isolated non-words rely
mainly on a grammar-based phonotactic knowl-
edge and enhance the correspondence among
types of strings (e.g., segmental features and onset
and coda constituency). In doing so, they estab-
lish connections between each non-word and the

#ing- -ing#

Figure 1: Phonotactic activation states for the se-
quence #ing- (initial word position) and -ing# (final
word position)

neighborhood of all attested and unattested (but
phonotactically legal, i.e., potentially attested)
strings of their language. This must be a com-
putationally hard task to accomplish even when
no time restrictions are imposed, as in traditional
wordlikeness experiments (since (Scholes, 1966)
onward). In this experiment, we want to verify
whether such task can be modeled in PHACTS
and whether the vector representation of words
outputted by PHACTS may represent a solid basis
for this type of phonotactic evaluation. To evalu-
ate PHACTS’s ability to reproduce the typicality
patterns produced by the speakers in judging the
‘Englishness’ of isolated strings, we had to derive
a similarity value among each string and some
counterpart in the English lexicon, as explained
with more details below. We used 150 non-words,
which were randomly selected from the list of
272 non-words of Bailey and Hahn (2001, B &
H henceforth).

In that study, pronounceable non-words were
created, either 4- or 5-phoneme long, differing
from their nearest real word neighbor by either
one or two phonemes (in terms of substitution,
addition or subtraction). In the former case they
were called near misses, in the latter case they
were called isolates. 22 isolates and 250 near
misses around the isolates were used in the B
& H’s study; 24 English speakers were asked
to judge the ‘Englishness’ of the non-words that
were individually presented in their orthographic
and auditory form. The 150 non-words used in
the present experiment were selected from among
the near misses only. PHACTS was asked to de-
rive the cosine value between the vector represen-
tations of each non- word and the corresponding
real English words composing its neighbor fam-
ily (according to the lists provided in B & H).
The total number of string pairs was 1650 (the
average number of neighbors for each non-word
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being 11). Then, an average cosine value was
calculated for each of the 150 non-words. The
average cosine value was assumed to reflect the
phonotactic acceptability of each non-word with
respect to their real word neighbors and therefore,
to approximate the speakers’ typicality judgment
of isolated non-words. An edit distance calcula-
tion (normalized by the length of the two strings)
was performed for the same 1650 pairs of non-
words. Since the neighbors were all selected by
adding, subtracting or modifying one phoneme
from their reference non-words, the edit distance
values were expected not to vary to a large ex-
tent. In the edit distance algorithm, values range
from 0 to 1 according to the degree of the sim-
ilarity between the two strings As expected, the
distribution of the edit distance values was not
uniform and the 1650 string pairs elicited a very
small range of edit distance values. In total, 96%
of cases elicited only four different edit distance
values (namely, 0.83, 0.87, 0.93 and 0.97); the re-
maining 4% elicited three different values which
were all higher than 0.7.

The cosine values outputted by PHACTS for
the same string pairs were evaluated with respect
to the calculated edit distances. As in the case
of the edit distance algorithm, cosine values close
to 1 indicate high similarity while values close
to 0 indicate low similarity. As in the case of
the edit distances, the cosine values were asym-
metrically distributed, highly skewed to the right
(for high similarity values). The global range of
the distribution of values was similar for the two
algorithms (spanning from 0.7 to 0.99). How-
ever, compared to the sharpness of the edit dis-
tance results (see Figure 2), PHACTS’s output
included subtler variations across comparisons,
with fine distinctions distributed over a continu-
ous range of values. The edit distance and the
cosine values turned out to be correlated with
r = 0.465. Although the nature of the differ-
ence between PHACTS’s output and the edit dis-
tance algorithm should be better evaluated with
respect to a more varied data set, also including
pairs of very dissimilar strings, we could prelimi-
narily conclude that the cosine value calculated by
PHACTS for pairs of activation-based string rep-
resentations did not correspond to an edit distance
calculation.

We further verified whether PHACTS cosine
values could approximate the perceived phonotac-
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Figure 2: Correlation scatterplot and distribution his-
tograms of the edit distance and PHACTS values for
the B & H’s materials

tic distance between two strings, as it is calculated
by the speaker when (s)he is asked to judge the
phonotactic acceptability of an isolated non-word.
To test this hypothesis, the average cosine value
of each non-word was correlated with the corre-
sponding acceptability rating produced by the En-
glish subjects in the B & H’s work. The Spear-
man’s rank correlation between speakers’ ratings
and the (exp-transformed) cosine values was ρ =
.216, p < .01. Although statistically significant,
the correlation coefficient was rather low and re-
vealed that the observed and simulated behaviors
overlapped only to a limited extent. In particu-
lar, PHACTS did not reach a span of phonotactic
acceptability as large as the speakers appeared to
produce (with ratings comprised between 2.1 and
6.5).

In conclusion, PHACTS-based word similar-
ity calculation appeared not to produce a reliable
ranking of strings according to their phonotactic
wellformedness. On the other hand, it did pro-
duce a fine-grained distributed representation of
word in which both phonological similarity and
token frequency effects for full forms seemed to
define phonotactic activations of highly attested
phonological sequences. This kind of representa-
tion differed from raw calculations of the number
of operations required to transform a string into
another.
Experimental protocols for modeling word simi-
larity in PHACTS are currently under investiga-
tion.
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