
EACL 2012

ATANLP 2012

Workshop on
Applications of Tree Automata Techniques in

Natural Language Processing

Proceedings of the Workshop

April 24 2012
Avignon France

c© 2012 The Association for Computational Linguistics

ISBN 978-1-937284-19-0

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii

Preface

We are very pleased to present the proceedings of the EACL 2012 Workshop on Applications of Tree
Automata Techniques in Natural Language Processing (ATANLP 2012), held on April 24 in Avignon,
France. The first ATANLP workshop was held two years ago in Uppsala, Sweden, in connection with the
48th Annual Meeting of the Association for Computational Linguistics. This year, ATANLP is conducted
as a workshop of the 13th Conference of the European Chapter of the Association for Computational
Linguistics.

The theory of tree automata has always had a close connection with natural language processing. In
the 1960s, computational linguistics was the major driving force for the development of a theory of
tree automata. Nevertheless, the number of successful applications of this theory to natural language
processing remained small during the 20th century. During the last decade, the situation has started
to change, and the change accelerates. Applications of tree automata in natural language processing
can be found in work on topics as diverse as grammar formalisms, computational semantics, language
generation, and machine translation. Researchers in natural language processing have recognized the
usefulness of tree automata theory for solving the problems they are interested in, and theorists are
inspired by the resulting theoretical questions.

The goals of this workshop are to provide a dedicated venue for the presentation of work that relates the
tree automata techniques to natural language processing, and to create a forum where researchers from
the two areas can meet and exchange ideas. Specifically, the workshop aims at raising the awareness
for theoretical results useful for applications in natural language processing, and at identifying open
theoretical problems raised by such applications.

We are very happy that Andreas Maletti (University of Stuttgart, Germany), an expert in the area of
weighted tree automata and their application to natural language processing problems, agreed to present
the invited lecture of the workshop. In addition the the invited talk and the presentations of four regular
papers, the workshop features two tutorials given by Alexander Koller and Heiko Vogler. The workshop
is concluded by an open problem session that, as we hope and believe, will provide an inspiring outlook
on possible venues for future research.

We thank the members of the program committee for their support, and in particular for being careful
reviewers of the papers submitted. Furthermore, we would like to thank the program committee chairs,
Mirella Lapata and Lluı́s Màrquez, as well as the workshop chairs, Kristiina Jokinen and Alessandro
Moschitti, for their friendly and professional assistance.

We hope that all participants of the workshop experience an inspiring event characterized by curiosity
and an open-minded atmosphere, and that all readers of these proceedings will gain new insights that
make a difference.

Frank Drewes
Marco Kuhlmann
March 2012

iii

Organizers:

Frank Drewes, Umeå University (Sweden)
Marco Kuhlmann, Uppsala University (Sweden)

Program Committee:

Parosh Aziz Abdulla, Uppsala University (Sweden)
Leonor Becerra-Bonache, Université Jean Monnet (France)
Johanna Björklund, Umeaa University (Sweden)
David Chiang, ISI/University of Southern California (USA)
Loek Cleophas, Eindhoven University of Technology (The Netherlands)
François Denis, LIF Marseille (France)
Laura Kallmeyer, University of Düsseldorf (Germany)
Kevin Knight, ISI/University of Southern California (USA)
Alexander Koller, University of Potsdam (Germany)
Sebastian Maneth, NICTA and University of New South Wales (Australia)
Brink van der Merwe, Stellenbosch University (South Africa)
Mark-Jan Nederhof, University of St Andrews (UK)
Joachim Niehren, INRIA Lille (France)
Kai Salomaa, Queen’s University (Canada)
Marc Tommasi, INRIA Lille (France)
Heiko Vogler, Technische Universität Dresden (Germany)

Invited Speaker:

Andreas Maletti, University of Stuttgart (Germany)

Presenters of Tutorials:

Alexander Koller, University of Potsdam (Germany)
Heiko Vogler, TU Dresden (Germany)

v

Table of Contents

Preservation of Recognizability for Weighted Linear Extended Top-Down Tree Transducers
Nina Seemann, Daniel Quernheim, Fabienne Braune and Andreas Maletti . 1

Deciding the Twins Property for Weighted Tree Automata over Extremal Semifields
Matthias Büchse and Anja Fischer . 11

TTT: A Tree Transduction Language for Syntactic and Semantic Processing
Adam Purtee and Lenhart Schubert . 21

Second Position Clitics and Monadic Second-Order Transduction
Neil Ashton . 31

vii

Conference Program

Tuesday, April 24, 2012

8:45-9:00 Opening

9:00–10:00 Invited Talk: Multi Bottom-up Tree Transducers by Andreas Maletti

10:00–10:30 Coffee Break

Paper Presentations

10:30–11:00 Preservation of Recognizability for Weighted Linear Extended Top-Down Tree
Transducers
Nina Seemann, Daniel Quernheim, Fabienne Braune and Andreas Maletti

11:00–11:30 Deciding the Twins Property for Weighted Tree Automata over Extremal Semifields
Matthias Büchse and Anja Fischer

11:30–12:00 TTT: A Tree Transduction Language for Syntactic and Semantic Processing
Adam Purtee and Lenhart Schubert

12:00–12:30 Second Position Clitics and Monadic Second-Order Transduction
Neil Ashton

Lunch

14:30–15:30 Tutorial: Weighted Recognizable Tree Languages – A Survey by Heiko Vogler

15:30–16:00 Coffee Break

16:00–17:00 Tutorial: Interpreted Regular Tree Grammars by Alexander Koller

17:00–17:30 Open Problems

17:30 Closing

ix

Proc. EACL 2012 Workshop on Applications of Tree Automata Techniques in Natural Language Processing, pages 1–10,
Avignon, France, April 24 2012. c©2012 Association for Computational Linguistics

Preservation of Recognizability for
Weighted Linear Extended Top-Down Tree Transducers∗

Nina Seemann and Daniel Quernheim and Fabienne Braune and Andreas Maletti
University of Stuttgart, Institute for Natural Language Processing

{seemanna,daniel,braunefe,maletti}@ims.uni-stuttgart.de

Abstract

An open question in [FÜLÖP, MALETTI,
VOGLER: Weighted extended tree trans-
ducers. Fundamenta Informaticae 111(2),
2011] asks whether weighted linear ex-
tended tree transducers preserve recogniz-
ability in countably complete commuta-
tive semirings. In this contribution, the
question is answered positively, which is
achieved with a construction that utilizes
inside weights. Due to the completeness
of the semiring, the inside weights always
exist, but the construction is only effective
if they can be effectively determined. It is
demonstrated how to achieve this in a num-
ber of important cases.

1 Introduction

Syntax-based statistical machine translation
(Knight, 2007) created renewed interest in tree
automata and tree transducer theory (Fülöp
and Vogler, 2009). In particular, it sparked
research on extended top-down tree transduc-
ers (Graehl et al., 2009), which are top-down
tree transducers (Rounds, 1970; Thatcher, 1970)
in which the left-hand sides can contain several
(or no) input symbols. A recent contribution
by Fülöp et al. (2011) investigates the theoretical
properties of weighted extended tree transduc-
ers over countably complete and commutative
semirings (Hebisch and Weinert, 1998; Golan,
1999). Such semirings permit sums of countably
many summands, which still obey the usual
associativity, commutativity, and distributivity
laws. We will use the same class of semirings.

∗ All authors were financially supported by the EMMY

NOETHER project MA / 4959 / 1-1 of the German Research
Foundation (DFG).

Input→ Parser → TM → LM → Output

Figure 1: Syntax-based machine translation pipeline.

Extended top-down tree transducers are used as
translation models (TM) in syntax-based machine
translation. In the standard pipeline (see Figure 1;
LM is short for language model) the translation
model is applied to the parses of the input sen-
tence, which can be represented as a recogniz-
able weighted forest (Fülöp and Vogler, 2009).
In practice, only the best or the n-best parses are
used, but in principle, we can use the recogniz-
able weighted forest of all parses. In either case,
the translation model transforms the input trees
into a weighted forest of translated output trees.
A class of transducers preserves recognizability
if for every transducer of the class and each rec-
ognizable weighted forest, this weighted forest
of translated output trees is again recognizable.
Fülöp et al. (2011) investigates which extended
top-down tree transducers preserve recognizabil-
ity under forward (i.e., the setting previously de-
scribed) and backward application (i.e., the set-
ting, in which we start with the output trees and
apply the inverse of the translation model), but the
question remained open for forward application
of weighted linear extended top-down tree trans-
ducers [see Table 1 for an overview of the exist-
ing results for forward application due to Engel-
friet (1975) in the unweighted case and Fülöp et
al. (2010) and Fülöp et al. (2011) for the weighted
case]. In conclusion, Fülöp et al. (2011) ask: “Are
there a commutative semiring S that is count-
ably complete wrt.

∑
, a linear wxttM [weighted

extended top-down tree transducer with regular
look-ahead; see Section 4], and a recognizable

1

model preserves regularity

unweighted

ln-XTOP 3

l-XTOP 3

l-XTOPR 3

XTOP 7

weighted

ln-XTOP 3

l-XTOP 3

l-XTOPR 3

XTOP 7

Table 1: Overview of the known results due to Engel-
friet (1975) and Fülöp et al. (2011) and our results in
boxes.

weighted tree language ϕ such that M(ϕ) [for-
ward application] is not recognizable? Or even
harder, are there S and M with the same prop-
erties such that M(1̃) [1̃ is the weighted forest
in which each tree has weight 1] is not recogniz-
able?”

In this contribution, we thus investigate preser-
vation of recognizability (under forward applica-
tion) for linear extended top-down tree transduc-
ers with regular look-ahead (Engelfriet, 1977),
which are equivalent to linear weighted extended
tree transducers by Fülöp et al. (2011). We show
that they always preserve recognizability, thus
confirming the implicit hypothesis of Fülöp et al.
(2011). The essential tool for our construction is
the inside weight (Lari and Young, 1990; Graehl
et al., 2008) of the states of the weighted tree
grammar (Alexandrakis and Bozapalidis, 1987)
representing the parses. The inside weight of a
state q is the sum of all weights of trees accepted
in this state. In our main construction (see Sec-
tion 5) we first compose the input weighted tree
grammar with the transducer (input restriction).
This is particularly simple since we just abuse
the look-ahead of the initial rules. In a second
step, we normalize the obtained transducer, which
yields the standard product construction typically
used for input restriction. Finally, we project to
the output by basically eliminating the left-hand
sides. In this step, the inside weights of states
belonging to deleted subtrees are multiplied to
the production weight. Due to the completeness
of the semiring, the inside weights always ex-
ist, but the infinite sums have to be computed ef-
fectively for the final step of the construction to

be effective. This problem is addressed in Sec-
tion 6, where we show several methods to effec-
tively compute or approximate the inside weights
for all states of a weighted tree grammar.

2 Notation

Our weights will be taken from a commuta-
tive semiring (A,+, ·, 0, 1), which is an algebraic
structure of two commutative monoids (A,+, 0)
and (A, ·, 1) such that · distributes over + and
0 · a = 0 for all a ∈ A. An infinitary sum opera-
tion

∑
is a family (

∑
I)I where I is a countable

index set and
∑

I : AI → A. Given f : I → A,
we write

∑
i∈I f(i) instead of

∑
I f . The semi-

ring together with the infinitary sum operation
∑

is countably complete (Eilenberg, 1974; Hebisch
and Weinert, 1998; Golan, 1999; Karner, 2004) if
for all countable sets I and ai ∈ A with i ∈ I
•
∑

i∈I ai = am + an if I = {m,n},
•
∑

i∈I ai =
∑

j∈J
(∑

i∈Ij ai
)

if I =
⋃
j∈J Ij

for countable sets J and Ij with j ∈ J such
that Ij ∩ Ij′ = ∅ for all different j, j′ ∈ J ,
and
• a ·

(∑
i∈I ai

)
=
∑

i∈I(a · ai) for all a ∈ A.
For such a semiring, we let a∗ =

∑
i∈N a

i for
every a ∈ A. In the following, we assume that
(A,+, ·, 0, 1) is a commutative semiring that is
countably complete with respect to

∑
.

Our trees have node labels taken from an al-
phabet Σ and leaves might also be labeled by el-
ements of a set V . Given a set T , we write Σ(T)
for the set

{σ(t1, . . . , tk) | k ∈ N, σ ∈ Σ, t1, . . . , tk ∈ T} .

The set TΣ(V) of Σ-trees with V -leaves is defined
as the smallest set T such that V ∪ Σ(T) ⊆ T .
We write TΣ for TΣ(∅). For each tree t ∈ TΣ(V)
we identify nodes by positions. The root of t has
position ε and the position iw with i ∈ N and
w ∈ N∗ addresses the position w in the i-th di-
rect subtree at the root. The set of all positions
in t is pos(t). We write t(w) for the label (taken
from Σ ∪ V) of t at position w ∈ pos(t). Sim-
ilarly, we use t|w to address the subtree of t that
is rooted in position w, and t[u]w to represent the
tree that is obtained from replacing the subtree t|w
at w by u ∈ TΣ(V). For a given set L ⊆ Σ ∪ V
of labels, we let

posL(t) = {w ∈ pos(t) | t(w) ∈ L}

2

be the set of all positions whose label belongs
to L. We also write posl(t) instead of pos{l}(t).

We often use the set X = {x1, x2, . . . } of vari-
ables and its finite subsets Xk = {x1, . . . , xk}
for every k ∈ N to label leaves. Let V
be a set potentially containing some variables
of X . The tree t ∈ TΣ(V) is linear if
|posx(t)| ≤ 1 for every x ∈ X . Moreover,
var(t) = {x ∈ X | posx(t) 6= ∅} collects all
variables that occur in t. Given a finite set Q and
T ⊆ TΣ(V), we let

Q[T] = {q(t) | q ∈ Q, t ∈ T} .

We will treat elements ofQ[T] (in which elements
ofQ are always used as unary symbols) as special
trees of TΣ∪Q(V). A substitution θ is a mapping
θ : X → TΣ(V). When applied to t ∈ TΣ(V),
it returns the tree tθ, which is obtained from t
by replacing all occurrences of x ∈ X (in par-
allel) by θ(x). This can be defined recursively
by xθ = θ(x) for all x ∈ X , vθ = v for all
v ∈ V \X , and σ(t1, . . . , tk)θ = σ(t1θ, . . . , tkθ)
for all σ ∈ Σ and t1, . . . , tk ∈ TΣ(V).

3 Weighted Tree Grammars

In this section, we will recall weighted tree
grammars (Alexandrakis and Bozapalidis, 1987)
[see (Fülöp and Vogler, 2009) for a modern treat-
ment and a complete historical account]. In gen-
eral, weighted tree grammars (WTGs) offer an ef-
ficient representation of weighted forests, which
are sets of trees such that each individual tree
is equipped with a weight. The representation
is even more efficient than packed forests (Mi et
al., 2008) and moreover can represent an infinite
number of weighted trees. To avoid confusion
between the nonterminals of a parser, which pro-
duces the forests considered here, and our WTGs,
we will refer to the nonterminals of our WTG as
states.

Definition 1. A weighted tree grammar (WTG) is
a system (Q,Σ, q0, P) where
• Q is a finite set of states (nonterminals),
• Σ is the alphabet of symbols,
• q0 ∈ Q is the starting state, and
• P is a finite set of productions q a→ t, where
q ∈ Q, a ∈ A, and t ∈ TΣ(Q).

Example 2. We illustrate our notation on the
WTG Gex = (Q,Σ, qs, P) where
• Q = {qs, qnp, qprp, qn, qadj},

• Σ contains “S”, “NP”, “VP”, “PP”, “DT”,
“NN”, “N”, “VBD”, “PRP”, “ADJ”, “man”,
“hill”, “telescope”, “laughs”, “the”, “on”,
“with”, “old”, and “young”, and
• P contains the productions

qs
1.0→ S(qnp,VP(VBD(laughs))) (ρ1)

qnp
0.4→ NP(qnp,PP(qprp, qnp))

qnp
0.6→ NP(DT(the), qn) (ρ2)

qprp
0.5→ PRP(on)

qprp
0.5→ PRP(with)

qn
0.3→ N(qadj , qn)

qn
0.3→ NN(man) (ρ3)

qn
0.2→ NN(hill)

qn
0.2→ NN(telescope)

qadj
0.5→ ADJ(old)

qadj
0.5→ ADJ(young)

It produces a weighted forest representing sen-
tences about young and old men with telescopes
on hills.

In the following, let G = (Q,Σ, q0, P) be a
WTG. For every production ρ = q

a→ t in P , we
let wtG(ρ) = a. The semantics of G is defined
with the help of derivations. Let ξ ∈ TΣ(Q) be
a sentential form, and let w ∈ posQ(ξ) be such
that w is the lexicographically smallest Q-labeled
position in ξ. Then ξ ⇒ρ

G ξ[t]w if ξ(w) = q. For
a sequence ρ1, . . . , ρn ∈ P of productions, we
let wtG(ρ1 · · · ρn) =

∏n
i=1 wtG(ρi). For every

q ∈ Q and t ∈ TΣ(Q), we let

wtG(q, t) =
∑

ρ1,...,ρn∈P
q⇒ρ1

G ···⇒
ρn
G t

wtG(ρ1 · · · ρn) .

The WTG G computes the weighted forest
LG : TΣ → A such that LG(t) = wtG(q0, t) for
every t ∈ TΣ. Two WTGs are equivalent if they
compute the same weighted forest. Since produc-
tions of weight 0 are useless, we often omit them.

Example 3. For the WTG Gex of Example 2 we
display a derivation with weight 0.18 for the sen-
tence “the man laughs” in Figure 2.

The notion of inside weights (Lari and Young,
1990) is well-established, and Maletti and Satta

3

qs ⇒ρ1

G

S

qnp VP

VBD

laughs

⇒ρ2

G

S

NP

DT

the

qn

VP

VBD

laughs

⇒ρ3

G

S

NP

DT

the

NN

man

VP

VBD

laughs

Figure 2: Derivation with weight 1.0 · 0.6 · 0.3.

(2009) consider them for WTGs. Let us recall the
definition.

Definition 4. The inside weight of state q ∈ Q is

inG(q) =
∑
t∈TΣ

wtG(q, t) .

In Section 6 we demonstrate how to compute
inside weights. Finally, let us introduce WTGs in
normal form. The WTG G is in normal form if
t ∈ Σ(Q) for all its productions q a→ t in P . The
following theorem was proven by Alexandrakis
and Bozapalidis (1987) as Proposition 1.2.

Theorem 5. For every WTG there exists an
equivalent WTG in normal form.

Example 6. The WTG Gex of Example 2 is not
normalized. To illustrate the normalization step,
we show the normalization of the production ρ2,
which is replaced by the following three produc-
tions:

qnp
0.6→ NP(qdt, qn) qdt

1.0→ DT(qt)

qt
1.0→ the .

4 Weighted linear extended tree
transducers

The model discussed in this contribution is an ex-
tension of the classical top-down tree transducer,
which was introduced by Rounds (1970) and
Thatcher (1970). Here we consider a weighted
and extended variant that additionally has regular
look-ahead. The weighted top-down tree trans-
ducer is discussed in (Fülöp and Vogler, 2009),
and extended top-down tree transducers were
studied in (Arnold and Dauchet, 1982; Knight and

Graehl, 2005; Knight, 2007; Graehl et al., 2008;
Graehl et al., 2009). The combination (weighted
extended top-down tree transducer) was recently
investigated by Fülöp et al. (2011), who also con-
sidered (weighted) regular look-ahead, which was
first introduced by Engelfriet (1977) in the un-
weighted setting.

Definition 7. A linear extended top-down
tree transducer with full regular look-ahead
(l-XTOPR

f) is a system (S,Σ,∆, s0, G,R) where
• S is a finite set of states,
• Σ and ∆ are alphabets of input and output

symbols, respectively,
• s0 ∈ S is an initial state,
• G = (Q,Σ, q0, P) is a WTG, and
• R is a finite set of weighted rules of the form
`
a→µ r where
– a ∈ A is the rule weight,
– ` ∈ S[TΣ(X)] is the linear left-hand

side,
– µ : var(`)→ Q is the look-ahead, and
– r ∈ T∆(S[var(`)]) is the linear right-

hand side.

In the following, let M = (S,Σ,∆, s0, G,R)
be an l-XTOPR

f . We assume that the WTG G
contains a state > such that wtG(>, t) = 1 for
every t ∈ TΣ. In essence, this state represents
the trivial look-ahead. If µ(x) = > for every
rule ` a→µ r ∈ R and x ∈ var(r) (respectively,
x ∈ var(`)), then M is an l-XTOPR (respectively,
l-XTOP). l-XTOPR and l-XTOP coincide exactly
with the models of Fülöp et al. (2011), and in the
latter model we drop the look-ahead component µ
and the WTG G completely.

Example 8. The rules of our running example
l-XTOP Mex (over the input and output alpha-
bet Σ, which is also used by the WTG Gex of Ex-
ample 2) are displayed in Figure 3.

Next, we present the semantics. Without loss
of generality, we assume that we can distin-
guish states from input and output symbols (i.e.,
S ∩ (Σ ∪ ∆) = ∅). A sentential form of M is a
tree of SF(M) = T∆(Q[TΣ]). Let ρ = `

a→µ r be
a rule of R. Moreover, let ξ, ζ ∈ SF(M) be sen-
tential forms and w ∈ N∗ be the lexicographically
smallest position in posQ(ξ). We write ξ b⇒M,ρ ζ
if there exists a substitution θ : X → TΣ such that
• ξ = ξ[`θ]w,
• ζ = ξ[rθ]w, and
• b = a ·

∏
x∈var(`) wtG(µ(x), θ(x)).

4

s0

S

NP

x1 x2

VP

x3

→ 0.6

S

NP

s1

x1

s2

x2

VP

s3

x3

∣∣∣ 0.4

S

s1

x1

VP

s3

x3

s2

N

ADJ

x1

x2

→ 0.7

N

ADJ

s5

x1

s2

x2

∣∣∣ 0.3
s2

x2

s1

NP

x1 x2

→ 0.5

NP

s1

x1

s2

x2

∣∣∣ 0.5
s1

x1

s1

DT

the

→ 1.0
DT

the

s3

VBD

laughs

→ 1.0
VBD

laughs

s2

PP

x1 x2

→ 1.0

PP

s4

x1

s1

x2

s2

NN

man /
hill /

telescope

→ 1.0

NN

man /
hill /

telescope

s4

PRP

on /
with

→ 1.0
PRP

on /
with

Figure 3: Example rules of an l-XTOP. We collapsed rules with the same left-hand side as well as several lexical
items to save space.

s0

S

NP

NP

DT

the

NN

man

PP

PRP

on

NP

DT

the

NN

hill

VP

VBD

laughs

0.4⇒M

S

s1

NP

DT

the

NN

man

VP

s3

VBD

laughs

0.5⇒M

S

NP

s1

DT

the

s2

NN

man

VP

s3

VBD

laughs

⇒∗M

S

NP

DT

the

NN

man

VP

VBD

laughs

Figure 4: Derivation with weight 0.4 · 0.5 · 1.0 (rules omitted).

The tree transformation τM computed byM is de-
fined by

τM (t, u) =
∑

ρ1,...,ρn∈R
s0(t)

a1⇒M,ρ1
···an⇒M,ρnu

a1 · . . . · an

for every t ∈ TΣ and u ∈ T∆.

Example 9. A sequence of derivation steps of the
l-XTOP Mex is illustrated in Figure 4. The trans-
formation it computes is capable of deleting the
PP child of every NP-node with probability 0.4 as
well as deleting the ADJ child of every N-node
with probability 0.3.

A detailed exposition to unweighted l-XTOPR

is presented by Arnold and Dauchet (1982) and
Graehl et al. (2009).

5 The construction

In this section, we present the main construction
of this contribution, in which we will construct a

WTG for the forward application of another WTG
via an l-XTOPR. Let us first introduce the main
notions. Let L : TΣ → A be a weighted forest
and τ : TΣ×T∆ → A be a weighted tree transfor-
mation. Then the forward application of L via τ
yields the weighted forest τ(L) : T∆ → A such
that (τ(L))(u) =

∑
t∈TΣ

L(t) · τ(t, u) for ev-
ery u ∈ T∆. In other words, to compute the
weight of u in τ(L), we consider all input trees t
and multiply their weight in L with their trans-
lation weight to u. The sum of all those prod-
ucts yields the weight for u in τ(L). In the par-
ticular setting considered in this contribution, the
weighted forest L is computed by a WTG and the
weighted tree transformation τ is computed by an
l-XTOPR. The question is whether the resulting
weighted forest τ(L) can be computed by a WTG.

Our approach to answer this question con-
sists of three steps: (i) composition, (ii) nor-
malization, and (iii) range projection, which
we address in separate sections. Our input is

5

qs ⇒
S

qnp qvp
⇒

S

NP

qnp qpp

qvp ⇒2

S

NP

qnp qpp

VP

VBD

qv

qs ⇒
S

qnp qvp
⇒

S

NP

qdt qn

qvp ⇒2

S

NP

qdt qn

VP

VBD

qv

Figure 5: Two derivations (without production and
grammar decoration) with weight 0.4 [top] and
0.6 [bottom] of the normalized version of the
WTG Gex (see Example 10).

the WTG G′ = (Q′,Σ, q′0, P
′), which com-

putes the weighted forest L = LG′ , and
the l-XTOPR M = (S,Σ,∆, s0, G,R) with
G = (Q,Σ, q0, P), which computes the weighted
tree transformation τ = τM . Without loss of gen-
erality, we suppose thatG andG′ contain a special
state > such that wtG(>, t) = wtG′(>, t) = 1
for all t ∈ TΣ. Moreover, we assume that the
WTG G′ is in normal form. Finally, we assume
that s0 is separated, which means that the initial
state of M does not occur in any right-hand side.
Our example l-XTOP Mex has this property. All
these restrictions can be assumed without loss of
generality. Finally, for every state s ∈ S, we let

Rs = {` a→µ r ∈ R | `(ε) = s} .

5.1 Composition
We combine the WTG G′ and the l-XTOPR M
into a single l-XTOPR

f M
′ that computes

τM ′(t, u) = LG′(t) · τM (t, u) = L(t) · τ(t, u)

for every t ∈ TΣ and u ∈ T∆. To this end, we
construct

M ′ = (S,Σ,∆, s0, G×G′, (R \Rs0) ∪R′)

such that G × G′ is the classical product WTG
[see Proposition 5.1 of (Berstel and Reutenauer,
1982)] and for every rule ` a→µ r in Rs0 and
θ : var(`)→ Q′, the rule

`
a·wtG′ (q

′
0,`θ)−−−−−−−−→µ′ r

is in R′, where µ′(x) = 〈µ(x), θ(x)〉 for every
x ∈ var(`).

Example 10. Let us illustrate the construction on
the WTG Gex of Example 2 and the l-XTOP Mex
of Example 8. According to our assumptions,
Gex should first be normalized (see Theorem 5).
We have two rules in Rs0 and they have the same
left-hand side `. It can be determined easily that
wtG′ex

(qs, `θ) 6= 0 only if
• θ(x1)θ(x2)θ(x3) = qnpqppqv or
• θ(x1)θ(x2)θ(x3) = qdtqnqv.

Figure 5 shows the two corresponding derivations
and their weights. Thus, the s0-rules are replaced
by the 4 rules displayed in Figure 6.

Theorem 11. For every t ∈ TΣ and u ∈ T∆, we
have τM ′(t, u) = L(t) · τ(t, u).

Proof. We prove an intermediate property for
each derivation of M . Let

s0(t) b1⇒M,ρ1 · · ·
bn⇒M,ρn u

be a derivation of M . Let ρ1 = `
a1→µ r be the

first rule, which trivially must be in Rs0 . Then for
every θ : var(`)→ Q′, there exists a derivation

s0(t) c1⇒M ′,ρ′1
ξ2

b2⇒M ′,ρ2 · · ·
bn⇒M ′,ρn u

in M ′ such that

c1 = b1·wtG′(q′0, `θ)·
∏

x∈var(`)

wtG′(θ(x), θ′(x)) ,

where θ′ : var(`) → TΣ is such that t = `θ′.
Since we sum over all such derivations and∑
θ : var(`)→Q′

wtG′(q′0, `θ) ·
∏

x∈var(`)

wtG′(θ(x), θ′(x))

= wtG′(q′0, t) = LG′(t)

by a straightforward extension of Lemma 4.1.8
of (Borchardt, 2005), we obtain that the deriva-
tions in M ′ sum to LG′(t) · b1 · . . . · bn as desired.
The main property follows trivially from the in-
termediate result.

5.2 Normalization
Currently, the weights of the input WTG are
only on the initial rules and in its look-ahead.
Next, we use essentially the same method as
in the previous section to remove the look-
ahead from all variables that are not deleted.
Let M ′ = (S,Σ,∆, s0, G × G′, R) be the
l-XTOPR

f constructed in the previous section and

6

s0

S

NP

x1 x2

VP

x3

→µ

0.6 · c

S

NP

s1

x1

s2

x2

VP

s3

x3

∣∣∣
0.4 · c

S

s1

x1

VP

s3

x3

Figure 6: 4 new l-XTOPR
f rules, where µ and c are

either (i) µ(x1)µ(x2)µ(x3) = qnpqppqv and c = 0.4
or (ii) µ(x1)µ(x2)µ(x3) = qdtqnqv and c = 0.6 (see
Example 10).

s0

S

NP

x1 x2

VP

x3

→µ

0.4 · 0.4

S

〈s1, qnp〉

x1

VP

〈s3, qv〉

x3

∣∣∣
0.4 · 0.6

S

〈s1, qdt〉

x1

VP

〈s3, qv〉

x3

Figure 7: New l-XTOPR rules, where µ(x2) = qpp

[left] and µ(x2) = qn [right] (see Figure 6).

ρ = `
a→µ r ∈ R be a rule with µ(x) = 〈>, q′〉

for some q′ ∈ Q′ \ {>} and x ∈ var(r). Note
that µ(x) = 〈>, q′〉 for some q′ ∈ Q′ for all
x ∈ var(r) since M is an l-XTOPR. Then we
construct the l-XTOPR

f M
′′

(S ∪ S ×Q′,Σ,∆, s0, G×G′, (R \ {ρ}) ∪R′)

such that R′ contains the rule ` a→µ′ r
′, where

µ′(x′) =

{
〈>,>〉 if x = x′

µ(x′) otherwise

for all x′ ∈ var(`) and r′ is obtained from r by re-
placing the subtree s(x) with s ∈ S by 〈s, q′〉(x).

Additionally, for every rule `′′ a
′′
→µ′′ r

′′ in Rs and
θ : var(`′′)→ Q′, the rule

`′′
a′′·wtG′ (q

′,`′′θ)
−−−−−−−−−→µ′′′ r

′′

is in R′, where µ′′′(x) = 〈µ′′(x), θ(x)〉 for ev-
ery x ∈ var(`). This procedure is iterated until
we obtain an l-XTOPR M ′′. Clearly, the iteration
must terminate since we do not change the rule
shape, which yields that the size of the potential
rule set is bounded.

Theorem 12. The l-XTOPR M ′′ and the
l-XTOPR

f M
′ are equivalent.

〈s2, qn〉

N

ADJ

x1

x2

→µ

0.32 · 0.5

〈s2, qn〉

x2

〈s1, qnp〉

NP

x1 x2

→µ′|µ′′

0.5 · 0.4

〈s1, qnp〉

x1

∣∣∣
0.5 · 0.6

〈s1, qdt〉

x1

Figure 8: New l-XTOPR rules, where µ(x1) is either
qold or qyoung , µ′(x2) = qpp, and µ′′(x2) = qn.

Proof. It can be proved that the l-XTOPR
f con-

structed after each iteration is equivalent to its
input l-XTOPR

f in the same fashion as in Theo-
rem 11 with the only difference that the rule re-
placement now occurs anywhere in the derivation
(not necessarily at the beginning) and potentially
several times. Consequently, the finally obtained
l-XTOPR M ′′ is equivalent to M ′.

Example 13. Let us reconsider the l-XTOPR
f con-

structed in the previous section and apply the nor-
malization step. The interesting rules (i.e., those
rules l a→µ r where var(r) 6= var(l)) are dis-
played in Figures 7 and 8.

5.3 Range projection
We now have an l-XTOPR M ′′ with rules R′′

computing τM ′′(t, u) = L(t) · τ(t, u). In the fi-
nal step, we simply disregard the input and project
to the output. Formally, we want to construct a
WTG G′′ such that

LG′′(u) =
∑
t∈TΣ

τM ′′(t, u) =
∑
t∈TΣ

L(t) · τ(t, u)

for every u ∈ T∆. Let us suppose that G is the
WTG inside M ′′. Recall that the inside weight of
state q ∈ Q is

inG(q) =
∑
t∈TΣ

wtG(q, t) .

We construct the WTG

G′′ = (S ∪ S ×Q′,∆, s0, P
′′)

such that `(ε) c→ r′ is in P ′′ for every rule
`
a→µ r ∈ R′′, where

c = a ·
∏

x∈var(`)\var(r)

inG(µ(x))

and r′ is obtained from r by removing the vari-
ables of X . If the same production is constructed
from several rules, then we add the weights. Note
that the WTG G′′ can be effectively computed if
inG(q) is computable for every state q.

7

qs qprp

qnp qn qadj

Figure 9: Dependency graph of the WTG Gex.

Theorem 14. For every u ∈ T∆, we have

LG′′(u) =
∑
t∈TΣ

L(t) · τ(t, u) = (τ(L))(u) .

Example 15. The WTG productions for the rules
of Figures 7 and 8 are

s0
0.4·0.4→ S(〈s1, qnp〉,VP(〈s3, qv〉))

s0
0.4·0.6→ S(〈s1, qdt〉,VP(〈s3, qv〉))

〈s2, qn〉
0.3·0.3→ 〈s2, qn〉

〈s1, qnp〉
0.5·0.4→ 〈s1, qnp〉

〈s1, qnp〉
0.5·0.6→ 〈s1, qdt〉 .

Note that all inside weights are 1 in our exam-
ple. The first production uses the inside weight
of qpp, whereas the second production uses the in-
side weight of qn. Note that the third production
can be constructed twice.

6 Computation of inside weights

In this section, we address how to effectively com-
pute the inside weight for every state. If the WTG
G = (Q,Σ, q0, P) permits only finitely many
derivations, then for every q ∈ Q, the inside
weight inG(q) can be computed according to Def-
inition 4 because wtG(q, t) = 0 for almost all
t ∈ TΣ. If P contains (useful) recursive rules,
then this approach does not work anymore. Our
WTG Gex of Example 2 has the following two re-
cursive rules:

qnp
0.4→ NP(qnp,PP(qprp, qnp)) (ρ4)

qn
0.3→ N(qadj , qn) . (ρ5)

The dependency graph of Gex, which is shown in
Figure 9, has cycles, which yields that Gex per-
mits infinitely many derivations. Due to the com-
pleteness of the semiring, even the infinite sum of
Definition 4 is well-defined, but we still have to
compute it. We will present two simple methods
to achieve this: (a) an analytic method and (b) an
approximation in the next sections.

6.1 Analytic computation
In simple cases we can compute the inside weight
using the stars a∗, which we defined in Section 2.
Let us first list some interesting countably com-
plete semirings for NLP applications and their
corresponding stars.

• Probabilities: (R∞≥0,+, ·, 0, 1) where R∞≥0

contains all nonnegative real numbers
and ∞, which is bigger than every real
number. For every a ∈ R∞≥0 we have

a∗ =

{
1

1−a if 0 ≤ a < 1
∞ otherwise

• VITERBI: ([0, 1],max, ·, 0, 1) where [0, 1] is
the (inclusive) interval of real numbers be-
tween 0 and 1. For every 0 ≤ a ≤ 1 we have
a∗ = 1.

• Tropical: (R∞≥0,min,+,∞, 0) where
a∗ = 0 for every a ∈ R∞≥0.

• Tree unification: (2TΣ(X1),∪,t, ∅, {x1})
where 2TΣ(X1) = {L | L ⊆ TΣ(X1)} and
t is unification (where different occurrences
of x1 can be replaced differently) extended
to sets as usual. For every L ⊆ TΣ(Xk) we
have L∗ = {x1} ∪ (L t L).

We can always try to develop a regular expres-
sion (Fülöp and Vogler, 2009) for the weighted
forest recognized by a certain state, in which we
then can drop the actual trees and only compute
with the weights. This is particularly easy if our
WTG has only left- or right-recursive productions
because in this case we obtain classical regular
expressions (for strings). Let us consider produc-
tion ρ5. It is right-recursive. On the string level,
we obtain the following unweighted regular ex-
pression for the string language generated by qn:

L(qadj)∗(man | hill | telescope)

where L(qadj) = {old, young} is the set of strings
generated by qadj . Correspondingly, we can de-
rive the inside weight by replacing the generated
string with the weights used to derive them. For
example, the production ρ5, which generates the
state qadj , has weight 0.3. We obtain the expres-
sion

inG(qn) = (0.3 · inG(qadj))∗ · (0.3 + 0.2 + 0.2) .

8

Example 16. If we calculate in the probability
semiring and inG(qadj) = 1, then

inG(qn) =
1

1− 0.3
· (0.3 + 0.2 + 0.2) = 1 ,

as expected (since our productions induce a prob-
ability distribution on all trees generated from
each state).

Example 17. If we calculate in the tropical semi-
ring, then we obtain

inG(qn) = min(0.3, 0.2, 0.2) = 0.2 .

It should be stressed that this method only
allows us to compute inG(q) in very simple
cases (e.g., WTG containing only left- or right-
recursive productions). The production ρ4 has
a more complicated recursion, so this simple
method cannot be used for our full example WTG.

However, for extremal semirings the inside
weight always coincides with a particular deriva-
tion. Let us also recall this result. The semiring is
extremal if a+ a′ ∈ {a, a′} for all a, a′ ∈ A. The
VITERBI and the tropical semiring are extremal.
Recall that

inG(q) =
∑
t∈TΣ

wtG(q, t)

=
∑
t∈TΣ

∑
ρ1,...,ρn∈P
q⇒ρ1

G ···⇒
ρn
G t

wtG(ρ1 · · · ρn) ,

which yields that inG(q) coincides with the
derivation weight wtG(ρ1 · · · ρn) of some deriva-
tion q ⇒ρ1

G · · · ⇒ρn
G t for some t ∈ TΣ. In

the VITERBI semiring this is the highest scor-
ing derivation and in the tropical semiring it is
the lowest scoring derivation (mind that in the
VITERBI semiring the production weights are
multiplied in a derivation, whereas they are added
in the tropical semiring). There are efficient algo-
rithms (Viterbi, 1967) that compute those deriva-
tions and their weights.

6.2 Numerical Approximation
Next, we show how to obtain a numerical ap-
proximation of the inside weights (up to any
desired precision) in the probability semiring,
which is the most important of all semirings
discussed here. A similar approach was used
by Stolcke (1995) for context-free grammars. To
keep the presentation simple, let us suppose that

G = (Q,Σ, q0, P) is in normal form (see The-
orem 5). The method works just as well in the
general case.

We first observe an important property of the
inside weights. For every state q ∈ Q

inG(q) =
∑

q
a→σ(q1,...,qn)∈P

a · inG(q1) · . . . · inG(qn) ,

which can trivially be understood as a system of
equations (where each inG(q) with q ∈ Q is a
variable). Since there is one such equation for
each variable inG(q) with q ∈ Q, we have a
system of |Q| non-linear polynomial equations in
|Q| variables.

Several methods to solve non-linear systems of
equations are known in the numerical calculus lit-
erature. For example, the NEWTON-RAPHSON

method allows us to iteratively compute the roots
of any differentiable real-valued function, which
can be used to solve our system of equations be-
cause we can compute the JACOBI matrix for our
system of equations easily. Given a good starting
point, the NEWTON-RAPHSON method assures
quadratic convergence to a root. A good start-
ing point can be obtained, for example, by bisec-
tion (Corliss, 1977). Another popular root-finding
approximation is described by Brent (1973).

Example 18. For the WTG of Example 2 we ob-
tain the following system of equations:

inG(qs) = 1.0 · inG(qnp)

inG(qnp) = 0.4 · inG(qnp) · inG(qprp) · inG(qnp)
+ 0.6 · inG(qn)

inG(qn) = 0.3 · inG(qadj) · inG(qn)
+ 0.3 + 0.2 + 0.2

inG(qadj) = 0.5 + 0.5

inG(qprp) = 0.5 + 0.5 .

Together with inG(qn) = 1, which we already
calculated in Example 16, the only interesting
value is

inG(qs) = inG(qnp) = 0.4 · inG(qnp)2 + 0.6 ,

which yields the roots inG(qnp) = 1 and
inG(qnp) = 1.5. The former is the desired solu-
tion. As before, this is the expected solution.

9

References
Athanasios Alexandrakis and Symeon Bozapalidis.

1987. Weighted grammars and Kleene’s theorem.
Inf. Process. Lett., 24(1):1–4.

André Arnold and Max Dauchet. 1982. Morphismes
et bimorphismes d’arbres. Theoret. Comput. Sci.,
20(1):33–93.

Jean Berstel and Christophe Reutenauer. 1982. Rec-
ognizable formal power series on trees. Theoret.
Comput. Sci., 18(2):115–148.

Björn Borchardt. 2005. The Theory of Recognizable
Tree Series. Ph.D. thesis, Technische Universität
Dresden.

Richard P. Brent. 1973. Algorithms for Minimization
without Derivatives. Series in Automatic Computa-
tion. Prentice Hall, Englewood Cliffs, NJ, USA.

George Corliss. 1977. Which root does the bisection
algorithm find? SIAM Review, 19(2):325–327.

Samuel Eilenberg. 1974. Automata, Languages, and
Machines — Volume A, volume 59 of Pure and Ap-
plied Math. Academic Press.

Joost Engelfriet. 1975. Bottom-up and top-down tree
transformations — a comparison. Math. Systems
Theory, 9(3):198–231.

Joost Engelfriet. 1977. Top-down tree transducers
with regular look-ahead. Math. Systems Theory,
10(1):289–303.

Zoltán Fülöp and Heiko Vogler. 2009. Weighted tree
automata and tree transducers. In Manfred Droste,
Werner Kuich, and Heiko Vogler, editors, Hand-
book of Weighted Automata, EATCS Monographs
on Theoret. Comput. Sci., chapter 9, pages 313–
403. Springer.

Zoltán Fülöp, Andreas Maletti, and Heiko Vogler.
2010. Preservation of recognizability for syn-
chronous tree substitution grammars. In Proc. 1st
Workshop Applications of Tree Automata in Natu-
ral Language Processing, pages 1–9. Association
for Computational Linguistics.

Zoltán Fülöp, Andreas Maletti, and Heiko Vogler.
2011. Weighted extended tree transducers. Fun-
dam. Inform., 111(2):163–202.

Jonathan S. Golan. 1999. Semirings and their Appli-
cations. Kluwer Academic, Dordrecht.

Jonathan Graehl, Kevin Knight, and Jonathan May.
2008. Training tree transducers. Comput. Linguist.,
34(3):391–427.

Jonathan Graehl, Mark Hopkins, Kevin Knight, and
Andreas Maletti. 2009. The power of extended
top-down tree transducers. SIAM J. Comput.,
39(2):410–430.

Udo Hebisch and Hanns J. Weinert. 1998. Semirings
— Algebraic Theory and Applications in Computer
Science. World Scientific.

Georg Karner. 2004. Continuous monoids and semi-
rings. Theoret. Comput. Sci., 318(3):355–372.

Kevin Knight and Jonathan Graehl. 2005. An over-
view of probabilistic tree transducers for natural
language processing. In Proc. 6th Int. Conf. Com-
putational Linguistics and Intelligent Text Process-
ing, volume 3406 of LNCS, pages 1–24. Springer.

Kevin Knight. 2007. Capturing practical natural
language transformations. Machine Translation,
21(2):121–133.

Karim Lari and Steve J. Young. 1990. The esti-
mation of stochastic context-free grammars using
the inside-outside algorithm. Computer Speech and
Language, 4(1):35–56.

Andreas Maletti and Giorgio Satta. 2009. Parsing al-
gorithms based on tree automata. In Proc. 11th Int.
Workshop Parsing Technologies, pages 1–12. Asso-
ciation for Computational Linguistics.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-
based translation. In Proc. 46th Ann. Meeting of
the ACL, pages 192–199. Association for Computa-
tional Linguistics.

William C. Rounds. 1970. Mappings and grammars
on trees. Math. Systems Theory, 4(3):257–287.

Andreas Stolcke. 1995. An efficient probabilistic
context-free parsing algorithm that computes prefix
probabilities. Comput. Linguist., 21(2):165–201.

James W. Thatcher. 1970. Generalized2 sequential
machine maps. J. Comput. System Sci., 4(4):339–
367.

Andrew J. Viterbi. 1967. Error bounds for convo-
lutional codes and an asymptotically optimum de-
coding algorithm. IEEE Trans. Inform. Theory,
13(2):260–269.

10

Proc. EACL 2012 Workshop on Applications of Tree Automata Techniques in Natural Language Processing, pages 11–20,
Avignon, France, April 24 2012. c©2012 Association for Computational Linguistics

Deciding the Twins Property for
Weighted Tree Automata over Extremal Semifields

Matthias Büchse and Anja Fischer
Department of Computer Science
Technische Universität Dresden

01062 Dresden, Germany
Matthias.Buechse@tu-dresden.de

Abstract

It has remained an open question whether
the twins property for weighted tree au-
tomata is decidable. This property is crucial
for determinizing such an automaton, and
it has been argued that determinization im-
proves the output of parsers and translation
systems. We show that the twins property
for weighted tree automata over extremal
semifields is decidable.

1 Introduction

In natural-language processing (NLP), language
and translation are often modeled using some
kind of grammar, automaton or transducer, such
as a probabilistic context-free grammar, a syn-
chronous context-free grammar, a weighted tree
automaton, or a tree transducer, among others
(May and Knight, 2006; Petrov et al., 2006; Chi-
ang, 2007; Graehl, Knight and May, 2008; Zhang
et al., 2008; Pauls and Klein, 2009). In statisti-
cal NLP, the structure of the grammar is extracted
heuristically from a large corpus of example sen-
tences or sentence pairs, and the rule weights are
estimated using methods from statistics or ma-
chine learning.

In general, a grammar such as those named
above will be ambiguous, i.e., offering several
ways of deriving the same object (sentence or sen-
tence pair). While the derivation of an object is
crucial to the intrinsics of a system, it is neither
relevant to the user nor observed in the corpus.
Hence, we speak of spurious ambiguity (Li, Eis-
ner and Khudanpur, 2009).

As a consequence, the true importance of an
object can only be assessed by aggregating all

its derivations. Unfortunately, this proves com-
putationally intractable in almost all cases: for
instance, finding the best string of a probabilis-
tic regular grammar is NP hard (Sima’an, 1996;
Casacuberta and de la Higuera, 2000). Finding
the best derivation, on the other hand, is possible
in polynomial time (Eppstein, 1998; Huang and
Chiang, 2005), and thus, most NLP systems ap-
proximate the importance of an object by its best
derivation (Li, Eisner and Khudanpur, 2009).

There is, however, a line of research that deals
with the costly aggregating approach, and it is
closely related to determinization techniques from
automata theory.

For instance, May and Knight (2006) argue
that the output of a parser or syntax-based trans-
lation system can be represented by a weighted
tree automaton (wta), which assigns a weight to
each parse tree. Under some circumstances, the
wta can be determinized, yielding an equivalent,
but unambiguous wta, which offers at most one
derivation for each object. Then the weight of an
object is equal to the weight of its derivation, and
the aforementioned polynomial-time algorithms
deliver exact results.

The caveat of the determinization approach is
that deterministic weighted automata are strictly
less powerful than their general counterparts,
i.e., not every automaton can be determinized.
Büchse, May and Vogler (2010) give a review of
known sufficient conditions under which deter-
minization is possible. One of these conditions
requires that (i) the weights are calculated in an
extremal semiring, (ii) there is a maximal factor-
ization, and (iii) the wta has the twins property.1

1Items (i) and (iii) guarantee that the wta only computes
weight vectors that are scalar multiples of a finite number

11

Regarding (i), we note that in an extremal semi-
ring the weight of a parse tree is equal to the
weight of its best derivation. It follows that, while
the determinized wta will have at most one deriva-
tion per parse tree, its weight will be the weight of
the best derivation of the original wta. The benefit
of determinization reduces to removing superflu-
ous derivations from the list of best derivations.

Regarding (ii), the factorization is used in
the determinization construction to distribute the
weight computation in the determinized automa-
ton between its transition weights and its state be-
havior. A maximal factorization exists for every
zero-sum free semifield.

Regarding (iii), the question whether the twins
property is decidable has remained open for a long
time, until Kirsten (2012)2 gave an affirmative an-
swer for a particular case: weighted string au-
tomata over the tropical semiring. He also showed
that the decision problem is PSPACE-complete.

In this paper, we close one remaining gap by
adapting and generalizing Kirsten’s proof: we
show that the twins property is decidable for wta
over extremal semifields (Theorem 3.1). We pro-
ceed by recalling the concepts related to deter-
minizing wta, such as ranked trees, semirings,
factorizations, wta themselves, and the twins
property (Sec. 2). Then we show our main the-
orem, including two decision algorithms (Sec. 3).
Finally, we conclude the paper with a discussion
and some open questions (Sec. 4).

2 Preliminaries

2.1 Ranked Trees

A ranked alphabet is a tuple (Σ, rk) where Σ is an
alphabet, i.e., a finite set, and rk : Σ→ N assigns
an arity to every symbol σ ∈ Σ. Throughout this
paper we will identify (Σ, rk) with Σ. For every
k ∈ N the set Σ(k) = {σ ∈ Σ | rk(σ) = k}
contains all symbols of arity k.

Let H be a set and Σ a ranked alphabet. The
set TΣ(H) of trees over Σ indexed by H is de-
fined inductively as the smallest set T such that:
(i) H ⊆ T and (ii) σ(ξ1, . . . , ξk) ∈ T for every

of vectors corresponding to a set of height-bounded trees,
while Item (ii) ensures that the latter vectors suffice as the
states of the constructed deterministic wta; cf. (Büchse, May
and Vogler, 2010, Lm. 5.9 and Lm. 5.8, respectively).

2A manuscript with the same content has been available
on Daniel Kirsten’s website for a year from Sept. 2010 on.

k ∈ N, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ T . We write
TΣ instead of TΣ(∅).

For every ξ ∈ TΣ(H), we define the set
pos(ξ) ⊆ N∗ of positions of ξ by

(i) if ξ ∈ H , then pos(ξ) = {ε};
(ii) if ξ = σ(ξ1, . . . , ξk), then pos(ξ) = {ε} ∪
{i · w | i ∈ {1, . . . , k}, w ∈ pos(ξi)}.

The mapping ht: TΣ(H) → N maps each tree ξ
to its height, i.e., the length of a longest position
of ξ. We denote the label of ξ at position w by
ξ(w), the subtree of ξ rooted at w by ξ|w, and the
tree obtained by replacing the subtree of ξ rooted
at position w with ξ′, ξ′ ∈ TΣ(H), by ξ[ξ′]w.

A Σ-context is a tree in TΣ({z}) that contains
exactly one occurrence of the special symbol z.
The set of all Σ-contexts is denoted by CΣ. Let
ξ ∈ TΣ∪CΣ and ζ ∈ CΣ. Then the concatenation
of ξ and ζ, denoted by ξ · ζ, is obtained from ζ by
replacing the leaf z by ξ. If ξ ∈ TΣ, then so is
ξ · ζ, and likewise for ξ ∈ CΣ.

2.2 Semirings
A semiring (Hebisch and Weinert, 1998; Golan,
1999) is a quintuple S = (S,+, ·, 0, 1) where S
is a set, + and · are binary, associative operations
on S, called addition and multiplication, respec-
tively, + is commutative, · distributes over + from
both sides, 0 and 1 are elements of S, 0 is neu-
tral with respect to +, 1 is neutral with respect
to ·, and 0 is absorbing with respect to · (i.e.,
s · 0 = 0 = 0 · s).

Let S = (S,+, ·, 0, 1) be a semiring. In nota-
tion, we will identify S with S. We call S commu-
tative if the multiplication is commutative; a semi-
field if it is commutative and for every a ∈ S\{0}
there is an a−1 ∈ S such that a · a−1 = 1; zero-
sum free if a + b = 0 implies a = b = 0; zero-
divisor free if a · b = 0 implies a = 0 or b = 0;
and extremal (Mahr, 1984) if a + b ∈ {a, b}. We
note that every extremal semiring is also zero-sum
free and every semifield is zero-divisor free.

Example 2.1 We present four examples
of semirings. The Boolean semiring
B = ({0, 1},∨,∧, 0, 1), with disjunction
and conjunction, is an extremal semifield. The
formal-language semiring (P(Σ∗),∪, ·, ∅, {ε})
over an alphabet Σ, with union and language
concatenation, is neither commutative nor ex-
tremal, but zero-divisor free and zero-sum free.
The tropical semiring (R ∪ {∞},min,+,∞, 0),
with minimum and conventional addition, is

12

an extremal semifield. The Viterbi semiring
([0, 1],max, ·, 0, 1) is a commutative, extremal,
zero-divisor-free semiring, but not a semifield. 2

Let Q be a set. The set SQ contains all map-
pings u : Q → S, or, equivalently, all Q-vectors
over S. Instead of u(q) we also write uq to de-
note the q-component of a vector u ∈ SQ. The
Q-vector mapping every q to 0 is denoted by 0̃.
For every q ∈ Q we define eq ∈ SQ such that
(eq)q = 1, and (eq)p = 0 for every p 6= q.

2.3 Factorizations

We use the notion of a factorization as defined in
(Kirsten and Mäurer, 2005).

Let Q be a nonempty finite set. A pair (f, g) is
called a factorization of dimension Q if f : SQ \
{0̃} → SQ, g : SQ\{0̃} → S, and u = g(u)·f(u)
for every u ∈ SQ \ {0̃}. A factorization (f, g) is
called maximal if for every u ∈ SQ and a ∈ S,
we have that a · u 6= 0̃ implies f(a · u) = f(u).

Example 2.2 Let Q be a nonempty finite set. We
show three factorizations of dimension Q.

If S is an arbitrary semiring, g(u) = 1 and
f(u) = u constitute the trivial factorization. It
is not maximal in general.

If S is a zero-sum free semifield, such as the
tropical semiring or the semifield of non-negative
reals, then g(u) =

∑
q∈Q uq and f(u) = 1

g(u) ·
u constitute a factorization (Büchse, May and
Vogler, 2010, Lemma 4.2). It is maximal: f(a ·
u) = 1

g(a·u) · (a · u) = 1
a·g(u) · a · u = f(u).

As shown in (Büchse, May and Vogler, 2010,
Lemma 4.4) a maximal factorization only exists
if S is zero-divisor free or |Q| = 1.

2.4 Weighted Tree Automata

A weighted tree automaton (Ésik and Kuich,
2003) is a finite-state machine that represents a
weighted tree language, i.e., a mapping ϕ : TΣ →
S. It assigns a weight to every tree based on
weighted transitions.

Formally, a weighted tree automaton (wta) is
a tuple A = (Q,Σ, S, δ, ν) such that Q is a
nonempty finite set (of states), Σ is a ranked al-
phabet, S is a semiring, δ is the transition map-
ping, mapping transitions (q1 · · · qk, σ, q) into S
where q1, . . . , qk, q ∈ Q and σ ∈ Σ(k), and
ν ∈ SQ maps every state to its root weight.

A wta A is bottom-up deterministic if for ev-
ery (q1 · · · qk, σ), there is at most one q such that

δ(q1 · · · qk, σ, q) 6= 0.

Example 2.3 Let A = (Q,Σ, S, δ, ν) be the wta
where Σ = {α(0), γ(1), σ(2)}, S is the arctic semi-
ring (N ∪ {−∞},max,+,−∞, 0), δ is given by
the directed functional hypergraph in Fig. 1, and
ν = (0,−∞). Each node in the hypergraph
(drawn as circle) corresponds to a state, and each
hyperedge (drawn as box with arbitrarily many in-
going arcs and exactly one outgoing arc) repre-
sents a weighted transition. Ingoing arcs of a hy-
peredge are meant to be read counter-clockwise,
starting from the outgoing arc. The final weight 0
of q1 is indicated by an additional arc. Transitions
not shown have the weight −∞. 2

q1 q2α/0

0

α/0

σ/1

σ/1

σ/0

γ/0γ/1

Figure 1: Hypergraph representation of wta A.

Typically, wta are given initial-algebra seman-
tics (Goguen et al., 1977). In this paper, we use
the equivalent run semantics (Fülöp and Vogler,
2009, Sec. 3.2) as it constitutes the basis for our
proofs. In this setting, every node of a given tree is
decorated with a state; this decoration is called a
run. The label of a node, its state, and the states of
its successors comprise a transition. The weight
of a run is given by the product of the weights
of all these transitions (under δ), calculated in the
semiring S. Roughly speaking, the weight of a
tree is then the sum of the weights of all runs on
that tree, again calculated in S.

Now we formalize the notions of a run and
its weight. For our proofs, we will need runs
and their weights to be as easily composable and
decomposable as trees and contexts. Therefore,
we will consider trees indexed by semiring ele-
ments and even Q-vectors over S. Let H be a set,
ξ ∈ TΣ(H), and q ∈ Q. The setRqA(ξ) of all runs
on ξ that end in state q at the root of ξ is

RqA(ξ) = {(ξ, κ) | κ : pos(ξ)→ Q, κ(ε) = q} .

13

σq1

αq2 σq1

γq1 αq2

γq1

αq1

Figure 2: A tree together with a run.

We will denote the pair (ξ, κ) just by κ and indi-
cate ξ by stating κ ∈ RqA(ξ). We will also omit
the subscript A. We set R(ξ) =

⋃
q∈QR

q(ξ).
Let w ∈ pos(ξ) and κ ∈ Rq(ξ). The fol-

lowing notions are defined in the obvious way:
(i) κ|w ∈ Rκ(w)(ξ|w), (ii) κ[κ′]w ∈ Rq(ξ[ξ′]w)
for every ξ′ ∈ TΣ(H) and κ′ ∈ Rκ(w)(ξ′), and
(iii) κ · κ′ ∈ Rq′(ξ · ζ) for every q′ ∈ Q, ζ ∈ CΣ,
and κ′ ∈ Rq

′
(ζ) that maps the z-labelled posi-

tion to q. We will abuse the above notation in
two ways: (i) we write κ[z]w to denote κ[κ′]w
where κ′ is the only element of Rκ(w)(z), and
(ii) for every s ∈ S, we write s · κ to denote the
run on s · ζ which coincides with κ.

Let ξ ∈ TΣ(S ∪ SQ) and κ ∈ R(ξ). We define
the weight 〈κ〉A ∈ S of κ as follows (omitting the
subscript A): if ξ ∈ S, then 〈κ〉 = ξ; if ξ ∈ SQ,
then 〈κ〉 = ξκ(ε); if ξ = σ(ξ1, . . . , ξk), then 〈κ〉 =
〈κ|1〉 · . . . · 〈κ|k〉 · δ(κ(1) · · ·κ(k), σ, κ(ε)).

We define the mapping J.KA : TΣ(SQ) → SQ

such that JξKA(q) =
∑

κ∈Rq(ξ)〈κ〉. Again, we
will often omit the subscript A. If we have a fac-
torization (f, g), we will shorten f(JξK) to fJξK.
We will often use relationships such as 〈κ · κ′〉 =
〈〈κ〉 · κ′〉 and Jξ · ζK = JJξK · ζK.

The weighted tree language run-recognized
by A is the mapping ϕA : TΣ → S such that for
every ξ ∈ TΣ we have ϕA(ξ) =

∑
q∈QJξKq · νq.

Example 2.4 (Ex. 2.3 contd.) Figure 2 shows a
tree together with a run κ. We compute 〈κ〉 (recall
that we use the arctic semiring):

〈κ〉 = 〈κ|1〉+ 〈κ|2〉+ δ(q2q1, σ, q1)

= δ(ε, α, q2) + δ(ε, α, q1) + δ(q1, γ, q1)

+ δ(q1, γ, q1) + δ(ε, α, q2)

+ δ(q1q2, σ, q1) + δ(q2q1, σ, q1)

= 0 + 0 + 1 + 1 + 0 + 1 + 1 = 4 .

It can be shown that JξKq1 = ht(ξ) and JξKq2 =
0, and thus, that ϕA = ht. 2

For every ξ ∈ TΣ(SQ) and κ ∈ R(ξ) we call
κ victorious (on ξ) if 〈κ〉 = JξKκ(ε). The follow-
ing observations are based on (Büchse, May and
Vogler, 2010, Obs. 5.11 and 5.12).

Observation 2.5 Let S be an extremal semiring.
For every ξ ∈ TΣ(SQ) and q ∈ Q there is a κ ∈
Rq(ξ) such that κ is victorious.

Observation 2.6 Let ξ ∈ TΣ(SQ), w ∈ pos(ξ),
and κ ∈ R(ξ) victorious. Then we obtain 〈κ〉 =
J(〈κ|w〉 · eκ(w)) · ξ[z]wKκ(ε).

PROOF.

J(〈κ|w〉 · eκ(w)) · ξ[z]wKκ(ε)

=
∑

κ′∈Rκ(ε)
(

(〈κ|w〉·eκ(w))·ξ[z]w
)〈κ′〉

=
∑

κ′∈Rκ(ε)(ξ[z]w),κ′(w)=κ(w)〈〈κ|w〉 · κ′〉

=
∑

κ′∈Rκ(ε)(ξ[z]w),κ′(w)=κ(w)〈κ|w · κ′〉

= 〈κ〉 .

For the last equation, we note that the summands
on the left-hand side form a subset of {〈ν〉 | ν ∈
Rκ(ε)(ξ)}, which contains 〈κ〉. Since S is ex-
tremal and 〈κ〉 = JξKκ(ε), the equation holds. �

2.5 Twins Property
We define two binary relations SIBLINGS(A) and
TWINS(A) overQ as follows. Let p, q ∈ Q. Then

• (p, q) ∈ SIBLINGS(A) iff there is a tree ξ ∈
TΣ such that JξKp 6= 0 and JξKq 6= 0.

• (p, q) ∈ TWINS(A) iff for every context ζ ∈
CΣ we have that Jep ·ζKp 6= 0 and Jeq ·ζKq 6=
0 implies Jep · ζKp = Jeq · ζKq.

The wta A is said to have the twins property if
SIBLINGS(A) ⊆ TWINS(A).

Example 2.7 We cover two examples.
First, consider the wta from Ex. 2.3. Its two

states are siblings as witnessed by the tree ξ = α.
However, they are not twins, as witnessed by the
context ζ = γ(z): Jeq1 · γ(z)Kq1 = 1, whereas
Jeq2 · γ(z)Kq2 = 0.

Second, consider the wta over the Viterbi semi-
ring shown Fig. 3. Its two states are siblings as
witnessed by the tree ξ = α. Furthermore, they
are twins because their transitions are symmetric.
Hence, this wta has the twins property. 2

The following observation shows that we can
enumerate SIBLINGS(A) in finite time.

14

q1 q2

α/0.5 α/0.5

σ/0.5

σ/0.5

σ/0.5

σ/0.5

Figure 3: Siblings and twins.

Observation 2.8 If S is zero-sum free, we have
SIBLINGS(A) = SIB(A) where SIB(A) is de-
fined like SIBLINGS(A), with the additional con-
dition that ht(ξ) < |Q|2.

PROOF. The direction ⊇ is trivial. We show ⊆
by contradiction. Let p, q ∈ Q and ξ ∈ TΣ such
that (i) JξKp 6= 0 and JξKq 6= 0, and (ii) (p, q) 6∈
SIB(A). We assume that ξ is smallest, and we
show that we find a smaller counterexample.

By (ii), we have (iii) ht(ξ) ≥ |Q|2. By (i),
there are κp ∈ Rp(ξ) and κq ∈ Rq(ξ) such that
(iv) 〈κp〉 6= 0 and 〈κq〉 6= 0.

By (iii), there are positions w1, w2 such that w1

is above w2, κp(w1) = κp(w2), and κq(w1) =
κq(w2). Cutting out the slice between w1 and w2,
we construct the tree ξ′ = ξ[ξ|w2]w1 . Moreover,
we construct the runs κ′p and κ′q accordingly, i.e.,
κ′x = κx[κx|w2]w1 .

We have that 〈κ′p〉 6= 0, 〈κ′q〉 6= 0, because oth-
erwise (iv) would be violated. Since S is zero-
sum free, we obtain Jξ′Kp 6= 0, Jξ′Kq 6= 0. �

3 Decidability of the Twins Property

This section contains our main theorem:

Theorem 3.1 The twins property of wta over ex-
tremal semifields is decidable.

The following subsections provide the infra-
structure and lemmata needed for the proof of the
theorem. Henceforth, we assume that S is an ex-
tremal semifield. As noted in Ex. 2.2, there is a
maximal factorization (f, g).

3.1 Rephrasing the Twins Relation

In the definition of TWINS(A), we deal with two
vectors Jep · ζK and Jeq · ζK for each ζ ∈ CΣ. In
the following we concatenate these vectors into
one, which enables us to use a factorization. To
this end, we construct a wta A ∪ Ā that runs two
instances of A in parallel, as shown in Fig. 4.

Let A = (Q,Σ, S, δ, ν) a wta and Ā =
(Q̄,Σ, S, δ̄, ν̄) be the wta obtained from A by re-
naming states via q 7→ q̄. We construct the wta
A∪ Ā = (Q ∪ Q̄,Σ, S, δ′, ν ′) where δ′ coincides
with δ and δ̄ on the transitions of A and Ā, re-
spectively; it maps all other transitions to 0; and ν ′

coincides with ν and ν̄ on Q and Q̄, respectively.
For every p, q ∈ Q we define the set Tp,q ⊆

SQ∪Q̄ by Tp,q = {J(ep + eq̄) · ζKA∪Ā | ζ ∈ CΣ};
note that ep, eq̄ ∈ SQ∪Q̄. With this definition, we
observe the following trivial equivalence.

Observation 3.2 Let p, q ∈ Q. Then (p, q) ∈
TWINS(A) iff for every u ∈ Tp,q we have that

up 6= 0 and uq̄ 6= 0 implies up = uq̄.

For every pair (p, q) ∈ SIBLINGS(A), a vector
u ∈ SQ∪Q̄ is called a critical vector (for (p, q))
if it does not fulfill the centered implication of
Obs. 3.2. Any critical vector in Tp,q thereby wit-
nesses (p, q) 6∈ TWINS(A). Consequently, A has
the twins property iff Tp,q contains no critical vec-
tor for any (p, q) ∈ SIBLINGS(A). Deciding the
twins property thus amounts to searching for a
critical vector.

3.2 Compressing the Search Space

In this subsection we approach the decidability
of the twins property by compressing the search
space for critical vectors. First we show that the
vectors in Tp,q are scalar multiples of a finite num-
ber of vectors.

Lemma 3.3 Let S be a commutative, extremal
semiring. Assume that A has the twins property.
Then there is a finite set S′ ⊆ SQ∪Q̄ such that for
every (p, q) ∈ SIBLINGS(A) we have

Tp,q ⊆ S · S′.

PROOF. We construct sets S′, S′′ ⊆ SQ∪Q̄ and
show the following inclusions:

Tp,q ⊆ S · S′′ ⊆ S · S′. (∗)

15

ζ :

(ep + eq̄)

z

p→

Jep·ζKA︷ ︸︸ ︷
...

...



p→


...
1
...


︸ ︷︷ ︸
ep

A

q →

Jeq·ζKA︷ ︸︸ ︷
...

...



q →


...
1
...


︸ ︷︷ ︸
eq

A

J(ep+eq̄)·ζKA∪Ā∈Tp,q︷ ︸︸ ︷

...

...

...

...



p→

q̄ →

Q

 Q̄



...
1
...
...
1
...


︸ ︷︷ ︸

(ep+eq̄)

p→

q̄ →

A ∪ Ā

Figure 4: Moving from parallel execution of A (left-hand side) to the union wta A ∪ Ā (right-hand side).

To this end, we consider each entry in each vector
to be induced by an according (victorious) run.
In this spirit we define for every p, q ∈ Q and
ζ ∈ CΣ the set Cp,q(ζ) ⊆ R((ep + eq̄) · ζ)Q∪Q̄ of
vectors of runs of A ∪ Ā as follows: κ ∈ Cp,q(ζ)
iff (i) κr ∈ Rr((ep + eq̄) · ζ) for every r ∈ Q∪ Q̄
and (ii) for every pair w1, w2 ∈ pos(ζ) with w1

above w2 and κr(w1) = κr(w2) we have that
κr|w1 is victorious on ((ep + eq̄) · ζ)|w1 . We map
each vector of runs to the corresponding weight
vector as follows. For every Q′ ⊆ Q ∪ Q̄ let
γQ′ : R((ep + eq̄) · ζ)Q∪Q̄ → SQ∪Q̄ be the map-
ping such that for every κ and q′ ∈ Q ∪ Q̄:

γQ′(κ)q′ =

{
〈κq′〉 if q′ ∈ Q′

0 otherwise.

We set S′′ = {γQ′(κ) | (p, q) ∈ SIBLINGS(A),
ζ ∈ CΣ, κ ∈ Cp,q(ζ), Q′ ⊆ Q∪ Q̄}. The set S′ is
defined in the same way, with the additional con-
dition that ht(ζ) < 2|Q|2|Q|.

The first inclusion of (∗) can be proved in the
same way as (Büchse, May and Vogler, 2010,
Lemma 5.14). Here we show the second inclu-
sion by contradiction. To this end, let s ∈ S,
(p, q) ∈ SIBLINGS(A), ζ ∈ CΣ, κ ∈ Cp,q(ζ),
and Q′ ⊆ Q ∪ Q̄ such that s · γQ′(κ) 6∈ S · S′,
and thus ht(ζ) ≥ 2|Q|2|Q|. We can assume that
〈κr〉 6= 0 for every r ∈ Q′ because otherwise we

could adjustQ′ without harm. Finally, we assume
that ζ is smallest.

We will construct a new context ζ ′ and a cor-
responding vector κ′ ∈ Cp,q(ζ

′) such that ζ ′ is
smaller than ζ and s · γQ′(κ) = s · s′ · γQ′(κ′)
for some s′ ∈ S. Then, if the right-hand side is in
S · S′, so is the left-hand side. By contraposition,
this shows that ζ was not a smallest counterexam-
ple, yielding the contradiction.

First, let w be the position in ζ labelled z. We
show that we are able to find a pair (w1, w2) of
positions such that w1 is above w2, κr(w1) =
κr(w2) for every r, and either both or none of w1

and w2 are above w. To this end, we distinguish
two cases (cf. Fig. 5).

(a) If |w| ≤ |Q|2|Q|, then the length of the com-
mon prefix of w and any path of length at least
2|Q|2|Q| can be at most |Q|2|Q|. Hence, on such a
path remain at least |Q|2|Q| + 1 positions that are
not above w. By the pidgeonhole principle, we
find said pair (w1, w2).

(b) If |w| > |Q|2|Q|, then we find the pair im-
mediately on the path to the position labelled z.

Second, we pick a pair (w1, w2) such that the
position w1 has minimal length. Cutting out the
slice between the positions w1 and w2 yields the
smaller context ζ ′ = ζ[ζ|w2]w1 . We construct κ′

accordingly, i.e., κ′r = κr[κr|w2]w1 for every r ∈
Q ∪ Q̄. We have that κ′ ∈ Cp,q(ζ

′); for this we

16

(a)

ζ :

w1

w2ζ ′′

z
(ep + eq̄)

=⇒

ζ ′ :

w1

z
(ep + eq̄)

(b)

ζ :

w1

w2ζ ′′

z
(ep + eq̄)

=⇒

ζ ′ :

w1

z
(ep + eq̄)

Figure 5: Two cases for the construction of ζ ′ = ζ[ζ|w2
]w1

.

need that we chose w1 with minimal length.
Third, we use the twins property to show that

there is an s′ ∈ S such that s · γQ′(κ) = s · s′ ·
γQ′(κ

′). If Q′ = ∅, we set s′ = 0, and the proof is
done. Otherwise we choose some r′ ∈ Q′ and set
s′ = Jeκr′ (w2)·ζ ′′Kκr′ (w1) where ζ ′′ = ζ[z]w2 |w1 is
the slice we have cut out. We prove that γQ′(κ) =
s′·γQ′(κ′). To this end, let r ∈ Q′, p′ = κr(w1) =
κr(w2), and q′ = κr′(w1) = κr′(w2). Then

γQ′(κ)r = 〈κr〉 = 〈〈κr|w1〉 · κr[z]w1〉
= 〈J(〈κr|w2〉 · ep′) · ζ ′′Kp′ · κr[z]w1〉 (Obs. 2.6)

= 〈κr|w2〉 · Jep′ · ζ ′′Kp′ · 〈1 · κr[z]w1〉
(commutativity)

= 〈κr|w2〉 · Jeq′ · ζ ′′Kq′ · 〈1 · κr[z]w1〉 (†)
= s′ · 〈〈κr|w2〉 · κr[z]w1〉 (commutativity)

= s′ · 〈κ′r〉 = s′ · γQ′(κ′)r .

At (†) we have used the twins property. We show
that this is justified. First, we show that (p′, q′) ∈
SIBLINGS(A ∪ Ā). To this end, we distinguish
two cases.

If z occurs in ζ|w2 : by (p, q) ∈ SIBLINGS(A)
we obtain a tree ξ such that JξKp 6= 0 and JξKq 6=
0. By our assumption we have 〈κr〉 6= 0, 〈κr′〉 6=
0, and thus, 〈κr|w2〉 6= 0, 〈κr′ |w2〉 6= 0. Since S
is extremal, and thus, zero-sum free, we obtain

Jξ · ζ|w2Kp′ 6= 0, Jξ · ζ|w2Kq′ 6= 0.
If z does not occur in ζ|w2 : we derive in a sim-

ilar fashion that 〈κr|w2〉 6= 0, 〈κr′ |w2〉 6= 0, and
thus, Jζ|w2Kp′ 6= 0, Jζ|w2Kq′ 6= 0.

Second, by the twins property, we have that
(p′, q′) ∈ TWINS(A ∪ Ā). Using again that
〈κr〉 6= 0, 〈κr′〉 6= 0, we derive 〈κr[z]w2 |w1〉 6= 0,
〈κr′ [z]w2 |w1〉 6= 0. Hence, Jep′ · ζ ′′Kp′ 6= 0,
Jeq′ · ζ ′′Kq′ 6= 0. Consequently, we have (†). �

We note that u ∈ SQ∪Q̄, u 6= 0̃, is a critical
vector iff f(u) is a critical vector. Hence, ap-
plying the factorization to Tp,q for every (p, q) ∈
SIBLINGS(A) results in a compressed search
space for critical vectors. It follows from the pre-
ceding lemma that the resulting search space is
finite.

Lemma 3.4 Let (f, g) be a maximal factorization
of dimension Q∪ Q̄. Assume thatA has the twins
property. For every (p, q) ∈ SIBLINGS(A) the set
f(Tp,q \ {0̃}) is finite.

PROOF. By Lemma 3.3 there is a finite set S′ with

f(Tp,q \ {0̃}) ⊆ f(S · S′) ⊆ f(S′) ,

where we used that (f, g) is maximal. Since S′ is
finite, so is f(Tp,q \ {0̃}). �

17

Algorithm 1 Decision algorithm
Require: A = (Q,Σ, S, δ, ν) a wta, S commu-

tative, extremal, (f, g) maximal factorization
Ensure: print “yes” iff A has the twins property

1: compute SIBLINGS(A)
2: for (p, q) ∈ SIBLINGS(A) in parallel do
3: for u ∈ f(Tp,q \ {0̃}) do
4: if u is a critical vector then
5: print “no” and terminate
6: print “yes”

3.3 Two Decision Algorithms

In this section we consider two decision algo-
rithms. The first one is part of the following proof.

PROOF (OF THM. 3.1). Algorithm 1 proceeds as
follows. First, it enumerates SIBLINGS(A). This
is possible as shown by Obs. 2.8. Second, for each
(p, q) ∈ SIBLINGS(A) in parallel, it enumerates
f(Tp,q \ {0̃}), checking for critical vectors. For
this step, we distinguish two cases.

Either A has the twins property. Then, by
Lemma 3.4, f(Tp,q \ {0̃}) is finite, and the algo-
rithm will terminate without finding any critical
vector, in which case it outputs “yes”.

OrA does not have the twins property, but then,
by Obs. 3.2, the algorithm is guaranteed to find
a critical vector at some point, in which case it
outputs “no”. Note that the parallel processing
(line 2) is critical in this case because there may
be (p, q) ∈ SIBLINGS(A) such that f(Tp,q \ {0̃})
is infinite, but does not contain a critical vector. �

Note that Algorithm 1 basically enumerates the
set
⋃

(p,q)∈SIBLINGS(A) f(Tp,q \ {0̃}). In principle,
this can be done by enumerating CΣ and comput-
ing fJ(ep + eq̄) · ζK for each ζ ∈ CΣ. However,
the computation of weights already done for sub-
contexts of ζ is not reused in this approach.

In the following we show an alternative proce-
dure (Algorithm 2) that does not enumerate CΣ

explicitly but works on weight vectors instead,
thereby avoiding redundant calculation. This pro-
cedure maintains a pair of subsets of SQ∪Q̄. It
begins with (∅, ∅) and keeps adding vectors by
applying a monotone operation F until either the
second component contains a critical vector or no
new vectors are added.

To this end, we define the unary operation F
over pairs of subsets of SQ∪Q̄ by (T,C) 7→

Algorithm 2 Improved decision algorithm
Require: A = (Q,Σ, S, δ, ν) a wta, S commu-

tative, extremal, (f, g) maximal factorization
Ensure: print “yes” iff A has the twins property

1: compute SIBLINGS(A)
2: (T,C)← (∅, ∅)
3: repeat
4: (T ′, C ′)← (T,C)
5: (T,C)← F (T ′, C ′) . uses SIBLINGS(A)
6: until C contains critical vector or C = C ′

7: if critical vector has been found then
8: print “no”
9: else

10: print “yes”

(T ′, C ′) where T ′ and C ′ contain exactly the fol-
lowing elements:
(F1) for every k ≥ 0, σ ∈ Σ(k), and

u1, . . . , uk ∈ T , if Jσ(u1, . . . , uk)K 6= 0̃,
then fJσ(u1, . . . , uk)K ∈ T ′,

(F2) for every (p, q) ∈ SIBLINGS(A), we have
f(ep + eq̄) ∈ C ′,

(F3) for every k ≥ 1, σ ∈ Σ(k), i ∈ {1, . . . , k},
ui ∈ C, and u1, . . . , ui−1, ui+1, . . . , uk ∈
T , if Jσ(u1, . . . , uk)K 6= 0̃, then
fJσ(u1, . . . , uk)K ∈ C ′.

Kleene’s fixpoint theorem (Wechler, 1992,
Sec. 1.5.2, Theorem 7) yields that F has a least
fixpoint (where we use the pointwise subset or-
der), and that it can be calculated by the satura-
tion procedure outlined above. In the forthcoming
Lemma 3.6, we show that said fixpoint contains
the desired set

⋃
(p,q)∈SIBLINGS(A) f(Tp,q \ {0̃}).

This implies both the correctness of our procedure
and its termination, by the same line of reasoning
as for Algorithm 1. As a preparation we recall two
auxiliary statements.

Observation 3.5 Let S be commutative and
(f, g) maximal. Then for every k ≥ 0, σ ∈ Σ(k),
and ξ1, . . . , ξk ∈ TΣ(SQ), we have that
Jσ(ξ1, . . . , ξk)K = Jσ(Jξ1K, . . . , JξkK)K and
fJσ(Jξ1K, . . . , JξkK)K = fJσ(fJξ1K, . . . , fJξkK)K.

PROOF. By (Fülöp and Vogler, 2009, Sec 3.2)
and (Büchse, May and Vogler, 2010, Lemma 5.5),
respectively. �

Lemma 3.6 Let (T f , Cf) be the least fixpoint
of F . Then (i) T f = f(JTΣK \ {0̃}) and (ii) Cf =⋃

(p,q)∈SIBLINGS(A) f(Tp,q \ {0̃}).

18

PROOF. In this proof we will often use Obs. 3.5.
For “⊆” of Statement (i), we refer to (Büchse,

May and Vogler, 2010, Lemma 5.8).
We prove “⊇” of Statement (i) by contradic-

tion. To this end, let ξ ∈ TΣ a smallest tree such
that JξK 6= 0̃ and fJξK 6∈ T f . By definition of TΣ,
there are k ≥ 0, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ

such that ξ = σ(ξ1, . . . , ξk). We derive

fJσ(ξ1, . . . , ξk)K = fJσ(Jξ1K, . . . , JξkK)K
= fJσ(fJξ1K, . . . , fJξkK)K .

Now either fJξiK ∈ T f for every i ∈ {1, . . . , k},
but then so is fJξK, or ξ was not the smallest coun-
terexample.

For “⊆” of Statement (ii), we show that(
T f ,

⋃
(p,q)∈SIBLINGS(A) f(Tp,q \ {0̃})

)
is a pre-

fixpoint of F . It is easy to see that (F1) and (F2)
hold. Now let k, σ, i, u1, . . . , uk as in (F3) such
that Jσ(u1, . . . , uk)K 6= 0̃. Hence, u1, . . . , uk 6=
0̃. By (i) there are ξ1, . . . , ξi−1, ξi+1, . . . , ξk such
that uj = fJξjK for j 6= i. Moreover there are
(p, q) ∈ SIBLINGS(A) and ζi ∈ CΣ such that
ui = fJ(ep + eq̄) · ζiK. We derive

fJσ(u1, . . . , uk)K
= fJσ(fJξ1K, . . . , fJ(ep + eq̄) · ζiK, . . . , fJξkK)K
= fJσ(Jξ1K, . . . , J(ep + eq̄) · ζiK, . . . , JξkK)K
= fJσ(ξ1, . . . , (ep + eq̄) · ζi, . . . , ξk)K
= fJ(ep + eq̄) · σ(ξ1, . . . , ζi, . . . , ξk)K ,

which, by definition, is in f(Tp,q \ {0̃}).
We prove “⊇” of (ii) by contradiction. To

this end, let (p, q) ∈ SIBLINGS(A) and ζ ∈
CΣ a smallest context such that fJ(ep + eq̄) ·
ζK ∈ f(Tp,q \ {0̃}) \ Cf . Hence, J(ep + eq̄) ·
ζK 6= 0̃. By (F2), we obtain ζ 6= z. Hence,
there are k ≥ 1, σ ∈ Σ(k), i ∈ {1, . . . , k},
ξ1, . . . , ξi−1, ξi+1, . . . , ξk ∈ TΣ, and ζi ∈ CΣ

such that ζ = σ(ξ1, . . . , ξi−1, ζi, ξi+1, . . . , ξk).
We have that JξjK 6= 0̃ for j 6= i, and J(ep +
eq̄) · ζiK 6= 0̃. We derive

fJ(ep + eq̄) · ζK
= fJ(ep + eq̄) · σ(ξ1, . . . , ζi, . . . , ξk)K
= fJσ(ξ1, . . . , (ep + eq̄) · ζi, . . . , ξk)K
= fJσ(Jξ1K, . . . , J(ep + eq̄) · ζiK, . . . , JξkK)K
= fJσ(fJξ1K, . . . , fJ(ep + eq̄) · ζiK, . . . , fJξkK)K

By (i), we have that fJξjK ∈ T f . Now ei-
ther fJ(ep + eq̄) · ζiK ∈ Cf , but then so is

fJ(ep + eq̄) · ζK, or ζ was not the smallest coun-
terexample. �

4 Discussion and Further Research

The notion that the twins property can be decided
by searching for critical vectors in a compressed
search space is due to Kirsten (2012). We have
generalized his work in two ways: (i) We allow
arbitrary extremal semifields instead of the trop-
ical semiring. To this end, we use the notion of
a maximal factorization, which is implicit in his
work. (ii) We consider weighted tree automata
instead of weighted string automata. This makes
the proof more complex, as we have to distinguish
between contexts and trees.

Kirsten’s result that deciding the twins property
is PSPACE-hard directly transfers to our setting,
giving a lower bound on the complexity of our al-
gorithms. In addition, he shows that the problem
is PSPACE-complete by giving an algorithm that
is in PSPACE. We did not investigate whether this
result can be transferred to our setting as well.

To check for critical vectors, Algorithm 1 does
not need all components from the vectors in Tp,q
but only the p- and q̄-components; thus in the
proof of Lemma 3.3 the height restriction ht(ζ) ≤
2|Q|2|Q| for S′ can ultimately be lowered to
ht(ζ) ≤ 2|Q|2. It is an open question which of
the two algorithms performs better in practice.

For further research, it would be interesting
to investigate sufficient properties for determiniz-
ability that do not require the semifield to be ex-
tremal. Then the determinized wta could truly ag-
gregate the weights of the original runs.

Acknowledgments

The authors wish to thank Heiko Vogler for stim-
ulating remarks on a draft, as well as the anony-
mous referees for pointing out mistakes. The
first author was financially supported by DFG VO
1011/6-1.

References

Büchse, Matthias and May, Jonathan and Vogler,
Heiko. 2010. Determinization of Weighted Tree
Automata using Factorizations. J. Autom. Lang.
Comb., 15(3/4).

Casacuberta, Francisco and de la Higuera, Colin.
2000. Computational complexity of problems on

19

probabilistic grammars and transducers. In Proc.
ICGI, LNCS. Springer.

Chiang, David. 2007. Hierarchical phrase-based
translation. Comp. Ling., 33(2):201–228.

Droste, Manfred and Kuich, Werner and Vogler,
Heiko, editors. 2009. Handbook of Weighted Au-
tomata. EATCS Monographs in Theoretical Com-
puter Science. Springer.

Eppstein, David. 1998. Finding the k shortest paths.
SIAM Journal on Computing, 28(2):652–673.

Ésik, Zoltán and Kuich, Werner. 2003. Formal tree
series. J. Autom. Lang. Comb., 8(2):219–285.

Fülöp, Zoltán and Vogler, Heiko. 2009. Weighted tree
automata and tree transducers. In (Droste, Kuich
and Vogler, 2009), Chapter 9.

Goguen, Joseph. A. and Thatcher, James W. and Wag-
ner, Eric G. and Wright, Jesse B. 1977. Initial Al-
gebra Semantics and Continuous Algebras. J. ACM,
24(1):68–95.

Golan, Jonathan Samuel. 1999. Semirings and their
Applications. Kluwer Academic Publishers.

Graehl, Jonathan and Knight, Kevin and May,
Jonathan. 2008. Training tree transducers. Comp.
Ling., 34(3):391–427.

Hebisch, Udo and Weinert, Hanns Joachim. 1998.
Semirings: Algebraic Theory and Applications in
Computer Science, Series in Algebra, volume 5.
World Scientific.

Huang, Liang and Chiang, David. 2005. Better k-best
parsing. In Proc. IWPT, pp. 53–64. ACL.

Kirsten, Daniel. 2012. Decidability, Undecidability,
and PSPACE-Completeness of the Twins Property
in the Tropical Semiring. Theoretical Computer
Science, 420:56–63.

Kirsten, Daniel and Mäurer, Ina. 2005. On the deter-
minization of weighted automata. J. Autom. Lang.
Comb., 10:287–312.

Li, Zhifei and Eisner, Jason and Khudanpur, Sanjeev.
2009. Variational decoding for statistical machine
translation. In Proc. ACL-IJCNLP, pp. 593–601.
ACL.

Mahr, Bernd. 1984. Iteration and summability
in semirings. Annals of Discrete Mathematics,
19:229–256.

May, Jonathan and Knight, Kevin. 2006. A better N-
best list: practical determinization of weighted fi-
nite tree automata. In Proc. NAACL-HLT, pp. 351–
358. ACL.

Pauls, Adam and Klein, Dan. 2009. k-best A* pars-
ing. In Proc. ACL-IJCNLP, pp. 958–966. ACL.

Petrov, Slav and Barrett, Leon and Thibaux, Romain
and Klein, Dan. 2006. Learning accurate, com-
pact, and interpretable tree annotation. In Proc.
COLING-ACL, pp. 433-440.

Sima’an, Khalil. 1996. Computational complexity
of probabilistic disambiguation by means of tree-
grammars. In Proc. COLING, pp. 1175–1180.
ACL.

Wechler, Wolfgang. 1992. Universal Algebra for
Computer Scientists, volume 25 of Monogr. Theo-
ret. Comput. Sci. EATCS Ser. Springer.

Zhang, Min and Jiang, Hongfei and Aw, Aiti and Li,
Haizhou and Tanm, Chew Lim and Li, Sheng 2008.
A tree sequence alignment-based tree-to-tree trans-
lation model. In Proc. ACL, pp. 559–567. ACL.

20

Proc. EACL 2012 Workshop on Applications of Tree Automata Techniques in Natural Language Processing, pages 21–30,
Avignon, France, April 24 2012. c©2012 Association for Computational Linguistics

TTT: A tree transduction language for syntactic and semantic processing

Adam Purtee
University of Rochester

Department of Computer Science
apurtee@cs.rochester.edu

Lenhart Schubert
University of Rochester

Department of Computer Science
schubert@cs.rochester.edu

Abstract

In this paper we present the tree to tree
transduction language, TTT. We moti-
vate the overall ”template-to-template” ap-
proach to the design of the language, and
outline its constructs, also providing some
examples. We then show that TTT al-
lows transparent formalization of rules for
parse tree refinement and correction, log-
ical form refinement and predicate disam-
biguation, inference, and verbalization of
logical forms.

1 Introduction

Pattern matching and pattern-driven transforma-
tions of list-structured symbolic expressions or
trees are fundamental tools in AI. They facilitate
many symbol manipulation tasks, including oper-
ations on parse trees and logical forms, and even
inference and aspects of dialogue and translation.

The TTT system allows concise and transpar-
ent specification of rules for such tasks, in par-
ticular (as we will show), parse tree refinement
and correction, predicate disambiguation, logical
form refinement, inference, and verbalization into
English.

In parse tree refinement, our particular focus
has been on repair of malformed parses of image
captions, as obtained by the Charniak-Johnson
parser (Charniak and Johnson, 2005). This has
encompassed such tasks as distinguishing pas-
sive participles from past participles and temporal
nominals from non-temporal ones, among other
tasks which will be discussed later. For exam-
ple, standard treebank parses tag both past par-
ticiples (as in “has written”) and passive partici-
ples (as in “was written”) as VBN. This is undesir-

able for subsequent compositional interpretation,
as the meanings of past and passive participles are
distinct. We can easily relabel the past partici-
ples as VBEN by looking for parse tree subex-
pressions where a VBN is preceded by a form of
“have”, either immediately or with an interven-
ing adverb or adverbial, and replacing VBN by
VBEN in such subexpressions. Of course this can
be accomplished in a standard symbol manipula-
tion language like Lisp, but the requisite multi-
ple lines of code obscure the simple nature of the
task. We have also been able to repair system-
atic PP (prepositional phrase) misattachments, at
least in the limited domain of image captions. For
example, a common error is attachment of a PP
to the last conjunct of a conjunction, where in-
stead the entire conjunction should be modified by
the PP. Thus when a statistically obtained parse of
the sentence “ Tanya and Grandma Lillian at her
highschool graduation party” brackets as “Tanya
and (Grandma Lillian (at her highschool gradu-
ation party.))”, we want to lift the PP so that “at
her highschool graduation party” modifies “Tanya
and Grandma Lillian”.

Another systematic error is faulty classification
of relative pronouns/determiners as wh-question
pronouns/determiners, e.g., “the student whose
mother contacted you” vs. “I know whose mother
contacted you” – an important distinction in com-
positional semantics. (Note that only the first oc-
currence, i.e., the relative determiner, can be para-
phrased as with the property that his, and only the
second occurrence, in which whose forms a wh-
nominal, can be paraphrased as the person with
the property that his.) An important point here is
that detecting the relative-determiner status of a
wh-word like whose may require taking account

21

of an arbitrarily deep context. For example, in
the phrase “the student in front of whose par-
ents you are standing”, whose lies two levels of
phrasal structure below the nominal it is seman-
tically bound to. Such phenomena motivate the
devices in TTT for detecting “vertical patterns”
of arbitrary depth. Furthermore, we need to be
able to make local changes “on the fly” in match-
ing vertical patterns, because the full set of tree
fragments flanking a vertical match cannot in gen-
eral be saved using match variables. In the case
of a wh-word that is to be re-tagged as a relative
word, we need to rewrite it at the point where
the vertical pattern matches it, rather than in a
separate tree-(re)construction phase following the
tree-matching phase.

An example of a discourse phenomenon that
requires vertical matching is anaphoric referent
determination. In particular, consider the well-
known rule that a viable referent for an anaphoric
pronoun is an NP that C-commands it, i.e., that is
a (usually left) sibling of an ancestor of the pro-
noun. For example, in the sentence “John shows
Lillian the snowman that he built”, the NP for
John C-commands the pronominal NP for he, and
thus is a viable referent for it (modulo gender and
number agreement). We will later show a sim-
ple TTT rule that tags such an anaphoric pronoun
with the indices of its C-commanding NP nodes,
thus setting the stage for semantic interpretation.

We have also been able to perform Skolemiza-
tion, conjunct separation, simple inference, and
logical form verbalization with TTT and suspect
its utility to logic tasks will increase as develop-
ment continues.

The rest of the paper is organized as follows:
we discuss related work in section 2, discuss the
TTT language (including pattern matching and
transduction syntax, and some theoretical proper-
ties) in section 3, and go though several detailed
example applications in section 4.

A beta version of the system can be found at
http://www.cs.rochester.edu/research/ttt/.

2 Related Work

There are several pattern matching and transduc-
tion facilities available; however, none proved
sufficiently general and perspicuous to serve our
various purposes. The Tiburon tool is a com-
prehensive system for manipulating regular tree
grammars, tree automata, and tree transducers,

including weighted variants (May and Knight,
2008). It supports many useful algorithms, such
as intersection, determinization, recognition, top-
k generation, and maximum likelihood training.
However, variables that appear in both a rule’s lhs
and rhs must occur at a depth less than two on the
left, and Tiburon cannot easily simulate our verti-
cal path or sequence operators.

Timbuk is a system for deciding reachability
with term rewriting systems and tree automata
(Genet, 2003), and it also performs intersec-
tion, union, and determinization of tree automata.
Though variables can appear at arbitrary locations
in terms, they always match exactly one term from
a fixed set, and therefore do not match sequences
or vertical paths.

The three related tools Tgrep, Tregex, and
Tsurgeon provide powerful tree matching and re-
structuring capabilities (Levy and Andrew, 2006).
However, Tgrep and Tregex provide no transduc-
tion mechanism, and Tsurgeon’s modifications
are limited to local transformations on trees. Also,
it presupposes list structures that begin with an
atom (as in Treebank trees, but not in parse trees
with explicit phrasal features), and its patterns are
fundamentally tree traversal patterns rather than
tree templates, and can be quite hard to read.

Xpath and XSLT are languages for manipula-
tion of XML trees (World Wide Web Consortium,
1999; World Wide Web Consortium, 1999). As its
name indicates, Xpath expressions describe paths
in trees to the relevant nodes, rather than patterns
representing the trees to be matched, as in the
TTT approach. It is useful for extracting struc-
tured but unordered information from trees, and
supports numerous functions and predicates over
matched nodes, but does not match ordered se-
quences. XSLT is also more procedurally oriented
than TTT, and is useful for constructing XML rep-
resentations of transformations of data extracted
by Xpath. The primary advantages of TTT over
Xpath and XSLT are a more concise syntax, or-
dered sequence matching, compositional patterns
and templates, and in-place modification of trees.

Peter Norvig’s pattern matching language,
“pat-match”, from (Norvig, 1991) provides a nice
pattern matching facility within the Lisp environ-
ment, allowing for explicit templates with vari-
ables (that can bind subexpressions or sequences
of them), and including ways to apply arbitrary
tests to expressions and to match boolean combi-

22

nations of patterns. However, there is no provi-
sion for “vertical” pattern matching or subexpres-
sion replacement “on the fly”, which are features
of TTT we have found useful. Also the notation
for alternatives, along with exclusions, is more
concise than in Norvig’s matcher, for instance not
requiring explicit ORs. Like TTT, pat-match sup-
ports matching multi-level structures, but unlike
TTT, the pattern operators are not composable.

Mathematica also allows for sophisticated pat-
tern matching, including matching of sequences
and trees. It also includes a term rewriting sys-
tem that is also capable of rewriting ordered se-
quences. It provides functions to apply patterns to
arbitrary subtrees of a tree until all matches have
been found or some threshold count is reached,
and it can return all possible ways of applying a
set of rules to an expression. However, as in the
case of Norvig’s matcher there is no provision for
vertical patterns or on-the-fly transduction (Wol-
fram Research, Inc, 2010).

3 TTT

Pattern Matching

Patterns in TTT are hierarchically composed of
sub-patterns. The simplest kind of pattern is an
arbitrary, explicit list structure (tree) containing
no match operators, and this will match only an
identical list structure. Slightly more flexible pat-
terns are enabled by the “underscore operators”
!, +, ?, *. These match any single tree, any

non-empty sequence of trees, the empty sequence
or a sequence of one tree, and any (empty or non-
empty) sequence of trees respectively. These op-
erators (as well as all others) can also be thought
of as match variables, as they pick up the tree or
sequence of trees they match as their binding.

The bindings are “non-sticky”, i.e., an operator
such as ! will match any tree, causing replace-
ment of any prior binding (within the same pat-
tern) by that tree. However, bindings can be pre-
served in two ways: by use of new variable names,
or by use of sticky variables. New variable names
are obtained by appending additional characters
– conventionally, digits – to the basic ones, e.g.,
!1, !2, etc. Sticky variables are written with a

dot, i.e., !., +., ?., *., where again these
symbols may be followed by additional digits or
other characters. The important point concern-
ing sticky variables is that multiple occurrences of

such a variable in a pattern can only be bound by
the same unique value. Transductions are spec-
ified by a special pattern operator / and will be
described in the next section.

More flexible operators, allowing for alter-
natives, negation, and vertical patterns among
other constructs, are written as a list headed by
an operator without an underscore, followed by
one or more arguments. For example, (! A
(B C)) will match either the symbol A or the
list (B C), i.e., the two arguments provide al-
ternatives. As an example involving negation,
(+ A (B !) ∼ (B B)) will match any
nonempty sequence whose elements are As or
two-element lists headed by B, but disallowing el-
ements of type (B B). Successful matches cause
the matched expression or sequence of expres-
sions to become the value of the operator. Again,
sticky versions of match operators use a dot, and
the operators may be extended by appending dig-
its or other characters.

The ten basic argument-taking pattern opera-
tors are:

! Match exactly one sub-pattern argument.

+ Match a sequence of one or more arguments.

? Match the empty sequence or one argument.

* Match the empty sequence or one or more
arguments.

{} Match any permutation of the arguments.

<> Match the sequence of arguments directly
(without the parenthesis enclosing the <>
operator)

ˆ Match a tree that has a child matching one of
the arguments.

ˆ* Match a tree that has a descendant matching
one of the arguments.

ˆ@ Match a vertical path.

/ Attempt a transduction. (Explained later.)

Various examples will be provided below. Any of
the arguments to a pattern operator may be com-
posed of arbitrary patterns.

Negation: The operators !, +, ?, *, and ˆ sup-
port negation (pattern exclusion); i.e., the argu-
ments of these operators may include not only al-
ternatives, but also a negation sign ∼ (after the

23

alternatives) that is immediately followed by one
or more precluded patterns. If no alternatives
are provided, only precluded patterns, this is in-
terpreted as “anything goes”, except for the pre-
cluded patterns. For example, (+ ∼ (A A) B)
will match any nonempty sequence of expressions
that contains no elements of type (A A) or B.
Note that the negation operator does not appear
by itself; one must instead specify it in conjunc-
tion with one of the other operators. The pattern
(! ∼ P) matches any single tree which does not
match pattern P.

Conjunction: We have so far found no com-
pelling need for an explicit conjunction operator.
If necessary, a way to say that a tree must match
each of two or more patterns is to use double
negation. For example, suppose we want to say
that an expression must begin with an A or B but
must contain an A (at the top level); this could be
expressed as
(! ∼ (! ∼ ((! A B) *) (* A *))).
However, this would be more perspicuously ex-
pressed in terms of alternatives, i.e.,
(! (A *) (B * A *)).
We also note that the allowance for computable
predicates (discussed below) enables introduction
of a simple construct like
(! (and? P1 P2)) , where P1 and P2 are ar-
bitrary TTT patterns, and and? is an executable
predicate that applies the TTT matcher to its argu-
ments and returns a non-nil value if both succeed
and nil otherwise. In the former case, the binding
of the outer ! will become the matched tree.

Bounded Iteration: The operators !, +, ?,
*, and ˆ also support bounded iteration, using
square brackets. This enables one to write pat-
terns that match exactly n, at least n, at most n,
or from n to m times, where n and m are integers.
Eg. (![3] A) would match the sequence A A
A. The vertical operator ˆ[n] matches trees with
a depth-n descendant that matches one of the op-
erator’s arguments.

Vertical Paths: The operators ˆ* and ˆ@ en-
able matching of vertical paths of arbitrary depth.
The first, as indicated, requires the existence of
a descendant of the specified type, while the sec-
ond, with arguments such as (ˆ@ P1 P2 ...
Pn) matches a tree whose root matches P1, and
has a child matching P2, which in turn has a child
matching P3, and so on. Note that this basic form
is indifferent to the point of attachment of each

successive offspring to its parent; but we can also
specify a point of attachment in any of the P1, P2,
etc., by writing @ for one of its children. Because
this operator (@) does not appear outside the ver-
tical path context, it was not listed with the other
operators above. Note as well that the argument
sequence P1 P2 ... can itself be specified as a
pattern (e.g., via (+ ...)), and in this case there
is no advance commitment to the depth of the tree
being matched.

Computable Predicates: Arbitrary predicates
can be used during the pattern matching pro-
cess (and consequently the transduction process).
Symbols with names ending in a question mark,
and with associated function definitions, are in-
terpreted as predicates. When a predicate is en-
countered during pattern matching, it is called
with the current subtree as input. The result is
nil or non-nil, and when nil is returned the current
match fails, otherwise it succeeds (but the non-
nil value is not used further). Additionally, sup-
porting user-defined predicates enables the use of
named patterns.

Some Example Patterns: Here are examples
of particular patterns, with verbal explanations.
Also see Table 1, at the top of the next page, for
additional patterns with example bindings.

• (! (+ A) (+ B))
Matches a non-empty sequence of A’s or a
non-empty sequence of B’s, but not a se-
quence containing both.

• (* (<> A A))
Matches an even number of A’s.

• (B (* (<> B B)))
Matches an odd number of B’s.

• (({} A B C))
Matches (A B C), (A C B), (B A C),
(B C A), (C A B) and (C B A) and
nothing else.

• ((<> A B C))
Matches (A B C) and nothing else.

• (ˆ* X)
Matches any tree that has descendant X.

• (ˆ@ (+ (@ *)) X)
Matches any tree with leftmost leaf X.

24

Pattern Tree Bindings
! (A B C) (! (A B C)
(* F) (A B (C D E) F) (* A B (C D E))
(A B ? F) (A B (C D E) F) (? (C D E))
(A B ? (C D E) F) (A B (C D E) F) (?)
(ˆ@ ! (C *) E) (A B (C D E) F) (ˆ@ (A B (C D E) F)) (* D E)
(A B (<> (C D E)) F) (A B (C D E) F) (<> (C D E))
(A B (<> C D E) F) (A B (C D E) F) nil

Table 1: Binding Examples

Transductions

Transductions are specified with the transduction
operator, /, which takes two arguments. The left
argument may be any tree pattern and the right
argument may be constructed of literals, variables
from the lhs pattern, and function calls.

Transductions may be applied to the roots of
trees or arbitrary subtrees, and they may be re-
stricted to apply at most once, or until conver-
gence. When applying transductions to arbitrary
subtrees, trees are searched top-down, left to right.
When a match to the transduction lhs pattern oc-
curs, the resulting bindings and transduction rhs
are used to create a new tree, which then replaces
the tree (or subtree) that matched the lhs.

Here are a few examples of simple template to
template transductions:

• (/ X Y)
Replaces the symbol X with the symbol Y.

• (/ (! X Y Z) (A))
Replaces any X, Y, or Z with A.

• (/ (! X) (! !))
Duplicates an X.

• (/ (X * Y) (X Y))
Remove all subtrees between X and Y.

• (/ (! * !1) (!1 * !))
Swaps the subtrees on the boundaries.

A transduction operator may appear nested within
a composite pattern. The enclosing pattern ef-
fectively restricts the context in which the trans-
duction will be applied, because only a match to
the entire pattern will trigger a transduction. In
this case, the transduction is applied at the lo-
cation in the tree where it matches. The rhs of
such a transduction is allowed to reference the

bindings of variables that appear in the enclos-
ing pattern. We call these local transductions, as
distinct from replacement of entire trees. Local
transductions are especially advantageous when
performing vertical path operations, allowing for
very concise specifications of local changes. For
example, the transduction

(ˆ@ (* ((! S SBAR) +))

(/ (WH !)

(REL-WH (WH !))))

wraps (REL-WH ...) around a (WH ...)
constituent occurring as a descendant of a ver-
tical succession of clausal (S or SBAR) con-
stituents. Applied to the tree (S (SBAR (WH
X) B) A), this yields the new tree (S (SBAR
(REL-WH (WH X)) B) A). Additional ex-
amples appear later (especially in the parse tree
refinement section).

TTT also supports constructive functions, with
bound variables as arguments, in the rhs tem-
plates, such as join-with-dash!, which con-
catenates all the bound symbols with interven-
ing dashes, and subst-new!, which will be
discussed later. One can imagine additional
functions, such as reverse!, l-shift!,
r-shift!, or any other function of a list of
terms that may be useful to the application at
hand. Symbols with names ending in the excla-
mation mark are assumed to be associated with
function definitions, and when appearing as the
first element of a list are executed during out-
put template construction. To avoid writing many
near-redundant functions, we use the simple func-
tion apply! to apply arbitrary Lisp functions
during template construction.

Theoretical Properties

A thorough treatment of the formal properties
of tree transducers is (Comon, 2007). A good

25

overview of the dimensions of variability among
formal tree transducers is given in (Knight, 2007).
The main properties are restrictions on the height
of the tree fragments allowed in rules, linearity,
and whether the rules can delete arbitrary sub-
trees. Among the more popular and recent ones,
synchronous tree substitution grammars (STSG),
synchronous tree sequence substitution grammars
(STSSG), and multi bottom-up tree transduc-
ers (MBOT) constrain their rules to be linear
and non-deleting, which is important for efficient
rule learning and transduction execution (Chiang,
2004; Galley et. al, 2004; Yamada and Knight,
2001; Zhang et. al, 2008; Maletti, 2010).

The language TTT does not have any such
restrictions, as it is intended as a general pro-
gramming aid, with a concise syntax for po-
tentially radical transformations, rather than a
model of particular classes of linguistic opera-
tions. Thus, for example, the 5-element pat-
tern (! ((* A) B) ((* A) C) ((* A) D)

((* A) E) ((* A))) applied to the expres-
sion (A A A A A) rescans the latter 5 times, im-
plying quadratic complexity. (Our current imple-
mentation does not attempt regular expression re-
duction for efficient recognition.) With the addi-
tion of the permutation operator {}, we can force
all permutations of certain patterns to be tried in
an unsuccessful match (e.g., (({} (! A B C)
(! A B C) (! A B C))) applied to (C B
E)), leading to exponential complexity. (Again,
our current implementation does not attempt to
optimize.) Also, allowance for repeated applica-
tion of a set of rules to a tree, until no further
applications are possible, leads to Turing equiv-
alence. This of course is true even if only the 4
underscore-operators are allowed: We can simu-
late the successive transformations of the config-
urations of a Turing machine with string rewriting
rules, which are easily expressed in terms of those
operators and /. Additionally, pattern predicates
and function application in the right-hand sides of
rules are features present in TTT that are not in-
cluded in the above formal models. In themselves
(even without iterative rule application), these un-
restricted predicates and functions lead to Turing
equivalence.

The set of pattern matching operators was cho-
sen so that a number of disparate pattern match-
ing programs could all be replaced with concise
TTT rules. It does subsume regular tree expres-

sions and can therefore be used to match any reg-
ular tree language. Specifically, alternation can
be expressed with ! and (vertical) iteration with
ˆ@ and *. The example expression from (Comon,
2007) can be specified as (ˆ@ (* (cons 0
@)) nil), which matches Lisp expressions cor-
responding to lists of zero or more zeros. TTT
also differs from standard tree automata by lack
of an explicit state.

Nondeterminism and noncommutativity: In
general, given a set of transductions (or even a sin-
gle transduction) and an input tree there may be
several ways to apply the transductions, resulting
in different trees. This phenomenon comes from
three sources:

• Rule application order - transductions are not
in general commutative.

• Bindings - a pattern may have many sets of
consistent bindings to a tree (e.g., pattern
(* *1) can be bound to the tree (X Y
Z) in four distinct ways).

• Subtree search order - a single transduction
may be applicable to a tree in multiple lo-
cations (e.g., (/ ! X) could replace any
node of a tree, including the root, with a sin-
gle symbol).

Therefore some trees may have many reduced
forms with respect to a set of transductions (where
by reduced we mean a tree to which no trans-
ductions are applicable) and even more reachable
forms.

Our current implementation does not attempt to
enumerate possible transductions. Rather, for a
given tree and a list of transductions, each trans-
duction (in the order given) is applied in top-down
fashion at each feasible location (matching the
lhs), always using the first binding that results
from this depth-first, left-to-right (i.e., pre-order)
search. Our assumption is that the typical user has
a clear sense of the order in which transformations
are to be performed, and is working with rules that
do not interact in unexpected ways. For exam-
ple, consider the cases of PP misattachment men-
tioned earlier. In most cases, such misattachments
are disjoint (e.g., consider a caption reading “John
and Mary in front and David and Sue in the back”,
where both PPs may well have been attached to
the proper noun immediately to the left, instead

26

of to the appropriate conjunction). It is also pos-
sible for one rule application to change the context
of another, but this is not necessarily problematic.
For instance, suppose that in the sentence “John
drove the speaker to the airport in a hurry” the PP
“to the airport” has been misattached to the NP
for “the speaker” and that the PP “in a hurry” has
been misattached to the NP for “the airport”. Sup-
pose further that we have a repair rule that carries
a PP attached to an NP upward in the parse tree
until it reaches a VP node, reattaching the PP as a
child of that VP. (The repair rule might incorpo-
rate a computable predicate that detects a poor fit
between an NP and a PP that modifies it.) Then
the result will be the same regardless of the order
in which the two repairs are carried out. The dif-
ference is just that with a preorder discipline, the
second PP (“in a hurry”) will move upward by one
step less than if the order is reversed, because the
first rule application will have shortened the path
to the dominating VP by one step.

In the future it may be worthwhile to implement
exhaustive exploration of all possible matches and
expression rewrites, as has been done in Mathe-
matica. In general this would call for lazy compu-
tation, since the set of rewrites may be an infinite
set.

4 Some linguistic examples

Parse Tree Refinement: First, here is a sim-
ple transduction to delete empty brackets, which
sometimes occur in the Brown corpus: (/ (*
() *1) (* *1)).

To distinguish between past and passive partici-
ples, we want to search for the verb have, and
change the participle token correspondingly, as
discussed earlier. The next two transductions are
equivalent – the first is global and the second is an
example of a local or on-the-fly transduction. For
simplicity we consider only the has form of have.
Observe the more concise form, and simpler vari-
able specifications of the second transduction.

(/ (VP _* (VBZ HAS) _*1 (VBN _!) _*2)
(VP _* (VBZ HAS) _*1 (VBEN _!) _*2))

(VP _* (VBZ HAS) _* ((/ VBN VBEN) _!) _*)

To distinguish temporal and non-temporal
nominals, we use a computable predicate to de-
tect temporal nouns, and then annotate the NP tag
accordingly. (One more time, we show global and
local variants.)

(/ (NP * nn-temporal?)

(NP-TIME * nn-temporal?))

((/ NP NP-TIME) * nn-temporal?)

Assimilation of verb particles into single con-
stituents is useful to semantic interpretation, and
is accomplished with the transduction:

(/ (VP (VB _!1)
(\{\} (PRT (RP _!2)) (NP _*1)))

(VP (VB _!1 _!2) (NP _*1)))

We often particularize PPs to show the
preposition involved, e.g., PP-OF, PP-FROM,
etc. Note that this transduction uses the
join-with-dash! function, which enables us
to avoid writing a separate transduction for each
preposition:
(/ (PP (IN !) *1)

((join-with-dash! PP !)
(IN !) *1))

Such a rule transforms subtrees such as (PP (IN

FROM)) by rewriting the PP tag as (PP-FROM

(IN FROM) .
As a final syntactic processing example (tran-

sitioning to discourse phenomena and semantics),
we illustrate the use of TTT in establishing poten-
tial coreferents licensed by C-command relations,
for the sentence mentioned earlier. We assume
that for reference purposes, NP nodes are deco-
rated with a SEM-INDEX feature (with an integer
value), and pronominal NPs are in addition deco-
rated with a CANDIDATE-COREF feature, whose
value is a list of indices (initially empty). Thus we
have the following parse structure for the sentence
at issue (where for understandabilty of the rela-
tively complex parse tree we depart from Tree-
bank conventions not only in the use of some ex-
plicit features but also in using linguistically more
conventional phrasal and part-of-speech category
names; R stands for relative clause):
(S ((NP SEM-INDEX 1) (NAME John))

(VP (V shows)
((NP SEM-INDEX 2) (NAME Lillian))
((NP SEM-INDEX 3) (DET the)
(N (N snowman)

(R (RELPRON that)
((S GAP NP)
((NP SEM-INDEX 4
CANDIDATE-COREF ())
(PRON he))
((VP GAP NP) (V built)
((NP SEM-INDEX 4)
(PRON *trace*)))))))))

Here is a TTT rule that adjoins the index of
a C-commanding NP node to the CANDIDATE-
COREF list of a C-commanded pronominal NP:
(_* ((NP _* SEM-INDEX _!. _*) _+) _*

27

(ˆ* ((NP _* CANDIDATE-COREF
(/ _!(adjoin! _!. _!)) _*) (PRON _!))) _*)

The NP on the first line is the C-commanding
NP, and note that we are using a sticky vari-
able ‘ !.’ for its index, since we need to use it
later. (None of the other match variables need
to be sticky, and we reuse ‘ *’ and ‘ !’ multi-
ple times.) The key to understanding the rule is
the constituent headed by ‘ˆ*’, which triggers a
search for a (right) sibling or descendant of a sib-
ling of the NP node that reaches an NP consisting
of a pronoun, and thus bearing the CANDIDATE-
COREF feature. This feature is replaced “on the
fly” by adjoining the index of the C-commanding
node (the value of ‘ !.’) to it. For the sample
tree, the result is the following (note the value
‘(1)’ of the CANDIDATE-COREF list):
(S ((NP SEM-INDEX 1) (NAME John))

(VP (V shows)
((NP SEM-INDEX 2) (NAME Lillian))
((NP SEM-INDEX 3) (DET the)
(N (N snowman)

(R (RELPRON that)
((S GAP NP)
((NP SEM-INDEX 4
CANDIDATE-COREF (1))
(PRON he))
((VP GAP NP) (V built)
((NP SEM-INDEX 4)
(PRON *trace*)))))))))

Of course, this does not yet incorporate number
and gender checks, but while these could be in-
cluded, it is preferable to gather candidates and
heuristically pare them down later. Thus repeated
application of the rule would also add the index 2
(for Lillian) to CANDIDATE-COREF.

Working with Logical Forms
Skolemization: Skolemization of an existential
formula of type (some x R S), where x is
a variable, R is a restrictor formula and S is the
nuclear scope, is performed via the transduction
(/ (some ! !1 !2)

(subst-new! ! (!1 and.cc !2))).
The function subst-new! replaces all oc-
currences of a free variable symbol in an
expression with a new one. (We assume that
no variable occurs both bound and free in the
same expression.) It uses a TTT transduction
to accomplish this. For example, (some x

(x politician.n) (x honest.a)) be-
comes ((C1.skol politician.n) and.cc

(C1.skol honest.a)).
Inference: We can use the following rule to ac-

complish simple default inferences such as that if

most things with property P have property Q, and
most things with property Q have property R,
then (in the absence of knowledge to the contrary)
many things with property P also have property
R. (Our logical forms use infix syntax for predica-
tion, i.e., the predicate follows the “subject” argu-
ment. Predicates can be lambda abstracts, and the
computable boolean function pred? checks for
arbitrary predicative constructs.)
(/
(_* (most _!.1

(_!.1 (!.p pred?))
(_!.1 (!.q pred?)))

_* (most _!.2
(_!.2 !.q)
(_!.2 (!.r pred?))) _*)

(many _!.1 (_!.1 !.p) (_!.1 !.r)))

For example, ((most x (x dog.n) (x pet.n))

(most y (y pet.n) (x friendly.a))) yields
the default inference (many (x dog.n) (x

friendly.a)).
The assumption here is that the two most-

formulas are embedded in a list of formulas (se-
lected by the inference algorithm), and the three
occurrences of * allow for miscellaneous sur-
rounding formulas. (To allow for arbitrary or-
dering of formulas in the working set, we also
provide a variant with the two most-formulas in
reverse order.) Inference with tree transduction
rules has also been performed by (Koller and Ste-
fan, 2010).

Predicate Disambiguation: The following
rules are applicable to patterns of predica-
tion such as ((det dog.n have.v (det

tail.n)), ((det bird.n have.v (det

nest.n)), and ((det man.n) have.v

(det accident.n)). (Think of det as an
unspecified, unscoped quantifier.) The rules
simultaneously introduce plausible patterns of
quantification and plausible disambiguations of
the various senses of have.v (e.g., have as part,
possess, eat, experience):

(/ ((det (! animal?)) have.v
(det (!1 animal-part?)))

(all-or-most x (x !)
(some e ((pair x e) enduring)
(some y (y !1)
((x have-as-part.v y) ** e)))))

(/ ((det (! agent?)) have.v
(det (!1 possession?)))

(many x (x !)
(some e
(some y (y !1)
(x possess.v y) ** e))))

28

(/ ((det (! animal?)) have.v
(det (!1 food?)))

(many x (x !)
(occasional e
(some y (y !1)
(x eat.v y) ** e))))

(/ ((det (! person?)) have.v
(det (!1 event?)))

(many x (x !)
(occasional e
(some y (y !1)
((x experience.v y) ** e)))))

Computable predicates such as animal? and
event? are evaluated with the help of WordNet
and other resources. Details of the logical form
need not concern us, but it should be noted that
the ‘**’ connects sentences to events they charac-
terize much as in various other theories of events
and situations.

Thus, for example, ((det dog.n have.v
(det tail.n)) is mapped to:

(all-or-most x (x dog.n
(some e ((pair x e) enduring)
(some y (y tail.n)
((x have-as-part.v y) ** e)))))

This expresses that for all or most dogs, the dog
has an enduring attribute (formalized as an agent-
event pair) of having a tail as a part.

Logical Interpretation: The following trans-
ductions directly map some simple parse trees to
logical forms. The rules, applied as often as possi-
ble to a parse tree, replace all syntactic constructs,
recognizable from (Treebank-style) phrase head-
ers like (JJ ...), (NP ...), (VP ...), (S
...), etc., by corresponding semantic constructs.
For example, “The dog bit John Doe”, parsed as

(S (NP (DT the) (NN dog))
(VP (VBD bit)

(NP (NNP John) (NNP Doe))))

yields (the x (x dog.n) (x bit.v

John Doe.name)).
Type-extensions such as ‘.a’, ‘.n’, and ‘.v’

indicate adjectival, nominal, and verbal predi-
cates, and the extension ‘.name’ indicates an in-
dividual constant (name); these are added by the
functions make-adj!, make-noun!, and so
on. The fourth rule below combines two succes-
sive proper nouns (NNPs) into one. We omit event
variables, tense and other refinements.
(/ (JJ !) (make-adj! !))
(/ (NN !) (make-noun! !))
(/ (VBD !) (make-verb! !))

(/ (*.a (NNP !.1) (NNP !.2) *.b)
(*.a (NNP !.1 !.2) *.b))

(/ (NNP +) (make-name! (+)))
(/ (NP !) !)
(/ (S (NP (DT the) !) (VP +))
(the x (x !) (x +))

These rules are illustrative only, and are not
fully compositional, as they interpret an NP with
a determiner only in the context of a senten-
tial subject, and a VP only in the context of a
sentential predicate. Also, by scoping the vari-
able of quantification, they do too much work at
once. A more general approach would use com-
positional rules such as (/ (S (!1 NP?) (!2

VP?)) ((sem! !1) (sem! !2))), where the
sem! function again makes use of TTT, re-
cursively unwinding the semantics, with rules
like the first five above providing lexical-level
sem!-values.

We have also experimented with rendering log-
ical forms back into English, which is rather eas-
ier, mainly requiring dropping of variables and
brackets and some reshuffling of constituents.

5 Conclusion

The TTT language is well-suited to the applica-
tions it was aimed at, and is already proving use-
ful in current syntactic/semantic applications. It
provides a very concise, transparent way of speci-
fying transformations that previously required ex-
tensive symbolic processing. Some remaining is-
sues are efficient access to, and deployment of,
rules that are locally relevant to a transduction;
and heuristics for executing matches and trans-
ductions more efficiently (e.g., recognizing vari-
ous cases where a complex rule cannot possibly
match a given tree, because the tree lacks some
constituents called for by the rule; or use of ef-
ficient methods for matching regular-expression
subpatterns).

The language also holds promise for rule-
learning, thanks to its simple template-to-
template basic syntax. The kinds of learning en-
visioned are learning parse-tree repair rules, and
perhaps also LF repair rules and LF-to-English
rules.

Acknowledgments

The work was supported by ONR-STTR award
N00014-11-10417, and NSF grants IIS-1016735,
NSF IIS-0916599, and NSF IIS-0910611.

29

References
Eugene Charniak and Mark Johnson. 2005. Coarse-

to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. ACL 2005, 173–180. Association for
Computational Linguistics, Ann Arbor, MI, USA.

David Chiang. 2004. Evaluation of Grammar For-
malisms for Applications to Natural Language Pro-
cessing and Biological Sequence Analysis. Phd.
Thesis. University of Pennsylvania.

H. Comon and M. Dauchet and R. Gilleron and
C. Löding and F. Jacquemard and D. Lugiez
and S. Tison and M. Tommasi 2007. Tree Au-
tomata Techniques and Applications Available on:
http://www.grappa.univ-lille3.fr/tata

Michel Galley and Mark Hopkins and Kevin Knight
and Daniel Marcu 2004. What’s in a Transla-
tion Rule?. NAACL 2004, 273–280. Boston, MA,
USA.

Thomas Genet and Valerie View Triem Tong
2003. Timbuk: A Tree Automata Library
http://www.irisa.fr/celtique/genet/timbuk/

Ralph Griswold 1971. The SNOBOL4 Programming
Language. Prentice-Hall, Inc. Upper Saddle River,
NJ, USA.

Paul Hudak, John Peterson, and Joseph Fasel.
2000. A Gentle Introduction To Haskell: Ver-
sion 98. Los Alamos National Laboratory.
http://www.haskell.org/tutorial/patterns.html.

Alexander Koller and Stefan Thater. 2010. Comput-
ing weakest readings. ACL 2010. 30–39. Strouds-
burg, PA, USA.

Kevin Knight. 2007. Capturing practical natural lan-
guage transformations. Machine Translation, Vol
21, Issue 2, 121–133. Kluwer Academic Publish-
ers. Hingham, MA, USA.

Roger Levy and Galen Andrew 2006. Tregex and
Tsurgeon: tools for querying and manipulating tree
data structures. Language Resources Evaluation
Conference (LREC ’06).

Andreas Maletti 2010. Why synchronous tree sub-
stitution grammars?. HLT 2010. Association for
Computational Linguistics, Stroudsburg, PA, USA.

Jonathan May and Kevin Knight 2008 A Primer on
Tree Automata Software for Natural Language Pro-
cessing. http://www.isi.edu/licensed-sw/tiburon/

Peter Norvig 1991. Paradigms of Artificial Intelli-
gence Programming Morgan Kaufmann. Waltham,
MA, USA.

Don Rozenberg 2002. SnoPy - Snobol
Pattern Matching Extension for Python.
http://snopy.sourceforge.net/user-guide.html.

Wolfram Research, Inc. 2010. Wolfram Mathe-
matica 8 Documentation. Champagne, IL, USA.
http://reference.wolfram.com/mathematica/guide/
RulesAndPatterns.html.

World Wide Web Consortium. 1999. XML Path Lan-
guage (XPath) http://www.w3.org/TR/xpath/

1999. XSL Transformations (XSLT)
http://www.w3.org/TR/xslt

Kenji Yamada and Kevin Knight 2001. A Syntax-
Based Statistical Translation Model. ACL 2001,
523–530. Stroudsburg, PA, USA.

Min Zhang and Hongfei Jiang and Aiti Aw and
Haizhou Li and Chew Lim Tan and Sheng Li 2008.
A tree sequence alignment-based tree-to-tree trans-
lation model. ACL 2008.

30

Proc. EACL 2012 Workshop on Applications of Tree Automata Techniques in Natural Language Processing, pages 31–41,
Avignon, France, April 24 2012. c©2012 Association for Computational Linguistics

Second position clitics and monadic second-order transduction

Neil Ashton
203 Morrill Hall

Cornell University
Ithaca, NY 14853-4701
nma38@cornell.edu

Abstract

The simultaneously phonological and syn-
tactic grammar of second position clitics is
an instance of the broader problem of ap-
plying constraints across multiple levels of
linguistic analysis. Syntax frameworks ex-
tended with simple tree transductions can
make efficient use of these necessary ad-
ditional forms of structure. An analysis
of Sahidic Coptic second position clitics
in a context-free grammar extended by a
monadic second-order transduction exem-
plifies this approach.

1 Introduction

Second position (2P) clitics are ubiquitous in the
world’s languages, found in genetically and typo-
logically diverse languages (e.g. Serbo-Croatian,
Warlpiri, O’odham) from all documented periods
(e.g. Hittite, spoken ca. 1600–1300 BC). They
present a persistent challenge for syntactic anal-
ysis, inducing a peculiar form of crossing depen-
dency which is not easily expressed in any stan-
dard restrictive grammar framework.

2P clitics are emblematic of a wider class of
problematic phenomena which existing frame-
works can address by incorporating a notion of
prosodic constituency. The transductive perspec-
tive on mildly context-sensitive grammar for-
malisms, which treats them as monadic second-
order transductions of regular tree languages,
suggests how this can be done: by transduc-
ing prosodic constituency from syntactic phrase
structure.

The prosodic conditioning of 2P clisis is partic-
ularly salient in Sahidic Coptic (Reintges, 2004).1

1“Coptic” refers to the latest form of the Egyptian lan-

A context-free phrase structure grammar ex-
tended by a monadic second-order transduction
is able to make use of the phonological structure
necessary to give a linguistically plausible analy-
sis to a fragment of Coptic clitic syntax.

2 Second position clitics and prosodic
constituency

2.1 Second position
An intuitive account of the syntax of 2P clitics2

has been known since Wackernagel (1892). The
2P clitic, which is an immediate functional de-
pendent of a clause, e.g. a sentential adverb, dis-
course particle, pronominal argument, etc., ap-
pears after the first word of that clause, poten-
tially interrupting whatever constituent contains
that word as its leftmost member, as the chain
of 2P clitics interrupts the NP in the following
Serbo-Croatian sentence.3

(1) [Taj
that

=joj=ga=je
=her=it=AUX

čovek]NP
man

poklonio.
presented

‘That man presented her with it.’ (Bögel et
al., 2010)

guage. Sahidic Coptic, the major literary dialect of Coptic
from the 4th to the 10th centuries AD, is survived by a rich
corpus of Greek-alphabet texts. The only extant computa-
tional model of Sahidic Coptic grammar is apparently that
of Orlandi (2004). This work is unfortunately not available
to the author, and so no comparison of approaches has been
possible.

2A “clitic” is, descriptively, a word-like element with
affix-like phonological dependence (“clisis”) on other words.
Proclitics and enclitics are dependent on right- and left-
adjacent words, respectively, and 2P clitics are a special case
of enclitics. For more on clitics, see Zwicky (1977), Aikhen-
vald (2003), and Anderson (2005).

3Clitic boundaries are marked with an equals sign, after
the Leipzig glossing conventions.

31

This constituency-breaking word order pattern
alone poses a descriptive challenge. The difficulty
is exacerbated by the fact that the “word” targeted
by the 2P clitic is not in general syntactically char-
acterizable. It is rather a phonological constituent
that may include incorporated clitics (Inkelas and
Zec, 1990; Zec, 2005). The alternation in the po-
sition of the 2P clitic de in the Coptic sentences
(2) and (3) illustrates this well.

(2) a=t=ef=sone
AUX.PF=the=3SG=sister

=de
=and

ol
gather

en=n=ef=kees
ACC=the=3SG=bones
‘and his sister gathered his bones’ (Mena,
Martyrd. 4a:1-2)

(3) a=w=tamio
AUX.PF=3PL=make

=de
=and

en=u=taive
ACC=a=coffin

‘and they made a coffin’ (Mena, Martyrd.
5a:27-28)

In both sentences, de functions as a clausal con-
junction. But its position varies, appearing be-
tween the main verb and its subject in (2) and be-
tween the verb and its object in (3). This alterna-
tion is most plausibly phonological. The 2P clitic
appears after the first independently pronounce-
able word, including its attached clitics, such as
the pronominal subject w- in (3) and the tense
auxiliary a- in both sentences. The behavior of
2P clitics when the verb itself or its direct object
are clitics is consistent with this analysis.

Phonological properties alone, however, do not
suffice to describe the syntax of 2P clitics. They
are constrained to appear within a syntactically
determined subpart of their host clause, typically
ignoring topicalized or otherwise left-dislocated
elements and thus appearing quite far from strict
phonological second position. Describing 2P cli-
sis thus requires reference to both syntactic and
phonological structure.

2.2 Prosodic constituency via tree
transduction

The notion of prosodic constituency (Nespor and
Vogel, 1986; Selkirk, 1986) provides the key
to a perspicuous account of the multiple factors
at play in the grammar of 2P clitics. Prosodic
constituency is a tree structure that defines the
“words” and “phrases” relevant to phonology,

C

•

S

Word

Clitic 7→

C

S

•

CliticWord

Figure 1: Lowering 2P clitics.

which are in general distinct from yet closely re-
lated to their syntactic equivalents.

Both the distinctness of and the relationship be-
tween syntactic and prosodic constituency can be
captured by transducing the latter from the for-
mer. This transduction in effect interprets syn-
tactic trees as terms over a signature of phono-
logical operations and normalizes the result. The
yield function is a prosodically naive example of
such a transduction.

Once this independently necessary transduc-
tion has been taken into account, the syntax of
2P clitics is straightforward. The 2P clitic sim-
ply has a non-concatenative mode of phonologi-
cal combination. The clitic and its host clause are
siblings in syntactic constituency, and their parent
node is interpreted as an operation that wraps the
latter around the former—alternatively, lowers the
former into the latter.

This analysis, which captures in essence both
the “wrapping” (Bach, 1987) and “prosodic inver-
sion” (Halpern, 1995) analyses of 2P clitics, can
be schematized as in Figure 1, where “Word” is
constrained to be the leftmost node with that label
in S.

This transduction is not direction-preserving in
the sense of Bloem and Engelfriet (2000): as-
suming that the clitic crosses unboundedly many
nodes on the way to its host word, a crossing de-
pendency is induced in the paths of the target tree.
This rules out the possibility of formalizing this
analysis by means of popular automaton models
such as multi bottom-up tree transducers (Fülöp
et al., 2004) or their extended variant (Engelfriet
et al., 2009), which cannot describe such depen-

32

dencies (Maletti, 2011).
The more powerful automata that can be spec-

ified using monadic second-order logic (MSO),
which include syntactically restricted classes of
macro tree transducers (Engelfriet and Maneth,
1999) and deterministic tree-walking transducers
(Bloem and Engelfriet, 2000), can perform this
transduction. Section 3 defines the transduction in
MSO, and Section 4 reflects briefly on its imple-
mentation.

3 Sahidic Coptic 2P clitics via
CFG+MST

The following context-free grammar and se-
quence of MSO transductions formalizes, for a
fragment of Sahidic Coptic, the analysis of 2P cli-
sis sketched in Section 2.2.

Section 3 breaks the interpretation of a syntac-
tic parse tree as a phonological term into a series
(f1−f7) of simple composed MSO transductions.
A “redex” phonological term is derived (Section
3.3), and its reducible subterms are then evaluated
separately (Section 3.4). An algorithmic imple-
mentation of the transduction is sketched in Sec-
tion 3.5.

3.1 Formal preliminaries
The following definitions and assertions rehearse
material from Courcelle and Engelfriet (2012),
which should be consulted for full details.

3.1.1 Relational structures and tree graphs
A relational signature is a finite set R of rela-

tion symbols with associated arity ρ(r) ∈ N∗ for
each r ∈ R. A relational structure over R is a
tuple R = 〈DR , (rR)r∈R〉, where DR is a finite
domain of entities and rR , for each r ∈ R, is a
ρ(r)-ary relation on DR .

A bijection exists between binary relational
structures and labelled graphs, with unary and bi-
nary relations corresponding to node and edge la-
bels, respectively. Ordered binary trees can be
represented as labelled directed graphs, and hence
as relational structures, in the obvious way.

3.1.2 Monadic second-order logic
The monadic second-order (MSO) formulas

over a relational signature R are as first-order
predicate logic, with the addition of monadic
second-order variables X,Y,X ′, . . . denoting
sets of entities, second-order quantification, and

a primitive operator for set membership. The sub-
stitution of n free variables in a formula φ by en-
tities d1, . . . , dn is written φ(d1, . . . , dn).

An MSO formula over R is interpreted in a re-
lational signature over R. A formula with no free
variables is called a sentence. If a sentence ψ is
true in a relational structure R, we write R |= ψ,
pronounced “R models ψ”.

3.1.3 MSO transduction
An MSO transduction defines a relational

structure in terms of another by taking a finite
number of copies of nodes from the source do-
main, keeping those that satisfy particular formu-
las in the source structure, and defining the rela-
tions that hold in the target structure by means of
formulas modeled by the source structure. The
generalization of MSO transduction to k-copying
MSO transduction (Courcelle, 1991) allows the
target domain to be larger than its source. MSO
transductions whose formulas do not refer to pa-
rameters define deterministic functions.

A (parameterless, k-copying) MSO transduc-
tion over a relational signature R is specified by a
triple 〈k,∆,Θ〉, where k ∈ N and ∆ = {δi | 0 ≤
i ≤ k} and Θ = {θw | w ∈ W} are sets of MSO
formulas with free variables, and W is the set of
all tuples (r, i1, . . . , iρ(r)) for r ∈ R. This triple
is called a definition scheme.

A definition scheme specifies a target relational
structure T with respect to a source relational
structure S as follows. The domain DT of T is
the set (D0 × {0}) ∪ . . . ∪ (Dk × {k}), where
each Di = {d ∈ DS | S |= δi(d)}. For each n-
ary relation r in the relational signature of T , an
n-ary relation on DT is defined as:

⋃
i0,...,in∈[k]

{((d0, i0), . . . , (dn, in)) |
d0 ∈ Di0 , . . . , dn ∈ Din ,
S |= θr,i0,...,in(d0, . . . , dn)}

Intuitively, a formula δi specifies conditions on
the existence of the ith copy of a node in the target
structure. A formula θ(r,i0,...,jρ(r)) specifies condi-
tions on the relation r holding between copies of
nodes indexed i, . . . , j in the target structure.

3.2 Definitions and abbreviations
3.2.1 Base CFG

The phrase structure grammar which serves as
the basis of the analysis of Coptic is presented in

33

S→ Cl S′ NPpro→ Pro
S′ → Aux VP NPN → Detsgfem N′sg

fem

VP→ NPN V′ NPN → Detindef Nsgfem
VP→ NPpro V′ NPN → Detpl N′pl

V′→ V AccP N′sg
fem → NPpro Nsgfem

Cl→ de N′pl → NPpro Npl

Aux→ a AccP→ AccN NPN
V → ol | tamio AccP→ Accpro NPpro
Nsgfem → sone | taive Detsgfem → t
Npl → kees Detpl → n
AccN → en Detindef → u
Accpro→ mmo Pro→ w | ef

Figure 2: Base CFG fragment of Coptic.

Figure 2. Its parse trees define a recognizable lan-
guage of binary trees, members of which can be
represented as relational structures, as explained
in Section 3.1.1. This CFG fragment, in combi-
nation with the transductions detailed below, suf-
fices to generate sentences (2) and (3) from Sec-
tion 2.1.

This grammar encodes several claims, already
alluded to in Section 2.1, about the syntactic
structure of Coptic. Syntactic dependencies are
represented by constituency in the usual way. The
immediate dependence of the 2P clitic de on a
host clause is expressed by the siblinghood of Cl
and S′ under S.

Features of lexical items relevant for agree-
ment and allomorphy are encoded as diacritics on
nonterminals, allowing determiners to agree with
nouns in gender and the accusative case prepo-
sition to covary with the nominal or pronominal
status of its complement.

3.2.2 Encoding of nodes with unbounded
branching

Syntactic trees are interpreted into prosodic
trees, which may contain prosodic word con-
stituents that branch unboundedly wide. To fix
a binary encoding for such constituents, a “cons
cell”-like variant of the extension operator encod-
ing (Comon et al., 2007, p. 210) is adopted, in
which a term of the form @(x, y) is interpreted as
extending the interpretation of y by adding x to
its root as its leftmost child. An example of this
encoding is given in Figure 3.

Only the fragment of prosodic constituency rel-
evant to the alternation shown in sentences (2)

ω

µ3µ2µ1

'

@

@

@

ωµ3

µ2

µ1

Figure 3: Encoding of n-ary trees.

_ concatenation
•p proclisis
•e enclisis
•2p 2P clisis
•id identity
ω prosodic word
@ extension operator

Table 1: Interpretation of labels.

and (3) is derived. The output tree therefore
contains operator-encoded prosodic constituents
as subtrees of unencoded trees containing unan-
alyzed phonological combination operators.

3.2.3 Relational signature and abbreviations
All MSO transductions presented below are de-

fined over a binary relational signature R = R1 ∪
R2. The set of node labels R1 is given by the
union of the set of all non-terminal and terminal
node names in the grammar of Figure 2 and the
set {_, •p, •e, •2p, •id, ω,@}. The interpretation
of these predicates is given in Table 1. The set of
binary predicates R2 is simply {�0,�1}, the left
and right child relations, written as infix operators
as a notational convenience.

It will be useful to define several new binary
predicates as syntactic abbreviations. I assume re-
flexive and irreflexive transitive closures r∗ and
r+ of relations r ∈ R2, as well as immediate
domination and precedence �,≺, as abbrevia-
tions of MSO formulas over primitive predicates.4

Recurring structural properties of lexical items
in the base CFG are given by the unary syntactic
abbreviations defined below.5 These include pro-

4On the MSO-definability of these, see Courcelle and En-
gelfriet (2012).

5“ψ := φ” is to be read “ψ is an abbreviation for φ”.

34

clitic and 2P clitic status (Pc(x), 2P(x)), indepen-
dent pronounceability (Str(x)), and the property
of being a leaf (Leaf(x)).

Pc(x) := a(x) ∨ en(x) ∨ t(x) ∨ n(x)

2P(x) := de(x)

Str(x) := ol(x) ∨ sone(x)

∨ kees(x) ∨mmo(x)

Leaf(x) := de(x) ∨ a(x) ∨ . . .

MSO transductions are given by transduction
schemes, as defined in Section 3.1.3. In the case
that k = 0, irrelevant subscripts are omitted. Un-
less otherwise specified, all formulas δi can be as-
sumed to be the constant True.

3.3 Transducing a reducible term
A syntactic constituency tree can be interpreted
as a term in a phonological algebra, with non-leaf
nodes interpreted as operations effecting phono-
logical combination in various modes. Pro-
nounceable utterances, which consist of concate-
nations of prosodic constituents (i.e. terms over
leaves from the base CFG, @, ω, and _), are nor-
mal forms.

This complex interpretation is broken into
smaller transductions, the first set of which lays
the foundation for the reduction of the “clitic”
modes of combination. Non-leaf nodes are first
replaced by appropriate combination operators
(Section 3.3.1). Unary nodes are then eliminated
(Section 3.3.2). Finally, the prosodic structure
necessary for the next phase of interpretation is
generated (Section 3.3.3).

3.3.1 Relabeling
Non-terminal leaves in the syntactic tree are re-

placed by operators indicating modes of phono-
logical combination, as presented in Table 1.

The transduction to unreduced phonological
terms is sensitive to the structure of the syntac-
tic tree. Some leaves, e.g. clitic pronouns, are not
strictly proclitic or enclitic but vary by context:
the pronominal subject of a verb or possessor of
a noun is proclitic, whereas the pronominal com-
plement of an accusative preposition or pronoun-
selecting verb is enclitic. The relevant syntactic
context is the child status of NPpro nodes. Hence
the parent of an NPpro node is replaced by •p if
NPpro is its left child, by •e if NPpro its right
child.

All non-pronominal clitics are phonologically
combined with the sibling of their phonologically
vacuous unary parent node. Thus the grandpar-
ents of all such clitic leaves are replaced by the ap-
propriate clitic combination operator, •p for pro-
clitics and •2p for 2P clitics. Unary nodes are re-
placed by •id, and all other non-leaf nodes are re-
placed by_. Leaf node labels are left unchanged.

The definition scheme f1 = 〈0,∆,Θ〉, where
Θ is defined as the union of the formulas given be-
low, specifies this transduction. The body of the
θ_ formula, which consists largely of the disjunc-
tion of the negations of the preceding formulas, is
omitted, as signaled by [etc]; and the θw formula
which reasserts leaf labels is omitted altogether.

θ•e(x) = ∃x′(NPpro(x′) ∧ x�1 x
′)

θ•p(x) = ∃x′(NPpro(x′) ∧ x�0 x
′)

∨ ∃x′, x′′(x�0 x
′ ∧ x′ �0 x

′′ ∧ Pc(x′′))

θ•2p(x) = ∃x′, x′′(x�0 x
′ ∧ x′ �0 x

′′ ∧ 2P (x′′))

θ•id(x) = ∃x′(x�0 x
′) ∧ ¬∃x′′(x�1 x

′′)

θ_(x) = [etc]

3.3.2 Eliminating unary nodes
Before any further interpretation takes place,

unary •id nodes, which are phonologically vac-
uous, can be eliminated.

The definition scheme f2 = 〈0,∆,Θ〉, with Θ
defined as the union of the following formulas (for
i ∈ {0, 1}), eliminates unary nodes by connecting
a non-•id node dominated by a path of •id nodes
to the parent of the topmost •id in the path. Again,
[etc] stands for the omitted “elsewhere condition”,
which here reasserts edges from the source.

θ�i(x, y) = ¬ •id (x) ∧ ¬ •id (y)

∧ ∃x′(x�i x
′ ∧ x′ �+ y

∧ ∀y′(x′ �∗ y′ ∧ y′ �+ y

→ •id(y′))) ∨ [etc]

An example of the composed transduction f2 ◦
f1 is given in Figure 4.

3.3.3 Base prosodic words
Before reducing the remaining reducible modes

of combination, it is necessary to create prosodic
word constituents, notated ω, that cover the in-
dependently pronounceable “strong” leaves of the
tree, allowing the word-sensitive clitic modes of
combination to be interpreted correctly. Prosodic

35

VP

V′

AccP

NPpro

Pro

w

Accpro

mmo

V

ol

NPpro

Pro

w

7→

•p

_

•e

wmmo

ol

w

Figure 4: Relabeling and •id-elimination.

words are encoded by the scheme given in Sec-
tion 3.2.

The definition scheme f3 = 〈2,∆,Θ〉, with ∆
and Θ the union of the δ and θ formulas below,
specifies a transduction that takes two additional
copies of all nodes, relabels the copies of strong
leaf nodes as @ and ω, and draws edges as appro-
priate.

δ1(x) = δ2(x) =

θ(@,1)(x) = θ(ω,2)(x) = Str(x)

θ(�1,0,0)(x, y) = ¬Str(y) ∧ x�1 y

θ(�1,0,1)(x, y) = Str(y) ∧ x�1 y

θ(�0,1,0)(x, y) =

θ(�1,1,2)(x, y) = Str(x) ∧ x = y

θ(�0,0,0)(x, y) = True

An example of the tree transduction given by
f3 is shown in Figure 5, with identity of copies
indicated by subscript letters and the number of
the copy by superscript numerals.

3.4 Interpreting clitic combination modes
The composed transduction f3 ◦ f2 ◦ f1 pro-
duces reducible phonological terms in which the
prosodic structure necessary to interpret the clitic
modes of combination (•p, •e, and •2p) is present.

The interpretation of the clitic modes proceeds
in three steps. “Local” clitics, siblings of prosodic
words, are amalgamated into their hosts (Section
3.4.1). “Long-distance” clitics, which are not

•p

•p

soneαef

t 7→

•p

•p

@1
α

ω2
αsone0

α

ef

t

Figure 5: Prosodic word insertion.

thus locally attached, are lowered to their hosts
(Section 3.4.2) and then attached as local clitics.
Second-position clitics are finally lowered and at-
tached by the same means, as a special case (Sec-
tion 3.4.3).

3.4.1 Local clisis
Locally connected clitics can be directly in-

corporated into their hosts. The word con-
stituent so derived is the recursive structure (e.g.
[ωclitic [ωhost]]) generally assumed for cliticized
words (cf. Inkelas and Zec, 1990; Zec, 2005).

Proclitics and enclitics can be interpreted sepa-
rately. For proclitics, the relevant notion of “local-
ity” can be expressed by a predicate ◦p(x), which
identifies •p nodes connected to @ nodes by a path
of •p nodes.

◦p(x) := •p (x) ∧ ∃y(@(y)

∧ x�+
1 y ∧ ∀z(x�∗ z

∧ z �+ y → •p(x)))

The 2-copying MS transduction specified by
the definition scheme f4 = 〈2,∆,Θ〉, with ∆
and Θ given by the union of the δ and θ formu-
las below, produces the appropriate bracketing by
projecting a new word above each proclitic and
relocating each proclitic’s sibling to the new word
constituent.

δ1(x) = δ2(x) = θ(@,0)(x) =

θ(@,1)(x) = θ(ω,2)(x) = ◦p (x)

θ(�1,0,1)(x, y) = θ(�1,1,2)(x, y) = ◦p (x) ∧ x = y

θ(�0,1,0)(x, y) = ◦p (x) ∧ x�1 y

θ(�0,0,0)(x, y) = θ(�1,0,0)(x, y) = [etc]

36

•pα

•pβ

@

ωsone

ef

t 7→

@0
α

@1
α

ω2
α@0

β

@1
β

ω2
β@

ωsone

ef

t

Figure 6: Local proclisis.

Figure 6 gives an example of a tree transfor-
mation effected by f4, again with subscripts and
superscripts indicating copies.

The interpretation of local enclitics proceeds
similarly. A predicate ◦e(x) defines the relevant
notion of locality.

◦e(x) := •e (x) ∧ ∃y(@(y)

∧ x�+
0 y ∧ ∀z(x�∗ z

∧ z �+ y → •e(x)))

The transduction f5 = 〈2,∆,Θ〉, with ∆ and
Θ given by the union of the δ and θ formulas be-
low, produces the appropriate bracketing. This
transduction is more complicated than the pro-
clitic transformation in that enclitics, right chil-
dren in the source tree, must be relocated to left
branches of @ nodes.

δ1(x) = δ2(x) =

θ(@,0)(x) = θ(@,1)(x) =

θ(ω,2)(x) = ◦e (x)

θ(�0,1,0)(x, y) = ◦e (x) ∧ x�0 y

θ(�1,1,0)(x, y) =

θ(�1,0,2)(x, y) = ◦e (x) ∧ x = y

θ(�0,0,0)(x, y) = ◦e (x) ∧ x�1 y ∨ [etc]

θ(�1,0,0)(x, y) = [etc]

Figure 7 gives an example of the tree transduc-
tion specified by f5.

•eα

w@

ωmmo

7→

@1
α

@0
α

ω2
αw

@

ωmmo

Figure 7: Local enclisis.

3.4.2 Long-distance proclisis
Long-distance clitics, which are not locally

combined with their hosts, incorporate into them
in the same manner as local clitics (i.e. by trans-
ductions f4 and f5) but must be lowered to them
to do so.

Only long-distance proclisis is relevant to the
grammar fragment under consideration. A long-
distance proclitic is a non-local proclitic (see Sec-
tion 3.4.1 for the notion of “locality”) adjacent
to a word in the yield, ignoring other proclitics.
Pronouns count as proclitics for this purpose, so
a predicate Pc′(x) including pronouns is defined.
The predicate Adj(x, y) expresses adjacency of x
and y, and the predicate Lp(x), which identifies
the parents of long-distance proclitics, is defined
in terms of Adj(x, y).

Pc′(x) := Pc(x) ∨ w(x) ∨ ef(x)

Adj(x, y) := x ≺ y ∧ ∀x′(x ≺ x′

∧ x′ ≺ y ∧ Leaf(x′)

→ Pc′(x′))

Lp(x) := •p (x) ∧ ∃x′, y(@(y)

∧ x�0 x
′ ∧Adj(x′, y))

The parents of long-distance proclitics get at-
tached to “goal” nodes—that is, @ nodes or other
parents of long-distance proclitics—by the right
child relation. The predicate G(x) identifies
goals, and NG(x, y) identifies node x’s nearest
goal y.

G(x) := •p (x) ∨@(x)

NG(x, y) := x�+ y ∧ G(y) ∧ ∀y′(x�+ y′

∧ G(y′)→ y ≺ y′)

The parent of the topmost in a path of •p nodes
must get attached, by whatever child relation con-

37

nects that parent node to that path, to the right
child of the lowest node in the path. The higher-
order syntactic abbreviation PC[i;x, y] specifies
the relevant relation, whereby a path of •p nodes
begins with the ith child of x and leads to y.

PC[i;x, y] := ¬ •p (x) ∧ ¬ •p (y)

∧ ∃x′(•p(x′) ∧ x�i x
′

∧ x′ �+
1 y ∧ ∀y

′(x′ �∗ y′

∧ y′ �+
1 y → •p(y

′)))

The parent of a @ node targeted by a set of
long-distance clitics gets attached to the highest
parent of a clitic in that set. The predicate Hip(x)
identifies such highest proclitic parents. Only
“maximal” @ nodes, those that are highest in the
right-recursive path of @ nodes leading to an ω,
are relevant; these are identified by the predicate
Max@p(x). The abbreviation WC[i;x, y] identi-
fies a highest •p node y adjacent to a maximal @
node that is the ith child of x.

Hip(x) := Lp(x) ∧ ∃x′(x�0 x
′

∧ ∀y(y ≺ x′ → ¬Pc′(y)))

Max@p(x) := @(x) ∧ ¬∃y(y �1 x ∧@(y))

∧ ∃z(x�+
1 z ∧ ω(z))

WC[i;x, y] := ∃x′, y′(Max@p(x′)

∧ x�i x
′ ∧ y �0 y

′

∧Adj(y′, x′) ∧ Hip(y))

Once these auxiliary predicates are defined, a
simple MSO transduction f6 = 〈0,∆,Θ〉meeting
the specifications given above can be defined by
the union of the following formulas.

θ�1(x, y) = •p (x) ∧ NG(x, y)

∨ PC[1;x, y] ∨WC[1;x, y] ∨ [etc]

θ�0(x, y) = PC[0;x, y] ∨WC[0;x, y] ∨ [etc]

Figure 8 gives an example of the transduction
specified by f6. The transduction f4 can be com-
posed with f6 to produce the appropriate con-
stituency for the lowered proclitics.

3.4.3 Second-position clisis
There is little substantive difference between

long-distance proclitics and 2P clitics—both ar-
rive in their position by a “lowering” transfor-
mation that targets @ nodes. The transductions

•2p

•pα

•pβ

_γ

. . .@

ωtamio

w

a

de

7→

•2p

_γ

. . .•pα

•pβ

@

ωtamio

w

a

de

Figure 8: Long-distance proclisis, part 1: lowering.

already defined can be recycled, essentially un-
changed, to derive 2P clisis.

Assume a lowering transduction f ′6 identical to
f6 except operating on •2p nodes. The resulting
lowered 2P clitics, which are in a “proclitic” con-
figuration, can then be “rotated” and relabeled as
enclitics. The MSO transduction f7 = 〈0,∆,Θ〉
given by the union of the following formulas pro-
duces this transformation.

θ•e(x) = •2p (x)

θ�0(x, y) = ¬ •2p (x) ∧ x�0 y

∨ •2p(x) ∧ x�1 y

θ�1(x, y) = ¬ •2p (x) ∧ x�1 y

∨ •2p(x) ∧ x�0 y

The local enclisis transduction f5 is then ap-
plied to incorporate the 2P clitics into their hosts.
An example transformation effected by the trans-
duction f5 ◦ f7 ◦ f ′6 is shown in Figure 3.4.3.

3.5 Algorithmic implementation
No automaton compiler for MSO transductions
exists, and the non-elementary complexity of the
MSO-to-automaton translation procedure ensures
that the development of a practical compiler will
be a difficult undertaking. The most convenient
algorithmic implementation of the above analy-
sis is therefore an indirect one: an extension-
ally equivalent algorithm constructed in an ex-
pressively equivalent transduction framework.

38

•2pα

_β

. . .ω

a=w=tamio

de
7→

_β

. . .@1
α

@0
α

ω2
αde

ω

a=w=tamio

Figure 9: Second position clisis.

Second-order Abstract Categorial Grammar
(Kanazawa, 2009b) is one such framework,
equivalent to MSO in tree-transforming power
(Kanazawa, 2009a). ACG tree transductions,
which are expressed as linear λ-term homo-
morphisms and thus have the same complexity
as linear λ-term normalization, can be imple-
mented in Haskell in the manner of Kiselyov and
Shan (2010). A function extensionally equivalent
to that defined logically above can be defined in
a simple ACG consisting of a composed pair of
homomorphisms and implemented in Haskell in a
pair of type classes.

4 Discussion and conclusion

The analysis of Sahidic Coptic 2P clitics in terms
of prosodic constituency and tree transformation
given above successfully accounts for the alterna-
tion shown in sentences (2) and (3). It promises to
scale to a larger fragment of Coptic grammar, ac-
commodating the addition of clitic main verbs and
direct objects without further ado. The general ap-
proach also promises to extend straightforwardly
to other languages with 2P clitics, such as Russian
and Hittite. Since the general technique of MSO
transduction underlying the analysis applies to all
tree-deriving grammar formalisms, richer gram-
matical backbones than CFG can be deployed as
necessary.

This transductive analysis is in line with a
nascent convergence in perspectives on restrictive
formal syntax. The mildly context-sensitive lan-
guages, polynomially parseable languages con-
taining limited cross-serial dependencies such as
those induced by 2P clitics, have received a
new logical characterization in light of the past

decade’s surge of interest in disentangling deriva-
tions from their interpretations.6 Mildly context-
sensitive languages are the images of recogniz-
able tree languages under monadic second-order
transductions.7 This generalizes not only string-
generating formalisms like linear context-free
rewriting systems (Vijay-Shanker et al., 1987;
Weir, 1992) but also context-free languages of
graphs (Engelfriet and Maneth, 2000) and linear
λ-terms (Kanazawa, 2009a; Kanazawa, 2010).8

This perspective suggests a modular approach
to framework revision in the face of problematic
natural language phenomena. Transductive inter-
pretations are an integral, if not universally recog-
nized, component of restrictive grammar frame-
works. Hence, to meet new descriptive challenges
such as those posed by 2P clitics, it is natural
to extend those frameworks’ interpretive compo-
nents by means of MSO rather than rebuilding
them from scratch.

No software toolkit for MSO transduction com-
parable to the XFST toolkit for regular ex-
pressions (Beesley and Karttunen, 2003) or the
MONA toolkit for MSO (Henriksen et al., 1995)
presently exists, however. Nevertheless, MSO is
an excellent candidate for a high-level specifica-
tion language for tree transformations, promising
to play the same role for tree transduction that lan-
guages such as XFST play for string transduction.
MSO meanwhile serves the useful purpose of pro-
viding a denotational check on the complexity of
tree transformation algorithms.

Acknowledgments

Many thanks to John Hale, Sarah Murray,
Michael Weiss, and three anonymous reviewers
for their valuable comments. Thanks also to
Chung-chieh Shan, Chris Barker, Greg Kobele,
Makoto Kanazawa, and Zoltán Varjú for their
conversation and inspiration. This research was
supported by the Social Sciences and Humanities
Research Council.

6See for instance Michaelis et al. (2000), de Groote
(2001), Ranta (2002), Morawietz (2003), Muskens (2003),
and Pollard (2008), among many others.

7See Kolb et al. (2003) for an application of this perspec-
tive to the purely syntactic crossing dependencies of Dutch
and Swiss German noted by a reviewer.

8Closely related perspectives can be found in the frame-
works of second-order Abstract Categorial Grammar and
Koller & Kuhlmann (2011)’s “interpreted regular tree gram-
mar” paradigm.

39

References
Alexandra Y. Aikhenvald. 2003. Typological parame-

ters for the study of clitics, with special reference to
Tariana. In Robert M. W. Dixon and Alexandra Y.
Aikhenvald, editors, Word: a Cross-Linguistic Ty-
pology, pages 42–78. Cambridge University Press,
Cambridge.

Stephen R. Anderson. 2005. Aspects of the Theory of
Clitics. Oxford University Press, Oxford.

Emmon Bach. 1987. Some generalizations of cat-
egorial grammars. In Walter J. Savitch, Emmon
Bach, William Marsh, and Gila Safran-Naveh, ed-
itors, The Formal Complexity of Natural Language,
pages 251–279. D. Reidel, Dordrecht.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Publications, Stanford.

Roderick Bloem and Joost Engelfriet. 2000. A com-
parison of tree transductions defined by monadic
second order logic and by attribute grammars. Jour-
nal of Computer and System Sciences, 6(1):1–50.

Tina Bögel, Miriam Butt, Ronald M. Kaplan,
Tracy Holloway King, and John T. Maxwell. 2010.
Second position and the prosody-syntax interface.
In Miriam Butt and Tracy Holloway King, editors,
Proceedings of the LFG10 Conference, pages 107–
126.

Hubert Comon, Max Dauchet, Remi Gilleron, Christof
Löding, Florent Jacquemard, Denis Lugiez, So-
phie Tison, and Marc Tommasi. 2007. Tree au-
tomata techniques and applications. Available at:
http://www.grappa.univ-lille3.fr/tata.

Bruno Courcelle and Joost Engelfriet. 2012. Graph
structure and monadic second-order logic: a lan-
guage theoretic approach. In press.

Bruno Courcelle. 1991. The monadic second-order
logic of graphs V: on closing the gap between defin-
ability and recognizability. Theoretical Computer
Science, 80:153–202.

Philippe de Groote. 2001. Towards abstract categorial
grammars. In Association for Computational Lin-
guistics, 39th Annual Meeting, pages 148–155.

Joost Engelfriet and Sebastian Maneth. 1999. Macro
tree transducers, attribute grammars, and MSO de-
finable tree translations. Information and Computa-
tion, 154:34–91.

Joost Engelfriet and Sebastian Maneth. 2000. Tree
languages generated by context-free graph gram-
mars. In Hartmut Ehrig, editor, Graph Transforma-
tion, pages 15–29, Berlin and Heidelberg. Springer
Verlag.

Joost Engelfriet, Eric Lilin, and Andreas Maletti.
2009. Extended multi bottom-up tree transducers:
Composition and decomposition. Acta Informatica,
46:561–590.

Zoltán Fülöp, Armin Kühnemann, and Heiko Vogler.
2004. A bottom-up characterization of determin-

istic top-down tree transducers with regular look-
ahead. Information Processing Letters, 91:57–67.

Aaron Halpern. 1995. On the Placement and Mor-
phology of Clitics. CSLI Publications, Stanford.

Jesper G. Henriksen, Jakob Jensen, Michael
Jørgensen, Nils Klarlund, Robert Paige, Theis
Rauhe, and Anders Sandholm. 1995. MONA:
Monadic second-order logic in practice. Lecture
Notes in Computer Science, 1019:89–110.

Sharon Inkelas and Draga Zec. 1990. Prosodi-
cally constrained syntax. In Sharon Inkelas and
Draga Zec, editors, The phonology–syntax connec-
tion, pages 365–378. University of Chicago Press,
Chicago.

Makoto Kanazawa. 2009a. A lambda calculus char-
acterization of MSO definable tree transductions.
Talk given at the 10th Asian Logic Conference.

Makoto Kanazawa. 2009b. Second-order abstract cat-
egorial grammars. Manuscript.

Makoto Kanazawa. 2010. Second-order abstract cat-
egorial grammars as hyperedge replacement gram-
mars. Journal of Language, Logic, and Informa-
tion, 19(2):137–161.

Oleg Kiselyov and Chung-chieh Shan. 2010.
Lambda: the ultimate syntax-semantics interface.
NASSLLI 2010 course notes.

Hans-Peter Kolb, Jens Michaelis, Uwe Mönnich, and
Frank Morawietz. 2003. An operational and deno-
tational approach to non-context-freeness. Theoret-
ical Computer Science, 293:261–289.

Alexander Koller and Marco Kuhlmann. 2011. A gen-
eralized view on parsing and translation. In Pro-
ceedings of the 12th International Conference on
Parsing Technologies, pages 2–11.

Andreas Maletti. 2011. Tree transformations and de-
pendencies. Lecture Notes in Computer Science,
6878:1–20.

Jens Michaelis, Uwe Mönnich, and Frank Morawietz.
2000. Derivational minimalism in two regular and
logical steps. In Proceedings of TAG+ 5.

Frank Morawietz. 2003. Two-Step Approaches to Nat-
ural Language Formalisms. Mouton de Gruyter,
Berlin and New York.

Reinhard Muskens. 2003. Language, lambdas, and
logic. In Richard T. Oehrle and Geert-Jan Krui-
jff, editors, Resource sensitivity in binding and
anaphora, pages 23–54. Kluwer, Dordrecht.

Marina Nespor and Irene Vogel. 1986. Prosodic
Phonology. Foris, Dordrecht.

Tito Orlandi. 2004. Towards a computational gram-
mar of Sahidic Coptic. In Jacques van der Vliet
and Mat Immerzeel, editors, Coptic studies on the
threshold of a new millennium, pages 125–130,
Leuven. Peeters.

Carl Pollard. 2008. An introduction to convergent
grammar. Manuscript.

40

Aarne Ranta. 2002. Grammatical Framework. Jour-
nal of Functional Programming, 14:145–189.

Chris Reintges. 2004. Coptic Egyptian (Sahidic Di-
alect). Rüdiger Köppe Verlag, Köln.

Elisabeth Selkirk. 1986. On derived domains in sen-
tence phonology. Phonology Yearbook, 3:371–405.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions pro-
duced by various grammatical formalisms. In Pro-
ceedings of the 25th annual meeting on Association
for Computational Linguistics.

Jacob Wackernagel. 1892. Über ein Gesetz der
indogermanischen Wortstellung. Indogermanische
Forschungen, 1:333–436.

David J. Weir. 1992. Linear context-free rewriting
systems and deterministic tree-walking transducers.
In Proceedings of the 30th annual meeting on Asso-
ciation for Computational Linguistics.

Draga Zec. 2005. Prosodic differences among func-
tion words. Phonology, 22:77–112.

Arnold M. Zwicky. 1977. On clitics. Manuscript.

41

Author Index

Ashton, Neil, 31

Braune, Fabienne, 1
Büchse, Matthias, 11

Fischer, Anja, 11

Maletti, Andreas, 1

Purtee, Adam, 21

Quernheim, Daniel, 1

Schubert, Lenhart, 21
Seemann, Nina, 1

43

	Program
	Preservation of Recognizability for Weighted Linear Extended Top-Down Tree Transducers
	Deciding the Twins Property for Weighted Tree Automata over Extremal Semifields
	TTT: A Tree Transduction Language for Syntactic and Semantic Processing
	Second Position Clitics and Monadic Second-Order Transduction

