
EACL 2012

13th Conference of the European Chapter of the
Association for Computational Linguistics

Proceedings of ROBUS-UNSUP 2012: Joint Workshop on
Unsupervised and Semi-Supervised Learning in NLP

April 23 - 27 2012
Avignon France



c© 2012 The Association for Computational Linguistics

ISBN 978-1-937284-19-0

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii



Foreword

In recent years, there has been an increased interest in minimizing the need for annotated data in
NLP. Significant progress has been made in the development of both semi-supervised and unsupervised
learning approaches. Semi-supervised approaches are already showing remarkable empirical success,
with models that exploit mixtures of labeled and unlabeled data obtaining best results in several tasks.
Although unsupervised approaches have proved more challenging than semi-supervised ones, their
further development is particularly important because they carry the highest potential in terms of avoiding
the annotation cost. Such approaches can be applied to any language or genre for which adequate raw
text resources are available.

This workshop aimed to bring together researchers dedicated to designing and evaluating unsupervised
and semi-supervised learning algorithms for NLP problems. The workshop accepted submissions in
any topic related to unsupervised and semi-supervised learning. However, specific focus was given to
two special themes: robust algorithms and explorations of the continuum from unsupervised to semi-
supervised learning.

Robust Algorithms: By more robust unsupervised or semi-supervised learning algorithms we mean
algorithms with few parameters that give good results across different data sets and/or different
applications. Many algorithms including EM, self-training and co-training are very parameter-sensitive,
and parameter tuning has therefore become an important research topic. We explicitly encourage
submissions that present robust algorithms or evaluate the robustness of known algorithms.

The Continuum from Unsupervised to Semi-Supervised Learning: The distinction between unsupervised
and semi-supervised learning approaches is often not very clear, and we explicitly encourage submissions
about grey-zone approaches such as weak and indirect supervision, learning from nearly free annotations
(e.g. html mark-up), joint learning from several modalities, cross-language adaptation, and learning with
knowledge-based priors or posteriors.

The workshop was carried out as a joint workshop between two workshop series. Predecessors are
UNSUP-2011 — First Workshop on Unsupervised Learning in NLP (held at EMNLP 2011, Edinburgh,
Scotland, UK) and ROBUS 2011 - Workshop on Robust Unsupervised and Semisupervised Methods in
Natural Language Processing (in conjunction with RANL 2011, Hissar, Bulgaria). We invited technical
papers as well as survey and position papers.

For the workshop, we received 10 submissions, of which we accepted 7.

Avignon, April 2012

The organizing committee
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Abstract

Unsupervised dependency parsing is one of
the most challenging tasks in natural lan-
guages processing. The task involves find-
ing the best possible dependency trees from
raw sentences without getting any aid from
annotated data. In this paper, we illus-
trate that by applying a supervised incre-
mental parsing model to unsupervised pars-
ing; parsing with a linear time complex-
ity will be faster than the other methods.
With only 15 training iterations with linear
time complexity, we gain results compara-
ble to those of other state of the art methods.
By employing two simple universal linguis-
tic rules inspired from the classical depen-
dency grammar, we improve the results in
some languages and get the state of the art
results. We also test our model on a part of
the ongoing Persian dependency treebank.
This work is the first work done on the Per-
sian language.

1 Introduction

Unsupervised learning of grammars has achieved
considerable focus in recent years. The lack
of sufficient manually tagged linguistic data and
the considerable successes of unsupervised ap-
proaches on some languages have motivated re-
searchers to test different models of unsupervised
learning on different linguistic representations.

Since the introduction of the dependency model
with valence (DMV) proposed by Klein and Man-
ning (2004), dependency grammar induction has
received great attention by researchers. DMV
was the first model to outperform the right attach-
ment accuracy in English. Since this achievement,
the model has been used by many researchers

(e.g. (Cohen and Smith, 2010); (Gillenwater et al.,
2011); (Headden III et al., 2009); and (Spitkovsky
et al., 2011b)).

The main task of unsupervised dependency
parsing is to obtain the most likely dependency
tree of a sentence without using any annotated
training data. In dependency trees, each word has
only one head and the head of the sentence is a de-
pendent of an artificial root word. Problems such
as data sparsity and a large search space that in-
creases the ambiguity have made the task difficult.
Even deciding the direction of the link between
two words in a dependency relation has made the
task more difficult than finding phrase structures
themselves (Klein and Manning, 2004).

In this paper, we propose a model based on
Arc-Standard Transition System of Nivre (2004),
which is known as an incremental greedy projec-
tive parsing model that parses sentences in lin-
ear time. To the best of our knowledge, the only
incremental unsupervised dependency parsing is
the model of Daumé III (2009) with Shift-Reduce
parsing model (Nivre, 2003).1

Our model is not lexicalized, has a simple fea-
ture space and converges in 15 iterations with
a linear (O(n)) parsing and training time, while
other methods based on DMV in the best case
work inO(n3) time complexity withO(n3) mem-
ory use for sentences with of length n. We be-
lieve that the output of this model can also im-
prove DMV.2 In addition, we use punctuation
clues (Spitkovsky et al., 2011c), tying feature sim-
ilarity in the transition system configuration, and

1The other study is in Seginer (2007) that is for con-
stituency parsing (phrase structure extraction).

2For the effect of model initialization in unsupervised de-
pendency parsing, see Gimpel and Smith (2011).

1



“baby steps” notion (Spitkovsky et al., 2009) to
improve the model accuracy.

We test our model on 9 CoNLL 2006 and 2007
shared task data sets (Buchholz and Marsi, 2006;
Nivre et al., 2007) and WSJ part of Penn treebank
and show that in some languages our model is bet-
ter than the recent models. We also test our model
on a part of an ongoing first Persian dependency
corpus (Rasooli et al., 2011). Our study may be
the first work to test dependency parsing on the
Persian language.

The remainder of this paper is organized as fol-
lows. In Section 2, related work on unsupervised
dependency parsing is reviewed. In Section 3, we
describe our dependency parsing model. In Sec-
tion 4 and Section 5, after the reporting experi-
mental results on several languages, the conclu-
sion is made.

2 Related Work

The first considerable work on unsupervised de-
pendency parsing which outperforms the base-
line (right attachment) accuracy in English was
proposed by Klein and Manning (2004). The
model is called dependency model with valence
(DMV). In the DMV, each word can be the
head of the sentence with the probability of
P (root|X). Each word X , decides to get a
child Y from a direction (right or left), with
the probability PCHOOSE(X|Y, dir, adj), where
adj is a Boolean value indicating whether the
word has gotten a child in the direction dir or
not. The other probability used in the DMV
is PSTOP (X|Y, dir, adj) that means whether to
stop getting dependents from the direction with
adjacency value or not. All the probabilities in the
model are assumed to be independent and the de-
pendency tree likelihood is a product of all prob-
abilities. Only part of speech (POS) tags are used
as features and the probabilities are multinomial.
The model uses the inside-outside algorithm to
find all possible subtrees efficiently in Expecta-
tion Maximization (EM) algorithm.

Several researchers have tried to improve and
modify the DMV. In Headden III et al. (2009), by
using the lexical values with the frequency more
than 100 and defining tied probabilistic context
free grammar (PCFG) and Dirichlet priors, the ac-
curacy is improved. In Smith and Eisner (2005),
by producing artificial neighbors of the feature
space via actions such as deletion of one word,

substitution of adjacent words and adding a word,
the likelihood of the true feature space in all
neighbors is calculated. That method is known
as contrastive estimation (CE).

In Spitkovsky et al. (2009), the idea of learning
the initial parameters of the model from shorter
sentences leads to a method named “baby steps”.
In “baby steps”, the model prior of each training
set with the sentence length less than or equal to
N , is achieved by training DMV on the training
set with the sentence length less than or equal to
N − 1. The other method used in the mentioned
work, is “less is more” which hypothesize that
training on a subset of all data (with the length
of less than or equal to 15) in batch mode is more
useful than training on all data. In Spitkovsky et
al. (2010a), a combination of “baby steps” and
“less is more”, named “leapfrog” is applied to
the DMV. In Spitkovsky et al. (2011b), a mixture
of EMs is used to improve the DMV by trying
to escape from local maxima; i.e., changing the
EM policy in some iterations in order to escape
from local maxima. The model is termed “lateen”
EM. In Spitkovsky et al. (2010b), HTML hyper-
text tags are used as indicators of phrases in or-
der to localize the search space of the dependency
model. In Spitkovsky et al. (2011c), punctuation
marks are used as indicators of local dependencies
of the words in the sentence.

In Cohen and Smith (2010), shared logistic nor-
mal distribution is used to tie grammatical roles
that are not assumed to be independent from each
other. In the study, the bilingual similarity of each
POS tag probability in the dependency model is
applied to the probability model. In Blunsom and
Cohn (2010), Pitman-Yor priors (PYP) are ap-
plied to the DMV. Furthermore, tree substitution
grammar (TSG) is used as an intermediate repre-
sentation of the tree. In Gillenwater et al. (2011),
a mathematical model is employed to overcome
the posterior sparsity in the DMV, by defining
constraints on the probability model.

There are also some models different from
DMV. In Daumé III (2009), based on a stochas-
tic search method, Shift-Reduce transition pars-
ing model of Nivre (2003) is applied. The model
is greedy and selects an action stochastically ac-
cording to each action probability at the time. The
advantage of the model lies on its parsing and
training speed. In Naseem and Barzilay (2011),
sparse semantic annotations in texts are used as
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Initialization 〈nil,W,Φ〉
Termination 〈S, nil, A〉
Left-Reduce 〈wiwj |S, I, A〉 → 〈wj |S, I, A ∪ 〈wj , wi〉〉
Right-Reduce 〈wiwj |S, I, A〉 → 〈wi|S, I, A ∪ 〈wi, wj〉〉
Shift 〈S,wi|I, A〉 → 〈wi|S, I, A〉

Figure 1: Actions in Arc-Standard Transition System (Nivre, 2004)

clues to unsupervised parsing. In Mareček and
Žabokrtský (2011), by applying Gibbs sampling
method to count the data occurrences, a simple
probability model (the fraction of each depen-
dency relation divided by the number of head POS
tags) is used. In that model, non-projective depen-
dency trees are allowed and all noun-root depen-
dency probabilities are multiplied by a small num-
ber, to decrease the chance of choosing a noun-
root dependency. There are also some studies in
which labeled data in one language is employed
to guide unsupervised parsing in the others (Co-
hen et al., 2011).

3 Fast Unsupervised Parsing

In this section, after a brief description of the Arc-
Standard parsing model, our probability model,
and the unsupervised search-based structure pre-
diction (Daumé III, 2009) are reviewed. After
these descriptions, we go through “baby steps,”
the use of curricula in unsupervised learning (Tu
and Honavar, 2011), and the use of punctuation
in unsupervised parsing. Finally, we describe our
tied feature model that tries to overcome the data
sparsity. In this paper, a mixture of “baby steps”
and punctuation clues along with search-based
structure prediction is applied to the Arc-Standard
model.

3.1 Arc-Standard Transition Model

The parser in this model has a configuration repre-
sented by 〈S, I, A〉, where S is a stack of words,
I is a buffer of input words which are not pro-
cessed yet andA is the list of all arcs that are made
until now. The parser initializes with 〈nil,W, φ〉
in which W is a string of all words in the sen-
tence, nil shows a stack with a root word and Φ
shows an empty set. The termination configura-
tion is shown as 〈S, nil, A〉, where S shows an
empty stack with only root word, nil shows an
empty buffer and A is the full arc set. An arc in
which wj is the head of wi is shown by wj → wi

or (wj , wi).
As shown in Figure 1, there are three actions

in this model. In the shift action, the top-most
input word goes to the top of the stack. In the left-
reduce action, the top-most stack word becomes
the head of the second item in the stack and the
second item is removed from the stack. On the
other hand, in the right-reduce action, the second
word in the stack becomes the head of the top item
in the stack and the top item is removed from the
stack.

3.2 Feature Space and Probability Model
The feature space that we use in this model is
a tuple of three POS tags; i.e., the first item in
the buffer, the top-most and the second item in
the stack. The probability of each action is in-
spired from Chelba and Jelinek (2000) as in equa-
tion (1). In each step in the configuration, the
parser chooses an action based on the probability
in equation (1), where feat is the feature value
and act is an action.

P (act, feat) = P (act) · P (feat|act) (1)

The action selection in the training phase is
done stochastically. In other words, in every step
there is a maximum of 3 actions and a minimum
of one action.3 After calculating all probabili-
ties, a roulette wheel is made to do multinomial
sampling. The sampling is done with stochas-
tic EM (Celeux and Diebolt, 1985) in a roulette
wheel selection model.

The probabilities are initialized equally (except
that P (shift) = 0.5 and P (right − reduce) =
P (left− reduce) = 0.25). After sampling from
the data, we update the model as in equations 2–
4, where σ is a smoothing variable and Nf is the
number of all possible unique features in the data
set. C(·) is a function that counts the data from

3For example, in the first state only shift is possible and
in the last state only right-reduce is possible.
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samples. In equations 3 and 4, sh, r − r and
l−r are shift, right-arc and left-arc actions respec-
tively. C(Action, Feature) is obtained from the
samples drawn in the training phase. For exam-
ple, if the right-reduce action is selected, we add
its probability to C(right− reduce, feature).

P (feat|act) =
C(act, feat) + σ

C(act) +Nfσ
(2)

P (sh) = 0.5 (3)

P (act) =
C(act) + σ

C(r − r) + C(l − r) + 2σ
;

act 6= Shift

(4)

3.3 Unsupervised Search-Based Structure
Prediction

Since there are 32n+1 possible actions for a sen-
tence with the length of n it seems impractical
to track the search space for even middle-length
sentences. Accordingly, in Daumé III (2009) a
stochastic search model is designed to improve
the model accuracy based on random actions. In
that work, with each configuration step, the trainer
selects one of the actions according to the proba-
bility of each action stochastically. By choosing
actions stochastically, a set of samples is drawn
from the data and the model parameters are up-
dated based on the pseudo-code in Figure 2. In
Figure 2, π is known as the policy of the prob-
ability model and β is a constant number which
changes in each iteration based on the iteration
number (β = 1

iteration#3 ). We employ this model
in our work to learn probability values in equa-
tion 1. The learning from samples is done via
equations (2–4).

3.4 “Baby Steps” Incremental Parsing

In Spitkovsky et al (2009), the idea that shorter
sentences are less ambiguous, hence more in-
formative, is applied to the task. Spitkovsky et
al. (2009) emphasize that starting from sentences
with a length of 1 and iterating on sentences with
the length ≤ N from the probabilities gained
from the sentences with the length ≤ N − 1,
leads to better results.

Initialize π = π∗

while not converge
Take samples stochastically
h← learn from samples
π = βπ + (1− β)h

end while
return π

Figure 2: Pseudo-code of the search-based structure
prediction model in Daumé III (2009)

We also use “baby steps” on our incremental
model. For the sentences having length 1 through
5, we only iterate once in each sentence length.
At those sentence lengths, the full search space is
explored (all trees are made by doing all possi-
ble actions in each state of all possible configura-
tions), while for sentence length 6 towards 15, we
iterate at each step 3 times, only choosing one ac-
tion stochastically at each state. The procedure is
done similarly for all languages with the same pa-
rameters. In fact, the greedy nature of the model
encourages us to bail out of each sentence length
quickly. In other words, we want to jump out of
early local maxima, as in early-terminating lateen
EM (Spitkovsky et al., 2011b).

In curricula (Tu and Honavar, 2011), smooth-
ing variable for shorter sentences is larger than
smoothing variable for longer sentences. With re-
gards to the idea, we start with smoothing variable
equal to 1 and multiply it on each sentence length
by a constant value equal to e−1.

3.5 Punctuation Clues
Spitkovsky et al. (2011c) show that about 74.0%
of words in English texts occurring between two
punctuation marks have only one word linking
with other words of the sentence. This character-
istic is known as “loose”. We apply this restriction
on our model to improve the parsing accuracy and
decrease the total search space. We show that this
clue not only does not improve the dependency
parsing accuracy, but also decreases it in some oc-
casions.

3.6 Tying Probabilities with Feature
Similarity Measure

We assume that the most important features in
the feature set for right-reduce and left-reduce ac-
tions are the two top words in the stack. On the
other hand, for the shift action, the most impor-
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tant words are first buffer and top stack words. In
order to solve the sparsity problem, we modify
the probability of each action based on equation
(5). In this equation, neigh(act, feat) is gained
via searching over all features with the same top
and second stack item for left-reduce and right-
reduce, and all features with the same top stack
and first buffer item for the shift action.

P ′(feat|act) =

P (feat|act) +
∑

f ′∈neigh(act,feat) P (f ′|act)

C(neigh(act,feat))

2

(5)

3.7 Universal Linguistic Heuristics to
Improve Parsing Accuracy

Based on the nature of dependency grammar, we
apply two heuristics. In the first heuristic, we mul-
tiply the probability of the last verb reduction by
10−10 in order to keep verbocentricity of the de-
pendency grammar. The last verb reduction oc-
curs when there is neither a verb in the buffer
nor in the stack except the one that is going to
be reduced by one of the right-arc or left-arc ac-
tions. In other words, the last verb remaining
on the stack should be less likely to be removed
than the other actions in the current configura-
tion.4 In the second heuristic, in addition to the
first heuristic, we multiply each noun → verb,
adjective → verb, and adjective → noun by
0.1 in order to keep the nature of dependency
grammar in which nouns and adjective in most
cases are not able to be the head of a verb and an
adjective is not able to be the head of a noun.5 We
show in the experiments that, in most languages,
considering this nature will help improve the pars-
ing accuracy.

We have tested our model on 9 CoNLL data
sets (Buchholz and Marsi, 2006; Nivre et al.,
2007). The data sets include Arabic, Czech, Bul-
garian, Danish, Dutch, Portuguese, Slovenian,
Spanish, and Swedish. We have also tested our
model on a part of the ongoing project of Persian
dependency treebank. The data set includes 2,113

4It is important to note that the only reason that we
choose a very small number is to decrease the chance of
verb-reduction among three possible actions. Using other
values≤ 0.01 does not change results significantly.

5The are some exceptions too. For example, in the sen-
tence: “I am certain your work is good.” Because of that, we
do not choose a very small number.

train and 235 test sentences.6

As shown in Figure 3, we use the same proce-
dure as in Daumé III (2009), except that we re-
strict β to not be less than 0.005 in order to in-
crease the chance of finding new search spaces
stochastically. As in previous works, e.g., Smith
and Eisner (2005), punctuation is removed for
evaluation.

iteration# = 0
for i=1 to 15 do
Train-set=all sentences-length≤i
max-iter=3
if(i≤ 5)

max-iter=1
end-if

for j=1 to max-iter do
β = max( 1

iteration#3 , 0.005)

iteration#← iteration# + 1
if(i ≤ 5)

samples← find all subtrees
end-if
else
samples← sample instances stochastically

end-else
h← learn from samples
π = βπ + (1− β)h

end-for
σ = σ × e−1

end-for

Figure 3: Pseudo-code of the unsupervised Arc-
Standard training model

4 Evaluation Results

Although training is done on sentences of length
less than 16, the test was done on all sentences in
the test data without dropping any sentences form
the test data. Results are shown in Table 1 on 9
languages. In Table 1, “h1” and “h2” refer to the
two linguistic heuristics that are used in this pa-
per. We also compare our work with Spitkovsky
et al. (2011b) and Mareček and Žabokrtský (2011)

6This dataset is obtained via contacting with the project
team at http://www.dadegan.ir/en/. Recently an official
pre-version of the dataset is released, consisting more
than 12,000 annotated sentences (Dadegan Research Group,
2012). We wish to report results on the dataset in our future
publications.
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Baselines Using Heuristic 1 and 2 Using Heuristic 1 Without any heuristic
Language Rand LA RA fs+punc fs punc fs+punc punc punc+fs simp.
Arabic’07 3.90 59.00 06.00 52.05 52.05 52.05 54.55 54.55 55.64 55.64
Bulgarian 8.00 38.80 17.90 52.48 53.86 46.36 42.75 37.35 35.99 35.99
Czech’07 7.40 29.60 24.20 42.37 42.40 39.31 30.21 27.94 25.17 25.17
Danish 6.70 47.80 13.10 52.14 53.11 52.14 51.10 51.70 46.01 46.01
Dutch 7.50 24.50 28.00 48.14 48.80 48.20 28.30 28.36 23.47 23.45
Persian 9.50 03.90 29.16 51.65 51.37 50.99 49.78 50.99 26.87 26.87
Portuguese 5.80 31.20 25.80 54.86 55.84 46.82 33.84 33.62 28.83 28.83
Slovenian 7.90 26.60 24.30 22.44 22.44 22.43 21.31 21.30 19.47 19.45
Spanish 4.30 29.80 24.70 30.88 31.16 30.88 32.33 32.33 29.63 29.69
Swedish 7.80 27.80 25.90 32.74 34.33 33.52 28.48 28.48 25.74 25.74
Turkish 6.40 01.50 65.40 33.83 27.39 38.13 61.27 47.92 30.56 34.52
Average 6.84 29.14 25.86 43.05 42.98 41.89 39.45 37.69 31.58 31.94

Table 1: Results tested on CoNLL data sets and the Persian data set. “Rand”, “LA” and “RA” stand for random,
left-attach and right-attach, respectively; “punc” refers to punctuation clues and fs refers to feature similarity cue;
“all” refers to using both heuristics h1 and h2; and “simp.” refers to the simple model.

in Table 2. As shown in Table 2, our model out-
performs the accuracy in 7 out of 9 languages.

The Effect of Feature Similarity
As shown in Table 1, feature similarity cannot
have any effect on the simple model. When we
add linguistic information to the model, this fea-
ture similarity measure keeps the trainer from
diverging. In other words, the greedy nature
of the model becomes endangered when incom-
plete knowledge (as in our linguistic heuristics)
is used. Incomplete knowledge may cause early
divergence. In other words, the greedy algo-
rithm tracks the knowledge which it has and does
not consider other probable search areas. This
phenomenon may cause early divergence in the
model. By using feature similarity, we try to es-
cape from this event.

The Effect of Punctuation Clues
As shown in Table 1, in most languages punc-
tuation clues do not improve the accuracy. This
maybe arises out of the fact that “loose” is not a
good clue for incremental parsing. The other clue
is “sprawl” in which the external link restriction
is lifted. This restriction is in 92.9% of fragments
in English texts (Spitkovsky et al., 2011c), but it
is not implemented and tested in this paper.

4.1 Evaluation on English

We also test our data on Penn Treebank but we do
not gain better results than state of the art meth-
ods. We use the same train and test set as in

Model WSJ’10 WSJ ′∞
h1+fs 45.16 31.97
h1+fs+punc 44.17 30.17
Stoch. EM(1-5) 40.86 33.65
Stoch. EM(1-5)+h1 52.70 42.85
Stoch. EM(1-5)+h1+h2 50.30 41.37
A1+fs+h1 49.9 43.3
Klein and Manning (2004) 43.2 -
Daumé III (2009) 45.4 -
Blunsom and Cohn (2010) 67.7 55.7
Spitkovsky et al. (2011a) - 59.1

Table 3: Results of our model on WSJ, compared
to its counterpart Daumé III (2009) and other DMV-
based models. Since in Blunsom and Cohn (2010) and
Spitkovsky et al. (2011b), other results are reported,
we only limit our report to some of the results on WSJ.
In the Table, “h1” shows heuristic 1 and “fs” shows
the use of feature similarity. Stochastic EM(1-5) is
one test that have done only by applying baby steps
on sentences with the length 1 to 5 without using un-
supervised search-based model. A1 refers to a change
in the model in which smoothing variable in steps 1 to
5 is multiplied by 10.

Spitkovsky et al. (2009). We convert the Penn
treebank data via automatic “head-percolation”
rules (Collins, 1999). We have also tested our
model via simple stochastic EM (without using
unsupervised structure prediction) and show that
the main problem with this method in English is
its fast divergence when jumping from sentence
length 5 to 6. In the model settings tested for
English, the model with heuristic 1 with the fea-
ture similarity is the best setting that we find. By
testing with a smoothing variable ten times bigger
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`````````````̀Language
Method Name

MZ-NR MZ Spi5 Spi6 Our Best

Arabic’07 24.8 25.0 22.0 49.5 55.64
Bulgarian 51.4 25.4 44.3 43.9 53.86
Czech’07 33.3 24.3 31.4 28.4 42.40
Danish 38.6 30.2 44.0 38.3 53.11
Dutch 43.4 32.2 32.5 27.8 48.80
Persian - - - - 51.65
Portuguese 41.8 43.2 34.4 36.7 55.84
Slovenian 34.6 25.4 33.6 32.2 22.44
Spanish 54.6 53.0 33.3 50.6 32.33
Swedish 26.9 23.3 42.5 50.0 34.33
Turkish 32.1 32.2 33.4 35.9 61.27
Average (except Persian) 38.1 31.4 35.1 39.3 46.00

Table 2: Comparison of our work to those of Table 5 (“Spi5”) and Table 6 (“Spi6”) in Spitkovsky et al. (2011b)
and Mareček and Žabokrtský (2011) with Noun-Root constraint (“MZ-NR”) and no constraint (“MZ”). The
comparison results are from Table 4 in Mareček and Žabokrtský (2011). “Our Best” refers to the bold scores in
Table 1.

in the first 5 steps, we have seen that the results
change significantly. The results are shown in Ta-
ble 3.

One main problem of the converted depen-
dencies in English is their conversion errors like
multi-root trees.7 There are many trees in the
corpus that have wrong multi-root dependencies.
Such problems lead us to believe that we should
not rely too much on the results on WSJ part of
the Penn treebank.

5 Analysis and Conclusion

One main aspect of incremental methods is their
similarity to the way that humans read and learn
sentences in language. The interesting character-
istic of incremental parsing lies on its speed and
low memory use. In this paper, we use one new
incremental parsing model on unsupervised pars-
ing for the first time. The simple mathematical
model and its linear training order has made the
model flexible to be used for bigger data sets.
In addition to testing recently used heuristics in
unsupervised parsing, by inspiring basic depen-
dency theory from linguistics, parsing accuracy
has been increased in some languages. We see
that this model is capable of detecting many true
dependencies in many languages.

Some observations show that choosing inap-

7We assume to find only trees that are projective and
single-rooted.

propriate parameters for the model may lead to
unwanted divergence in the model. The diver-
gence is mostly seen in English, where we see
a significant accuracy decrease at the last step in
comparison to step 5 instead of seeing an increase
in the accuracy. With one setting in English, we
reach the accuracy equal to 43% (13% more than
the accuracy of the model reported in this paper).

In some languages like Slovenian, we see that
even with a good undirected accuracy, the model
does not succeed in finding the dependency di-
rection with heuristics. While in Czech, Dutch,
and Bulgarian the second heuristic works well,
it does not change accuracy a lot in other lan-
guages (in languages like Turkish and English this
heuristic decreases accuracy). We believe that
choosing better linguistic knowledge like the ones
in Naseem et al. (2010), tying grammatical rules
from other languages similar to the work in Cohen
and Smith (2010), and choosing better probability
models that can be enriched with lexical features
and broad context consideration (like the works in
supervised incremental dependency parsing) will
help the model perform better on different lan-
guages.

Despite the fact that our study is the first work
done on Persian, we believe that the results that
we achieve for Persian is very considerable, re-
garding the free-word order nature of the Persian
language.
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Abstract

Building shallow semantic representations
from text corpora is the first step to perform
more complex tasks such as text entailment,
enrichment of knowledge bases, or ques-
tion answering. Open Information Extrac-
tion (OIE) is a recent unsupervised strategy
to extract billions of basic assertions from
massive corpora, which can be considered
as being a shallow semantic representation
of those corpora. In this paper, we propose
a new multilingual OIE system based on ro-
bust and fast rule-based dependency pars-
ing. It permits to extract more precise as-
sertions (verb-based triples) from text than
state of the art OIE systems, keeping a cru-
cial property of those systems: scaling to
Web-size document collections.

1 Introduction

There is an increasing interest in capturing shal-
low semantic representations from large amounts
of text, with the aim of elaborating more com-
plex semantic tasks involved in text understand-
ing, such as textual entailment, filling knowledge
gaps in text, or integration of text information
into background knowledge bases. Two recent
approaches to text understanding are interested in
shallow semantics: Machine Reading (Etzioni et
al., 2006) and Learning by Reading (Barker et al.,
2007). Both approaches aim at understanding text
by starting with a very basic representation of the
facts conveyed by the input text. In addition, they
rely on unsupervised strategies. There are, how-
ever, two significant differences between Machine
Reading and Learning by Reading:

The first difference concerns the basic repre-
sentation required at the beginning of the under-

standing process. While Machine Reading is fo-
cused on fixed structures (triples), constituted by
a relation (a verb or verb phrase) and two argu-
ments, in Learning by Reading the text is rep-
resented by means of more flexible predicate-
argument structures (n-tuples) derived from syn-
tactic dependency trees. In Learning by Reading,
on the one hand, relations with more than two ar-
guments are also extracted, and on the other, rela-
tions are not restricted to verb phrases but to what-
ever relation expressed by a dependency based
triple, (head, relation, modifier), also called Ba-
sic Element (Hovy et al., 2005). The second dif-
ference is related to the notion of text domain.
Whereas Machine Reading works on open rela-
tions and unrestricted topics and domains, Learn-
ing by Reading prefers being focused on domain-
specific texts in order to build a semantic model
of a particular topic.

One of the major contributions of Machine
Reading is the development of an extraction
paradigm, called Open Information Extraction
(OIE), which aims at extracting a large set of verb-
based triples (or assertions) from unrestricted text.
An OIE system reads in sentences and rapidly ex-
tracts one or more textual assertions, consisting
in a verb relation and two arguments, which try
to capture the main relationships in each sentence
(Banko et al., 2007). Unlike most relation ex-
traction methods which are focused on a prede-
fined set of target relations, OIE is not limited to
a small set of target relations known in advance,
but extracts all types of (verbal) binary relations
found in the text. The OIE system with best per-
formance, called ReVerb (Etzioni et al., 2011),
is a logistic regression classifier that takes as in-
put PoS-tagged and NP-chunked sentences. So,
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it only requires shallow syntactic features to gen-
erate semantic relations, guaranteeing robustness
and scalability with the size of the corpus. One of
the main critics within the OIE paradigm against
dependency based methods, such as Learning by
Reading, concerns the computational cost asso-
ciated with rich syntactic features. Dependency
parsing could improve precision and recall over
shallow syntactic features, but at the cost of ex-
traction speed (Etzioni et al., 2011). In order to
operate at the Web scale, OIE systems needs to be
very fast and efficient.

In this paper, we describe an OIE method to
generate verb-based triples by taking into account
the positive properties of the two traditions: con-
sidering Machine Reading requirements, our sys-
tem is efficient and fast guaranteeing scalability as
the corpus grows. And considering ideas behind
Learning by Reading, we use a dependency parser
in order to obtain fine-grained information (e.g.,
internal heads and dependents) on the arguments
and relations extracted from the text. In addition,
we make extraction multilingual. More precisely,
our system has the following properties:

• Unsupervised extraction of triples repre-
sented at different levels of granularity: sur-
face forms and dependency level.

• Multilingual extraction (English, Spanish,
Portuguese, and Galician) by making use of
a multilingual rule-based parser, called Dep-
Pattern (Gamallo and González, 2011).

Our claim is that it is possible to perform
Open Information Extraction by making use of
very conventional tools, namely rule-based de-
pendency analysis and simple post-processing ex-
traction rules. In addition, we also show that we
can deal with knowledge-rich syntactic informa-
tion while remaining scalable.

This article is organized as follows. Section 2
introduces previous work on OIE: in particular it
describes three of the best known OIE systems up
to date. Next, in Section 3, the proposed method
is described in detail. Then, some experiments are
performed in Section 4, where our OIE system is
compared against ReVerb. In 5, we sketch some
applications that use the output of our OIE sys-
tem, and finally, conclusions and current work are
addressed in 6.

2 Open Information Extraction Systems

An OIE system extracts a large number of triples
(Arg1, Rel, Arg2)for any binary relation found in
the text. For instance, given the sentence “Vigo
is the largest city in Galicia and is located in the
northwest of Spain”, an OIE system should ex-
tract two triples:(Vigo, is the largest city in, Galicia)
and (Vigo, is located in, northwest of Spain). Up to
now, OIE is focused only on verb-based relations.
Several OIE systems have been proposed, all of
them are based on an extractor learned from la-
belled sentences. Some of these systems are:

• TextRunner (Banko et al., 2008): the ex-
tractor is a second order linear-chain CRF
trained on samples of triples generated from
the Penn Treebank. The input of TextRunner
are PoS-tagged and NP-chunked sentences,
both processes performed with OpenNLP
tools.

• WOE (Wu and Weld, 2010): the extractor
was learned by identifying the shortest de-
pendency paths between two noun phrases,
using training examples of Wikipedia. The
main drawback is that extraction is 30 times
slower than TextRunner.

• ReVerb (Etzioni et al., 2011; Fader et al.,
2011): the extractor is a logistic regression
classifier trained with shallow syntactic fea-
tures, which also incorporates lexical con-
straints to filter out over-specified relation
phrases. It takes as input the same features
as TextRunner, i.e., PoS-tagged and NP-
chunked sentences analyzed with OpenNLP
tools. It is considered to be the best OIE
system up to now. Its performance is 30%
higher than WOE and more than twice that
of TextRunner.

One of the most discussed problems of OIE
systems is that about 90% of the extracted triples
are not concrete facts (Banko et al., 2007) ex-
pressing valid information about one or two
named entities, e.g. “Obama was born in Hon-
olulu”. However, the vast amount of high con-
fident relational triples extracted by OIE systems
are a very useful startpoint for further NLP tasks
and applications, such as common sense knowl-
edge acquisition (Lin et al., 2010), and extrac-
tion of domain-specific relations (Soderland et al.,
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2010). The objective of OIE systems is not to ex-
tract concrete facts, but to transform unstructured
texts into structured information, closer to ontol-
ogy formats.

Nevertheless, some linguistics problems arise.
OIE systems were trained to identify only verb
clauses within the sentences and, therefore, to
extract just binary verb-based relations from the
clause structure. It follows that they cannot be
easily adapted to learn other non-clausal relations
also found in the text. Let us take the following
sentence: “The soccer player of FC Barcelona,
Lionel Messi, won the Fifa World Player of the
Year award”. In addition to the main verb-based
relationship:

(Lionel Messi, won, the Fifa Worlds Player
of the Year award)

which could be extracted by the OIE systems in-
troduced above, it should also be important to ex-
tract other non-verbal relations found within the
noun phrases:

(Messi, is, a soccer player of FC Barcelona)
(Fifa World Player of the Year, is, an award)

However, the cited systems were not trained to
learn such a basic relations.

Besides, the OIE systems are not adapted to
process clauses denoting events with many argu-
ments. Take the sentence: “The first commercial
airline flight was from St. Petersburg to Tampa in
1914”. We should extract, at least, two or three
different relational triples from the verb clause
contained in this sentence, for instance:

(the first commercial airline flight, was from, St. Pe-
tersburg)
(the first commercial airline flight, was to, Tampa)
(the first commercial airline flight, was in, 1914)

Yet, current OIE systems are not able to perform
this multiple extraction. Even if the cited OIE
systems can identify several clauses per sentence,
they were trained to only extract one triple per
clause.

In the following, we will describe a
dependency-based OIE system that overcomes
these linguistic limitations.

3 A Dependency-Based Method for
Open Information Extraction

The proposed extraction method consists of three
steps organized as a chain of commands in a
pipeline:

Dependency parsingEach sentence of the input
text is analyzed using the dependency-based
parser DepPattern, a multilingual tool avail-
able under GPL license1.

Clause constituentsFor each parsed sentence,
we discover the verb clauses it contains and,
then, for each clause, we identify the verb
participants, including their functions: sub-
ject, direct object, attribute, and preposi-
tional complements.

Extraction rules A set of rules is applied on the
clause constituents in order to extract the tar-
get triples.

These three steps are described in detail below.

3.1 Dependency Parsing

To parse text, we use an open-source suite of mul-
tilingual syntactic analysis, DepPattern (Gamallo
and Gonźalez, 2011). The suite includes basic
grammars for five languages as well as a compiler
to build parsers in Perl. A parser takes as input the
output of a PoS-tagger, either, FreeLing (Carreras
et al., 2004) or Tree-Tagger2. The whole process
is robust and fast. It takes2600 words per second
on a Linux platform with 2.4GHz CPU and 2G
memory. The basic grammars of DepPattern con-
tain rules for many types of linguistic phenomena,
from noun modification to more complex struc-
tures such as apposition or coordination. However
their coverage is still not very high. We added
several rules to the DepPattern grammars in En-
glish, Spanish, Portuguese, and Galician, in order
to improve the coverage of our OIE system.

The output of a DepPattern parser consists
of sentences represented as binary dependencies
from the head lemma to the dependent lemma:
rel(head, dep). Consider the sentence “The coach
of Benfica has held a press conference in Lisbon”.

1htpp://gramatica.usc.es/pln/tools/
deppattern.htm

2http://www.ims.uni-stuttgart.
de/projekte/corplex/TreeTagger/
DecisionTreeTagger.html
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(havehold)vp

(thecoachof benfica)np

subj

(a pressconference)np

dobj

(in lisbon)pp

vprep

Figure 1: Constituency tree with function information

The DepPattern dependencies are the following:

spec(coach-2, the-1)
nprep(coach-2, of-3)
term(of-3, benfica-4)
aux(hold-6, have-5)
subj(hold-6, coach-2)
dobj(hold-6, conference-9)
spec(conference-9, a-7)
modif(conference-9, press-8)
vprep(hold-6, in-10)
term(in-10, lisbon-11)

The directed graph formed by these dependencies
will be the input of the following step.

3.2 Clause Constituents

In the second step, we identify the clauses of each
sentence, and, for each clause, we retain the par-
ticipants and their functions with regard to the
verb of the clause. A sentence can contain several
clauses, in particular, we identify the main clause,
relative clauses, and that-clauses.

In our example, there is just one clause consti-
tuted by a verb phrase (“have hold”) and three
participants: the subject”the coach of benfica”,
the direct object”a press conference”, and a
prepositional phrase”in lisbon” . So, the objec-
tive here is to transform the dependency path built
in the first step into a partial constituency tree,
where only the constituents of the clause are se-
lected. The process of constructing the clause
constituents and the verb phrase is as follows.

Given a verb dependency (namelysubj, dobj,
vprep, or attrib), we select the dependent lemma
of the clause verb and then we list all dependent
lemmas linked to the target lemma (as a head)
through the syntactic dependency path. It results
in the construction of the main phrases of the
clause, including information about the head of
the phrase. We show below the three constituents
identified from our example, where the directed
arrows stand for the internal dependencies used
for their identification (the head of each phrase is
in bold):

(a pressconference)np

spec

modif

(the coachof benfica)np

spec nprep term

(in lisbon)pp

term

The verb phrase is also built in a similar way.
It contains all dependent lemmas of the verb that
are not part of the clause constituents identified
before:

(havehold)vp

aux

The three clause constituents are also provided
with information about their function with regard
to the clause verb, as Figure 1 shows. The func-
tion of a constituent inherits the name of the de-
pendent relation linking the clause verb to the
head of the constituent. For instance, the function
of (thecoachof benfica)np is the name of the de-
pendent relation insubj(hold-6, coach-2), that is
subj. The clause constituents as well as the verb
phrase of each clause are the input of the extrac-
tion rules.

3.3 Extraction Rules

The third and last process consists of a small set
of simple extraction rules that are applied on the
clauses identified in the previous step. The out-
put of an extraction rule is a triple whose inter-
nal word tokens are provided with some linguistic
information: lemma, PoS tag, head of the con-
stituent, etc.

The simplest rule is applied on a clause just
containing a subject and a direct object. In such
a case, the two constituents are the arguments of
the triple, while the verb phrase is the relation.
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In our previous example, the clause contains
three arguments: a subject (“the coach of ben-
fica” ), a direct object (“a press conference”),
and a prepositional complement (“in Lisbon” ).
In this case, our strategy is similar to that of
ReVerb system, namely to consider the relation
as the verb phrase followed by a noun phrase
and ending in a preposition. For this purpose,
we have defined an extraction rule that builds
the relation of the triple using the verb phrase,
the direct object, and the head preposition of
the prepositional phrase:“have hold a press
conference in”. The two arguments are:“the
coach of benfica”and “Lisbon” . The triple
generated by our rule is represented as follows:

ARG1: the DT coachN-H of PRP benficaN
REL: haveV hold V-H a DT pressN confer-

enceN-H in PRP
ARG2: LisbonN-H

which contains lemmas, PoS tags (DT, N,
PRP,...), as well as the heads (tag “H”) of the
main constituents. In addition to this syntax-
based representation, the extraction rule also
gives us a surface form of the triple with just
tokens:

(the coach of Benfica, has hold a press conference in,
Lisbon)

Table 1 shows the main rules we defined to ex-
tract triples from patterns of clause arguments.
The order of arguments within a pattern is not
relevant. The argument ’vprep’ stands for a
prepositional complement of the verb, which
consists of a preposition and a nominal phrase
(np). The third row represents the extraction rule
used in our previous example. All rules in Table
1 are applied at different clause levels: main
clauses, relative clauses and that-clauses.

As in the case of all current OIE systems,
our small set of rules only considers verb-based
clause triples and only extract one triple per
clause. We took this decision in order to make a
fair comparison when evaluating the performance
of our system against ReVerb (in the next section).
However, nothing prevents us from writing ex-
traction rules to generate several triples from one
clause with many arguments, or to extract triples
from other patterns of constituents, for instance:

patterns triples
subj-vp-dobj Arg1 = subj

Rel= vp
Arg2 = dobj

subj-vp-vprep Arg1 = subj
Rel= vp+prep (prep from vprep)
Arg2 = np (from vprep)

subj-vp-dobj-vprep Arg1 = subj
Rel= vp+dobj+prep
Arg2 = np (from vprep)

subj-vp-attr Arg1 = subj
Rel= vp
Arg2 = attr

subj-vp-attr-vprep Arg1 = subj
Rel= vp+attr+prep (from vprep)
Arg2 = np (from vprep)

Table 1: Pattern based rules to generate final triples

vp-pp-pp, noun-prep-noun, noun-noun, adj-noun,
or verb-adverb..

Finally, let us note that current OIE systems,
such as ReVerb, produces triples only in tex-
tual, surface form. Substantial postprocessing is
needed to derive relevant linguistic information
from the tuples. By contrast, in addition to surface
form triples, we also provide syntax-based infor-
mation, PoS tags, lemmas, and heads. If more
information is required, it can be easily obtained
from the dependency analysis.

4 Experiments

4.1 Wikipedia Extraction

The system proposed in this paper, hereafter
DepOE, was used to extract triples from the
Wikipedia in four languages: Portuguese, Span-
ish, Galician, and English.3 Before applying the
extractor, the xml files containing the Wikipedia
were properly converted into plaintext. The num-
ber of both sentences and extracted triples are
shown in Table 2. We used PoS-tagged text with
Tree-Tagger as input of DepPattern for the En-
glish extraction, and FreeLing for the other three
languages. Note that, unlike OIE systems de-
scribed in previous work, DepOE can be consid-
ered as being a multilingual OIE system.4

3Wikipedia dump files were downloaded athttp://
download.wikipedia.org on September 2010.

4DepOE is an open source system freely available,
under GPL license, athttp://gramatica.usc.es/

˜ gamallo/prototypes.htm .
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Wikipedia version sentences triples
English 78, 826, 696 47, 284, 799

Spanish 21, 208, 089 6, 527, 195

Portuguese 11, 714, 672 3, 738, 922

Galician 1, 461, 705 480, 138

Table 2: Number of sentences and triples from four
Wikipedias

It is worth mentioning that the number of ex-
tracted triples is lower than that obtained with Re-
Verb, which reaches63, 846, 865 triples (without
considering a threshold for confidence scores).
This is due to the fact that the DepPattern gram-
mars are not complete and, then, they do not per-
form deep analysis, just partial parsing. In par-
ticular, they do not consider all types of coordi-
nation and do not deal with significant linguistic
clausal phenomena such as interrogative, condi-
tional, causal, or adversative clauses. Preliminary
evaluations of the four parsers showed that they
behave in a similar way, yet Portuguese and Gali-
cian parsers achieve the best performance, about
70% f-score.

In this paper, we do not report experimental
evaluation of the OIE system for languages other
than English.

4.2 Evaluation

We compare Dep-OE to ReVerb5, regarding the
quantity and quality of extracted triples just in En-
glish, since ReVerb only can be applied on this
language. Each system is given a set of sentences
as input, and returns a set of triples as output. A
test set of 200 sentences was created by randomly
selecting sentences from the English Wikipedia.
Each test sentence was independently examined
by two judges in order to, on the one hand, iden-
tify the triples actually contained in the sentence,
and on the other, evaluate each extraction as cor-
rect or incorrect. Incoherent and uninformative
extractions were considered as incorrect. Given
the sentence “The relationship between the Tal-
iban and Bin Laden was close”, an example of in-
coherent extraction is:

(Bin Laden, was, close)

Uninformative extractions occur when critical
information is omitted, for instance, when one of

5http://reverb.cs.washington.edu/

the arguments is truncated. Given the sentence
“FBI examined the relationship between Bin
Laden and the Taliban”, an OIE system could
return a truncated triple:

(FBI, examined the relationship between, Bin Landen)

We follow similar criteria to those defined in
previous OIE evaluations (Etzioni et al., 2011).

Concerning the decisions taken by the judges
on the extractions made by the systems, the judges
reached a very high agreement, 93%, with an
agreement score ofκ = 0.83. They also reached
a high agreement, 86%, with regard to the num-
ber of triples (gold standard) found in the test sen-
tences.

The precision of a system is the number of ex-
tractions returned as correct by the system divided
by the number of returned extractions. Recall is
the number of extractions returned as correct by
the system divided by the number of triples iden-
tified by the judges (i.e., the size of the gold stan-
dard). Moreover, to compare our rule-based sys-
tem DepOE to ReVerb, we had to select a par-
ticular threshold restricting the extractions made
by ReVerb. Let us note that this extractor is a lo-
gistic regression classifier that assign confidence
scores to its extractions. We computed precision
and recall for many threshold and selected that
giving rise to the best f-score. Such a threshold
was0.15. So, we compare DepOE to the results
given by ReVerb for those extractions whose con-
fidence score is higher than0.15.

As it was done in previous OIE evaluations, the
judges evaluated two different aspects of the ex-
traction:

• how well the system identify correct relation
phrases,

• the full extraction task, i.e., whether the sys-
tem identifies correct triples (both the rela-
tion and its arguments).

Figures 2 and 3 represent the score average ob-
tained by the two judges. They show that DepOE
system is more precise than ReVerb. This is clear
in the full extraction task, where DepOE achieves
68% precision while ReVerb reaches 52%. By
contrast, as it was expected, DepOE has lower
recall because of the low coverage of the gram-
mars it depends on. Regarding f-score, DepOE

15



ReVerb (<= 0.15) DepOE
0

10

20

30

40

50

60

70

prec

recall

f-score

Figure 2: Evaluation of the extraction of triples (both
relation and its arguments) performed by DepOE and
ReVerb (with a confidence score>= 0.15).
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Figure 3: Evaluation of the relation extraction per-
formed by DepOE and ReVerb (with a confidence
score>= 0.15).

performs better than ReVerb in the full extraction
task, but when only relations are considered, Re-
Verb achieves the highest score.

We found that most of the incorrect extractions
returned by the two systems where cases where
the relation phrase was correctly identified, but
not one of the arguments. However, there are sig-
nificant differences between the two systems con-
cerning the type of problems arising in argument
identification.

The most common errors of ReVerb are both:
incorrect identification of the first argument (arg1)
and extraction of only a truncated part of the sec-
ond argument (arg2), as in the case of coordinat-
ing conjunctions. These two problems are crucial
for ReVerb since more than 60% of incorrect ex-
tractions were cases with incorrect arguments and
correct relations. DepOE has more precise extrac-
tions of the two arguments, in particular of arg1,
since the parser is able to correctly identify the
subject. Nevertheless, it also produces many trun-
cated arg2. Let us see an example. Given the sen-
tence “Cities and towns in Romania can have the
status either of municipiu or oras”, ReVerb was
not able to identify the correct arg1 and returned
a truncated arg2:

(Romania, can have, the status)

DepOE correctly identified the subject (arg1)
but also failed to return the correct arg2:

(Cities and towns in Romania, can have, the status)

In general, when DepOE fails to correctly identify
an argument, it is often trivial to find the reason
of the problem. In the example above, arg2 was
truncated because the English grammar has not
any specific rule linking the particle “either” to
a coordinate expression. So, the improvement
of DepOE depends on improving the grammars
it is based on. Besides the low coverage of the
grammar, there are other sources of problems
concerning the correct identification of argu-
ments. In particular, it is worth mentioning that
the English version of DepOE is not provided
with an efficient Named Entity Recognition
system. This makes it difficult to correctly iden-
tify multiword arguments with Named Entities,
quantities, measures, and dates. Such a problem
was partially solved by the use of FreeLing in
the Portuguese, Spanish, and Galician DepOE
versions.

4.3 Extraction Speed

To test the system’s speed, we ran each extrac-
tor on the 100, 000 first lines of the English
Wikipedia using a Linux platform with 2.4GHz
CPU and 2GB memory. The processing time of
ReVerb was 4 minutes while that of DepOE was 5
minutes and 19 seconds. In this platform, ReVerb
is able to process2, 500 words per second, and
DepOE1, 650. Concerning the use of RAM, Re-
Verb requires the 27% memory of the computer,
while DepOE only needs 0.1%.

5 Applications

The extracted triples can be used for several NLP
applications. The first application we are devel-
oping is a multilingual search engine over the
triples extracted from the Wikipedia. All triples
are indexed with Apache Solr6, which enables it
to rapidly answer queries regarding the extracted
information, as in the query form of ReVerb7.

Another application is to use the extracted
triples to discover commonsense knowledge of

6http://lucene.apache.org/solr/
7http://textrunner.cs.washington.edu/reverbdemo.pl
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teamplay game
teamwin championship
teamwin medal
teamwin game
teamplay match

organismhave DNA
organismuse energy
organism recycle detritus
organism respond to selection
organismmodify environment

Table 3: Some of the most frequent basic propositions
containing the words “team” and “organism”, discov-
ered by our system from Wikipedia.

specific domains. One of the goals of Learning by
Reading is to enable a computer to acquire basic
knowledge of different domains in order to im-
prove question answering systems (Hovy et al.,
2011). We assume that the head expressions of
the most frequent triples extracted from a spe-
cific domain represent basic propositions (com-
mon knowledge) of that domain.

To check this assumption, we built two domain-
specific corpora from Wikipedia: a corpus consti-
tuted by articles about sports, and another corpus
with articles about Biology. Then, we extracted
the triples from those corpora and, for each triple,
we selected just the head words of its three ele-
ments: namely the main verb (and preposition if
any) of the relation and the head nouns of the two
arguments. It resulted in a list of basic proposi-
tions of a specific domain. Table 3 shows some of
the propositions acquired following this method.
They are some of the most frequent propositions
containing two specific words, “team” and “or-
ganism”, in the subject position (arg1) of the
triples. The propositions with “team” were ex-
tracted from the corpus about sports, while those
with “organism” were acquired from the corpus
of Biology.

6 Conclusions and Current Work

We have described a multilingual Open Infor-
mation Extraction method to extract verb-based
triples from massive corpora. The method
achieves better precision than state of the art sys-
tems, since it is based on deep syntactic informa-
tion, namely dependency trees. In addition, given
that dependency analysis is performed by fast, ro-
bust, and multilingual parsers, the method is scal-

able and applied to texts in several languages: we
made experiments in English, Portuguese, Span-
ish, and Galician.

Our work shows that it is possible to perform
Open Information Extraction by making use of
knowledge-rich tools, namely rule-based depen-
dency parsing and pattern-based extraction rules,
while remaining scalable.

Even if in the experiments reported here we did
not deal with relationships that are not binary, the
use of deep syntactic information makes it easy to
build n-ary relations from such cases, for instance
complex events with internal (subject and object)
and external (time and location) arguments:“The
treaty was signed by Portugal in 2003 in Lisbon”.
Furthermore, the use of deep syntactic informa-
tion will also be useful to find important relation-
ships that are not expressed by verbs. For in-
stance, from the noun phrase“Nobel Prize”, we
should extract the basic proposition:(Nobel, isa,
prize).

In current work, we are working on synonymy
resolution for two different cases found in the ex-
tracted triples: first, the case of multiple proper
names for the same named entity and, second,
the multiple ways a relationship can be expressed.
Concerning the latter case, to solve relationship
synonymy, we are making use of classic methods
for relation extraction. Given a predefined set of
target relations, a set of lexico-syntactic patterns
is learned and used to identify those triples ex-
pressing the same relationship. This way, tradi-
tional closed information extraction could be per-
ceived as a specific task aimed at normalizing and
semantically organizing the results of open infor-
mation extraction.
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Abstract

Topic Models (TM) such as Latent Dirich-
let Allocation (LDA) are increasingly used
in Natural Language Processing applica-
tions. At this, the model parameters and
the influence of randomized sampling and
inference are rarely examined — usually,
the recommendations from the original pa-
pers are adopted. In this paper, we ex-
amine the parameter space of LDA topic
models with respect to the application of
Text Segmentation (TS), specifically target-
ing error rates and their variance across dif-
ferent runs. We find that the recommended
settings result in error rates far from opti-
mal for our application. We show substan-
tial variance in the results for different runs
of model estimation and inference, and give
recommendations for increasing the robust-
ness and stability of topic models. Run-
ning the inference step several times and se-
lecting the last topic ID assigned per token,
shows considerable improvements. Similar
improvements are achieved with the mode
method: We store all assigned topic IDs
during each inference iteration step and se-
lect the most frequent topic ID assigned to
each word. These recommendations do not
only apply to TS, but are generic enough to
transfer to other applications.

1 Introduction

With the rise of topic models such as pLSI (Hof-
mann, 2001) or LDA (Blei et al., 2003) in Nat-
ural Language Processing (NLP), an increasing
number of works in the field use topic models to
map terms from a high-dimensional word space
to a lower-dimensional semantic space. TMs
are ’the new Latent Semantic Analysis’ (LSA),

(Deerwester et al., 1990), and it has been shown
that generative models like pLSI and LDA not
only have a better mathematical foundation rooted
in probability theory, but also outperform LSA in
document retrieval and classification, e.g. (Hof-
mann, 2001; Blei et al., 2003; Biro et al., 2008).
To estimate the model parameters in LDA, the ex-
act computation that was straightforward in LSA
(matrix factorization) is replaced by a randomized
Monte-Carlo sampling procedure (e.g. variational
Bayes or Gibbs sampling).

Aside from the main parameter, the number
of topics or dimensions, surprisingly little atten-
tion has been spent to understand the interac-
tions of hyperparameters, the number of sam-
pling iterations in model estimation and inter-
ference, and the stability of topic assignments
across runs using different random seeds. While
progress in the field of topic modeling is mainly
made by adjusting prior distributions (e.g. (Sato
and Nakagawa, 2010; Wallach et al., 2009)), or
defining more complex model mixtures (Heinrich,
2011), it seems unclear whether improvements,
reached on intrinsic measures like perplexity or
on application-based evaluations, are due to an
improved model structure or could originate from
sub-optimal parameter settings or literally ’bad
luck’ due to the randomized nature of the sam-
pling process.

In this paper, we address these issues by sys-
tematically sweeping the parameter space. For
this, we pick LDA since it is the most commonly
used TM in the field of NLP. To evaluate the con-
tribution of the TM, we choose the task of TS:
this task has received considerable interest from
the NLP community, standard datasets and eval-
uation measures are available for testing, and it
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has been shown that this task considerably bene-
fits from the use of TMs, see (Misra et al., 2009;
Sun et al., 2008; Eisenstein, 2009).

This paper is organized as follows: In the next
section, we present related work regarding text
segmentation using topic models and topic model
parameter evaluations. Section 3 defines the Top-
icTiling text segmentation algorithm, which is a
simplified version of TextTiling (Hearst, 1994),
and makes direct use of topic assignments. Its
simplicity allows us to observe direct conse-
quences of LDA parameter settings. Further, we
describe the experimental setup, our application-
based evaluation methodology including the data
set and the LDA parameters we vary in Section 4.

Results of our experiments in Section 5 indi-
cate that a) there is an optimal range for the num-
ber of topics, b) there is considerable variance in
performance for different runs for both model es-
timation and inference, c) increasing the number
of sampling iterations stabilizes average perfor-
mance but does not make TMs more robust, but d)
combining the output of several independent sam-
pling runs does, and additionally leads to large er-
ror rate reductions. Similar results are obtained by
e) the mode method with less computational costs
using the most frequent topic ID that is assigned
during different inference iteration steps. In the
conclusion, we give recommendations to add sta-
bility and robustness for TMs: aside from opti-
mization of the hyperparameters, we recommend
combining the topic assignments of different in-
ference iterations, and/or of different independent
inference runs.

2 Related Work

2.1 Text Segmentation with Topic Models

Based on the observation of Halliday and Hasan
(1976) that the density of coherence relations is
higher within segments than between segments,
most algorithms compute a coherence score to
measure the difference of textual units for inform-
ing a segmentation decision. TextTiling (Hearst,
1994) relies on the simplest coherence relation –
word repetition – and computes similarities be-
tween textual units based on the similarities of
word space vectors. The task of text segmenta-
tion is to decide, for a given text, how to split this
text into segments.

Related to our algorithm (see Section 3.1) are
the approaches described in Misra et al. (2009)
and Sun et al. (2008): topic modeling is used to
alleviate the sparsity of word vectors by mapping
words into a topic space. This is done by extend-
ing the dynamic programming algorithms from
(Utiyama and Isahara, 2000; Fragkou et al., 2004)
using topic models. At this, the topic assignments
have to be inferred for each possible segment.

2.2 LDA and Topic Model Evaluation

For topic modeling, we use the widely applied
LDA (Blei et al., 2003), This model uses a train-
ing corpus of documents to create document-topic
and topic-word distributions and is parameterized
by the number of topics T as well as by two
hyperparameters. To generate a document, the
topic proportions are drawn using a Dirichlet dis-
tribution with hyperparameter α. Adjacent for
each word w a topic zdw is chosen according to
a multinomial distribution using hyperparameter
βzdw

. The model is estimated using m itera-
tions of Gibbs sampling. Unseen documents can
be annotated with an existing topic model using
Bayesian inference methods. At this, Gibbs sam-
pling with i iterations is used to estimate the topic
ID for each word, given the topics of the other
words in the same sentential unit. After inference,
every word in every sentence receives a topic ID,
which is the sole information that is used by the
TopicTiling algorithm to determine the segmenta-
tion. We use the GibbsLDA implementation by
Phan and Nguyen (2007) for all our experiments.

The article of Blei et al. (2003) compares LDA
with pLSI and Mixture Unigram models using the
perplexity of the model. In a collaborative filter-
ing evaluation for different numbers of topics they
observe that using too many topics leads to over-
fitting and to worse results.

In the field of topic model evaluations, Griffiths
and Steyvers (2004) use a corpus of abstracts pub-
lished between 1991 and 2001 and evaluate model
perplexity. For this particular corpus, they achieve
the lowest perplexity using 300 topics. Further-
more, they compare different sampling methods
and show that the perplexity converges faster with
Gibbs sampling than with expectation propaga-
tion and variational Bayes. On a small artificial
testset, small variations in perplexity across dif-
ferent runs were observed in early sampling itera-
tions, but all runs converged to the same limit.
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In Wallach et al. (2009) topic models are eval-
uated with symmetric and asymmetric hyperpa-
rameters based on the perplexity. They observe
a benefit using asymmetric parameters for α, but
cannot show improvement with asymmetric priors
for β.

3 Method

3.1 TopicTiling

For the evaluation of the topic models, a text seg-
mentation algorithm called TopicTiling is used
here. This algorithm is a newly developed al-
gorithm based on TextTiling (Hearst, 1994) and
achieves state of the art results using the Choi
dataset, which is a standard dataset for TS eval-
uation. The algorithm uses sentences as minimal
units. Instead of words, we use topic IDs that
are assigned to each word using the LDA infer-
ence running on sentence units. The LDA model
should be estimated on a corpus of documents that
is similar to the to-be-segmented documents.

To measure the coherence cp between two sen-
tences around position p, the cosine similarity
(vector dot product) between these two adjacent
sentences is computed. Each sentence is repre-
sented as a T -dimensional vector, where T is the
number of topic IDs defined in the topic model.
The t-th element of the vector contains the num-
ber of times the t-th topic is observed in the sen-
tence. Similar to the TextTiling algorithm, lo-
cal minima calculated from these similarity scores
are taken as segmentation candidates.

This is illustrated in Figure 1, where the simi-
larity scores between adjacent sentences are plot-
ted. The vertical lines in this plot indicate all local
minima found.
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Figure 1: Cosine similarity scores of adjacent sen-
tences based on topic distribution vectors. Vertical
lines (solid and dashed) indicate local minima. Solid
lines mark segments that have a depth score above a
chosen threshold.

Following the TextTiling definition, not the
minimum score cp at position p itself is used, but
a depth score dp for position p computed by

di = 1/2 ∗ (cp−1 − cp + cp+1 − cp). (1)

In contrast to TextTiling, the directly neighboring
similarity scores of the local minima are used, if
they are higher than cp. When using topics instead
of words, it can be expected that sentences within
one segment have many topics in common, which
leads to cosine similarities close to 1. Further, us-
ing topic IDs instead of words greatly increases
sparsity. A minimum in the curve indicates a
change in topic distribution. Segment boundaries
are set at the positions of the n highest depth-
scores, which is common practice in text segmen-
tation algorithms. An alternative to a given n
would be the selection of segments according to
a depth score threshold.

4 Experimental Setup

As dataset the Choi dataset (Choi, 2000) is used.
This dataset is an artificially generated corpus that
consists of 700 documents. Each document con-
sists of 10 segments and each segment has 3–
11 sentences extracted from a document of the
Brown corpus. For the first setup, we perform a
10-fold Cross Validation (CV) for estimating the
TM (estimating on 630 documents at a time), for
the other setups we use 600 documents for TM
estimation and the remaining 100 documents for
testing. While we aim to neglect using the same
documents for training and testing, it is not guar-
anteed that all testing data is unseen, since the
same source sentences can find their way in sev-
eral artificially crafted ’documents’. This prob-
lem, however, applies for all evaluations on this
dataset that use any kind of training, be it LDA
models in Misra et al. (2009) or TF-IDF values in
Fragkou et al. (2004).

For the evaluation of the Topic Model in combi-
nation of Text Segmentation, we use the Pk mea-
sure (Beeferman et al., 1999), which is a stan-
dard measure for error rates in the field of TS.
This measure compares the gold standard seg-
mentation with the output of the algorithm. A
Pk value of 0 indicates a perfect segmentation,
the averaged state of the art on the Choi Dataset
is Pk = 0.0275 (Misra et al., 2009). To assess
the robustness of the TM, we sweep over varying
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configurations of the LDA model, and plot the re-
sults using Box-and-Whiskers plots: the box in-
dicates the quartiles and the whiskers are maxi-
mal 1.5 times of the Interquartile Range (IQR) or
equal to the data point that is no greater to the 1.5
IQR. The following parameters are subject to our
exploration:

• T : Number of topics used in the LDA model.
Common values vary between 50 and 500.

• α : Hyperparameter that regulates the sparse-
ness topic-per-document distribution. Lower
values result in documents being represented
by fewer topics (Heinrich, 2004). Recom-
mended: α = 50/T (Griffiths and Steyvers,
2004)

• β : Reducing β increases the sparsity of
topics, by assigning fewer terms to each
topic, which is correlated to how related
words need to be, to be assigned to a topic
(Heinrich, 2004). Recommended: β =
{0.1, 0.01} (Griffiths and Steyvers, 2004;
Misra et al., 2009)

• m Model estimation iterations. Recom-
mended / common settings: m = 500−5000
(Griffiths and Steyvers, 2004; Wallach et al.,
2009; Phan and Nguyen, 2007)

• i Inference iterations. Recommended / com-
mon settings: 100 (Phan and Nguyen, 2007)

• d Mode of topic assignments. At each in-
ference iteration step, a topic ID is assigned
to each word within a document (represented
as a sentence in our application). With this
option, we count these topic assignments for
each single word in each iteration. After all i
inference iterations, the most frequent topic
ID is chosen for each word in a document.

• r Number of inference runs: We repeat the
inference r times and assign the most fre-
quently assigned topic per word at the fi-
nal inference run for the segmentation algo-
rithm. High r values might reduce fluctua-
tions due to the randomized process and lead
to a more stable word-to-topic assignment.

All introduced parameters parameterize the TM.
We are not aware of any research that has used

several inference runs r and the mode of topic as-
signments d to increase stability and varying TM
parameters in combinations with measures other
then perplexity.

5 Results

In this section, we present the results we obtained
from varying the parameters under examination.

5.1 Number of Topics T

To provide a first impression of the data, a 10-fold
CV is calculated and the segmentation results are
visualized in Figure 2.
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Figure 2: Box plots for different number of topics T .
Each box plot is generated from the average Pk value
of 700 documents, α = 50/T , β = 0.1, m = 1000,
i = 100, r = 1. These documents are segmented with
TopicTiling using a 10-folded CV.

Each box plot is generated from the Pk values
of 700 documents. As expected, there is a contin-
uous range of topic numbers, namely between 50
and 150 topics, where we observe the lowest Pk

values. Using too many topics leads to overfitting
of the data and too few topics result in too gen-
eral distinctions to grasp text segments. This is in
line with other studies, that determine an optimum
for T , cf. (Griffiths and Steyvers, 2004), which is
specific to the application and the data set.

5.2 Estimation and Inference iterations

The next step examines the robustness of the topic
model according to the number of model estima-
tion iterations m needed to achieve stable results.
600 documents are used to train the LDA model
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that is applied by TopicTiling to segment the re-
maining 100 documents. From Figure 2 we know
that sampling 100 topics leads to good results.
To have an insight into unstable topic regions we
also inspect performance at different sampling it-
erations using 20 and 250 topics. To assess sta-
bility across different model estimation runs, we
trained 30 LDA models using different random
seeds. Each box plot in Figures 3 and 4 is gen-
erated from 30 mean values, calculated from the
Pk values of the 100 documents. The variation
indicates the score variance for the 30 different
models.

Number of topics: 100
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Figure 3: Box plots with different model estimation
iterations m, with T=100, α = 50/T , β = 0.1, i =
100, r = 1. Each box plot is generated from 30 mean
values calculated from 100 documents.

Using 100 topics (see Figure 3), the burn-in
phase starts with 8–10 iterations and the mean Pk

values stabilize after 40 iterations. But looking
at the inset for large m values, significant vari-
ations between the different models can be ob-
served: note that the Pk error rates are almost
double between the lower and the upper whisker.
These remain constant and do not disappear for
largerm values: The whiskers span error rates be-
tween 0.021 - 0.037 for model estimation on doc-
ument units

With 20 topics, the Pk values are worse as with
100 topics, as expected from Figure 2. Here the
convergence starts at 100 sample iterations. More
interesting results are achieved with 250 topics.
A robust range for the error rates can be found be-
tween 20 and 100 sample iterations. With more
iterations m, the results get both worse and un-

stable: as the ’natural’ topics of the collection
have to be split in too many topics in the model,
perplexity optimizations that drive the estimation
process lead to random fluctuations, which the
TopicTiling algorithm is sensitive to. Manual in-
spection of models for T = 250 revealed that in
fact many topics do not stay stable across estima-
tion iterations.

number of inference iterations
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Figure 5: Figure of box plots for different inference
iterations i and m = 1000, T = 100, α = 50/T ,
β = 0.1, r = 1 .

In the next step we sweep over several infer-
ence iterations i. Starting from 5 iterations, error
rates do not change much, see Figure 5. But there
is still substantial variance, between about 0.019 -
0.038 for inference on sentence units.

5.3 Number of inference runs r

To decrease this variance, we assign the topic not
only from a singe inference run, but repeat the in-
ference calculations several times, denoted by the
parameter r. Then the frequency of assigned topic
IDs per token is counted across the r runs, and we
assign the most frequent topic ID (frequency ties
are broken randomly). The box plot for several
evaluated values of r is shown in Figure 6.

This log-scaled plot shows that both variance
and Pk error rate can be substantially decreased.
Already for r = 3, we observe a significant im-
provement in comparison to the default setting of
r = 1 and with increasing r values, the error rates
are reduced even more: for r = 20, variance and
error rates are is cut in less than half of their orig-
inal values using this simple operation.
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Number of topics: 20

number of sample iterations

P
_k

 v
al

ue

0.1

0.2

0.3

0.4

2 3 5 10 20 50 10
0

30
0

50
0

10
00

● ● ●
●

●
●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

●●

●● ●
● ●

●

●

0.02

0.04

0.06

0.08

0.10

50 10
0

30
0

50
0

10
00

●

●

●

●
● ● ● ● ● ● ● ● ● ●

●

●

●

●●

●●
●

●
●

●

●

Number of topics: 250

number of sample iterations

P
_k

 v
al

ue

0.1

0.2

0.3

0.4

2 3 5 10 20 50 10
0

30
0

50
0

10
00

● ● ● ●
●

●

●

●

●

●

●

●
●

● ● ● ●
●

● ● ●
●

● ● ●

●●

●

●

●

●

●

●

●●

●

●

0.02

0.04

0.06

0.08

0.10

50 10
0

30
0

50
0

10
00

●

●

●

●
● ●

● ●

●

● ● ●
●

● ● ●

●

●●

●

●

Figure 4: Box plots with varying model estimation iterations m applied with T = 20 (left) and T = 250 (right)
topics, α = 50/T , β = 0.1, i = 100, r = 1
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Figure 6: Box plot for several inference runs r, to as-
sign the topics to a word with m = 1000, i = 100,
T = 100, α = 50/T , β = 0.1.

5.4 Mode of topic assignment d

In the previous experiment, we use the topic IDs
that have been assigned most frequently at the last
inference iteration step. Now, we examine some-
thing similar, but for all i inference steps of a sin-
gle inference run: we select the mode of topic
ID assignments for each word across all inference
steps. The impact of this method on error and
variance is illustrated in Figure 7. Using a sin-
gle inference iteration, the topic IDs are almost
assigned randomly. After 20 inference iterations
Pk values below 0.02 are achieved. Using further
iterations, the decrease of the error rate is only

number of inference iterations
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Figure 7: Box plot using the mode method d = true
with several inference iterations i with m = 500, T =
100, α = 50/T , β = 0.1.

marginal. In comparison to the repeated inference
method, the additional computational costs of this
method are much lower as the inference iterations
have to be carried out anyway in the default appli-
cation setting.

5.5 Hyperparameters α and β

In many previous works, hyperparameter settings
α = 50/T and β = {0.1, 0.01} are commonly
used. In the next series of experiments we inves-
tigate how different parameters of these both pa-
rameters can change the TS task.

For α values, shown in Figure 8, we can see
that the recommended value for T = 100 , α =
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0.5 leads to sub-optimal results, and an error rate
reduction of about 40% can be realized by setting
α = 0.1.

alpha values
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Figure 8: Box plot for several alpha values αwithm =
500, i = 100, T = 100, β = 0.1, r = 1.

Regarding values of β, we find that Pk rates
and their variance are relatively stable between
the recommended settings of 0.1 and 0.01. Values
larger than 0.1 lead to much worse performance.
Regarding variance, no patterns within the stable
range emerge, see Figure 9.
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Figure 9: Box plot for several beta values β with m =
500, i = 100, T = 100, α = 50/T , r = 1.

5.6 Putting it all together
Until this point, we have examined different pa-
rameters with respect to stability and error rates
one at the time. Now, we combine what we have

System Pk error σ2 var.
red. red.

default 0.0302 0.00% 2.02e-5 0.00%
α = 0.1 0.0183 39.53% 1.22e-5 39.77%
r = 20 0.0127 57.86% 4.65e-6 76.97%
d = true 0.0137 54.62% 3.99e-6 80.21%
combined 0.0141 53.45% 9.17e-6 54.55%

Table 1: Comparison of single parameter optimiza-
tions, and combined system. Pk averages and variance
are computed over 30 runs, together with reductions
relative to the default setting. Default: α = 0.5, r = 1.
combined: α = 0.1, r = 20, d = true

learned from this and strive at optimal system per-
formance. For this, we contrast TS results ob-
tained with the default LDA configuration with
the best systems obtained by optimization of sin-
gle parameters, as well as to a system that uses
these optimal settings for all parameters. Table 1
shows Pk error rates for the different systems. At
this, we fixed the following parameters: T = 100,
m = 500, i = 100, β = 0.1. For the computa-
tions we use 600 documents for the LDA model
estimation, apply TopicTiling and compute the er-
ror rate for the 100 remaining documents and re-
peat this 30 times with different random seeds.

We can observe a massive improvement for op-
timized single parameters. The α-tuning tuning
results in an error rate reduction of 39.77% in
comparison to the default configurations. Using
r = 20, the error rate is cut in less than half
its original value. Also for the mode mechanism
(d = true) the error rate is halved but slightly
worse than than when using the repeated infer-
ence. Using combined optimized parameters does
not result to additional error decreases. We at-
tribute the slight decline of the combined method
in both in the error rate Pk and in the variance to
complex parameter interactions that shall be ex-
amined in further work. In Figure 10, we visual-
ize these results in a density plot. It becomes clear
that repeated inference leads to slightly better and
more robust performance (higher peak) than the
mode method. We attribute the difference to sit-
uations, where there are several highly probable
topics in our sampling units, and by chance the
same one is picked for adjacent sentences that be-
long to different segments, resulting in failure to
recognize the segmentation point. However, since
the differences are miniscule, only using the mode
method might be more suitable for practical pur-
poses since its computational cost is lower.
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6 Conclusion

In this paper, we examined the robustness of LDA
topic models with respect to the application of
Text Segmentation by sweeping through the topic
model parameter space. To our knowledge, this is
the first attempt to systematically assess the sta-
bility of topic models in a NLP task.

The results of our experiments are summarized
as follows:

• Perform the inference r times using the same
model and choosing the assigned topic ID
per word token taken from the last infer-
ence iteration, improves both error rates and
stability across runs with different random
seeds.

• Almost equal performance in terms of er-
ror and stability is achieved with the mode
mechanism: choose the most frequent topic
ID assignment per word across inference
steps. While error rates were slightly higher
for our data set, this method is probably
preferable in practice because of its lower
computation costs.

• As found in other studies, there is a range for
the number of topics T , where optimal re-
sults are obtained. In our task, performance
showed to be robust in the range of 50 - 150
topics.

• The default setting for LDA hyperparameters
α and β can lead to sub-optimal results. Es-
pecially α should be optimized for the task at

hand, as the utility of the topic model is very
sensitive to this parameter.

• While the number of iterations for model es-
timation and inference needed for conver-
gence is depending on the number of topics,
the size of the sampling unit (document) and
the collection, it should be noted that after
convergence the variance between different
sampling runs does not decrease for a larger
number of iterations.

Equipped with the insights gained from exper-
iments on single parameter variation, we were
able to implement a very simple algorithm for text
segmentation that improves over the state of the
art on a standard dataset by a large margin. At
this, the combination of the optimal α, and a high
number of inference repetitions r and the mode
method (d = true) produced slightly more errors
than a high r alone. While the purpose of this pa-
per was mainly to address robustness and stability
issues of topic models, we are planning to apply
the segmentation algorithm to further datasets.

The most important takeaway, however, is that
especially for small sampling units like sentences,
tremendous improvements in applications can be
obtained when looking at multiple inference as-
signments and using the most frequently assigned
topic ID in subsequent processing – either across
diffeent inference steps or across diffeent infer-
ence runs. These two new strategies seem to be
able to offset sub-optimal hyperparameters to a
certain extent. This scheme is not only applica-
ble to Text Segmentation, but in all applications
where performance crucially depends on stable
topic ID assignments per token. Extensions to
this scheme, like ignoring tokens with a high topic
variability (stop words or general terms) or dy-
namically deciding to conflate several topics be-
cause of their per-token co-occurrence, are left for
future work.
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Abstract
Clustered word classes have been used in
connection with statistical machine transla-
tion, for instance for improving word align-
ments. In this work we investigate if clus-
tered word classes can be used in a pre-
ordering strategy, where the source lan-
guage is reordered prior to training and
translation. Part-of-speech tagging has pre-
viously been successfully used for learn-
ing reordering rules that can be applied
before training and translation. We show
that we can use word clusters for learn-
ing rules, and significantly improve on a
baseline with only slightly worse perfor-
mance than for standard POS-tags on an
English–German translation task. We also
show the usefulness of the approach for
the less-resourced language Haitian Creole,
for translation into English, where the sug-
gested approach is significantly better than
the baseline.

1 Introduction

Word order differences between languages are
problematic for statistical machine translation
(SMT). If the word orders of two languages have
large differences, the standard methods do not
tend to work well, with difficulties in many steps
such as word alignment and modelling of reorder-
ing in the decoder. This can be addressed by ap-
plying a preordering method, that is, to reorder the
source side of the corpus to become similar to the
target side, prior to training and translation. The
rules used for reordering are generally based on
some kind of linguistic annotation, such as part-
of-speech tags (POS-tags).

For many languages in the world, so called less-
resourced languages, however, part-of-speech

taggers, or part-of-speech tagged corpora that can
be used for training a tagger, are not available. In
this study we investigate if it is possible to use
unsupervised POS-tags, in the form of clustered
word classes, as a basis for learning reordering
rules for SMT. Unsupervised tagging methods can
be used for any language where a corpus is avail-
able. This means that we can potentially benefit
from preordering even for languages where tag-
gers are available.

We present experiments on two data sets. First
an English–German test set, where we can com-
pare the results of clustered word classes with
standard tags. We show that both types of tags
beat a baseline without preordering, and that clus-
tered tags perform nearly as well as standard tags.
English and German is an interesting case for re-
ordering experiments, since there are both long
distance movement of verbs and local word or-
der differences, for instance due to differences in
adverb placements. We also apply the method
to translation from the less-resourced language
Haitian Creole into English, and show that it leads
to an improvement over a baseline. The differ-
ences in word order between these two languages
are smaller than for English–German.

Besides potentially improving SMT for less-
resourced languages, the presented approach can
also be used as an extrinsic evaluation method for
unsupervised POS-tagging methods. This is espe-
cially useful for the task of word class clustering
which is hard to evaluate.

2 Unsupervised POS-tagging

There have been several suggestions of clustering
methods for obtaining word classes that are com-
pletely unsupervised, and induce classes from raw
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text. Brown et al. (1992) described a hierarchical
word clustering method which maximizes the mu-
tual information of bigrams. Schütze (1995) de-
scribed a distributional clustering algorithm that
uses global context vectors as a basis for clus-
tering. Biemann (2006) described a graph-based
clustering methods for word classes. Goldwa-
ter and Griffiths (2007) used Bayesian reasoning
for word class induction. Och (1999) described
a method for determining bilingual word classes,
used to improve the extraction of alignment tem-
plates through alignments between classes, not
only between words. He also described a mono-
lingual word clustering method, which is based
on a maximum likelihood approach, using the fre-
quencies of unigrams and bigrams in the training
corpus.

The above methods are fully unsupervised, and
produce unlabelled classes. There has also been
work on what Goldwater and Griffiths (2007)
call POS disambiguation, where the learning of
classes is constrained by a dictionary of the al-
lowable tags for each word. Such work has for
instance been based on hidden Markov models
(Merialdo, 1994), log-linear models (Smith and
Eisner, 2005), and Bayesian reasoning (Goldwa-
ter and Griffiths, 2007).

Word clusters have previously been used for
SMT for improving word alignment (Och, 1999),
in a class-based language model (Costa-jussà et
al., 2007) or for extracting gappy patterns (Gim-
pel and Smith, 2011). To the best of our knowl-
edge this is the first study of applying clustered
word classes for creating pre-translation reorder-
ing rules. The most similar work we are aware
of is Costa-jussà and Fonollosa (2006) who used
clustered word classes in a strategy they call sta-
tistical machine reordering, where the corpus is
translated into a reordered language using stan-
dard SMT techniques in a pre-processing step.
The addition of word classes led to improvements
over just using surface form, but no comparison
to using POS-tags were shown. Clustered word
classes have also been used in a discriminate re-
ordering model (Zens and Ney, 2006), and were
shown to reduce the classification error rate.

Word clusters have also been used for unsu-
pervised and semi-supervised parsing. Klein and
Manning (2004) used POS-tags as the basis of a
fully unsupervised parsing method, both for de-
pendency and constituency parsing. They showed

that clustered word classes can be used instead of
conventional POS-tags, with some result degra-
dation, but that it is better than several baseline
systems. Koo et al. (2008) used features based on
clustered word classes for semi-supervised depen-
dency parsing and showed that using word class
features together with POS-based features led to
improvements, but using word class features in-
stead of POS-based features only degraded results
somewhat.

3 Reordering for SMT

There is a large amount of work on reordering
for statistical machine translation. One way to
approach reordering is by extending the transla-
tion model, either by adding extra models, such
as lexicalized (Koehn et al., 2005) or discrimina-
tive (Zens and Ney, 2006) reordering models or
by directly modelling reordering in hierarchical
(Chiang, 2007) or syntactical translation models
(Yamada and Knight, 2002).

Preordering is another common strategy for
handling reordering. Here the source side of the
corpus is transformed in a preprocessing step to
become more similar to the target side. There
have been many suggestions of preordering strate-
gies. Transformation rules can be handwrit-
ten rules targeting known syntactic differences
(Collins et al., 2005; Popović and Ney, 2006),
or they can be learnt automatically (Xia and Mc-
Cord, 2004; Habash, 2007). In these studies the
reordering decision was taken deterministically
on the source side. This decision can be delayed
to decoding time by presenting several reordering
options to the decoder as a lattice (Zhang et al.,
2007; Niehues and Kolss, 2009) or as an n-best
list (Li et al., 2007).

Generally reordering rules are applied to the
source language, but there have been attempts at
target side reordering as well (Na et al., 2009).
Reordering rules can be based on different lev-
els of linguistic annotation, such as POS-tags
(Niehues and Kolss, 2009), chunks (Zhang et al.,
2007) or parse trees (Xia and McCord, 2004).
Common for all these levels is that a tool like a
tagger or parser is needed for them to work.

In all the above studies, the reordering rules are
applied to the translation input, but they are only
applied to the training data in a few cases, for in-
stance in Popović and Ney (2006). Rottmann and
Vogel (2007) compared two strategies for reorder-
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ing the training corpus, by using alignments, and
by applying the reordering rules to create a lat-
tice from which they extracted the 1-best reorder-
ing. They found that it was better to use the latter
option, to reorder the training data based on the
rules, than to use the original order in the train-
ing data. Using alignment-based reordering was
not successful, however. Another option for us-
ing reorderings in the training data was presented
by Niehues et al. (2009), who directly extracted
phrase pairs from reordering lattices, and showed
a small gain over non-reordered training data.

3.1 POS-based Preordering

Our work is based on the POS-based reorder-
ing model described by Niehues and Kolss
(2009), in which POS-based rules are extracted
from a word aligned corpus, where the source
side is part-of-speech tagged. There are two
types of rules. Short-range rules (Rottmann
and Vogel, 2007) contain a pattern of POS-tags,
and a possible reordering to resemble the tar-
get language, such as VVIMP VMFIN PPER →
PPER VMFIN VVIMP, which moves a personal
pronoun to a position in front of a verb group.
Long-range rules were designed to cover move-
ments over large spans, and also contain gaps
that can match one or several words, such as
VAFIN * VVPP → VAFIN VVPP *, which
moves the two parts of a German verbs together
past an object of any size, so as to resemble En-
glish.

Short-range rules are extracted by identifying
POS-sequences in the training corpus where there
are crossing alignments. The rules are stored as
the part-of-speech pattern of the source on the left
hand side of the rule, and the pattern correspond-
ing to the target side word order on the right hand
side.

Long-range rules are extracted in a similar way,
by identifying two neighboring POS-sequences
on the source side that have crossed alignments.
Gaps are introduced into the rules by replacing
either the right hand side or the left hand side
by a wild card. In order to constrain the appli-
cation of these rules, the POS-tag to the left of the
rule is included in the rule. Depending on the lan-
guage pair it might be advantageous to use rules
that have wildcards either on the left or right hand
side. For German-to-English translation, the main
long distance movement is that verbs move to the

left, and, as shown by Niehues and Kolss (2009),
it is advantageous to use only long-range rules
with left-wildcards, as in the example rule above.
For the other translation direction, it is important
to move verbs to the right, and thus right-wildcard
rules were better.

The probability of both short and long range
rules is calculated by relative frequencies as the
number of times a rule occurs divided by the num-
ber of times the source side occurs in the training
data.

In a preprocessing step to decoding, all rules
are applied to each input sentence, and when a
rule applies, the alternative word order is added
to a word lattice. To keep lattices of a reason-
able size, Niehues and Kolss (2009) suggested us-
ing a threshold of 0.2 for the probability of short-
range rules, of 0.05 for the probability of long
range rules, and blocked rules that could be ap-
plied more than 5 times to the same sentence. We
adopt these threshold values.

In this work we use the short-range reorder-
ing rules of Rottmann and Vogel (2007) and the
long-range rules of Niehues and Kolss (2009). As
suggested we use only right-wildcard rules for
English–German translation. For Haitian Creole,
we have no prior knowledge of the reordering di-
rection, and thus choose to use both left and right
long-range rules. In previous work only one stan-
dard POS-tagset was explored. In this work we in-
vestigate the effect of different type of annotation
schemes, besides only POS-tags. We use several
types of tags from a parser, and compare them to
using unsupervised tags in the form of clustered
word classes. We also apply the reordering tech-
niques to translation from Haitian Creole, a less-
resourced language for which no POS-tagger is
available.

4 Experimental Setup

We conducted experiments for two language
pairs, English–German and Haitian Creole–
English. We always applied the reordering rules
to the translation input, creating a lattice of pos-
sible reorderings as input to the decoder. For the
training data we applied two strategies. As the
first option we used training data from the base-
line system with original word order. As the sec-
ond option we reordered the training data as well,
using the learnt reordering rules to create reorder-
ing lattices for the training data, from which we
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ID Form Lemma Dependency Functional tag Syntax POS Morphology
1 Resumption resumption main:>0 @NH %NH N NOM SG
2 of of mod:>1 @<NOM-OF %N< PREP
3 the the attr:>4 @A> %>N DET
4 session session pcomp:>2 @<P %NH N NOM SG

Table 1: Parser output

extracted the 1-best reordering, as suggested by
Rottmann and Vogel (2007).

For the supervised tagging of the English
source side we use a commercial functional de-
pendency parser.1 The main reason for using a
parser instead of a tagger was that we wanted to
explore the effect of different tagging schemes,
which was available from this parser. An example
of a tagged English text can be seen in Table 1.
In this work we used four types of tags extracted
from the parser output, part-of-speech tags (pos),
dependency tags (dep), functional tags (func) and
shallow syntax tags (syntax). The dependency
tags consist of the dependency label of the word
and the POS-tag of its dependent. For the exam-
ple in Table 1, the sequence of dependency tags
is: main TOP mod N attr N pcomp PREP.
The other tag types are directly exemplified in Ta-
ble 1. The tagsets have different sizes, as shown
in Table 2.

For the unsupervised tags, we used clustered
word classes obtained using the mkcls software,2

which implements the approach of Och (1999).
We explored three different numbers of clusters,
50, 125, and 625. The clustering was performed
on the same corpus as the SMT training.

The translation system used is a standard
phrase-based SMT system. The translation model
was trained by first creating unidirectional word
alignments in both directions using GIZA++ (Och
and Ney, 2003), which are then symmetrized
by the grow-diag-final-and method (Koehn et al.,
2005). From this many-to-many alignment, con-
sistent phrases of up to length 7 were extracted.
A 5-gram language model was used, produced
by SRILM (Stolcke, 2002). For training and de-
coding we used the Moses toolkit (Koehn et al.,
2007) and the feature weights were optimized
using minimum error rate training (Och, 2003).

1http://www.connexor.eu/technology/
machinese/machinesesyntax/

2http://www-i6.informatik.
rwth-aachen.de/web/Software/mkcls.html

Tagset Classes Rules Paths
pos 23 319147 2.1e09
dep 523 328415 2.8e09
func 49 325091 1.5e10
syntax 20 315407 4.5e11
class50 50 303292 6.2e09
class125 125 271348 1.3e07
class625 625 211606 31654

Table 2: Number of tags for each tagset in the English
training corpus, number of rules extracted for each
tagset, and average numbers of paths per sentence in
the testset lattice using each tagset to create rules

The baseline systems were trained using no ad-
ditional preordering, only a distance-based re-
ordering penalty for modelling reordering. For
the Haitian Creole–English experiments we also
added a lexicalized reordering model (Koehn et
al., 2005), both to the baseline and to the re-
ordered systems.

For the English–German experiments, the
translation system was trained and tested using a
part of the Europarl corpus (Koehn, 2005). The
training part contained 439513 sentences and 9.4
million words. Sentences longer than 40 words
were filtered out. The test set has 2000 sentences
and the development set has 500 sentences.

For the Haitian Creole–English experiments
we used the SMS corpus released for WMT11
(Callison-Burch et al., 2011). The corpus con-
tains 17192 sentences and 352326 words. The
test and development data both contain 900 sen-
tences each. Since we know of no POS-tagger for
Haitian Creole, we only compare the clustered re-
sult to a baseline system.

Reordering rules were extracted from the same
corpora that were used for training the SMT sys-
tem. The word alignments needed for reordering
were created using GIZA++ (Och and Ney, 2003),
an implementation of the IBM models (Brown et
al., 1993) of alignment, which is trained in a fully
unsupervised manner based on the EM algorithm
(Dempster et al., 1977).
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5 Results

Table 2 shows the number of rules, and the av-
erage number of paths for each sentence in the
test data lattice, using each tagset. For the stan-
dard tagsets the number of rules is relatively con-
stant, despite the fact that the number of tags in
the tagsets are quite different. For the clustered
word classes, there are slightly fewer rules with
50 classes than for the standard tags, and the num-
ber of rules decreases with a higher number of
classes. For the average number of lattice paths
per sentence, there are some differences for the
standard tags, but it is not related to tagset size.
Again, the clustering with 50 classes has a simi-
lar number as the standard classes, but here there
is a sharp decrease of lattice paths with a higher
number of classes.

The translation results for the English–German
experiments are shown in Table 3. We report
translation results for two metrics, Bleu (Papineni
et al., 2002) and NIST (Doddington, 2002), and
significance testing is performed using approxi-
mate randomization (Riezler and Maxwell, 2005),
with 10,000 iterations. All the systems with re-
ordering have higher scores than the baseline on
both metrics. This difference is always significant
for NIST, and significant for Bleu in all cases ex-
cept for two systems, one with standard tags and
one with clustered tags. Between most of the sys-
tems with reordering the differences are small and
most of them are not significant. Overall the sys-
tems with standard word classes perform slightly
better than the clustered systems, especially the
func tagset gives consistently high results, and is
significantly better than four of the clustered sys-
tems on Bleu, and than one system on NIST. The
fact that the number of paths were much smaller
for a high number of clustered classes than for the
other tagsets does not seem to have influenced the
translation results.

Clustering of word classes is nondeterministic,
and several runs of the cluster methods give dif-
ferent results, which could influence the transla-
tion results as well. To investigate this, we reran
the experiment with 50 classes and baseline train-
ing data three times. The differences of the re-
sults between these runs were small, Bleu varied
between 20.08–20.19 and NIST varied between
5.99–6.01. This variation is smaller than the dif-
ference between the baseline and the reordering

Baseline training Reordered training
Tagset Bleu NIST Bleu NIST
Baseline 19.84 5.92 – –
pos 20.34** 6.05** 20.26** 5.98*
dep 20.11 6.03** 20.25** 6.06**
func 20.40** 6.05** 20.40** 6.06**
syntax 20.29** 6.07** 20.32** 6.06**
class50 20.15* 6.05** 20.15* 5.99**
class125 20.15* 6.03** 20.17* 6.02**
class625 20.19** 6.05** 20.07 6.05**

Table 3: Translation results for English–German. Sta-
tistically significant differences from baseline scores
are marked * (p < 0.05), ** (p < 0.01).

Tagset Classes Rules Paths
class50 50 4588 3.70
class125 125 3554 1.46
class625 625 2388 1.42

Table 4: Number of classes for Haitian Creole, number
of rules extracted for each tagset, and average numbers
of paths per sentence in the testset lattice using each
tagset to create rules

systems, and should not influence the overall con-
clusions.

For the Haitian Creole testset both the average
number of reorderings per sentence, and the num-
ber of rules, are substantially lower than for the
English testset. As shown in Table 4, the trends
are the same, however. With a higher number of
classes there are both fewer rules and fewer rule
applications. That there are few rules and paths
can both depend on the fact that there are fewer
word order differences between these languages,
that the corpus is smaller, and that the sentence
length is shorter.

Even though the number of reorderings is rel-
atively small, there are consistent significant im-
provements for all reordered options on both Bleu
and NIST compared to the baseline, as shown in
Table 5. Between the clustered systems the dif-
ferences are relatively small, and the only sig-
nificant differences are that the system with 50
classes and reordered training data is worse on
Bleu than 50 classes with baseline reordering and
125 classes with reordered training data, at the
0.05-level. The trend for the systems with 125 and
625 classes is in the other direction with slightly
higher results with reordered data. There is hardly
any difference between these two systems, which
is not surprising, seeing that the number of ap-
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Baseline training Reordered training
Tagset Bleu NIST Bleu NIST
Baseline 29.04 5.58 – –
class50 29.59** 5.73** 29.60** 5.69**
class125 29.52** 5.70** 29.78** 5.73**
class625 29.55** 5.70** 29.75** 5.74**

Table 5: Translation results for Haitian Creole–
English. Statistically significant differences from
baseline BLEU score are marked ** (p < 0.01).

plied rules is very similar.

6 Conclusion and Future Work

We have presented experiments of using clustered
word classes as input to a preordering method for
SMT. We showed that the proposed method per-
form better than a baseline and nearly on par with
using standard tags for an English–German trans-
lation task. We also showed that it can improve
results over a baseline when translating from the
less-resourced language Haitian Creole into En-
glish, even though the word order differences be-
tween these languages are relatively small.

The suggested preordering algorithm with
word classes is fully unsupervised, since unsuper-
vised methods are used both for word classes and
word alignments that are the basis of the preorder-
ing algorithm. This means that the method can
be applied to less-resourced languages where no
taggers or parsers are available, which is not the
case for the many preordering methods which are
based on POS-tags or parse trees.

This initial study is quite small, and in the fu-
ture we plan to extend it to larger corpora and
other language pairs. We would also like to com-
pare the performance of different unsupervised
word clustering and POS-tagging methods on this
task.
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Abstract

Relation extraction is frequently and suc-
cessfully addressed by machine learning
methods. The downside of this approach
is the need for annotated training data, typi-
cally generated in tedious manual, cost inten-
sive work. Distantly supervised approaches
make use of weakly annotated data, like au-
tomatically annotated corpora.

Recent work in the biomedical domain
has applied distant supervision for protein-
protein interaction (PPI) with reasonable
results making use of the IntAct database.
Such data is typically noisy and heuristics
to filter the data are commonly applied. We
propose a constraint to increase the qual-
ity of data used for training based on the
assumption that no self-interaction of real-
world objects are described in sentences.
In addition, we make use of the Univer-
sity of Kansas Proteomics Service (KUPS)
database. These two steps show an increase
of 7 percentage points (pp) for the PPI cor-
pus AIMed. We demonstrate the broad appli-
cability of our approach by using the same
workflow for the analysis of drug-drug in-
teractions, utilizing relationships available
from the drug database DrugBank. We
achieve 37.31 % in F1 measure without man-
ually annotated training data on an indepen-
dent test set.

1 Introduction

Assuming co-mentioned entities to be related is
an approach of extracting relations of real-world
objects with limited precision. Extracting high
quality interaction pairs from free text allows for

∗These authors contributed equally.

building networks, e. g. of proteins, which need
less manual curation to serve as a model for further
knowledge processing steps. Nevertheless, just as-
suming co-occurrence to model an interaction or
relation is common, as the development of inter-
action extraction systems can be time-consuming
and complex.

Currently, a lot of relation extraction (RE) sys-
tems rely on machine learning, namely classifying
pairs of entities to be related or not (Airola et al.,
2008; Miwa et al., 2009; Kim et al., 2010). De-
spite the fact that machine learning has been most
successful in identifying relevant relations in text,
a drawback is the need for manually annotated
training data. Domain experts have to dedicate
time and effort to this tedious and labor-intensive
process.

Specific biomedical domains have been ex-
plored more extensively than others, thus creating
an imbalance in the number of existing corpora
for a specific RE task. Protein-protein interactions
(PPI) have been investigated the most, which gave
rise to a number of available corpora. Pyysalo et al.
(2008) standardized five PPI corpora to a unified
XML format. Recently, a drug-drug-interaction
(DDI) corpus is made available in the same for-
mat, originally for the DDI Extraction Workshop1

(Segura-Bedmar et al., 2011b).
As a consequence of the overall scarcity of an-

notated corpora for RE in the biomedical domain,
the approach of distant supervision, e. g. to auto-
matically label a training set is emerging. Many
approaches make use of the distant supervision as-
sumption (Mintz et al., 2009; Riedel et al., 2010):

1Associated with the conference of the spanish society
for natural language processing (SEPLN) in 2011, http:
//labda.inf.uc3m.es/DDIExtraction2011/
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If two entities participate in a relation,
all sentences that mention these two en-
tities express that relation.

Obviously, this assumption does not hold in gen-
eral, and therefore exceptions need to be detected
which are not used for training a model. Thomas et
al. (2011b) successfully used simple filtering tech-
niques in a distantly supervised setting to extract
PPI. In contrast to their work, we introduce a more
generic filter to detect frequent exceptions from
the distant supervision assumption and make use
of more data sources, by merging the interaction
information from IntAct and KUPS databases (dis-
cussed in Section 2.1). In addition, we present the
first system (to our knowledge), evaluating distant
supervision for drug-drug interaction with promis-
ing results.

1.1 Related work

Distant supervision approaches have received con-
siderable attention in the past few years. However,
most of the work is focusing on domains other
than biomedical texts.

Mintz et al. (2009) use distant supervision to
learn to extract relations that are represented in
Freebase (Bollacker et al., 2008). Yao et al. (2010)
use Freebase as a source of supervision, dealing
with entity identification and relation extraction
in a joint fashion. Entity types are restricted to
those compatible with selected relations. Riedel et
al. (2010) argue that distant supervision leads to
noisy training data that hurts precision and suggest
a two step approach to reduce this problem. They
identify the sentences which express the known re-
lations (“expressed-at-least-once” assumption) and
thus frame the problem of distant supervision as
an instance of constraint-driven semi-supervision,
achieving 31 % of error reduction.

Vlachos et al. (2009) tackle the problem of
biomedical event extraction. The scope of their
interest is to identify different event types without
using a knowledge base as a source of supervision,
but explore the possibility of inferring relations
from the text based on the trigger words and de-
pendency parsing, without previously annotated
data.

Thomas et al. (2011b) develop a distantly la-
beled corpus for protein-protein interaction extrac-
tion. Different strategies are evaluated to select
valuable training instances. Competitive results

are obtained, compared to purely supervised meth-
ods.

Very recent work examines the usability of
knowledge from PharmGKB (Gong et al., 2008)
to generate training sets that capture gene-drug,
gene-disease and drug-disease relations (Buyko et
al., 2012). They evaluate the RE for the three inter-
action classes in intrisic and extrinsic experimental
settings, reaching F1 measure of around 80 % and
up to 77.5 % respectively.

2 Resources

2.1 Interaction Databases
The IntAct database (Kerrien et al., 2012) con-
tains protein-protein interaction information. It is
freely available, manually curated and frequently
updated. It consists of 290,947 binary interaction
evidences, including 39,235 unique pairs of inter-
acting proteins for human species.2

In general, PPI databases are underanno-
tated and the overlap between them is marginal
(De Las Rivas and Fontanillo, 2010). Combining
several databases allows to cover a larger fraction
of known interactions resulting in a more complete
knowledge base. KUPS (Chen et al., 2010) is a
database that combines entries from three manu-
ally curated PPI databases (IntAct, MINT (Chatr-
aryamontri et al., 2007) and HPRD50 (Prasad et al.,
2009)) and contains 185,446 positive pairs from
various model organisms, out of which 69,600
belong to human species.3 Enriching IntAct inter-
action information with the KUPS database leads
to 57,589 unique pairs.4

The database DrugBank (Knox et al., 2011)
combines detailed drug data with comprehensive
drug target information. It consists of 6,707 drug
entries. Apart from information about its targets,
for certain drugs known interactions with other
drugs are given. Altogether, we obtain 11,335
unique DDI pairs.

2.2 Corpora
For evaluation of protein-protein interaction, the
five corpora made available by Pyysalo et al.
(2008) are used. Their properties, like size and ra-
tio of positive and negative examples, differ greatly,

2As of January 27th, 2012.
3As of August 16th, 2010.
4Only 45,684 out of 69,600 human PPI pairs are available

from the KUPS web service due to computational and storage
limitations (personal communication).
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Corpus Positive pairs Negative pairs Total

AIMed 1000 (0.17) 4,834 (0.82) 5,834
BioInfer 2,534 (0.26) 7,132 (0.73) 9,666
HPRD50 163 (0.38) 270 (0.62) 433
IEPA 335 (0.41) 482 (0.59) 817
LLL 164 (0.49) 166 (0.50) 330

DDI train 2,400 (0.10) 21,411 (0.90) 23,811
DDI test 755 (0.11) 6,275 (0.89) 7,030

Table 1: Basic statistics of the five PPI and two DDI
corpora. Ratios are given in brackets.

the latter being the main cause of performance dif-
ferences when evaluating on these corpora. More-
over, annotation guidelines and contexts differ:
AIMed (Bunescu et al., 2005) and HPRD50 (Fun-
del et al., 2007) are human-focused, LLL (Nedel-
lec, 2005) on Bacillus subtilis, BioInfer (Pyysalo
et al., 2007) contains information from various or-
ganisms and IEPA (Ding et al., 2002) is made of
sentences that describe 10 selected chemicals, the
majority of which are proteins, and their interac-
tions.

For the purposes of DDI extraction, the corpus
published by Segura-Bedmar et al. (2011b) is used.
This corpus is generated from web-documents de-
scribing drug effects. It is divided into a training
and testing set. An overview of the corpora is
given in Table 1.

3 Methods

In this section, the relation extraction system used
for classification of interacting pairs is presented.
Furthermore, the process of generating an automat-
ically labeled corpus is explained in more detail,
along with specific characteristics of the PPI and
DDI task.

3.1 Interaction Classification

We formulate the task of relation extraction as
feature-based classification of co-occurring enti-
ties in a sentence. Those are assigned to be either
related or not, without identifying the type of re-
lation. Our RE system is based on rich feature
vectors and the linear support vector machine clas-
sifier LibLINEAR, which has shown high perfor-
mance (in runtime as well as model accuracy) on
large and sparse data sets (Fan et al., 2008).

The approach is based on lexical features, op-
tionally with dependency parsing features created
using the Stanford parser (Marneffe et al., 2006).
Lexical features are bag-of-words (BOW) and n-

Methods P R F1

Thomas et al. (2011a) 60.54 71.92 65.74
Chowdhury et al. (2011) 58.59 70.46 63.98
Chowdhury and Lavelli (2011) 58.39 70.07 63.70
Björne et al. (2011) 58.04 68.87 62.99
Minard et al. (2011) 55.18 64.90 59.65

Our system (lex) 63.30 52.32 57.28
Our system (lex+dep) 66.46 56.69 61.19

Table 2: Comparison of fully supervised relations ex-
traction systems for DDI. (lex denotes the use of lexi-
cal features, lex+dep the additional use of dependency
parsing-based features.)

grams based, with n ∈ {1, 2, 3, 4}. They encom-
pass the local (window size 3) and global (window
size 13) context left and right of the entity pair,
along with the area between the entities (Li et al.,
2010). Additionally, dictionary based domain spe-
cific trigger words are taken into account.

The respective dependency parse tree is in-
cluded through following the shortest dependency
path hypothesis (Bunescu and Mooney, 2005), by
using the syntactical and dependency information
of edges (e) and vertices (v). So-called v-walks
and e-walks of length 3 are created as well as n
grams along the shortest path (Miwa et al., 2010).

3.2 Automatically Labeling a Corpus in
General

One of the most important source of publications
in the biomedical domain is MEDLINE5, currently
containing more than 21 million citations.6 The
initial step is annotation of named entities – in
our case performed by ProMiner (Hanisch et al.,
2005), a tool proving state-of-the-art results in e. g.
the BioCreative competition (Fluck et al., 2007).
Based on the named entity recognition, only sen-
tences containing co-occurrences are further pro-
cessed. Based on the distant supervision assump-
tion, each pair of entities is labeled as related if
mentioned so in a structured interaction databases.
Note that this requires the step of entity normaliza-
tion.

3.3 Filtering Noise

A sentence may contain two entities of an inter-
acting pair (as known from a database), but does
not describe their interaction. Likewise, a sentence

5http://www.ncbi.nlm.nih.gov/pubmed/
6As of January, 2012.
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may talk about a novel interaction which has not
been stored in the database. Therefore, filtering
strategies need to be employed to help in decid-
ing which pairs are annotated as being related and
which not.

Thomas et al. (2011b) propose the use of trigger
words, i. e., an entity pair of a certain sentence is
marked as positive (related) if the database has in-
formation about their interaction and the sentence
contains at least one trigger word. Similarly, a
negative (non-related) example is a pair of entities
that does not interact according to the database
and their sentence does not contain any trigger
word. Pairs which do not fulfil both constraints are
discarded.

Towards improvement of the heuristics for re-
ducing noise, we introduce the constraint of “auto-
interaction filtering” (AIF): If entities from an en-
tity pair both refer to the same real-world object,
the pair is labeled as not interacting. Even though
self-interactions are known for proteins and drugs,
such pairs can rarely be observed to describe an
interaction but rather are repeated occurences or
abbreviations. Moreover, the fundamental advan-
tage of AIF is that it requires no additional manual
effort.

3.4 Application on Protein-Protein
Interaction and Drug-Drug Interaction

In biomedical texts there are often mentions of
multiple proteins in the same sentence. However,
this co-occurrence does not necessarily signal that
the sentence is talking about their relation. Hence,
to reduce noise, a list of trigger words specific to
the problem is required. The rationale behind this
filter is that the interaction between two entities is
usually expressed by a specific (trigger) word. For
protein-protein-interactions, we use the trigger list
compiled by Thomas et al. (2011b)7. In addition to
using IntAct alone, we introduce the use of KUPS
database (as described in Section 2.2).

For drug-drug-interaction, to our knowledge,
no DDI-specific trigger word list developed by
domain experts is available. Therefore, filtering
via such term occurrences is not applied in this
case.

7http://www2.informatik.hu-berlin.de/

˜thomas/pub/2011/iwords.txt

4 Results

In this section, we start with an overview of state-
of-the-art results for fully supervised relation ex-
traction on PPI and DDI corpora (see Table 1).
Furthermore, experimental settings for distant su-
pervision are explained. Finally, we present spe-
cific results for models trained on distantly labeled
data, when evaluated on manually annotated PPI
and DDI corpora.

4.1 Performance overview of supervised RE
systems

Protein-protein interactions has been extensively
investigated in the past decade because of their bio-
logical significance. Machine learning approaches
have shown the best performance in this domain
(e. g. BioNLP (Cohen et al., 2011) and DDIExtrac-
tion Shared Task (Segura-Bedmar et al., 2011a)).
Table 3 gives a comparison of RE systems’ per-
formances on 5 PPI corpora, determined by doc-
ument level 10-fold cross-validation.8 The use of
dependency parsing-based features increases the
F1 measure by almost 4 pp.

Table 2 shows results of the five best perform-
ing systems on the held out test data set of the
DDI extraction workshop (Segura-Bedmar et al.,
2011b). In addition, the result of our system is
shown. Note that the first three systems use ensem-
ble based methods combining the output of several
different systems.

The results presented in Table 2 and 3 give a
performance overview of the RE system used in
distant learning strategies.

4.2 Experimental Setting
To avoid information leakage and biased classifi-
cation, all documents which are contained in the
test corpus are removed. For each experiment we
sample random subsets to reduce processing time.
This allows us to evaluate the impact of different
combinations of subset size and the ratio of related
and non-related (pos/neg) entity pairs, having in
mind the problem of imbalanced datasets (Chawla
et al., 2004). All experiments are performed five
times to reduce the influence of sampling differ-
ent subsets. This leads to more reliable precision,
recall, and F1 values.

8Separating into training and validation sets is performed
on document level, not on instance (entity pair) level. The
latter could lead to an unrealisticallly optimistic estimate
(Van Landeghem et al., 2008)

38



AIMed BioInfer HPRD50 IEPA LLL
P R F1 P R F1 P R F1 P R F1 P R F1

(Airola et al., 2008) 52.9 61.8 56.4 56.7 67.2 61.3 64.3 65.8 63.4 69.6 82.7 75.1 72.5 87.2 76.8
(Kim et al., 2010) 61.4 53.2 56.6 61.8 54.2 57.6 66.7 69.2 67.8 73.7 71.8 72.9 76.9 91.1 82.4
(Fayruzov et al., 2009) 39.0 34.0 56.0 72.0 76.0
(Liu et al., 2010) 54.7 59.8 64.9 62.1 78.1
(Miwa et al., 2009) 55.0 68.8 60.8 65.7 71.1 68.1 68.5 76.1 70.9 67.5 78.6 71.7 77.6 86.0 80.1
(Tikk et al., 2010) 47.5 65.5 54.5 55.1 66.5 60.0 64.4 67 64.2 71.2 69.3 69.3 74.5 85.3 74.5

Our s. (lex) 62.3 46.3 53.1 59.1 54.3 56.6 69.7 69.4 69.6 67.5 73.2 70.2 66.9 84.6 74.7
Our s. (lex+dep) 65.1 48.6 55.7 64.7 57.6 61.0 69.3 69.8 69.5 67.0 72.5 69.7 71.2 86.3 78.0

Table 3: Comparison of fully supervised relations extraction systems for PPI.

Strategy Pairs Positive pairs Sentences

1 3,304,033 511,665 (0.155) 842,339
2 5,560,975 1,389,036 (0.250) 1,172,920
3 2,764,626 359,437 (0.130) 780,658
4 3,454,805 650,455 (0.188) 896,344

Table 4: Statistics of the fours strategies used in distant
supervision for PPI task: 1) IntAct, 2) IntAct + KUPS,
3) IntAct + AIF, 4) IntAct + KUPS + AIF. Ratios are
given in brackets.

4.3 Protein-protein interaction
We explore four strategies to determine the impact
of using additional database knowledge (IntAct
and KUPS) and to test the utility of our novel
condition (AIF).

Table 4 shows the difference in retrieved num-
ber of sentences and protein pairs, including the
percentage of positive examples in the whole data
set. As expected, by using more background know-
ledge, the number of sentences and instances re-
trieved from MEDLINE rises. An increase of both
negative and positive pairs is observed, since a
relevant sentence can have negative pairs along
with the positive ones. After applying additional
interaction knowledge, the fraction of positive ex-
amples (see 3rd column in Table 4) increases from
15.5 % (IntAct) to 25 % (IntAct+KUPS). However,
employment of the AIF condition to both IntAct
and IntAct+KUPS strategies leads to a reduction
of these values (e. g. fraction of positive examples
reduces from 15.5 % to 13 % and from 25 % to
18.8 %).

For simplicity reasons all runs are performed
using only lexical features.

Table 5 shows the average values of distant super-
vision experiments carried out for the PPI task. A
significant correlation between pos/neg ratio and
precision/recall holds. This clearly indicates the
tendency of classifiers to assign more test instances

to the class more often observed during training.
In accordance with their class distribution, AIMed
reaches highest performance in case of lower frac-
tion of positive instances (i. e. 30 % or 40 %), while
for IEPA and LLL the optimal ratio is in favor of
the positive class (i. e. 70 % or 80 %).

Comparative results of the distant learning
strategies IntAct and IntAct+KUPS tested on five
PPI corpora indicate that additional knowledge
bases do not help per se. Supplementary employ-
ment of the KUPS database leads to a drop in
performances seen in four out of five test cases (a
decrease of 1.7 pp in F1 measure is most notably
observed in case of HPRD50). However, introduc-
tion of the novel filtering condition, in both strate-
gies IntAct+AIF and IntAct+KUPS+AIF, shows
a favorable effect on the precision and leads to an
increase of up to 6 pp in F1 measure, compared to
IntAct and IntAct+KUPS.

Applying AIF to the baseline IntAct increases
F1 measure of AIMed and HPRD50 from 34.4 %
to 37.8 % and from 56.1 % to 59.1 %, respectively.
An even larger impact is observed when compar-
ing IntAct+KUPS and IntAct+KUPS+AIF. For
AIMed, HPRD50 and IEPA an increase of around
6 pp is achieved, while F1 measure of BioInfer
and LLL is improved around 3 pp. Table 5 clearly
shows that IntAct+KUPS+AIF is outperforming
other strategies in all five test cases by achiev-
ing F1 measures of 39.0 % for AIMed, 52.0 % for
BioInfer, 60.2 % for HPRD50, 63.4 % for IEPA
and 69.3 % for LLL.

Analysis of the database (IntAct+KUPS) pairs
reveals that in total there are 5,550 (around 10 %)
proteins that interact with themselves, with 4,918
(89 %) originating from the KUPS database. This
indicates a number of instances that represent auto-
interacting proteins which contribute to increase of
false positives. Such proportion where a majority
of them come from KUPS explains the decrease
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AIMed BioInfer HPRD50 IEPA LLL
Strategy pos/neg P R F1 P R F1 P R F1 P R F1 P R F1

IntAct

30-70 22.3 75.8 34.4 41.7 54.1 46.9 42.6 73.8 53.9 44.6 70.3 54.5 58.9 63.5 61.0
40-60 21.5 83.5 34.2 40.0 61.9 48.5 42.0 81.7 55.5 44.4 78.0 56.6 55.7 73.3 63.2
50-50 20.8 87.0 33.5 38.7 67.1 49.0 41.4 86.9 56.1 43.7 82.2 57.1 54.6 80.7 65.1
60-40 20.0 90.8 32.8 37.3 72.6 49.2 40.5 91.2 56.1 43.2 85.6 57.4 52.4 86.7 65.3
70-30 19.0 94.5 32.1 35.4 79.5 48.9 39.6 93.4 55.6 42.6 89.3 57.7 50.7 92.1 65.4
80-20 18.6 96.8 31.2 33.5 86.5 48.3 38.6 96.2 55.1 42.1 93.3 58.1 49.4 96.7 65.0

IntAct
+

KUPS

30-70 20.6 48.9 29.0 37.5 30.0 33.3 38.6 45.8 41.8 33.1 25.3 28.6 55.3 25.4 34.6
40-60 21.6 70.3 33.0 39.3 47.4 42.9 40.7 70.2 51.5 41.0 49.6 44.9 58.6 49.3 53.2
50-50 20.8 81.6 33.2 38.2 59.4 46.5 39.6 80.4 53.0 42.9 65.3 51.8 58.5 61.1 59.5
60-40 20.0 89.0 32.7 37.0 68.8 48.2 38.9 87.4 53.8 43.4 76.8 55.4 55.2 74.4 63.2
70-30 19.2 94.3 31.9 35.2 79.1 48.7 38.6 92.3 54.4 42.9 86.2 57.2 52.8 88.5 66.1
80-20 18.3 97.5 30.9 32.2 88.6 47.3 37.8 96.1 54.2 41.9 92.7 57.8 50.8 97.0 66.6

IntAct
+

AIF

30-70 25.1 76.7 37.8 42.8 54.1 47.7 45.7 75.7 57.0 49.9 77.2 60.6 58.4 69.5 63.4
40-60 24.5 78.9 37.4 42.3 56.5 48.3 46.1 79.2 58.3 49.2 79.0 60.7 58.2 72.8 64.6
50-50 23.9 81.1 36.9 42.3 59.2 49.2 45.9 83.1 59.1 49 81.6 61.2 57.8 75.5 65.3
60-40 23.1 83.8 36.1 41.8 63.3 50.3 44.9 85.3 58.8 48.4 84.7 61.6 56.8 79.2 66.1
70-30 22.1 85.8 35.2 40.8 66.4 50.5 43.9 86.5 58.2 47.6 87.9 61.8 56.3 82.1 66.7
80-20 21.3 88.3 34.3 39.6 69.9 50.5 42.9 89.8 58.1 46.0 91.6 61.3 54.0 84.9 66.0

IntAct
+

KUPS
+

AIF

30-70 26.6 72.1 38.8 43.8 50.8 47.0 48.1 78.6 59.7 51.1 75.3 60.9 60.2 63.7 61.8
40-60 26.0 77.8 39.0 43.2 55.4 48.5 47.6 82.5 60.4 50.7 80.6 62.2 58.8 68.7 63.3
50-50 25.5 81.6 38.8 44.8 56.2 49.8 46.0 83.9 59.4 51.4 78.7 62.2 60.3 72.2 65.6
60-40 24.6 84.1 38.0 44.5 60.0 51.1 45.6 88.6 60.2 50.6 83.8 63.1 59.4 77.8 67.3
70-30 23.6 86.7 37.1 43.3 64.4 51.8 44.3 90.5 59.5 49.3 88.8 63.4 59.4 83.3 69.3
80-20 22.1 90.4 35.5 41.0 71.3 52.0 42.5 93.4 58.4 46.8 91.8 62.0 56.2 88.2 68.6

Thomas et al. (2011b) 22.3 81.3 35.0 38.7 76.0 51.2 45.6 92.9 61.2 42.6 88.3 57.3 53.7 93.3 68.1
Tikk et al. (2010) 28.3 86.6 42.6 62.8 36.5 46.2 56.9 68.7 62.2 71.0 52.5 60.4 79.0 57.3 66.4
Our system 34.3 74.0 46.9 70.8 22.5 34.2 63.3 61.3 62.3 70.0 46.0 55.5 82.4 45.7 58.8
Co-occurrence 17.1 100 29.3 26.2 100 41.5 37.6 100 54.7 41.0 100 58.2 49.7 100 66.4

Table 5: Results achieved with lexical features, trained on 10,000 distantly labeled instances and tested on 5 PPI
corpora.
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Figure 1: Comparison of four distant learning strategies with co-occurrence baseline. “IntAct/DrugBank” denotes
the database used as source of supervision for PPI corpora and DDI corpus, respectively.
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of performance in strategy IntAct+KUPS and the
recovery after applying the AIF condition.

The strategy IntAct+KUPS+AIF results in a
higher quality of data used for training and
achieves the best performance in all five test cases
thus proving the effectiveness of the novel condi-
tion. More knowledge is beneficial, but only when
appropriate filtering of the data is applied.

Distantly supervised systems outperform
co-occurrence results for all five PPI corpora.
Considering the best performing strategy
(IntAct+KUPS+AIF), F1 measure of AIMed and
BioInfer, for which we assume to have the most
realistic pos/neg ratio, increased around 10 pp.
HPRD50, IEPA and LLL have an improvement of
5.5 pp, 5.2 pp and 2.9 pp respectively, due to high
fractions of positive instances (leading to a strong
co-occurrence baseline).

Cross-learning9 evaluation may be more realis-
tic to be compared to distant-learning than cross
validation (Airola et al., 2008). For AIMed and
HPRD50 our approach performs on a par with Tikk
et al. (2010) or better (up to 6 pp for BioInfer).

4.4 Drug-drug interaction

The problem of drug-drug interactions has not
been previously explored in terms of distant super-
vision. It is noteworthy that DDI corpora are gener-
ated from web documents discussing drug effects
which are in general not contained in MEDLINE.
Hence, this evaluation corpus can be considered as
out-domain and provides additional insights on the
robustness of distant-supervision. The AIF setting
is not evaluated for the DDI task, because only 1
of all 11,335 unique pairs describes a self interac-
tion. In MEDLINE, only 7 sentences with multiple
mentions of this drug (Sulfathiazole, DrugBank
identifier DB06147) are found.

Table 6 gives an overview of the results for dis-
tant supervision on DDI, with the parameter of
size of the training corpus and the pos/neg ratio. A
slight increase in F1 measure can be observed with
additional training instances, both in case of using
just lexical features and when dependency based
features are additionally utilized (e. g. (lex+dep)
from 36.2 % (5k) to 37.3 % (25k) in F1 measure).

Accounting for dependency parsing features
leads to an increase of 0.5 pp in F1 measure, i. e.
from 36.5 % to 37.0 % (10k) and 36.7%̇ to 37.3 %

9For five PPI corpora: train on four, test on the remaining.

size pos/neg P R F1

5k

30-70 35.4 32.4 33.7
40-60 33.3 37.0 34.9
50-50 31.9 41.7 36.0
50-50 (lex+dep) 32.7 40.7 36.2
60-40 30.1 46.6 36.5
70-30 27.4 51.8 35.7

10k

30-70 36.0 34.4 34.9
40-60 34.2 38.9 36.3
50-50 32.9 41.0 36.5
50-50 (lex+dep) 33.8 41.1 37.0
60-40 30.8 44.8 36.4
70-30 28.2 48.7 35.6

25k

30-70 35.8 35.0 35.3
40-60 34.3 38.6 36.2
50-50 33.2 41.1 36.7
50-50 (lex+dep) 32.5 43.7 37.3
60-40 31.7 42.6 36.3
70-30 28.9 47.2 35.7

Co-occurrence 10.7 100 19.4

Table 6: Results for distant supervision with only lexi-
cal features on the DDI test corpus.

(25k)), the latter being our best result obtained for
weakly supervised DDI.

Compared to co-occurence, a gain of around
18 pp is achieved. Taking into account the high
class imbalance of the DDI test set (see Table 1),
which is most similar to AIMed corpus, the F1

measure of 37.3 % is encouraging.

Figure 1 shows the results of PPI and DDI experi-
ments in addition. The error bars denote the stan-
dard deviation over 5 differently sampled training
corpora.

5 Discussion

This paper presents the application of distant su-
pervision on the task to find protein-protein inter-
actions and drug-drug interactions. The first is
addressed using the databases IntAct and KUPS,
the second using DrugBank.

More database knowledge does not necessar-
ily have a positive impact on a trained model, ap-
propriate instance selection methods need to be
applied. This is demonstrated with the KUPS
database and the automatic curation via auto-
interaction filtering leading to state-of-the-art re-
sults for weakly supervised protein-protein inter-
action detection.

We present the first results of applying the dis-
tant supervision paradigm to drug-drug-interaction.
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The results may seem comparatively limited in
comparison to protein-protein interaction, but are
encouraging when taking into account the imbal-
ance of the test corpus and its differing source
domain.

Future development of noise reduction ap-
proaches is important to make use of the full poten-
tial of available database knowledge. The results
shown are encouraging that manual annotation of
corpora can be avoided in other application areas
as well. Another future direction is the investiga-
tion of specifically difficult structures, e. g. listings
and enumerations of entities in a sentence.
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Abstract 

We introduce Conflict-Driven Co-Clustering, 

a novel algorithm for data co-clustering, and 

apply it to the problem of inducing parts-of-

speech in a corpus of child-directed spoken 

English. Co-clustering is preferable to 

unidimensional clustering as it takes into 

account both item and context ambiguity. We 

show that the categorization performance of 

the algorithm is comparable with the co-

clustering algorithm of Leibbrandt and 

Powers (2008), but out-performs that 

algorithm in robustly pruning less-useful 

clusters and merging them into categories 

strongly corresponding to the three main open 

classes of English. 

1 Introduction 

The problem of unsupervised part-of-speech 

induction has received considerable attention in 

computational linguistics (for a recent 

comparison of several influential models, see 

Christodoulopoulos, Goldwater & Steedman, 

2010). A common approach is to estimate the 

parameters of a generative model given the 

natural language data, with the model usually a 

variant of a Hidden Markov Model (e.g. 

Goldwater & Griffiths, 2007; Berg-Kirkpatrick, 

Côté, De Nero &  Klein, 2010; Moon, Erk & 

Baldridge, 2010). These models are often 

evaluated on corpora of formal, written English, 

such as the Penn Treebank, rather than on 

natural, spoken language, and typically the aim 

of these studies is to improve the state-of-the-art 

of POS induction using various techniques from 

machine learning, with an implicit focus on 

devising techniques that can be used in practical 

applications.  

In the current paper, on the other hand, our 

focus is on part-of-speech induction mechanisms 

that children might use when learning their first 

language. Hence, we are interested in models that 

are motivated by psychological considerations, 

rather than by a more abstract mathematical or 

statistical grounding. In language acquisition 

research, a typical approach to part-of-speech 

induction is to make use of clustering.  We will 

review this work and argue for the particular 

utility of two-mode clustering or co-clustering 

approaches, before presenting two novel co-

clustering techniques and evaluating their 

performance in part-of-speech tagging on a 

corpus of child-directed English. 

1.1 Clustering and co-clustering approaches 

to part-of-speech induction in language 

acquisition research 

Single-mode clustering approaches 

Clustering algorithms operate on a two-

dimensional matrix where the rows and columns 

in this context represent words and the linguistic 

contexts in which they appear, taken from a 

corpus of natural language, and the cells of the 

matrix contain frequency counts of how often a 

word occurs in a particular context. It has often 

been proposed that children might make use of 

information about the contextual distribution of 

usage of words to induce the parts-of-speech of 

their native language (e.g. Maratsos & Chalkley, 

1980), and work by, e.g., Redington, Chater & 

Finch (1998) and Clark (2000), showed that 

parts-of-speech can indeed be induced by 
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clustering together words that are used in similar 

contexts in a corpus. Clustering word types 

together does not take into account the fact that 

the part-of-speech of a word type may change 

depending on the context in which it is used. One 

of the most influential models in part-of-speech 

induction in language acquisition, the Frequent 

Frames model of Mintz (2003), addresses this 

issue by forming clusters of the contextual 

frames in which words are used, rather than the 

words themselves. The idea is that the contexts 

define the part-of-speech, rather than the words 

themselves. This model attains high, but not 

perfect results in part-of-speech tagging for 

English child-directed speech; part of the reason 

is that even frames are sometimes ambiguous in 

the parts-of-speech that they can accommodate, 

and Erkelens (2008) has shown that this problem 

is more pronounced when the Frequent Frames 

approach is applied to Dutch material. In general, 

however the set of frame contexts is chosen, the 

problem of contextual ambiguity is likely to 

present itself. Hence, an approach is needed in 

which both words and contexts can be associated 

with multiple categories. Techniques of co-

clustering, also called biclustering or two-mode 

clustering, (see Madeira & Oliveira, 2004, Van 

Mechelen et al., 2004, for reviews), represent one 

such approach. 

Co-clustering approaches 

Single-mode clustering forms clusters of 

elements in one dimension of the matrix (either 

rows or columns) by grouping together elements 

on the basis of similar co-occurrence with 

elements of the other dimension. Co-clustering 

techniques, on the other hand, form clusters on 

the basis of similarity between rows and 

similarity between columns simultaneously. Co-

clustering is therefore able to assign row and 

column elements to the same clusters. We can 

distinguish between row-column clustering 

methods which assign each row and each column 

to a particular cluster, and data clustering 

methods which assign each individual non-empty 

cell of the matrix to a cluster. Some co-clustering 

methods allow for overlapping clusters, i.e. in 

row-column methods by allowing rows and 

columns to belong to more than one cluster, or in 

data clustering methods by allowing cells in the 

matrix to belong to more than one cluster. Co-

clustering algorithms have been shown to be 

useful in many applications, notably in the 

analysis of gene expression data (Madeira & 

Oliveira, 2004).  

There are good reasons to prefer a co-

clustering approach over a single-mode 

categorization approach in part-of-speech 

induction. In natural language, including child-

directed speech, there are many cases where a 

word appears in a context that does not specify 

the part-of-speech exactly, but allows several 

possibilities, while at the same time, the word is 

also ambiguous  in its part-of-speech. Co-

clustering is able to deal with part-of-speech 

ambiguity at the level of word and frame 

simultaneously. For example, a common frame 

in child-directed speech in English is “That‟s 

X.”, where the word that fills the X slot could be 

a noun (“That‟s ice-cream.”) or an adjective 

(“That‟s pretty.”). Simultaneously, the word 

“mean” can be used as either a verb or an 

adjective (the nominal usage is rare in child-

directed speech). A single-mode clustering 

algorithm that aims to assign a part-of-speech to 

the word “mean” in “That‟s mean” will be 

unable to decide between the allowed parts-of-

speech for the frame, if frames were clustered, 

and between the allowed parts-of-speech for the 

words, if words were clustered. However, a co-

clustering approach that assigned “That‟s X” to 

both the categories noun and adjective, and 

“mean” to the categories verb and adjective, 

would be able to deduce that the only category 

that the word and the frame have in common is 

adjective, and therefore that this is the correct 

category. In this way, co-clustering is better able 

to deal with linguistic ambiguity. 

Even apart from its practical utility in part-of-

speech induction, co-clustering is broadly 

compatible with a psychological outlook that 

conceives of part-of-speech development in 

terms of associative learning (see e.g. Shanks, 

1995). Under this view, parts-of-speech are 

mental categories that are formed by repeated 

exposure to words used in context, in 

combination with whatever semantic construal 

the language-learning child places on the 

utterances she hears.  

Only a few studies have applied co-clustering 

to part-of-speech induction with child-directed 

language (but see Freitag, 2004, for part-of-

speech induction with co-clustering on adult-

directed language in the Penn Treebank). The 

pioneering work in this regard was the EMILE 

system of Adriaans and colleagues (Adriaans, 

1992), which formed co-clusters of word-context 

combinations as a step in the process of inducing 
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rules for a categorial grammar. While the 

grammars formed in this way perform well, 

EMILE typically produces large, overlapping 

categories which  do not correspond to the parts-

of-speech of English (Adriaans, 1999). Hence, it 

is difficult to evaluate the accuracy of EMILE‟s 

part-of-speech tagging against a gold standard.  

Leibbrandt & Powers (2008) applied co-

clustering to a corpus of English child-directed 

speech, yielding accuracy comparable to that 

obtained by the Frequent Frames model of Mintz 

(2003). This approach was also able to 

outperform Frequent Frames in tagging child-

directed data in Dutch (Leibbrandt & Powers, 

2010). 

In this paper, we extend the work of 

Leibbrandt & Powers (2008, 2010) by describing 

and evaluating a novel co-clustering technique 

for part-of-speech induction. In Section 2 we 

present the Conflict-Driven Co-Clustering 

algorithm, and in Section 3 we evaluate its 

performance in part-of-speech tagging of a 

corpus of child-directed speech. We show that 

the algorithm delivers performance comparable 

to that of both the Frequent Frames model of 

Mintz (2003) and the co-clustering work by 

Leibbrandt & Powers (2008, 2010), and is more 

robust than the earlier work in automatically 

discovering the main English open classes of 

noun, verb and adjective, discarding smaller and 

less-easily interpretable categories. In Section 4 

we consider reasons for these results and point to 

future directions for this work. 

2 Conflict-Driven Co-Clustering 

The Conflict-Driven Co-Clustering (CDCC) 

algorithm is a row-column-based co-clustering 

algorithm. It creates an initial clustering of words 

into a set of clusters, and a simultaneous 

clustering of frames into the same set of clusters. 

Only a few word and frame types are clustered to 

start with, and hence this initial clustering is 

inadequate to account for the empirical co-

occurrence data (as explained below). From this 

starting point, the CDCC algorithm iteratively 

adds frames and clusters to the clusters, until all 

of the co-occurrence data is accounted for. 

We make the assumption that there exist a 

number of parts-of-speech in the target language, 

and that a particular word used in a particular 

frame context belongs to only one part-of-

speech
1
. We also assume that the word type is a 

cue to the part-of-speech, and that the same is 

true of the frame type. Finally, each word type 

and frame type is presumed to have the potential 

to be associated with more than one part-of-

speech. 

Suppose, then, that we (in this case, the co-

clustering algorithm, but also, potentially, a child 

learning the target language) already have some 

notion of the parts-of-speech to which a 

particular frame type f “belongs”, and the parts-

of-speech to which a word type w belongs. Then 

when we encounter an instance (i.e. a token) of 

the word type w used in the context of the frame 

type f, and wish to assign a part-of-speech to this 

instance, the only viable candidates (based on 

our knowledge at the time) are those  parts-of-

speech that both w and f have in common. 

Should there be multiple such candidates, a part-

of-speech tagging algorithm might resort to 

combining information about the probabilities of 

f and w belonging to each candidate in order to 

select a “winner”. However, when there is no 

such candidate (word and frame have no part-of-

speech in common), this presents a problem for 

part-of-speech tagging. Such a situation is an 

instance of the “conflicts” from which CDCC 

derives its name. 

More concretely, we can represent the cluster 

membership of each of the J words under 

consideration as a J×K matrix W, where K is the 

number of clusters, and Wjk = 1 if word j is a 

member of cluster k, and 0 otherwise. Similarly, 

the cluster membership of each of the I frames is 

represented by the I×K matrix F, where Fik = 1 if 

frame i belongs to cluster k, and 0 otherwise. 

The I×J matrix D represents the co-occurrence 

data obtained from the corpus, where Dij = 1 if 

word j occurs in the context of frame i in the 

corpus, and 0 otherwise. Then a conflict exists 

whenever Dij = 1 and the dot-product Wj · Fi = 0. 

We can think of the possibilities described by 

the cluster membership matrices W and F as 

accounting for the word-frame co-occurrences 

described in D: if a word and frame can occur 

together, there must be at least one part-of-

speech to which they both belong. Conflicts 

occur where cells in the D matrix are not yet 

accounted for in this way. The problem to be 

solved in this case, therefore, is to remove all 

                                                           
1 There are examples, even in the corpus used in this 

experiment, for which this assumption does not seem to 

hold; however, these examples are relatively infrequent 

enough to warrant its use as a useful heuristic. 

46



instances of conflict. Because the D matrix is 

empirically given, the only way to remove 

conflict is to modify the F and W matrices so that 

all co-occurrences in D can be accounted for.  

Figure 1 illustrates some cases of conflict and 

resolved conflict between word and frame. 

Initially, the utterance “Shall I brush it?” 

contains a conflict, because the frame “Shall I X 

it?” is allocated to the Verb category, but “brush” 

is not yet allocated to any category. The conflict 

might be resolved by adding “brush” to the Verb 

category. Later, when we consider the utterance 

“There‟s your brush”, a conflict would occur if 

“brush” was allocated to Verb only and “There‟s 

your X” was allocated to Noun only. Suppose 

that the conflict was resolved correctly by also 

adding “brush” to the category Noun (in addition 

to already being allocated to Verb). Then when 

the utterance “Don‟t brush it” is encountered, 

there is no conflict, as both “Don‟t X it” and 

“brush” are allocated to the Verb cluster, and 

hence the allocations are compatible. 

 

Shall I brush it? N V A 

brush 0 0 0 

Shall I X it? 0 1 0 

 

There’s your brush. N V A 

brush 0 1 0 

There‟s your X. 1 0 0 

 

Don’t brush it. N V A 

brush 1 1 0 

Don‟t X it. 0 1 0 

 

Figure 1. Three instances of conflict and non-

conflict. In the top example, brush and Shall I X 

it? are in conflict, in the middle example, brush 

and There’s your X are in conflict, and in the 

lower example there is no conflict. (N = Noun, V 

= Verb, A = Adjective) 

 An open problem is then how best to calculate 

the cluster membership matrices W and F so as to 

remove all conflicts. One obvious “solution” 

would be to simply add membership of every 

cluster to every word and frame. While this 

would remove all conflicts, it is clearly not a 

useful basis for part-of-speech tagging, and 

violates our sense that not every word or context 

can belong to every part-of-speech.  

A better approach might be to start with a very 

sparse pair of initial matrices for W and F, which 

greatly under-determine the co-occurrence 

matrix D, and then add cluster memberships to 

individual frames and words (changing 0s to 1s 

in F and W) if adding them would help to solve 

conflicts.  

We still need to decide which cluster 

memberships to add, and a useful principle might 

be to add memberships parsimoniously, i.e. to try 

to minimize the number of new memberships 

added to F and W. The CDCC algorithm takes a 

greedy approach to this problem. On each 

iteration, it simply adds the single cluster 

membership (word or frame) that would resolve 

the largest number of conflicts existing at that 

time. The set of remaining conflicts is then 

recalculated, and the cluster membership that 

again resolves the greatest number of conflicts is 

added, with the process being repeated until all 

conflicts have been resolved. 

The only remaining point to specify is how the 

algorithm gets started, i.e. how the W and F 

matrices are initialized. It would be desirable to 

begin with just a small number of “ground 

truths”, i.e. a small number of category 

memberships, for only a few frames and words, 

that are well-established in advance. The rest of 

the values in the membership matrices are then 

bootstrapped from this starting point by referring 

to the co-occurrence matrix.  

The initial values with which W and F are 

“seeded” can come from any source: for instance, 

they may be the result of a process of semantic 

category formation (e.g. Macnamara, 1982; 

Pinker, 1984), so that words that refer to physical 

objects are flagged as belonging to one category, 

and words for actions marked as belonging to 

another category (bear in mind that this does not 

preclude these words from later also being 

assigned to other categories). This process might 

also be extended to frames that reliably contain 

words referring to objects, actions, physical 

properties, etc. In computational work on 

language acquisition, proxies for these categories 

might be obtained from lists of early-acquired 

words, possibly in combination with norms on 

word imageability. In less acquisition-oriented 

work, seeds may be obtained from manually 

annotated examples, so that this becomes a semi-

supervised approach to part-of-speech tagging. 

In the experiment reported here, we decided to 

obtain our seed information entirely from the 

same word-frame co-occurrence matrix D used 

later to expand the W and F matrices, and we did 

so along the same lines as followed by 

Leibbrandt & Powers (2008, 2010). 

Consequently, our results are prone to some of 

the shortcomings of the earlier work, as 
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discussed later. We emphasize that the choice of 

seeding algorithm is not part of the CDCC 

algorithm proper, and informal experimentation 

has shown that the performance of CDCC is 

highly dependent on the accuracy of the initial 

seed information.  

2.1 CDCC Algorithm  

The conflict-driven co-clustering algorithm 

(pseudo-code is presented in Box 2) attempts to 

find a conflict-free allocation of categories to 

words and frames. It does so by repeatedly 

removing the largest existing conflict until no 

conflicts remain.  

In what follows, we use the term “co-item” to 

refer to those items with which an item (word or 

frame) co-occurs in D, i.e. the co-items of  a 

word type are the frame types in which it has 

occurred, and the co-items of a frame type are 

the word types that have occurred in it. Conflicts 

between items and their co-items are removed by 

simply allocating those additional categories to 

items that they would need in order to no longer 

be in conflict with the co-items. Conflicts are not 

resolved in random order; instead, the conflict 

resolution option that would resolve the largest 

number of conflicts is chosen at every step. In 

this way, the membership vectors for each of the 

words and frames are adjusted so as to converge 

onto the “correct” allocation. When no more 

changes can be made to the membership vectors, 

the algorithm halts. 

The algorithm works in batch mode, 

considering the entire data matrix at once. For 

every item (whether word or frame), the set of 

co-items that are currently in conflict with the 

item is collected. Using the current membership 

matrices W and F, the algorithm allows each co-

item to cast one vote for every category to which 

it is currently allocated (i.e. co-items cast votes 

to have particular categories added to the item‟s 

allocations). Per definition, these are categories 

that the target item does not have in its 

membership vector, so that adding that category 

to the item‟s membership vector would resolve 

the conflict between the item and that particular 

co-item; however, the point of voting is to find 

the single change that would result in the largest 

number of conflict resolutions at once. The 

number of votes for each category is determined 

in this way for every target item (every word and 

every frame). The suggested category allocation 

that has received the largest number of votes 

over all words and all frames is designated the 

“winner”, and the category in question is added 

to the membership vector of the item in question.  

 

CDCC: 

D: co-occurrence matrix of frames and words 

F, W: membership matrices describing the 

categories to which each of the frames and 

words may belong. F and W are initialized 

prior to running CDCC, for instance using 

unsupervised clustering as in Box 2. F[ k ][ i ] 

= 1 if frame i is able to belong to cluster k, and 

0 otherwise, and similarly for W. 

 

repeat until convergence (see text) 

for i = 1 to I 

for j = 1 to J 

if D[ i ][ j ] = 1 

  conflict = true 

  for k = 1 to K 

    if (F [ k ][ i ] = 1  

    and W [ k ][ j ] = 1) 

        conflict =false 

  if conflict 

    tallyVotes(i, j) 

find k1 such that FrameVotes[ k1 ][ i ] =  

   max cell in FrameVotes 

find k2 such that WordVotes[ k2 ][ j ] = 

   max cell in WordVotes 

if FrameVotes[k1][ i ] > WordVotes[k2][ j ] 

   F [ k1 ][ i ] = 1 

else 

   W [ k2 ][ j ] = 1 

 

tallyVotes(i, j): 

for k = 1 to K 

if (F[ k ][ i ] = 0 and W [ k ][ j ] = 1) 

     FrameVotes[ k ][ i ] += 1 

else if (F [ k ][ i ] = 1 and W [ k ][ j ] = 0) 

     WordVotes[ k ][ j ] += 1 

Box 1. Conflict-Driven Co-Clustering 

Algorithm. 

One of the benefits of the voting system is that 

it is self-correcting. If an item which is, say, a 

Noun, is incorrectly not assigned to the cluster 

corresponding to Nouns, then it will cast one 

incorrect vote each time to change the allocation 

of each of its co-items. However, the co-items 

are likely to be Nouns in most cases, and hence 
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to occur in other Noun frames, which will in 

most cases lend them the Noun allocation, so that 

they will vote en masse to change the allocation 

of the incorrectly allocated item to Noun. 

 The product of the CDCC algorithm is a fairly 

conservative allocation of (potentially multiple) 

clusters to each of the words and frames.  

3 Evaluation of the algorithms  

The CDCC algorithm was applied to a corpus 

of child-directed speech, after which individual 

tokens of word-frame co-occurrences were 

categorized into one of the co-clusters produced 

by the algorithm, as described below.  

3.1 Data Set  

The data set used was the same as in Leibbrandt 

& Powers (2008), namely the child-directed  

portion of the Manchester corpus (Theakston, 

Lieven, Pine & Rowland, 2001) obtained from 

the CHILDES project (MacWhinney, 2000). This 

corpus is supplied with a manual part-of-speech 

tagging, which was used as the „gold standard‟ 

correct tagging against which the categorization 

produced by CDCC was evaluated. 

3.2 Extraction of Contextual Frames  

Contextual frames were extracted from the 

corpus following the method in Leibbrandt & 

Powers (2008). Frames were formed from 

utterances in the corpus by replacing all but the 

most frequently-occurring words in the corpus 

with a placeholder symbol, turning corpus 

utterances into lexically-based schematic 

template sentences with slots that can be filled by 

inserting single words (for example, “Don‟t X 

it”, “That‟s your X”, “It‟s very X”). Frequency 

counts were collected of the number of 

occurrences of each word in each of the 

contextual frames, and the resulting data matrix 

was filtered to contain only those elements that 

attained a certain level of support, i.e. frames that 

occurred with 5 or more distinct word types, and 

words that occurred in 5 or more frame types. 

The resulting data matrix was used to obtain seed 

category membership information for selected 

words and frames, as described in the next 

section. 

3.3 Seed Information 

The first step in obtaining “ground truth” seed 

information for running the CDCC algorithm 

(pseudocode shown in Box 2) is to perform a  

D: co-occurrence matrix, such that D [ i ][ j ] = 1 

if word j has co-occurred with frame I, 0 

otherwise. 

Allocation: Cluster membership vector for 

frames, obtained from hard clustering algorithm, 

such that Allocation[ i ] = k if frame i is allocated 

to cluster k. 

 

Initialize ClusterCoocc[ K ][ J ] to all zeroes. 

for i = 1 to I  

for j = 1 to J 

if D[ i ][ j ] 

ClusterCoocc [ Allocation[ i ] ] [ j ] += 1 

for k = 1 to K 

sum = sum(ClusterCoocc [ k ]) 

for j = 1 to J 

Distribution[ k ][ j ].index  = j 

Distribution[ k ][ j ].value =  

ClusterCoocc [ k ][ j ] / sum 

Sort Distribution[ k ] by value (descending) 

cumulativeProportion = 0;  j = 0 

repeat until cumulativeProportion ≥ η 

j += 1 

index = Distribution[ k ][ j ].index 

value = Distribution[ k ][ j ].value 

SeedWords[ k ] [index]  = 1  

cumulativeProportion += value 

for each pair (SeedWords[a], SeedWords[b]),  

a ≠ b 

Remove all words that occur in both 

SeedWords[a] and SeedWords[b] 

for i = 1 to I  

for j = 1 to J 

if D [ i ][ j ]  

for k = 1 to K 

if SeedWords[ k ][ j ] = 1 

SeedFrames[ k ][ i ] = 1 

for each pair (SeedFrames[a], SeedFrames[b]),  

a ≠ b 

Remove all frames that occur in both 

SeedFrames[a] and SeedFrames[b] 

Box 2. Seed frame and word selection algorithm. 
 

standard one-mode clustering of the (L2-

normalized) frame vectors of the co-occurrence 

matrix D, producing clusters of contextual 
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frames (hierarchical clustering with average 

linkage was used in this experiment). 

Next, we select sets of words that are 

particularly distinctive of each of the frame 

clusters. The assumption is that words that occur 

in a large number of frame types from a 

particular cluster are good representatives of that 

cluster. Hence, for each cluster, words are ranked 

in order of the number of distinct frame types 

from the cluster in which each word has 

occurred, and are added one-by-one to the seed-

word set for the cluster, until the cumulative 

proportion of total distinct-frame counts 

accounted for exceeds a threshold (set to 0.25 in 

this experiment). Once all seed-word sets have 

been collected in this way, seed-words which 

occur in the sets of more than one cluster are 

discarded.  

Next, a seed-frame set is created for each 

cluster, consisting of all frames which occurred 

with seed-words from that cluster and did not 

occur with a seed-word from any other cluster. 

The resulting seed sets are arguably the words 

and frames that are the most distinctly associated 

with each cluster. The process described above 

can be considered to produce similar results to a 

psychological process of association between 

clusters and words, where the strength of 

association between the cluster and the word is 

strengthened each time the word is used in a 

frame that is strongly associated with that cluster 

already. Each distinct frame is considered to 

contribute an equal amount of activation strength 

to the word, regardless of its own frequency of 

occurrence in the input, so that this association 

process is sensitive to the type frequency of 

frames co-occurring with the word in question, 

rather than to the token frequency. A wider range 

of co-occurring frames constitutes more robust 

evidence that the word does indeed belong with 

the cluster (and most likely possesses many of 

the semantic attributes that are associated with 

the cluster). For evidence that the type frequency 

of words occurring in a frame aids 

generalization, see Bybee (1985, 2006). 

The algorithm maintains a binary-valued 

allocation vector for each frame and each word 

of length K, where K is the number of clusters. 

The k‟th value in the allocation vector is 1 if the 

word or frame can belong to cluster k, and 0 if 

not. In this way, the algorithms deal with the 

ambiguity of both words and frames, by allowing 

an item to belong to more than one cluster. For 

every cluster k, the k‟th value of the allocation 

vector of every seed word and every seed frame 

of cluster k is initialized to 1, and all other values 

are set to 0.  

3.4 Categorization 

For the purpose of evaluation, we categorize 

each of the instances of word-frame co-

occurrences in the data matrix D by combining 

the word and frame cluster information contained 

in the membership matrices W and F. When 

classifying a particular instance of word w used 

in frame f, if there exists a unique a cluster c such 

that w and f  have both been allocated to c (in a 

majority of cases in this experiment, there was 

such a unique cluster), then the word-frame 

combination is classified as belonging to the 

cluster in question. In cases where the word and 

frame have more than one cluster in common, we 

fall back on estimating the amount of evidence 

that the word and frame separately belong to 

each of the clusters. The fallback values for each 

word and frame are calculated as the proportion 

of co-items of the word or frame that are 

allocated to each cluster. The fallback value of 

the word is multiplied by the fallback value of 

the frame, for each cluster separately, and the 

cluster with the highest product is selected as the 

category to which the frame-word combination is 

assigned. 

3.5 Evaluation Measures 

Results are reported in terms of standard 

measures of precision, recall and F-score, with 

random baselines in parentheses. These measures 

were calculated, as is customary in unsupervised 

categorization, by a pair counting approach that 

constructs a confusion matrix based on whether 

pairs of elements are assigned to the same 

category in the gold-standard, and also in the 

clustering model (see e.g. Mintz, Newport & 

Bever, 2002). Because of several well-known 

shortcomings of precision and recall (e.g. 

Powers, 2003; Rosenberg & Hirschberg, 2007), 

we also report the Informedness measure 

(Powers, 2003), which corresponds to the 

probability that the predictions made by the 

algorithm  are informed, in the sense of making 

correct use of information.  

For a 2×2 contingency table with the symbols 

a, b, c and d respectively indicating the number 

of true positives, false positives, false negatives 

and true negatives, Informedness is given by 

𝐼 =  
𝑎

𝑎 + 𝑐
−

𝑏

𝑏 + 𝑑
 . 
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Informedness can thus be expressed as Recall 

for a particular cluster, discounted by the 

proportion of all non-category items that occur in 

that cluster. Informedness is equivalent to the 

well-known delta-P formula expressing 

association strength in human associative 

learning (e.g. Shanks, 1995). For a supervised 

classification problem, with a table of arbitrary 

dimensions m×m, Informedness is calculated for 

the 2×2 contingency table of each category in 

turn, and the Informedness values for all 

categories are combined in a weighted sum, 

where the weight for each category is the 

proportion of word tokens assigned to that 

category by the algorithm (i.e. the algorithm‟s 

bias to assign instances to the category). In 

unsupervised cases, it is not obvious how to 

associate clusters with gold-standard categories. 

In this case, weighted Informedness values are 

calculated for every possible 1-to-1 mapping 

between gold standard categories and clusters, 

and the highest of these Informedness values is 

selected. 

For evaluation, we made use of only those 

tokens that were assigned to one of the three 

major open-class categories (nouns, verbs and 

adjectives).  

 

 HC CDCC LP08 FreqF 

Precision 
0.844  

(0.559) 

0.888  

(0.559) 

0.900 

(0.559) 
0.90 

Recall 
0.774 

(0.513) 

0.911 

(0.574) 

0.886 

(0.551) 
0.91 

F 
0.808 

(0.535) 

0.899 

(0.566) 

0.893 

(0.555) 
0.90 

I 0.708 0.800 0.814 n/a 

 

Table 1. Performance of clustering-based part-of-

speech induction methods. Random baseline 

values in italics. Baseline value for Informedness 

is zero. HC = Hierarchical Clustering (one-

dimensional); CDCC = Conflict-Driven Co-

Clustering; LP08 = replication of Leibbrandt & 

Powers (2008); FreqF = Frequent Frames 

(results from Mintz, 2006, baseline and 

Informedness scores unknown). 

3.6 Results 

The results of categorization according to the 

CDCC algorithm is shown in Table 1. For 

comparison, we have also shown the results of 

categorization with three other algorithms, 

namely: LP08, a replication of Leibbrandt & 

Powers (2008); FreqF, the results from Mintz 

(2003) for the Frequent Frames model applied to 

the same corpus as used here; and HC, the results 

from categorizing a word-frame combination 

according to the cluster of the frame only, where 

the frame clusters are the ones derived in the 

one-way clustering step that produced the seed 

information for CDCC. 

The results show that CDCC is competitive in 

its categorization performance with both the 

LP08 and FreqF approaches. Comparing 

Informedness and F-scores against their random 

baselines, the performance of LP08 is only 

slightly better than that of the two new 

algorithms (random baseline values were not 

reported by Mintz, 2003). Importantly, CDCC 

(as well as LP08) performs much better than the 

hard clustering HC from which it derives its seed 

information, showing that co-clustering improves 

categorization. 

3.7 Robustness of induced parts-of-speech 

We have not yet said much about the number 

of clusters formed by the co-clustering 

algorithms. This number could conceivably be 

influenced by the number of clusters formed by 

the initial one-way clustering algorithm, which is 

often (as it was in our experiment) a parameter 

under control of the experimenter. However, the 

number of parts-of-speech produced by a part-of-

speech induction algorithm should be relatively 

immune to manipulations of algorithmic 

parameters. A related issue is that the parts-of-

speech produced by clustering approaches are 

often unsatisfactory from a linguistic point of 

view, as they don‟t correspond exactly to the 

expected parts-of-speech of the target language 

(see also Schütze, 1995). We regard it as 

desirable for a part-of-speech induction method 

to account for at least the main open-class parts-

of-speech of English (nouns, verbs, adjectives 

and adverbs), and to be able to produce these 

without undue coercion.  

Therefore, it is of interest to consider how the 

number of parts-of-speech produced by the co-

clustering algorithms is affected by the number 

of clusters in the original one-way clustering 

from which they start. These results are shown in 

Table 2.  The table shows the number of parts-of- 

speech produced by LP08 versus CDCC when 

started off with varying numbers of hard clusters 
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in the range 3 to 18. For each algorithm, the table 

shows (under Any) the number of distinct parts-

of-speech (clusters) to which at least one word-

frame occurrence was assigned during the 

categorization reported above, and also (under 

1%) the number of parts-of-speech such that at 

least one percent of the total number of word-

frame combinations were assigned to that part-

of-speech. The results under Any show that, as  

 LP08 CDCC 

K Any 1% Any 1% 

3 3 3 3 3 

6 5 3 4 3 

9 9 4 5 3 

12 12 6 9 3 

15 15 6 10 3 

18 18 7 9 3 

 

Table 2. Number of parts-of-speech used during 

categorization for three co-clustering algorithms, 

for varying K = number of clusters produced in 

initial one-way clustering. Any = number of 

parts-of-speech that account for at least one 

frame-word instance; 1% = number of parts-of-

speech that account for at least 1% of instances. 

LP08 = replication of Leibbrandt & Powers 

(2008); CDCC = Conflict-Driven Co-Clustering. 

 

the number of initial clusters grew, so too did the 

number of clusters that were used at least once 

during categorization, so that the algorithms were 

rather badly prone to proliferation of parts-of-

speech when started with a large number of 

initial clusters, although CDCC was more 

conservative than LP08, and managed to discard 

many of the original clusters. However, the 

results for 1% are more encouraging. Both 

algorithms, even when started with several 

candidate clusters in the one-way clustering, 

managed to eliminate the minor clusters to some 

extent, and redistribute their members into the 

larger parts-of-speech. It is particularly 

noteworthy that for CDCC, only three clusters 

were used for more than 1% of all instances. 

Inspection of the details of categorization 

showed that the CDCC algorithm managed to 

discover three clusters that seemed to correspond 

closely to the three major English parts-of-

speech of Noun, Verb and Adjective. These 

categories appeared to be such a salient feature 

of the data for CDCC that they were able to „self-

organize‟ during runs of the algorithm from 

various one-way clustering starting points. This 

robust induction of the main English parts-of-

speech is a striking advantage of CDCC over 

LP08. 

It may be argued that the number of classes 

produced by the algorithm are too few to provide 

a basis for part-of-speech induction. To some 

extent this is a consequence of the seeding 

algorithm chosen. The frames used by 

Leibbrandt & Powers (2008, 2010) tended to 

support mostly open-class word fillers; nouns, 

verbs and adjectives made up respectively 52%, 

25% and 10% of the total number of tokens that 

served as fillers in their frames, for a total of 

87%. Arguably, this may be seen as desirable: 

for a child learning a language, knowledge of the 

open classes is more useful for learning novel 

words than knowledge of the closed classes. On 

the other hand, the lack of a category of adverbs 

may be regarded as a shortcoming of the original 

work by Leibbrandt & Powers. Nevertheless, the 

CDCC algorithm was able to robustly identify 

the main classes represented in the co-occurrence 

matrix. 

4 Discussion 

The CDCC algorithm has been shown to 

achieve similar categorization performance to 

some earlier models of part-of-speech induction. 

The most striking advantage has been that CDCC 

is able to “hone in” on the three main parts-of-

speech. We suggest that this is due to the 

conservative nature of conflict resolution: by 

tallying the strength of evidence for a particular 

category in terms of the number of votes it 

receives, weaker categories are not able to cast 

sufficient numbers of votes to change word or 

frame allocations. Importantly, this means that in 

subsequent iterations, when conflicts are 

recalculated and votes cast once more, 

allocations of particular words or frames to these 

minor categories are more likely  to be swamped 

by the additional allocations previously added to 

the major categories, so that the initially stronger 

categories become stronger as the algorithm 

executes while the weaker categories all but 

disappear. This is an important feature of the 

algorithm, because the original clustering step 

from which both CDCC and Leibbrandt & 

Powers (2008) begin is unconstrained in the 

number of clusters it produces; this is a 

parameter of the system, but it is a relatively 

unimportant one in the case of CDCC because 

the algorithm self-organizes around the major 

categories. 
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While the CDCC algorithm performs similarly 

to other established work while taking a radically 

different approach, several issues remain to be 

investigated. One of the potential strengths of 

CDCC is that it treats category membership in a 

discrete or symbolic way, rather than graded, as 

in Leibbrandt & Powers (2008). It remains to be 

seen whether such a treatment provides specific 

benefits in resolving ambiguity when dealing 

with words or frames that can belong to multiple 

categories.  

CDCC has been formulated here as combining 

distributional information about the word type 

and the frame type in order to produce a part-of-

speech allocation. However, the algorithm can be 

viewed more generally as a method to combine 

or fuse more than one source of information 

together, and hence can be applied to 

distributional, phonological, semantic or any 

other forms of linguistic information. 

As it has been formulated here as a batch 

process, the CDCC algorithm can be regarded as 

addressing only the computational level of the 

problem of part-of-speech induction in language 

acquisition. Additional work would be required 

to attempt to address the algorithmic or 

implementational levels by turning the algorithm 

into a fully incremental learner (e.g., Parisien, 

Fazly & Stevenson, 2008; Chrupala & Alishahi, 

2010). A simple variant of the CDCC algorithm 

could be one that simply processes the corpus in 

order, and in the case of a conflict between word 

and frame, stores the occurrence as evidence that 

the membership of either the word or frame 

should be altered, and in what way. When the 

accumulated evidence for a specific change of 

membership exceeds a threshold (e.g. when a 

certain number of votes have been cast to add 

membership of a particular cluster to a word or 

frame), the membership is added. It would 

remain to be determined empirically whether this 

iterative variant is still able to exhibit the same 

categorization performance and the property of 

robustness shown above for the batch CDCC 

algorithm. 
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Abstract

Dependency Parsing domain adaptation
involves adapting a dependency parser,
trained on an annotated corpus from a given
domain (e.g., newspaper articles), to work
on a different target domain (e.g., legal doc-
uments), given only an unannotated corpus
from the target domain.
We present a shift/reduce dependency
parser that can handle unlabeled sentences
in its training set using a transductive SVM
as its action selection classifier.
We illustrate the the experiments we per-
formed with this parser on a domain adap-
tation task for the Italian language.

1 Introduction

Dependency parsing is the task of identifying syn-
tactic relationships between words of a sentence
and labeling them according to their type. Typ-
ically, the dependency relationships are not de-
fined by an explicit grammar, rather implicitly
through a human-annotated corpus which is then
processed by a machine learning procedure, yield-
ing a parser trained on that corpus.
Shift-reduce parsers (Yamada and Matsumoto,
2003; Nivre and Scholz, 2004; Attardi, 2006) are
an accurate and efficient (linear complexity) ap-
proach to this task: They scan the words of a sen-
tence while updating an internal state by means of
shift-reduce actions selected by a classifier trained
on the annotated corpus.
Since the training corpora are made by human an-
notators, they are expensive to produce and are
typically only available for few domains that don’t
adequately cover the whole spectrum of the lan-
guage. Parsers typically lose significant accuracy

when applied on text from domains not covered
by their training corpus. Several techniques have
been proposed to adapt a parser to a new domain,
even when only unannotated samples from it are
available (Attardi et al., 2007a; Sagae and Tsujii,
2007).
In this work we present a domain adaptation based
on the semi-supervised training of the classifier of
a shift-reduce parser. We implement the classifier
as a multi-class SVM and train it with a transduc-
tive SVM algorithm that handles both labeled ex-
amples (generated from the source-domain anno-
tated corpus) and unlabeled examples (generated
from the the target-domain unannotated corpus).

2 Background

2.1 Shift-Reduce Parsing

A shift-reduce dependency parser is essentially a
pushdown automaton that scans the sentence one
token at a time in a fixed direction, while updat-
ing a stack of tokens and also updating a set of
directed, labeled edges that is eventually returned
as the dependency parse graph of the sentence.
Let T be the set of input token instances of
the sentence and D be the set of dependency
labels. The state of the parser is defined by
the tuple 〈s, q, p〉, where s ∈ T ∗ is the stack,
q ∈ T ∗ is the current token sequence and p ∈{
E|E ⊆ 2T×T×D, E is a forest

}
is the current

parse graph.
The parser starts in the state 〈[], q0, {}〉, where q0
is the input sentence, and terminates whenever it
reaches a state in the form 〈s, [], p〉. At each step,
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it performs one of the following actions:

shift :
〈s, [t|q], p〉
〈[t|s], q, p〉

rightreduced :
〈[u|s], [t|q], p〉

〈s, [t|q], p ∪ {(u, t, d)}〉

leftreduced :
〈[u|s], [t|q], p〉

〈s, [u|q], p ∪ {(t, u, d)}〉

note that there are rightreduced and
leftreduced actions for each label d ∈ D.
Action selection is done by the combination
of two functions f ◦ c : a feature extraction
function f : States → Rn that computes a
(typically sparse) vector of numeric features of
the current state and the multi-class classifier
c : R → Actions. Alternatively, the classifier
could score each available action, allowing a
search procedure such as best-first (Sagae and
Tsujii, 2007) or beam search to be used.
In our experiments we used an extension of
this approach that has an additional stack and
additional actions to handle non-projective de-
pendency relationships (Attardi, 2006). Training
is performed by computing, for each sentence
in the annotated training corpus, a sequence of
states and actions that generates its correct parse,
yielding, for each transition, a training example
(x, y) ∈ Rn ×Actions for the classifier.
Various classification algorithms have been
successfully used, including maximum entropy,
multi-layer perceptron, averaged perceptron,
SVM, etc. In our approach, the classifier is
always a multi-class SVM composed of multiple
(one-per-parsing-action) two-class SVMs in
one-versus-all configuration.

2.2 Parse Graph Revision

Attardi and Ciaramita (2007b) developed a
method for improving parsing accuracy using
parse graph revision: the output of the parser is
fed to a procedure that scans the parsed sentence
in a fixed direction and, at each step, possibly re-
vises the current node (rerouting or relabeling its
unique outgoing edge) based on the classifier’s
output.
Training is performed by parsing the training cor-
pus and comparing the outcome against the anno-
tation: for each sentence, a sequence of actions
necessary to transform the machine-generated
parse into the reference parse is computed and it

is used to train the classifier. (Usually, a lower-
quality parser is used during training, assuming
that it will generate more errors and hence more
revision opportunities).
This method tends to produce robust parsers: er-
rors in the first stage have the opportunity to be
corrected in the revision stage, thus, even if it
does not learn from unlabeled data, it neverthe-
less performs well in domain adaptation tasks (At-
tardi et al., 2007a). In our experiments we used
parse graph revision both as a baseline for accu-
racy comparison, and in conjunction with our ap-
proach (using a transductive SVM classifier in the
revision stage).

2.3 Transductive SVM

Transductive SVM (Vapnik, 1998) is a framework
for the semi-supervised training of SVM classi-
fiers.
Consider the inductive (completely supervised)
two-class SVM training problem: given a training
set {(xi, yi) |xi ∈ Rn, yi ∈ {−1, 1}}Li=1, find
the maximum margin separation hypersurface w ·
φ (x) + b = 0 by solving the following optimiza-
tion problem:

arg min
w, b, ξ

1

2
‖w‖22 + C

L∑
i=1

ξi (1)

∀i : yiw · φ (x) + b ≥ 1− ξi
∀i : ξi ≥ 0

w ∈ Rm, b ∈ R

where C ≥ 0 is a regularization parameter and
φ(·) is defined such that k (x, x̂) ≡ φ(x) · φ (x̂)
is the SVM kernel function. This is a convex
quadratic programming problem that can be
solved efficiently by specialized algorithms.
Including an unlabeled example set{
x∗j |x∗j ∈ Rn

}L∗
j=1

we obtain the transduc-

tive SVM training problem:

arg min
w, b, ξ, y∗, xi∗

1

2
‖w‖22 + C

L∑
i=1

ξi + C∗
L∗∑
j=1

ξ∗j

(2)
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∀i : yiw · φ (xi) + b ≥ 1− ξi
∀j : y∗j w · φ

(
x∗j
)

+ b ≥ 1− ξ∗j
∀i : ξi ≥ 0

∀j : ξ∗j ≥ 0

∀j : y∗j ∈ {−1, 1}
w ∈ Rm, b ∈ R

This formulation essentially models the unlabeled
examples the same way the labeled examples
are modeled, with the key difference that the
y∗j (the unknown labels of the unlabeled exam-
ples) are optimization variables rather than pa-
rameters. Optimizing over these discrete variables
makes the problem non-convex and in fact NP-
hard. Nevertheless, algorithms that feasibly find
a local minimum that is typically good enough
for practical purposes do exist. In our exper-
iments we used the iterative transductive SVM
algorithm implemented in the SvmLight library
(Joachims, 1999). This algorithm tends to be-
come impractical when the number of unlabeled
examples is greater than a few thousands, hence
we were forced to use only a small portion on the
available target domain corpus. We also tried the
concave-convex procedure (CCCP) TSVM algo-
rithm (Collobert et al., 2006) as implemented by
the the Universvm package, and the multi-switch
and deterministic annealing algorithms for linear
TSVM (Sindhwani and Keerthi, 2007) as imple-
mented by the Svmlin package. These methods
are considerably faster but appear to be substan-
tially less accurate than SvmLight on our training
data.

3 Proposed approach

We present a semi-supervised training procedure
for shift/reduce SVM parsers that allows to in-
clude unannotated sentences in the training cor-
pus.
We randomly sample a small number (approx.
100) of sentences from the unannotated corpus
(the target domain corpus in a domain adaptation
task). For each of these sentences, we generate a
sequence of states that the parser may encounter
while scanning the sentence. For each state we
extract the features to generate an unlabeled train-
ing example for the SVM classifier which is in-
cluded in the training set along with the labeled

examples generated from the annotated corpus.
There is a caveat here: the parser state at any given
point during the parsing of a sentence generally
depends on the actions taken before, but when we
are training on an unannotated sentence, we have
no way of knowing what actions the parser should
have taken, and thus the state we generate can be
generally incorrect. For this reason we evaluated
pre-parsing the unannotated sentences with a non-
transductively trained parser in order to generate
plausible state transitions while still adding unla-
beled examples. However, it turned out that this
pre-parsing does not seem to improve accuracy.
We conjecture that, because the classifier does not
see actual states but only features derived from
them, and many of these features are independent
of previous states and actions (features such as the
lemma and POS tag of the current token and its
neighbors have this property), these features con-
tain enough information to perform parsing.
The classifier is trained using the SvmLight trans-
ductive algorithm. Since SvmLight supports only
two-class SVMs while our classifier is multi-class
(one class for each possible parsing action), we
implement it in terms of two-class classifiers. We
chose the one-versus-all strategy:
We train a number of sub-classifiers equal to the
number of original classes. Each labeled training
example (x, y) is converted to the example (x, 1)
for the sub-classifier number y and to the example
(x, −1) for the rest of sub-classifiers. Unlabeled
examples are just replicated to all sub-classifiers.
During classification the input example is eval-
uated by all the sub-classifiers and the one re-
turning the maximum SVM score determines the
class.
Our approach has been also applied to the second
stage of the revision parser, by presenting the fea-
tures of the unannotated sentences to the revision
classifier as unlabeled training examples.

4 Experiments

4.1 Experimental setup

We performed our experiments using the DeSR
parser (Attardi, 2006) on the data sets for the
Evalita 2011 dependency parsing domain adapta-
tion task for the Italian language (Evalita, 2011).
The data set consists in an annotated source-
domain corpus (newspaper articles) and an unan-
notated target-domain corpus (legal documents),
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plus a small annotated development corpus also
from the target domain, which we used to evalu-
ate the performance.
We performed a number of runs of the DeSR
parser in various configurations, which differed
in the number and type of features extracted, the
sentence scanning direction, and whether or not
parse tree revision was enabled. The SVM clas-
sifiers always used a quadratic kernel. In order to
keep the running time of transductive SVM train-
ing acceptable, we limited the number of unanno-
tated sentences to one hundred, which resulted in
about 3200 unlabeled training examples fed to the
classifiers. The annotated sentences were 3275.
We performed one run with 500 unannotated sen-
tences and, at the cost of a greatly increased run-
ning time, the accuracy improvement was about
1%. We conjecture that a faster semi-supervised
training algorithm could allow greater perfor-
mance improvements by increasing the size of the
unannotated corpus that can be processed. All
the experiments were performed on a machine
equipped with an quad-core Intel Xeon X3440
processor (8M Cache, 2.53 GHz) and 12 Giga-
bytes of RAM.

4.2 Discussion

As it is evidenced from the table in figure
1, our approach typically outperforms the non-
transductive parser by about 1% of all the three
score measures we considered. While the im-
provement is small, it is consistent with differ-
ent configurations of the parser that don’t use
parse tree revision. Accuracy remained essen-
tially equal or became slightly worse in the two
configurations that use parse tree revision. This is
possibly due to the fact that the first stage parser of
the revision configurations uses a maximum en-
tropy classifier during training that does not learn
from the unlabeled examples.
These results suggest that unlabeled examples
contain information that can exploited to improve
the parser accuracy on a domain different than the
labeled set domain. However, the computational
cost of transductive learning algorithm we used
limits the amount of unlabeled data we can ex-
ploit.
This is consistent with the results obtained by
the self-training approaches, where a first parser
is trained on a the labeled set, which is used to
parse the unlabeled set which is then included into

the training set of a second parser. (In fact, self-
training is performed in the first step of the Svm-
Light TSVM algorithm).
Despite earlier negative results, (Sagae, 2010)
showed that even naive self-training can provide
accuracy benefits (about 2%) in domain adapta-
tion, although these results are not directly com-
parable to ours because they refer to constituency
parsing rather than dependency parsing. (Mc-
Closky et al., 2006) obtain even better results (5%
f-score gain) using a more sophisticated form of
self-training, involving n-best generative parsing
and discriminative reranking. (Sagae and Tsujii,
2007) obtain similar gains (about 3 %) for de-
pendency parsing domain adaptation, using self-
training on a subset of the target-domain instances
selected on the basis of agreement between two
different parsers. (the results are not directly com-
parable to ours because they were obtained on a
different corpus in a different language).

5 Conclusions and future work

We presented a semi-supervised training ap-
proach for shift/reduce SVM parsers and we illus-
trated an application to domain adaptation, with
small but mostly consistent accuracy gains. While
these gains may not be worthy enough to justify
the extra computational cost of the transductive
SVM algorithm (at least in the SvmLight imple-
mentation), they do point out that there exist a
significant amount of information in an unanno-
tated corpus that can be exploited for increasing
parser accuracy and performing domain adapta-
tion. We plan to further investigate this method by
exploring classifier algorithms other than trans-
ductive SVM and combinations with other semi-
supervised parsing approaches. We also plan to
test our method on standardized English-language
corpora to obtain results that are directly compa-
rable to those in the literature.
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Figure 1: Experimental results
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