Hybrid Combination of Constituency and Dependency Trees into an
Ensemble Dependency Parser

Nathan David Green and Zdenék Zabokrtsky
Charles University in Prague
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Prague, Czech Republic
{green, zabokrtsky}@ufal .mff.cuni.cz

Abstract

Dependency parsing has made many ad-
vancements in recent years, in particu-
lar for English. There are a few de-
pendency parsers that achieve compara-
ble accuracy scores with each other but
with very different types of errors. This
paper examines creating a new depen-
dency structure through ensemble learn-
ing using a hybrid of the outputs of var-
ious parsers. We combine all tree out-
puts into a weighted edge graph, using 4
weighting mechanisms. The weighted edge
graph is the input into our ensemble sys-
tem and is a hybrid of very different parsing
techniques (constituent parsers, transition-
based dependency parsers, and a graph-
based parser). From this graph we take a
maximum spanning tree. We examine the
new dependency structure in terms of accu-
racy and errors on individual part-of-speech
values.

The results indicate that using a greater
number of more varied parsers will improve
accuracy results. The combined ensemble
system, using 5 parsers based on 3 different
parsing techniques, achieves an accuracy
score of 92.58%, beating all single parsers
on the Wall Street Journal section 23 test
set. Additionally, the ensemble system re-
duces the average relative error on selected
POS tags by 9.82%.

1 Introduction

Dependency parsing has made many advance-
ments in recent years. A prime reason for the
quick advancement has been the CoNLL shared
task competitions. These competitions gave the
community a common training/testing framework

along with many open source systems. These sys-
tems have, for certain languages, achieved fairly
high accuracy. Many of the top systems have
comparable accuracy but vary on the types of
errors they make. The approaches used in the
shared task vary from graph-based techniques to
transition-based techniques to the conversion of
constituent trees produced by state-of-the-art con-
stituent parsers. This varied error distribution
makes dependency parsing a prime area for the
application of new hybrid and ensemble algo-
rithms.

Increasing accuracy of dependency parsing of-
ten is in the realm of feature tweaking and opti-
mization. The idea behind ensemble learning is to
take the best of each parser as it currently is and
allow the ensemble system to combine the outputs
to form a better overall parse using prior knowl-
edge of each individual parser. This is often done
by different weighting or voting schemes.

2 Related Work

Ensemble learning (Dietterich, 2000) has been
used for a variety of machine learning tasks and
recently has been applied to dependency pars-
ing in various ways and with different levels of
success. (Surdeanu and Manning, 2010; Haf-
fari et al., 2011) showed a successful combina-
tion of parse trees through a linear combination
of trees with various weighting formulations. To
keep their tree constraint, they applied Eisner’s al-
gorithm for reparsing (Eisner, 1996).

Parser combination with dependency trees has
been examined in terms of accuracy (Sagae and
Lavie, 2006; Sagae and Tsujii, 2007; Zeman and
Zabokrtsky, 2005). However, the various tech-
niques have generally examined similar parsers

19

Proceedings of the Workshop on Innovative Hybrid Approaches to the Processing of Textual Data (Hybrid2012), EACL 2012, pages 19-26,

Avignon, France, April 23 2012. (©)2012 Association for Computational Linguistics

or parsers which have generated various different
models. To the best of our knowledge, our ex-
periments are the first to look at the accuracy and
part of speech error distribution when combining
together constituent and dependency parsers that
use many different techniques. However, POS
tags were used in parser combination in (Hall et
al., 2007) for combining a set of Malt Parser mod-
els with success.

Other methods of parser combinations have
shown to be successful such as using one parser
to generate features for another parser. This was
shown in (Nivre and McDonald, 2008), in which
Malt Parser was used as a feature to MST Parser.
The result was a successful combination of a
transition-based and graph-based parser, but did
not address adding other types of parsers into the
framework.

3 Methodology

The following sections describe the process flow,
choice of parsers, and datasets needed for oth-
ers to recreate the results listed in this paper.
Although we describe the specific parsers and
datasets used in this paper, this process flow
should work for any number of hybrid combina-
tions of parsers and datasets.

3.1 Process Flow

To generate a single ensemble parse tree, our sys-
tem takes N parse trees as input. The inputs are
from a variety of parsers as described in 3.2.
All edges in these parse trees are combined into
a graph structure. This graph structure accepts
weighted edges. So if more than one parse tree
contains the same tree edge, the graph is weighted
appropriately according to a chosen weighting al-
gorithm. The weighting algorithms used in our
experiments are described in 3.5.

Once the system has a weighted graph, it then
uses an algorithm to find a corresponding tree
structure so there are no cycles. In this set of ex-
periments, we constructed a tree by finding the
maximum spanning tree using ChuLiuv/Edmonds’
algorithm, which is a standard choice for MST
tasks. Figure 1 graphically shows the decisions
one needs to make in this framework to create an
ensemble parse.

% Base
I Y I Parsers
1 L N
Graph Edge
Weighting
J’ Algorithms
- Ensemble
Tree Algorithm Algorithm
Ensemble
Parse

Figure 1: General flow to create an ensemble parse
tree.

3.2 Parsers

To get a complete representation of parsers in
our ensemble learning framework we use 5 of
the most commonly used parsers. They range
from graph-based approaches to transition-based
approaches to constituent parsers. Constituency
output is converted to dependency structures us-
ing a converter (Johansson and Nugues, 2007).
All parsers are integrated into the Treex frame-
work (Zabokrtsky et al., 2008; Popel et al., 2011)
using the publicly released parsers from the re-
spective authors but with Perl wrappers to allow
them to work on a common tree structure.

e Graph-Based: A dependency tree is a spe-
cial case of a weighted edge graph that
spawns from an artificial root and is acyclic.
Because of this we can look at a large history
of work in graph theory to address finding
the best spanning tree for each dependency
graph. In this paper we use MST Parser
(McDonald et al., 2005) as an input to our
ensemble parser.

e Transition-Based: Transition-based parsing
creates a dependency structure that is pa-
rameterized over the transitions used to cre-
ate a dependency tree. This is closely re-
lated to shift-reduce constituency parsing al-
gorithms. The benefit of transition-based
parsing is the use of greedy algorithms which
have a linear time complexity. However, due
to the greedy algorithms, longer arc parses
can cause error propagation across each tran-
sition (Kiibler et al., 2009). We make use

20

of Malt Parser (Nivre et al., 2007b), which
in the shared tasks was often tied with the
best performing systems. Additionally we
use Zpar (Zhang and Clark, 2011) which is
based on Malt Parser but with a different set
of non-local features.

e Constituent Transformation While not a
true dependency parser, one technique of-
ten applied is to take a state-of-the-art con-
stituent parser and transform its phrase based
output into dependency relations. This has
been shown to also be state-of-the-art in ac-
curacy for dependency parsing in English. In
this paper we transformed the constituency
structure into dependencies using the Penn
Converter conversion tool (Johansson and
Nugues, 2007). A version of this converter
was used in the CoNLL shared task to create
dependency treebanks as well. For the fol-
lowing ensemble experiments we make use
of both (Charniak and Johnson, 2005) and
Stanford’s (Klein and Manning, 2003) con-
stituent parsers.

In addition to these 5 parsers, we also report
the accuracy of an Oracle Parser. This parser is
simply the best possible parse of all the edges of
the combined dependency trees. If the reference,
gold standard, tree has an edge that any of the 5
parsers contain, we include that edge in the Or-
acle parse. Initially all nodes of the tree are at-
tached to an artificial root in order to maintain
connectedness. Since only edges that exist in a
reference tree are added, the Oracle Parser main-
tains the acyclic constraint. This can be viewed
as the maximum accuracy that a hybrid approach
could achieve with this set of parsers and with the
given data sets.

3.3 Datasets

Much of the current progress in dependency pars-
ing has been a result of the availability of common
data sets in a variety of languages, made avail-
able through the CoNLL shared task (Nivre et al.,
2007a). This data is in 13 languages and 7 lan-
guage families. Later shared tasks also released
data in other genres to allow for domain adap-
tation. The availability of standard competition,
gold level, data has been an important factor in
dependency based research.

For this study we use the English CoNLL data.
This data comes from the Wall Street Journal
(WSJ) section of the Penn treebank (Marcus et al.,
1993). All parsers are trained on sections 02-21 of
the WSJ except for the Stanford parser which uses
sections 01-21. Charniak, Stanford and Zpar use
pre-trained models ec50spfinal, wsjPCFG.ser.gz,
english.tar.gz respectively. For testing we use sec-
tion 23 of the WSJ for comparability reasons with
other papers. This test data contains 56,684 to-
kens. For tuning we use section 22. This data is
used for determining some of the weighting fea-
tures.

3.4 Evaluation

As an artifact of the CoNLL shared tasks
competition, two standard metrics for com-
paring dependency parsing systems emerged.
Labeled attachment score (LAS) and unlabeled
attachment score (UAS). UAS studies the struc-
ture of a dependency tree and assesses whether the
output has the correct head and dependency arcs.
In addition to the structure score in UAS, LAS
also measures the accuracy of the dependency la-
bels on each arc. A third, but less common met-
ric, is used to judge the percentage of sentences
that are completely correct in regards to their LAS
score. For this paper since we are primarily con-
cerned with the merging of tree structures we only
evaluate UAS (Buchholz and Marsi, 2006).

3.5 Weighting

Currently we are applying four weighting algo-
rithms to the graph structure. First we give each
parser the same uniform weight. Second we ex-
amine weighting each parser output by the UAS
score of the individual parser taken from our tun-
ing data. Third we use plural voting weights
(De Pauw et al., 2006) based on parser ranks from
our tuning data. Due to the success of Plural vot-
ing, we try to exaggerate the differences in the
parsers by using UAS!? weighting. All four of
these are simple weighting techniques but even in
their simplicity we can see the benefit of this type
of combination in an ensemble parser.

e Uniform Weights: an edge in the graph gets
incremented +1 weight for each matching
edge in each parser. If an edge occurs in 4
parsers, the weight is 4.

o UAS Weighted: Each edge in the graph gets

21

incremented by the value of it’s parsers in-
dividual accuracy. So in the UAS results
in Table 1 an edge in Charniak’s tree gets
.92 added while MST gets .86 added to ev-
ery edge they share with the resulting graph.
This weighting should allow us to add poor
parsers with very little harm to the overall
score.

e Plural Voting Weights: In Plural Voting
the parsers are rated according to their rank
in our tuning data and each gets a “vote”
based on their quality. With N parsers the
best parser gets N votes while the last place
parser gets 1 vote. In this paper, Charniak
received 5 votes, Stanford received 4 votes,
MST Parser received 3 votes, Malt Parser
received 2 votes, and Zpar received 1 vote.
Votes in this case are added to each edge as
a weight.

e UAS!: For this weighting scheme we took
each UAS value to the 10th power. This gave
us the desired affect of making the differ-
ences in accuracy more apparent and giving
more distance from the best to worse parser.
This exponent was empirically selected from
results with our tuning data set.

4 Results

Table 1 contains the results of different parser
combinations of the 5 parsers and Table 2 shows
the baseline scores of the respective individual
parsers. The results indicate that using two
parsers will result in an “average” score, and no
combination of 2 parsers gave an improvement
over the individual parsers, these were left out
of the table. Ensemble learning seems to start to
have a benefit when using 3 or more parsers with a
few combinations having a better UAS score than
any of the baseline parsers, these cases are in bold
throughout the table. When we add a 4th parser
to the mix almost all configurations lead to an
improved score when the edges are not weighted
uniformly. The only case in which this does not
occur is when Stanford’s Parser is not used.
Uniform voting gives us an improved score in a
few of the model combinations but in most cases
does not produce an output that beats the best in-
dividual system. UAS weighting is not the best
overall but it does give improved performance in

the majority of model combinations. Problemati-
cally UAS weighted trees do not give an improved
accuracy when all 5 parsers are used. Given the
slight differences in UAS scores of the baseline
models in Table 2 this is not surprising as the
best graph edge can be outvoted as the number
of N parsers increases. The slight differences in
weight do not seem to change the MST parse dra-
matically when all 5 parsers are used over Uni-
form weighting. Based on the UAS scores learned
in our tuning data set, we next looked to amplify
the weight differences using Plural Voting. For
the majority of model combinations in Plural vot-
ing we achieve improved results over the individ-
ual systems. When all 5 parsers are used together
with Plural Voting, the ensemble parser improves
over the highest individual parser’s UAS score.
With the success of Plural voting we looked to
amplify the UAS score differences in a more sys-
tematic way. We looked at using U AS* where
x was found experimentally in our tuning data.
UAS!'® matched Plural voting in the amount of
system combinations that improved over their in-
dividual components. The top overall score is
when we use UAS'? weighting with all parsers.
For parser combinations that do not feature Char-
niak’s parser, we also find an increase in over-
all accuracy score compared to each individual
parser, although never beating Charniak’s individ-
ual score.

To see the maximum accuracy a hybrid combi-
nation can achieve we include an Oracle Ensem-
ble Parser in Table 1. The Oracle Parser takes
the edges from all dependency trees and only adds
each edge to the Oracle Tree if the corresponding
edge is in the reference tree. This gives us a ceil-
ing on what ensemble learning can achieve. As
we can see in Table 1, the ceiling of ensemble
learning is 97.41% accuracy. Because of this high
value with only 5 parsers, ensemble learning and
other hybrid approaches should be a very prosper-
ous area for dependency parsing research.

In (Kiibler et al., 2009) the authors confirm that
two parsers, MST Parser and Malt Parser, give
similar accuracy results but with very different
errors. MST parser, a maximum spanning tree
graph-based algorithm, has evenly distributed er-
rors while Malt Parser, a transition based parser,
has errors on mainly longer sentences. This re-

22

System Uniform UAS Plural | UAS'™ | Oracle
Weighting | Weighted | Voting | Weighted | UAS
Charniak-Stanford-Mst 91.86 92.27 92.28 92.25 96.48
Charniak-Stanford-Malt 91.77 92.28 92.3 92.08 96.49
Charniak-Stanford-Zpar 91.22 91.99 92.02 92.08 95.94
Charniak-Mst-Malt 88.80 89.55 90.77 92.08 96.3
Charniak-Mst-Zpar 90.44 91.59 92.08 92.08 96.16
Charniak-Malt-Zpar 88.61 91.3 92.08 92.08 96.21
Stanford-Mst-Malt 87.84 88.28 88.26 88.28 95.62
Stanford-Mst-Zpar 89.12 89.88 88.84 89.91 95.57
Stanford-Malt-Zpar 88.61 89.57 87.88 87.88 95.47
Mst-Malt-Zpar 86.99 87.34 86.82 86.49 93.79
Charniak-Stanford-Mst-Malt 90.45 92.09 92.34 92.56 97.09
Charniak-Stanford-Mst-Zpar 91.57 92.24 92.27 92.26 96.97
Charniak-Stanford-Malt-Zpar 91.31 92.14 92.4 92.42 97.03
Charniak-Mst-Malt-Zpar 89.60 89.48 91.71 92.08 96.79
Stanford-Mst-Malt-Zpar 88.76 88.45 88.95 88.44 96.36
All 91.43 91.77 92.44 92.58 97.41

Table 1: Results of the maximum spanning tree algorithm on a combined edge graph. Scores are in bold when
the ensemble system increased the UAS score over all individual systems.

Parser UAS
Charniak | 92.08
Stanford | 87.88

MST 86.49

Malt 84.51
Zpar 76.06

Table 2: Our baseline parsers and corresponding UAS
used in our ensemble experiments

sult comes from the approaches themselves. MST
parser is globally trained so the best mean solu-
tion should be found. This is why errors on the
longer sentences are about the same as the shorter
sentences. Malt Parser on the other hand uses a
greedy algorithm with a classifier that chooses a
particular transition at each vertex. This leads to
the possibility of the propagation of errors further
in a sentence. Along with this line of research,
we look at the error distribution for all 5 parsers
along with our best ensemble parser configura-
tion. Much like the previous work, we expect dif-
ferent types of errors, given that our parsers are
from 3 different parsing techniques. To examine
if the ensemble parser is substantially changing
the parse tree or is just taking the best parse tree
and substituting a few edges, we examine the part
of speech accuracies and relative error reduction

in Table 3.

As we can see the range of POS errors varies
dramatically depending on which parser we ex-
amine. For instance for CC, Charniak has 83.54%
accuracy while MST has only 71.16% accuracy.
The performance for certain POS tags is almost
universally low such as the left parenthesis (.
Given the large difference in POS errors, weight-
ing an ensemble system by POS would seem like
a logical choice in future work. As we can see
in Figure 2, the varying POS accuracies indicate
that the parsing techniques we have incorporated
into our ensemble parser, are significantly differ-
ent. In almost every case in Table 3, our ensemble
parser achieves the best accuracy for each POS,
while reducing the average relative error rate by
9.82%.

The current weighting systems do not simply
default to the best parser or to an average of all er-
rors. In the majority of cases our ensemble parser
obtains the top accuracy. The ability of the en-
semble system to use maximum spanning tree on
a graph allows the ensemble parser to connect
nodes which might have been unconnected in a
subset of the parsers for an overall gain, which
is preferable to techniques which only select the
best model for a particular tree. In all cases,
our ensemble parser is never the worst parser. In

23

POS Charniak | Stanford | MST | Malt | Zpar Best Relative Error
Ensemble Reduction
CC 83.54 74.73 71.16 | 65.84 | 20.39 84.63 6.62
NNP 94.59 92.16 88.04 | 87.17 | 73.67 95.02 7.95
VBN 91.72 89.81 90.35 | 89.17 | 88.26 93.81 25.24
CD 94.91 92.67 85.19 | 84.46 | 82.64 94.96 0.98
RP 96.15 95.05 97.25 | 95.60 | 94.51 97.80 42.86
1 95.41 92.99 94.47 | 93.90 | 89.45 95.85 9.59
PRP 97.82 96.21 96.68 | 95.64 | 95.45 98.39 26.15
TO 94.52 89.44 91.29 | 90.73 | 88.63 94.35 -3.10
WRB 63.91 60.90 68.42 | 73.68 | 4.51 63.91 0.00
RB 86.26 79.88 81.49 | 81.44 | 80.61 87.19 6.77
WDT 97.14 95.36 96.43 | 95.00 | 9.29 97.50 12.59
VBZ 91.97 87.35 83.86 | 80.78 | 57.91 92.46 6.10
(73.61 75.00 54.17 | 58.33 | 15.28 73.61 0.00
POS 08.18 96.54 98.54 | 98.72 | 0.18 98.36 9.89
VB 93.04 88.48 91.33 | 90.95 | 84.37 94.24 17.24
MD 89.55 82.02 83.05 | 78.77 | 51.54 89.90 3.35
NNS 93.10 89.51 90.68 | 88.65 | 78.93 93.67 8.26
NN 93.62 90.29 88.45 | 86.98 | 83.84 94.00 5.96
VBD 93.25 87.20 86.27 | 82.73 | 64.32 93.52 4.00
DT 97.61 96.47 97.30 | 97.01 | 92.19 97.97 15.06
RBS 90.00 76.67 93.33 | 93.33 | 86.67 90.00 0.00
IN 87.80 78.66 83.45 | 80.78 | 73.08 87.48 -2.66
) 70.83 77.78 96.46 | 55.56 | 12.50 72.22 4.77
VBG 85.19 82.13 82.74 | 82.25 | 81.27 89.35 28.09
Average 9.82

Table 3: POS accuracies for each of our systems that are used in the ensemble system. We use these accuracies
to obtain the POS error distribution for our best ensemble system, which is the combination of all parsers using
UAS!? weighting. Relative error reduction is calculated between our best ensemble system against the Charniak
Parser which had the best individual scores.

24

POS Error Distribution

) WRE pgp
(100.0 POS
v El
cc 2 DT
%
RB g8 % e RP
% o % sobo
A [3
"3
IN WDT
oy, ®
>op
VBG <mE B e & 1)
> >
PR
MD . NNP
4 »
i g "
»
RBS & wy cD
%
a
VBZ -] B E T0
VBD VB

NNS gy NN

@ Charniak ¢ Stanford ¥ MST A Malt » Zpar <¢Ensemble

Figure 2: POS errors of all 5 parsers and the best en-
semble system

cases where the POS is less frequent, our ensem-
ble parser appears to average out the error distri-
bution.

5 Conclusion

We have shown the benefits of using a maxi-
mum spanning tree algorithm in ensemble learn-
ing for dependency parsing, especially for the
hybrid combination of constituent parsers with
other dependency parsing techniques. This en-
semble method shows improvements over the cur-
rent state of the art for each individual parser. We
also show a theoretical maximum oracle parser
which indicates that much more work in this field
can take place to improve dependency parsing ac-
curacy toward the oracle score of 97.41%.

We demonstrated that using parsers of differ-
ent techniques, especially including transformed
constituent parsers, can lead to the best accuracy
within this ensemble framework. The improve-
ments in accuracy are not simply due to a few
edge changes but can be seen to improve the ac-
curacy of the majority of POS tags over all indi-
vidual systems.

While we have only shown this for English,
we expect the results to be similar for other lan-
guages since our methodology is language in-
dependent. Future work will contain different
weighting mechanisms as well as application to

other languages which are included in CoNLL
data sets.

6 Acknowledgments

This research has received funding from the
European Commission’s 7th Framework Pro-
gram (FP7) under grant agreement n° 238405
(CLARA)

References

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning, CoNLL-X ’06,
pages 149-164, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics,
ACL °05, pages 173-180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Guy De Pauw, Gilles-Maurice de Schryver, and Peter
Wagacha. 2006. Data-driven part-of-speech tag-
ging of kiswabhili. In Petr Sojka, Ivan Kopecek, and
Karel Pala, editors, Text, Speech and Dialogue, vol-
ume 4188 of Lecture Notes in Computer Science,
pages 197-204. Springer Berlin / Heidelberg.

Thomas G. Dietterich. 2000. Ensemble methods in
machine learning. In Proceedings of the First In-
ternational Workshop on Multiple Classifier Sys-
tems, MCS 00, pages 1-15, London, UK. Springer-
Verlag.

Jason Eisner. 1996. Three new probabilistic mod-
els for dependency parsing: An exploration. In
Proceedings of the 16th International Conference
on Computational Linguistics (COLING-96), pages
340-345, Copenhagen, August.

Gholamreza Haffari, Marzieh Razavi, and Anoop
Sarkar. 2011. An ensemble model that combines
syntactic and semantic clustering for discriminative
dependency parsing. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
710-714, Portland, Oregon, USA, June. Associa-
tion for Computational Linguistics.

Johan Hall, Jens Nilsson, Joakim Nivre, Giilsen
Eryigit, Bedta Megyesi, Mattias Nilsson, and
Markus Saers. 2007. Single malt or blended?
a study in multilingual parser optimization. In
Proceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL 2007, pages 933-939.

Richard Johansson and Pierre Nugues. 2007. Ex-
tended constituent-to-dependency conversion for

25

English. In Proceedings of NODALIDA 2007,
pages 105-112, Tartu, Estonia, May 25-26.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1, ACL *03, pages 423—
430, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

. Kiibler, R. McDonald, and J. Nivre. 2009. Depen-
dency parsing. Synthesis lectures on human lan-
guage technologies. Morgan & Claypool, US.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: the Penn Treebank. Com-
put. Linguist., 19:313-330, June.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 523-530, Vancouver,
British Columbia, Canada, October. Association for
Computational Linguistics.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In Proceedings of ACL-08: HLT, pages
950-958, Columbus, Ohio, June. Association for
Computational Linguistics.

Joakim Nivre, Johan Hall, Sandra Kiibler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007a. The CoNLL 2007 shared task
on dependency parsing. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL
2007, pages 915-932, Prague, Czech Republic,
June. Association for Computational Linguistics.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gulsen Eryigit, Sandra Kiibler, Svetoslav
Marinov, and Erwin Marsi. 2007b. MaltParser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(2):95-135.

Martin Popel, David Marecek, Nathan Green, and
Zdengk Zabokrtsky. 2011. Influence of parser
choice on dependency-based mt. In Proceedings of
the Sixth Workshop on Statistical Machine Trans-
lation, pages 433—439, Edinburgh, Scotland, July.
Association for Computational Linguistics.

Kenji Sagae and Alon Lavie. 2006. Parser combi-
nation by reparsing. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 129-132,
New York City, USA, June. Association for Com-
putational Linguistics.

Kenji Sagae and Jun’ichi Tsujii. 2007. Depen-
dency parsing and domain adaptation with LR mod-
els and parser ensembles. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL

2007, pages 1044-1050, Prague, Czech Republic,
June. Association for Computational Linguistics.
Mihai Surdeanu and Christopher D. Manning. 2010.
Ensemble models for dependency parsing: cheap
and good? In Human Language Technologies:
The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, HLT 10, pages 649-652, Stroudsburg,
PA, USA. Association for Computational Linguis-

tics.

Zden€k Zabokrtsky’/, Jan Ptacek, and Petr Pajas. 2008.
TectoMT: Highly Modular MT System with Tec-
togrammatics Used as Transfer Layer. In Proceed-
ings of the 3rd Workshop on Statistical Machine
Translation, ACL, pages 167-170.

Daniel Zeman and Zdenék Zabokrtsky. 2005. Im-
proving parsing accuracy by combining diverse de-
pendency parsers. In In: Proceedings of the 9th In-
ternational Workshop on Parsing Technologies.

Yue Zhang and Stephen Clark. 2011. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational Linguistics, 37(1):105-151.

26

