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Abstract
A novel technique of adding positionwise
flags to one-level finite state lexicons is
presented. The proposed flags are kinds of
morphophonemic markers and they con-
stitute a flexible method for describing
morphophonological processes with a for-
malism that is tightly coupled with lexical
entries and rule-like regular expressions.
The formalism is inspired by the tech-
niques used in two-level rule compilation
and it practically compiles all the rules in
parallel, but in an efficient way. The tech-
nique handles morphophonological pro-
cesses without a separate morphophone-
mic representation. The occurrences of the
allomorphophonemes in latent phonologi-
cal strings are tracked through a dynamic
data structure into which the most promi-
nent (i.e. the best ranked) flags are col-
lected. The application of the technique
is suspected to give advantages when de-
scribing the morphology of Bantu lan-
guages and dialects.

1 Introduction

Computational morphology continues to be an
area of challenges when it comes to the construc-
tion of exact models for many under-resourced
languages whose grammar is not fully known. The
purpose of this paper is to introduce a new flexible
technique to finite state morphology: positionwise
flag diacritics (or shortly: positionwise flags, p-
flags). P-flags can be combined with the usual flag
diacritics (Beesley and Karttunen, 2003) that are
based on left-to-right inheritance. They are, how-
ever, directionless and relate the paths at a posi-
tion rather than the positions on a path. As such,
they capture phenomena for which morphophono-
logical rules are often preferred to the usual flag
diacritics.

The description of morphophonological pro-
cesses is often delegated to SPE-inspired rewriting
rules that are implemented as a sequence of finite
transducers (Beesley and Karttunen, 2003). Such
rules are particularly handy when describing sup-
pletion or regular alternations that span over sev-
eral segments.

Two-level systems (Koskenniemi, 1983) consist
of parallel rules while being equally capable with
transducer sequences. Since these systems have
only one underlying representation, the ordering
problems characterizing the transducer cascades
are now avoided. However, over-constrained two-
level systems are often difficult to debug or relax,
especially when they involve multi segmental al-
ternations and complex morphological conditions.

An ideal conflict resolution scheme is to ensure
that each rule applies only in those string positions
where the linguist wanted them to apply; if they
apply more often, the risk for conflicting effects
increases. In the typical implementations of two-
level systems, the rules are separated from the de-
scription of the relevant morphemes. This makes it
difficult to maintain coherence between the com-
ponents of the system. There is thus a need for a
better interface between the lexicon and the mor-
phophonological rules.

An alternative approach avoids the mor-
phophonological component by using the formal-
ism of flag diacritics (Beesley and Karttunen,
2003). However, there remain morphophonologi-
cal processes that are easier to describe with rules.
We are thus posed with a question: What is be-
tween the rules and flag diacritics.

The main contribution of this article is the novel
scheme of positionwise flag diacritics whose best
practice involves capturing rule-like behaviour and
elsewhere conditions. The second important con-
tribution of the article is the idea of a normalized
lexicon as a data structure that contains the latent
phonological strings and their most prominent po-
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sitionwise flags. Finally, the alleged relevance of
the methods to computational description of Bantu
varieties is made apparent.

1.1 The Prior Art

The flag diacritics described by Beesley and Kart-
tunen (Beesley and Karttunen, 2003) implement
an idea of expanding the state space of an automa-
ton with a vector of flag value registers. During the
construction of the networks, the flag diacritics are
like ordinary multicharacter symbols. When a flag
diacritic is encountered as a transition label during
a lookup, it is interpreted (Table 1) and the sym-
bol does not consume any input. A transition on a
flag diacritic fails to exist if its success condition
is not satisfied by the current flag value. Certain
flag diacritics have side-effects on the flag values.

diacritic succeeds if f is side effect
@P.f.v@ anything f←(v,+)
@N.f.v@ anything f←(v,−)
@C.f@ anything f←undef
@U.f.v@ undef, (v,+) or (v,−) f←(v,+)
@D.f.v@ undef, (v,+) or (v,−)
@D.f@ undef
@R.f.v@ (v,+)
@R.f@ anything but undef

Table 1: The conditions and side-effects of flag
diacritics

The flag diacritics are designed the left-to-right
scanning of the string in mind. The pattern
(@U.f.v@...@U.f.v@) is typically used as a means
to cope with effects that depend on a class, de-
clension, conjugation, stem type alternation or a
harmony. The patterns (@P.f.v@...@R.f.v@) and
(...@D.f.v@) are typically used to check that a cer-
tain prefix is present and absent, respectively. The
problem with this is that one ends up adding flag
diacritics to such paths that cannot co-occur with
the given prefix. Further mechanisms similar to
the flag diacritics have been proposed in the liter-
ature (Blank, 1989; Blåberg, 1994; Kornai, 1996;
Kiraz, 1997; Amtrup, 2004; Schmid, 2005; Trón
et al., 2006; Cohen-Sygal and Wintner, 2006).

In the sequel, some prior knowledge of the
two-level morphology (Koskenniemi, 1983) and
the calculus of regular relations (Kaplan and Kay,
1994; Beesley and Karttunen, 2003) is assumed.
Table 2 lists some crucial regular expression op-
erators used in this paper. The rules used in two-

operator type meaning
ε nullary empty string
: infix cross product

infix concatenation
∗ postfix Kleene star
∩ infix union
| or ∪ infix union
− infix asymmetric difference
◦ infix composition
⇒ infix context restriction
⇐ infix surface coercion
⇔ infix the double arrow rule
Id() function convert to an

identity relation

Table 2: regular expression operators

level morphology provide a well understood basis
for morphophonological grammars. In two-level
rules, it is common to refer to a set of symbol pairs
through an underspecific notation: e.g. :C refers to
all correspondence pairs with a surface consonant.

According to Koskenniemi and Silfverberg
(2010), a state-of-the-art compilation method for
morphophonological two-level rules is based on
the generalized restriction (GR) operation (Yli-
Jyrä and Koskenniemi, 2004). The operation is
based on temporary markers that are added to a
few positions of the strings during the construc-
tion. Besides its practical relevance to the com-
pilation of individual rules, the GR operation pro-
vides theoretical means to compile and combine
the set of disjunctively ordered constraints and the
lexicon at the same time (Yli-Jyrä, 2008). Such a
holistic approach relies on the determinization and
complementation of finite automata. These opera-
tions are potential sources for high state and tran-
sition complexities.

2 Bantu Phonology

The Bantu languages refer to a group of a few hun-
dred languages and dialects in Southern Africa.
The languages share many common aspects such
as rich affix morphology and reduplication. In
phonology, the most common assimilatory process
is the vowel height harmony of front and back
vowels (Nurse and Philippson, 2003, p.46). The
Front Height Harmony (FHH) process comes in
two flavors that correspond to the rules such as fol-
lows:
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(1) Front Height Harmony (FHH)
a. General: /i/:[e]⇔ [{o, e} C]
b. Extended: /i/:[e]⇔ [{o, e, a} C] .

The General FHH rule reads: “an underlying /i/ is
realised as [e] if the vowel of the preceding syl-
lable is [o] or [e].” The Extended FHH is more
effective and it alters /i/ also after [a].

The General and Extended FHH rules are in
conflict when /i/ is preceded with [a]. This kind
of conflict is not to be resolved on the basis of rules
per se, but by considering additional context infor-
mation. The relevant context-dependency is neatly
illustrated by the derivative extensions of verb
stems in (Oshi)Kwanyama and (Otji)Herero vari-
eties as described in (Halme, 2004) and (Möhlig
and Kavari, 2008).

In Herero (HER), the inflectional stem of an ap-
plicative (APPL) verb (2-b) is formed by extend-
ing the inflectional stem (2-a) with the suffix /-ir/
that precedes the final vowel /-a/. In Kwanyama
(KWA), the corresponding suffix is /-il/. In both
cases, the sound /i/ is subject to the Extended FHH
and the consonant is altered in nasal contexts (2-c).

(2) a. [túng-a] (HER)’build’-FV

b. [túng-ir-a] (HER)’build’-APPL-FV

c. [món-en-á] (KWA)’see’-APPL-FV

On the other hand, the Neuter verb (NEUT) is
formed in both languages with the suffix /-ik/
(3-a). The /i/ sound in this suffix is subject to
to General FHH in Kwanyama (3-b), but not in
Herero (Möhlig and Kavari, 2008).

(3) a. [túng-ik-á] (KWA)’build’-NEUT-FV

b. [kómb-ek-á] (KWA)’sweep’-NEUT-FV

The grammatical tone of the derivative extensions
cannot be discussed here due to space constraints.

In sum, the Bantu phonology shows that the
sound changes depend on the variety (HER˜KWA),
the morpheme position (root˜verbal extension)
and the grammatical category of a morpheme
(APPL˜NEUT). Such dependency can be described
through the concept of morphophonemes.

3 Morphophonology

3.1 Morphophonemes by Variation

A technique for identifying morphophonemes has
been given (Austerlitz, 1967). Another technique
(Koskenniemi, 1991) would provide the Applica-

tive and Neuter morphemes of Kwanyama with the
following morphophonological structures where
individual morphophonemes are wrapped in an-
gle brackets (they must not be confused with the
brackets that denote an orthographic string):

(4) a. |〈i˜e〉〈l˜n〉|
b. |〈i˜e〉〈k〉|

Both derivative extensions involve the same mor-
phophoneme, |〈i˜e〉|, which is distinguished from
the morphophoneme |〈i〉| that occurs e.g. in verb
roots. The morphophoneme helps thus to focus
the application of the phonological rules on exten-
sions (in contrast to verb roots).

The morphophoneme |〈i˜e〉| is indifferent with
the grammatical category of the extension. There-
fore, the harmony rules need an additional condi-
tion to account the difference between APPL and
NEUT. Reducing the morphological condition to
the segmental structure of the morphemes does
not seem to be a well-motivated option. Adding
arbitrarily chosen lexical features (Koskenniemi,
1983, p.40) to the morphophonological strings is
also a weakly motivated approach. Condition-
ing the rules with grammatical categories (Trost,
1991; Kiraz, 1997) is perhaps the most solid but
also the heaviest approach. Conceptually, it leads
to the following pair of realisation rules for the
morphophoneme |〈i˜e〉|:

(5) a. |〈i˜e〉|:/i/⇒
b. |〈i˜e〉|:/e/⇔ /{e,a,o} C/ (APPL),

/{e,o} C/ (NEUT).

The use of the grammar categories in rules is a
complication that we want to avoid or make sim-
pler.

3.2 Morphophonemes by Contexts
Recently, Koskenniemi and Silfverberg (2010)
have shown that the multi context rules like (5-b)
can be compiled as two separate rules by using the
variants of the phonemes:

(6) a. |〈i˜e〉|://e1//
⇔ //{e1,e2,a,o} C// (APPL)

b. |〈i˜e〉|://e2//
⇔ //{e1,e2,o} C// (NEUT).

The method requires that there is an additional
mapping that replaces //e1// and //e2// with /e/.

It is worth observing that the multi context rules
can be split in two different ways. By applying the
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splitting to the underlying rather than the surface
level, one captures the morphological distinction
differentiated by the context conditions. This sim-
plifies the contexts of the rules into more elegant
rules:

(7) a. |〈iE˜eE〉|:/e/⇔ /{e,a,o} C/
b. |〈iG˜eG〉|:/e/⇔ /{e,o} C/ .

In this case, there is no need for an additional
mapping, because the refined morphophonemes
can be used directly in the lexicon.

3.3 The GR-Based Compilation Method

A practical two-level grammar compilation
method (Yli-Jyrä and Koskenniemi, 2006) re-
duces the traditional rules into Generalized
Restriction (GR) rules. Accordingly, the double
arrow rule (7-b) is first split into two subrules:

(8) |〈iE˜eE〉|:/e/⇒ /{e,a,o} C/

(9) |〈iE˜eE〉|:/e/⇐ /{e,a,o} C/ .

The subrules are then reduced into two GR rules of
the formW

2�⇒W ′. Each GR rule involves two ar-
gument languages, W,W ′ ⊆ Σ∗�Σ∗�Σ∗. For the
moment, Σ is the set of feasible morphophoneme-
phoneme pairs. The argument languages specify
when the rule is triggered (W ) and what the trig-
gered rule then requires (W ′). In the strings of
these languages, the marker � is a string element
indicating which morphophoneme-phoneme pair
is in the focus.

In fact, the form of the GR rules can be simpli-
fied to W 1�⇒ W ′ if we ignore certain epenthetic
rules and are not interested in a length-based rule
conflict resolution scheme that is supported by the
full compilation method. In this case the argument
languages W and W ′ are subsets of Σ∗�Σ∗.

Under the simplification, the rules (8) and (9)
give rise to the GR rules (10) and (11). In these
rules, the dots symbol . . . denotes the language
Σ∗.

(10) . . . � 〈iE˜eE〉:e. . . 1�⇒
. . . {:e,:a,:o} :C � 〈iE˜eE〉:e . . .

(11) . . . {:e,:a,:o} :C � 〈iE˜eE〉: . . . 1�⇒
. . . {:e,:a,:o} :C � 〈iE˜eE〉:e . . . .

One of the nice features of the GR-based approach
is that the GR rules can be combined before they
are compiled into finite automata over Σ. In other

words, given the rules W1
2�⇒ W ′1 and W2

2�⇒ W ′2,
there is an easy way to choose W3 and W ′3 in such
a way that W3

2�⇒ W ′3 equals to the intersection of
the first two rules.

Using this closure property of GR rules, we can
represent the rules (7-a) and (7-b) with a single GR
rule:

(12)





· · · �E 〈iE˜eE〉:e . . .
. . . {:e,:a,:o} :C �E 〈iE˜eE〉: . . .

· · · �G 〈iG˜eG〉:e . . .
. . . {:e,:o} :C �G 〈iG˜eG〉: . . .





1{�E,�G}
=⇒{
. . . {:e,:a,:o} :C �E 〈iE˜eE〉:e . . .
. . . {:e,:o} :C �G 〈iG˜eG〉:e . . .

}
.

3.4 One-Level Morphology
There is a striking redundancy in the GR rule (12).
Namely, the type of the harmony process, i.e. ’E’
vs. ’G’, is indicated in every string twice: by the
morphophoneme and by the marker.

Due to this observation, there is a moti-
vation to replace the marked morphophoneme-
phoneme correspondence pair like �E〈iE˜eE〉:e
with a marked phoneme �Ee, reduce the two-level
rules into one-level rules and redefine the alphabet
Σ as a set of phoneme symbols (and some other
symbols).

The key insight for valuing the resulting one-
level grammar is that the morphophonemes and
the markers specify the same underlying segmen-
tal positions. Roughly speaking, they are just two
means to signal the associated variation and mor-
phological contexts. The first is collective while
the second is distributive. In order to switch fully
to the one-level representation, we have to intro-
duce a couple of useful ideas.

The first idea makes the one-level represen-
tation richer and sufficient for linguistically ap-
propriate morphological analysis. In Bantu lin-
guistics, the linguistically appropriate detail is
often synonymous with phonemic transcriptions
and the associated interlinear morpheme glosses.
The format of the glossed linguistic examples is
currently well regulated by the Leipzig Glossing
Rules (Bickel et al., 2008).

A possible scheme for conflating the transcrip-
tion and the glosses into a one-level string has
been drafted by the author (Yli-Jyrä, 2011). This
scheme would encode the example (2-c) as the fol-
lowing string where a white space separates indi-
vidual symbols.
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(13) m ó n ::(KWA) :’see’ - e n ::APPL

- á ::FV

The second idea is to open the GR rule in such a
way that the markers inW andW ′ are more trans-
parent and the lexicon can predetermine at least
some of the marker positions. The markers can
specify the positions of the morphophonemes and
simultaneusly avoid postulating a single underly-
ing string of morphophonemes. The goal of trans-
parency is achieved by elaborating the notion of
markers.

4 Positionwise Flags

Like the conventional flags (Beesley and Kart-
tunen, 2003), the positionwise flag diacritics are
designed for use in the lexicon. The position-
wise flags are, however, in some sense more gen-
eral because they have a further use in the mor-
phophonological rule component. They corre-
spond to the markers of the GR rule and can there-
fore be viewed as user’s interface to the internals
of the GR operation.

Let p be a name for a morphophonological pro-
cess and k an even number of ranks in the po-
sitionwise flags. Based on these parameters, we
define a set of markers and positionwise flags ac-
cording to Table 3. Let P be the set of all names
of morphophonological processes. For every such
name, there is a series of ranked markers and flags.
The p-flags and the corresponding markers are se-
mantically equivalent, but used in different nota-
tions: The p-flags resemble the conventional flags
and can be used in finite state lexicon formalisms
whereas the corresponding markers are associated
with the GR-based compilation formulas and its
mathematical presentation. All ranked markers/p-
flags constitute the set M .

marker p-flag feeded by successful?
�1.p @1.p@ yes
�2.p @2.p@ no
�3.p @3.p@ rank 2 yes
�4.p @4.p@ rank 3 no
...

...
...

...
�k.p @k.p@ rank k − 1 no

Table 3: Markers and positionwise flag diacritics

The integer number in each marker/flag speci-
fies the respective rank. Previously, Frank Liang
(Liang, 1983) have proposed ranked hyphenation

patterns that lie at odd- and even-numbered levels.
Following the same idea, an odd-ranked marker
is used to indicating a position of a successful (or
valid) allomorphophoneme while an even-ranked
marker is used to represent a failing (or invalid)
allomorphophoneme.

Beyond the rank 1, the markers that have a low
rank feed the markers that have an immediately
higher rank. This means that a higher marker has
the power only if it has an overriding effect. In the
context of hyphenation patterns (Liang, 1983), this
is so obvious that one does not even think of it. In
the current context, the principle of such feeding
can greatly simplify the specification of contexts
in the case of rule exceptions. Still, it does not lead
to similar problems as the rule ordering of trans-
ducer cascades, because the feeding order corre-
lates now with the disjunctive ordering of parallel
rules rather than the multiple levels of phonologi-
cal representation.

Explaining the meaning of the p-flags requires
some related mathematical definitions. The func-
tion h : (Σ ∪ M)∗ → Σ∗ is a string projec-
tion that essentially deletes the markers M in
its input strings. The strings with a successful
marker form the languae S = {x�i.py | xy ∈
Σ∗, i ∈ {1, 3, ..., k−1}, p ∈ P}. The strings
with an unsuccessful marker form the language
F = {x�i.py | xy ∈ Σ∗, i ∈ {2, 4, ..., k}, p ∈ P}.
Finally, the strings with markers of rank 1 and 2
form the language B = {x�i.py | xy ∈ Σ∗, i ∈
{1, 1}, p ∈ P}.

4.1 Flags and Markers in the Lexicon

An uncompiled lexicon L defines a subset of (Σ ∪
M)∗. The format of this lexicon is such that
strings may contain several markers. Such mark-
ings will be distributed in the normalized lexi-
con N0 by reducing the number of markers in
the string. The normalized lexicon is given by
N0 = h(L) ∪ {h(x)mh(y) | m ∈M,xmy ∈ L}
and it contains three components:

N0 ∩ Σ∗ N0 ∩ F N0 ∩ S .

Define the relation µ : Σ∗MΣ∗ × Σ∗MΣ∗ as the
set {(x �i.p y, x �j.p y) | 1 ≤ j < i ≤ k, p ∈
P, x, y ∈ Σ∗}. Now the lexicon with positionwise
flags is compiled into a set of unmarked strings by
applying the GR rule as follows:

[N0 ∩ Σ∗] ∩ [(N0 ∩ F )
1M⇒ µ(N0 ∩ S)].
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By the definition of the GR rule (Yli-Jyrä and
Koskenniemi, 2006), this reduces to

[N0 ∩ Σ∗]− h((N0 ∩ F )− µ(N0 ∩ S)).

4.2 Flags and Markers in the Grammar
The normalized lexicon N0 is accompanied by the
one-level grammar G ⊆ S ∪ F that consists of
marked strings. The set of marked strings is used
in some sense like the more familiar notion of a
rule set. Formally, this means that the grammar is
itself a language. This language consists of two
components:

G ∩B G−B .

The first component is automatically activated for
application to the strings, while the second compo-
nent waits for joining the application when the lex-
icon or previously applied marked strings exhibit
flags that could trigger further marked strings.

The application of the first component of the
grammar gives rise to the second generation of the
normalized lexicon:

N1 = [N0 ∪ [G ∩B]]− µ(N0 ∪ [G ∩B]).

The activation of the remaining marked strings
in the grammar is based on the increment rela-
tion ι : Σ∗MΣ∗ × Σ∗MΣ∗ defined as the set
{(x �i.p y, x �i+1.p y) | 2 ≤ i < k, p ∈ P, x, y ∈
Σ∗}. Through this, any further generation of the
normalized lexicon is obtained as

Ni+1 = [Ni∪ [G∩ ι(Ni)]]−µ(Ni∪ [G∩ ι(Ni)]).

The number of ranks k determines how many
generations of the normalized lexicon need to be
computed. Because the second generation, N1,
can still introduce markers whose rank is 1, the last
normalized lexicon to be computed is Nk. When
this has been computed, we obtain the marker-
less language of (glossed) transcriptions by eval-
uationg the formula:

[Nk ∩ Σ∗]− h((Nk ∩ F )− µ(Nk ∩ S)).

4.3 The Lexicon-Grammar Teamwork
Due to the shared positionwise flags / markers, the
lexicon and the grammar can help each other. The
lexicon specifies the default allomorphophonemes
and the grammar can implement the alternations
that choose alternative allophonemes.

Consider the morphophoneme 〈iE-eE〉. In
the one-level lexicon this morphophoneme be-
comes an ambiguity class {�1,Ei, �2,Ee }. In a
finite-state lexicon formalism, this ambiguity class
could correspond to a user-defined constant sym-
bol that denotes a regular expression [@1.E@i |
@2.E@e]. The elements of the ambiguity class
signal, on one hand, that the default allomorpho-
phoneme is /i/ and that the allomorphophoneme
/e/ is not acceptable by default. On the other,
the markers/p-flags attached to the allomorpho-
phonemes establish positions to which the gram-
mar can refer. The grammar then alters the promi-
nency of the marked allomorphophonemes by in-
creasing their ranks through such marked strings
that represent the appropriate environments of the
non-default allomorphophonemes.

In practice, the grammar is given through some
finite-state formalism that is now extended with
the p-flag notation. In this formalism, the FHH
rules are given through the regular expressions

(14) ...[e|o] C [@2.G@i|@3.G@e]...

...[e|a|o] C [@2.E@i|@3.E@e]...

whose union expresses the string set

(15)
{

Σ∗{e,o}C{�2.Gi, �3.Ge}Σ∗
Σ∗{e,a,o}C{�2.Ei, �3.Ee}Σ∗

}
.

The regular expressions should match full-fledged
one-level representations, but the simplified ex-
pressions in (14) concern only the phonemic con-
tent. The first pattern in (14) states that if an
allomorphophoneme /i/ governed by the Gen-
eral FHH process occurs after /e/ or /o/, it is
wrong (rank 2 means a failure), but the allomor-
phophoneme /e/ in the same position is perfect
(rank 3 means a success).

If one wishes, the regular expressions like (14)
can be written with a more intuitive notation that
mimics the rules of generative phonology but are
actually born in the currently used one-level rep-
resentation:

(16) i2.G → e3.G / {e,o} C
i2.E → e3.E / {e,a,o} C .

5 Reflections and Further Work

It is noteworthy that the new grammar (14) is sub-
stantially simpler and more intuitive than the one
in (12). It seems to express the linguistic general-
izations such as (1) compactly and directly (but as
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a morphophonological rather than a phonological
process). These are just a few reasons that suggest
that the positionwise flags may help increase the
simultaneous human- and machine-readability of
computational descriptions.

Another interesting thing is that the normalized
lexicon is a dynamic data structure that contains
latent phonological strings and their known allo-
morphophonemes. The resulting adaptability of
the lexicon may have uses in machine learning and
computational typology. The normalized lexicon
is also a very efficient debugging tool if some rules
are missing or too strict.

The current method does not support rules
whose environment conditions refer to morpho-
phonemic contexts. Further investigations are
needed to find out how severe a restriction this is
since sufficiently precise conditions are still often
expressible through the surface string and the in-
terspersed glosses. If necessary, the support for
markers in the contexts can be added although this
would complicate the current method. Another
extension would allow the normalized lexicon to
contain pairs of positions i.e. substrings too. Such
a data structure could define autosegments such as
tones and metrical structures and support feature
spreading and other suprasegmental processes, for
example. There is, however, a danger that such an
extension would make the system intractable.

In order to use simpler GR rules in compila-
tion, the current presentation ignored the epenthe-
sis rules. It turns out that the one-level representa-
tion is closely related to the model of the Item and
Arrangement morphology (Hockett, 1954). In the
IA model, epenthesis is not a real problem.

The surface orientation of the system is not nec-
essarily a bad thing from the methodological point
of view. One-level rules are easier to write, espe-
cially when segments are governed by more than
one morphophonological process. The processes
have the minimum impact on each other’s alpha-
bet because the surface string and the glosses are
not split into separate cases.

Further research can find specialized and
more efficient algorithms for the manipulation of
markers/p-flags. It is also possible to optimize the
representation of the one-level grammar G. Rules
whose context conditions contain gaps are cur-
rently expensive because they can have a big ef-
fect on the state complexity. The problem arises
only in rules that have not been constrained with a

lexicon.
The author has discovered that the finite-state

representation of the grammar can be optimized
through on-demand compilation techniques. For
example, one should avoid the eager expansion of
the dots symbol ’. . . ’ when compiling the regu-
lar expressions in the grammar G. To compute
the original semantics of the intersection G ∩ Ni,
one can compute the image of the regular relation
(Id(G) ◦ T1) ◦ (T2 ◦ Id(Ni)) where the intermedi-
ately composed relation T1 substitutes the occur-
rences of the symbol . . . with the language . . .∗

and the relation T2 substitutes the occurrences of
the symbol . . . with the alphabet Σ. Both compo-
sitions in the parentheses have only a small effect
on the size of the automata and the final compo-
sition is then computed in a very efficient way.
However, this approach works only if the regu-
lar expressions do not contain negations. There-
fore, the author is looking for ways to generalize
the optimization to regular expressions that con-
tain negations.

Although the positionwise flags can be com-
bined with the conventional flag diacritics, this
might be an error-prone activity, at least without
a careful design step during which the possible in-
teractions are properly managed.

In the context of computational Bantu morphol-
ogy (Bosch, 2010), conventional flag diacritics
and morphophonological rules have been proven
very useful. This may suggest that also the po-
sitionwise flags have relevance to the Bantu mor-
phophonology and morphotactics.

The author has started to evaluate the applica-
bility of the currently presented formalism in the
context of the computational description of tonal
Bantu languages such as Kwanyama as well as
in the construction of synchronic computational
models of some closely related Bantu dialects. In
this context, the one-level representation that re-
flects the Leipzig Glossing Rules (Bickel et al.,
2008) is instrumental in fixing the desired mor-
phosyntactic representation. The increased trans-
parency of the grammar and the described strings
is likely to support the notion of literate program-
ming in the language documentation context.
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268



COLING ’04, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Robert Austerlitz. 1967. The distributional identi-
fication of Finnish morphophonemes. Language,
43(1):20–33.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Studies in Computational
Linguistics. CSLI Publications, Stanford, CA, USA.

Balthasar Bickel, Bernard Comrie, and Martin Haspel-
math. 2008. The Leipzig Glossing Rules. Con-
ventions for interlinear morpheme by morpheme
glosses. Max Planck Institute for Evolutionary An-
thropology, Dept. of Linguistics. Retrieved 2011-02-
15 from http://www.eva.mpg.de/lingua/
resources/glossing-rules.php.
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Rüdiger Köppe Verlag, Köln.
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