
Decision Strategies for Incremental POS Tagging

Niels Beuck, Arne Köhn and Wolfgang Menzel
Department Informatik, University of Hamburg

Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
{beuck, 5koehn, menzel}@informatik.uni-hamburg.de

Abstract

In an incremental NLP pipeline every
module needs to work incrementally.
However, an incremental processing mode
can lead to a degradation of accuracy due
to the missing context to the right. We dis-
cuss three properties of incremental out-
put that can be traded for accuracy, namely
timeliness, monotonicity and decisiveness.
The consequences of these trade-offs are
evaluated systematically for the task of
part-of-speech tagging.

1 Introduction

Incremental language processing does not con-
sume input at once but in a word-by-word man-
ner and a sequence of incomplete, but successively
more complete interpretations is generated as out-
put. Such a processing mode is especially ben-
eficial in scenarios where language input evolves
over time like in human-computer or human-robot
interaction. By processing the input while it is still
incomplete, a speed-up can be achieved by using
production time as processing time. Another ben-
efit is the possibility to immediately respond to
partial input, e.g. by providing non-verbal feed-
back to the speaker. This requires the system to
be able to produce a partial analysis for partial in-
put, which, of course, needs to be available early
enough. Otherwise, the receiver could as easily
wait until the whole utterance is complete and the
benefit of incremental processing vanishes.

In natural language the correct interpretation of
a word often depends on the context to the right.
Therefore, an incremental NL processor that is se-
lecting an interpretation for a word without be-
ing aware of the right context is likely to select
the wrong interpretation more often than a non-
incremental processor. There are several possible
strategies to deal with this problem. In the first part

of this paper we will discuss these strategies and
how they can be implemented for a simple NLP
task, namely part-of-speech (POS) tagging. In the
second part we will present a quantitative evalua-
tion and compare the different trade-offs made by
the different strategies. To our knowledge there is
no previous work evaluating these trade-offs sys-
tematically.

POS tagging is particularly attractive for an ini-
tial investigation of incremental processing beha-
vior, as in this task the input consists of a small
number of discrete tokens (in contrast to speech
recognition) where each of them has to be mapped
to exactly one output token (in contrast to syntac-
tic or semantic structures which combine several
input tokens). Moreover POS tagging does not de-
pend on previous processing steps. Therefore, the
results of this paper provide the basis for a broader
range of investigations with more complex NLP
tasks.

In Section 2 we will define the notion of incre-
mentality used in this paper. Based on this, the
challenges of disambiguation in incremental NLP
and several strategies to meet them are discussed
in Section 3. Section 4 describes the POS taggers
used in the evaluation. The results of the evalua-
tion are presented and discussed in Section 5. We
finish with an outlook on future work in Section 6.

2 Incrementality

Incremental processing can be realized for proce-
dures that take a sequence of input tokens and gen-
erate a sequence of output tokens1. The output is
called the analysis of the input. Depending on the
task an input token could be a word from an ut-
terance perhaps accompanied by additional mor-
phosyntactic information like a POS tag. Exam-

1In contrast to what Wirén (1992) defines as full incre-
mentality, we only regard left-right-incremental processes
here. This restricts the modifications of the input to simply
adding new tokens at the end of the sequence.

Bolette Sandford Pedersen, Gunta Nešpore and Inguna Skadiņa (Eds.)
NODALIDA 2011 Conference Proceedings, pp. 26–33

ples for output tokens could be phrases, chunks,
POS tags associated to the input words or depen-
dencies to other words.

Incrementality is not a binary feature but comes
in different grades and flavors. First of all, we
have to distinguish between incremental interfaces
and incremental algorithms. According to Wirén
(1993) an algorithm is incremental ”if it uses in-
formation from an old analysis in computing the
new analysis.” The interface is incremental, if
it accepts partial input and provides partial out-
put. On the one hand, a process could provide an
incremental interface without a corresponding al-
gorithm by applying a non-incremental algorithm
on successively extended prefixes of the input se-
quence. On the other hand, an incremental algo-
rithm does not automatically facilitate an incre-
mental interface.

With respect to the kind of interface we can
distinguish incremental input consumption (IIC)
from incremental output production (IOP) (Kilger
and Finkler, 1995). While the former is the abil-
ity to start processing on partial input, the latter
is the ability to produce a sequence of partial ana-
lyses and provide them as output as soon as they
become available.

A system without IIC will have to wait with
the computation until the input is complete and a
system without IOP will not start to generate out-
put before the input is complete. That means, a
combination of both processing modes is needed
to be able to provide output while the input has
not yet been completed. We shall call a system
that applies both, IIC and IOP, to be input/output-
incremental or IO-incremental. For a system con-
sisting of several processing modules to be IO-
incremental, each of its modules has to be IO-
incremental, otherwise the final output of the sys-
tem is delayed at least until the end of the input.

3 Disambiguating in incremental
processing

In many applications, like POS tagging or syntac-
tic parsing, the not yet seen input may have an in-
fluence on the analysis of the current input token.
Therefore, incremental processing has only a lim-
ited access to the disambiguating context informa-
tion. There are several strategies to mitigate the
impact of limited context information on the out-
put accuracy but they affect other properties of the
output. In addition to accuracy we have identified

three other parameters, namely timeliness, mono-
tonicity and decisiveness, necessary to sufficiently
characterize incremental processing behavior re-
sults. Timeliness and monotonicity are features
unique to incremental output while decisiveness
can also be applied to non-incremental output.

Timely output is generated for every input in-
crement before the next input token is available.
Delayed output lags behind the input stream. The
delay can be a fixed number of tokens due to a
lookahead of a fixed window size, or a dynamic
range as in stack based approaches.

Monotonicity is given if the output stream
can only be modified by adding new information.
Once committed information may not be changed
later on. In contrast, non-monotonic input implies
that previous output can be revoked or changed.
By allowing non-monotonic updates intermediate
output becomes unreliable to a certain degree.

Decisiveness is the property of the system to
commit to one analysis at a time. In contrast to
this, inconclusive output consists of several possi-
ble alternatives. These alternatives can be stated
implicitly by leaving features of the output un-
specified, by enumerating alternatives for each to-
ken or by explicitly representing alternatives for
the overall output.

Delay and non-monotonicity can be interpreted
as a gradual reduction of IIC and IOP respectively.
A process which cannot start before the input se-
quence is complete behaves like a process with-
out IIC. On the other hand, a process with extreme
non-monotonic behavior cannot guarantee persis-
tence. This leads to a high degree of unreliability
that might render all intermediate partial analyses
except the very last one useless to their consumer.
Such a module has to be considered as not exhibit-
ing IOP at all. Inconclusiveness is equivalent to a
reduction of the informational contribution of the
output. A totally inconclusive output that (explic-
itly or implicitly) permits all analyses contains no
information at all.

In summary there is a trade-off between time-
liness, monotonicity, decisiveness and accuracy.
The first three properties can be exchanged against
accuracy which in the ideal case converges to the
accuracy of non-incremental processing. When-
ever the decision on the current token depends on a
not yet observed token, four options are available.
Either the decision can be delayed, a range of pos-
sible variants is provided (inconclusiveness), or a

27

Decision Strategies for Incremental POS Tagging

27

possibly erroneous decision is either accepted as
unavoidable (loss of accuracy) or perhaps can be
corrected later on (non-monotonicity).

3.1 General strategies

Based on the trade-offs presented in the last sec-
tion different strategies are possible. We will call
a strategy which takes decisions without consid-
ering the right context and accepting a loss of ac-
curacy instead of affecting one of the other three
properties best-guess (BG).

A common strategy for disambiguation using
delay is lookahead (LA). Here a fixed number of
tokens to the right of the current token is taken
into account when calculating the output. As pro-
cessing cannot start before the lookahead window
is filled with input, a lookahead of n tokens makes
the output lag behind the input by the same amount
of tokens. Additionally, this strategy can only re-
solve ambiguity regarding the near future. Long
distance influence cannot be captured, e.g. if a
later word in a sentence possibly invalidates the
previously more probable interpretation like in a
German sub-clause where the verb is placed last.
A lookahead size of zero is equivalent to the BG
strategy.

A strategy resulting in non-monotonic output is
reanalysis (RA). Here previous output is recalcu-
lated if new information is available and thus ear-
lier decisions can be changed. Ideally reanalysis
does not take as long as the initial processing, as
otherwise one of the advantages of incremental
processing would disappear. Pruning of pending
alternatives or a revision of earlier results are pos-
sible techniques. In POS tagging where process-
ing speed is fast compared to speech rate or the
processing speed of other modules this is of little
concern. Reanalysis can deal with long distance
influences and, therefore, is able to provide the op-
timal analysis of the full sentence, but partial out-
put becomes non-monotonic and thus unreliable to
a certain degree.

A general strategy to deal with ambiguity in
general consists in providing several possible so-
lutions instead of committing to a single one. In
contrast to the two previously mentioned ones,
the multiple alternatives (MA) strategy affects not
only the partial solutions but also the form of the
complete analysis. Hybrid strategies are possi-
ble like a MA strategy where the alternatives are
pruned by reanalysis later on.

A B

A

A/r

A B

A

A/r

A/w

B/t

A B

A

A/{w,r}

A/{w,r}

A B

A

A/w

A/w

B/t

Input Output

Re-
analysis

Multiple
alter-
natives B/{t}

Best
 guess

Look-
ahead

Figure 1: Four strategies to deal with a situation
where a decision between a correct tag ’r’ and a
wrong one ’w’ has to be made for the input token
’A’ but depends on a subsequent input token ’B’

An illustration of the four strategies is given in
Figure 1. Each strategy has certain implications
for subsequent processing modules and the beha-
vior of the overall system. First of all, even in
the absence of further requirements, delay accu-
mulates in a pipe of modules. Non-monotonicity
requires subsequent modules to be able to handle
changing input, i.e. be able to perform reanalysis
itself. Finally, output consisting of multiple anal-
yses requires a consumer to be able to handle that
kind of input, either by selecting one interpretation
or by passing the ambiguity on along the process-
ing chain.

3.2 Quantification of delay, non-monotonicity
and inconclusiveness

The delay induced by a fixed lookahead can be
quantified by the size of lookahead. Dynamic de-
lay could be quantified by the average of the actual
delays for each input token or by a recall value
measuring the completeness of the output. As we
only regard POS tagging strategies with a fixed de-
lay, a predefined lookahead size is used here. The
final accuracy is determined for different looka-
head sizes.

The degree of non-monotonicity in a RA strat-
egy is not as easy to define or guarantee. One
could restrict the possibilities for reanalysis to a
window of a certain size or constrain the kind of
changes that are allowed. Another possibility con-
sists in restricting reanalysis beforehand but to de-
termine empirically how often a process actually
does change its output. This approach was used
by Baumann et al. (2009) for incremental speech

28

Niels Beuck, Arne Köhn and Wolfgang Menzel

28

recognition. Schlangen et al. (2009) applied it
to incremental reference resolution where the so
called edit overhead was measured. We also use
this latter approach by determining the percentage
of output tokens which will not be be changed in
further processing steps as a stability measure. To
be able to decide on an acceptable trade-off be-
tween delay, accuracy and non-monotonicity we
will plot stability and accuracy for different de-
lays.

To quantify inconclusiveness we use the num-
ber of output alternatives to be considered and
measure accuracy for different numbers. This re-
quires the number of alternatives to be config-
urable or to be ranked so that further alternatives
can be ignored. Weights, e.g. assigned probabil-
ities, are only used for ranking and are otherwise
ignored in this measure.

3.3 Incremental POS tagging algorithms

POS tagging algorithms typically consist of two
steps. First, tag probabilities are determined in-
crementally on a word-by-word basis. Here only
local features, e.g., the trigram probability of the
current word depending on the tags of the two pre-
vious words, or features of adjacent words in sup-
port vector machines (SVMs) are used. The sec-
ond optional step is a global optimization. When
only applying the first phase, incremental output
of tags is possible in the sense of IOP and the
output is monotonic. Approaches using Hidden
Markov Models do not use a lookahead (n-grams
only regard the tags to the left of the current word),
while SVM approaches may use a lookahead by
including features of the words to the right.

In the optional second phase, global optimiza-
tion, either the optimal path is determined, e.g.
by the Viterbi algorithm, or an algorithm like the
forward backwards algorithm is used to compute
probabilities. Theoretically this optimization can
also be applied to every prefix analysis. In this
case tags to the right can influence tags further left,
resulting in a non-monotonic behavior every time
a new word changes the optimal path for the pre-
vious words. Care has to be taken not to introduce
errors by handling prefixes as full sentences. An
example for this are end of sentence tags some-
times automatically inserted by a tagger at the end
of the current tag sequence. They are likely to in-
fluence the best path and thus should not be used
in prefixes.

Global optimization can be modified to provide
lookahead by not including the rightmost n words
of a prefix in the output, but only including them
in the calculation of the best path.

Most tagging algorithms work with multiple tag
hypotheses for each word internally. A MA strat-
egy can thus be achieved by providing a ranked
list of all alternative tags for each word (multi-
tagging), while uni-tagging is achieved by sup-
pressing all but the best tag.

As we have seen, tagging algorithms are able
to realize all three proposed strategies directly:
lookahead by feature lookahead in SVMs, reana-
lysis by carrying out a global optimization on pre-
fixes and multi-tagging by considering all possi-
ble tags for each word. In the next section we will
present the POS taggers used in the evaluation and
discuss the strategies they are compatible with.

4 Experimental setup

4.1 POS taggers

In order to compare the different strategies of in-
cremental processing in the task of POS tagging
we will compare different taggers in different con-
figurations. The taggers used are TnT2 (Brants,
2000), SVMTool3 (Giménez and Màrquez, 2004)
and HunPos (Halácsy et al., 2007) modified to
work incrementally4.

TnT is a statistical POS tagger implementing
the Viterbi algorithm for second order Markov
models. As such it does not support incremental
processing, but can be made to simulate a non-
monotonic incremental mode by tagging succes-
sively extended prefixes of the input sequence,
thereby providing an incremental interface.5 To
force TnT into a monotonic mode, only the tag for
the new word in each prefix is added, the other tags
are taken from the tagging results for the previous
prefix. This mode, of course, diminishes the utility
of the Viterbi algorithm. A lookahead of size n is
simulated by introducing a temporal difference be-
tween the current token of the input and the output
where the former is n tokens ahead of the latter.
Therefore, the n rightmost tags are ignored in the

2http://www.coli.uni-saarland.de/ thorsten/tnt/
3http://www.lsi.upc.es/ nlp/SVMTool/
4http://gitorious.org/hunpos
5Based on our tests, we believe that TnT doesn’t treat such

prefixes as whole sentences, which would lead to some errors
such as not assigning tags that are improbable for the last
word of a sentence.

29

Decision Strategies for Incremental POS Tagging

29

output (they belong to the lookahead), while the
preceding ones are passed on.

SVMTool is a tagger generator based on sup-
port vector machines. It can be configured with
arbitrary feature sets thereby supporting incremen-
tal tagging with various lookahead sizes, including
no lookahead at all. Every feature set can be used
with the Viterbi algorithm for global optimization.
We have applied a feature window consisting of
two words to the left of the current word and zero
(LA0), one (LA1) or two (LA2, non-incremental)
to the right of it.

HunPos is an open source statistical trigram
tagger resembling the architecture of TnT. It was
specifically modified by us for incremental use by
removing the global optimization. In this mode,
HunPos keeps a list of possible tag sequences
along with their probabilities. For each word new
sequences are created by appending each possi-
ble tag to all sequences. Given a sequence of tags
Scurr, the probability of the subsequent sequence
assigning tag ti to the current word is the probabil-
ity of Scurr times the probability of the assignment
given Scurr. The probability of the assignment of
a tag t to the ith word is the sum of all sequences
that assign t to the ith word. The algorithm starts
with the empty sequence that has a probability of
1. With this modification we obtain an incremental
and monotonic tagger that is able to assign proba-
bilities to tags.

As a baseline we used a simplistic tagger that
uses unigrams and assigns “normal noun” to each
unknown word.

4.2 Data

Evaluation is carried out on sentences from NE-
GRA Corpus (German), a subset of the WSJ cor-
pus (English), and the Danish and Swedish cor-
pora from the CoNLL-X shared task (Buchholz
and Marsi, 2006).

For German and English, the taggers were
trained on a subset of 15000 sentences, the eval-
uation was carried out on the remaining 4058 sen-
tences. The Swedish dataset consists of 11042
sentences for training and 322 for evaluation, the
Danish one consists of 5190 and 322 sentences.

To be able to estimate the reliability of the ac-
curacy numbers in the face of the different corpora
sizes, we performed a 10-fold cross-validation.
Average and standard error values are given for ev-
ery measure.

 92

 93

 94

 95

 96

 97

 98

 99

 100

0 1 2 non-incr

ac
cu

ra
cy

 p
er

ce
nt

ag
e

delay

German
English

Swedish
Danish

Figure 2: Tagging accuracy of SVMT for different
delay sizes

 92

 93

 94

 95

 96

 97

 98

 99

 100

 0 1 2 3 4 5

ac
cu

ra
cy

/s
ta

bi
lit

y
pe

rc
en

ta
ge

delay

German: stability
accuracy

English: stability
accuracy

Swedish: stability
accuracy

Danish: stability
accuracy

Figure 3: Tagging accuracy and stability of inter-
mediate tags in non-monotonic tagging with TnT.
On the x-axis the number of tokens since the word
first appeared is given.

5 Results and discussion

Table 1 lists the tagging accuracy for the dif-
ferent incremental strategies. Compared to non-
incremental tagging, BG incremental tagging
leads to an absolute reduction of tagging accuracy
by between 0.69% (HunPos, English) and 2.48%
(SVMT, Swedish). Language has a higher influ-
ence than the tagger used, with the exception of
Swedish, where the 3 evaluated taggers performed
very differently. The impact of the incremental
mode is generally highest for German and lowest
for English.

This loss of accuracy is mitigated by a looka-
head of 1 word to around 0.1% and nearly van-
ishes with a lookahead of 2 words for HunPos and
TnT. For SVMT the gap of accuracy between the
lookahead of 2 and the non-incremental configu-

30

Niels Beuck, Arne Köhn and Wolfgang Menzel

30

Strategy Tagger LA German X̄(SE) English X̄(SE) Swedish X̄(SE) Danish X̄(SE)

NonIncr/ TnT 97.14% (0.014) 96.26% (0.004) 94.41% (0.106) 96.45% (0.099)
Reana- SVMT 97.33% (0.020) 96.64% (0.014) 95.63% (0.121) 96.79% (0.079)
lysis HunPos 97.10% (0.018) 96.32% (0.004) 94.76% (0.135) 96.55% (0.082)

Best TnT 94.93% (0.024) 95.30% (0.014) 92.79% (0.090) 95.16% (0.106)
Guess SVMT 95.21% (0.031) 95.61% (0.019) 93.15% (0.133) 95.30% (0.108)

HunPos 95.13% (0.029) 95.63% (0.006) 93.64% (0.095) 95.30% (0.106)

Look- TnT 1 96.97% (0.017) 96.10% (0.003) 94.04% (0.101) 96.12% (0.102)
ahead TnT 2 97.08% (0.016) 96.19% (0.003) 94.26% (0.112) 96.22% (0.107)

SVMT 1 96.80% (0.020) 96.50% (0.025) 94.92% (0.105) 96.34% (0.092)
SVMT 2 96.83% (0.021) 96.57% (0.012) 95.21% (0.115) 96.45% (0.075)
HunPos 1 96.99% (0.020) 96.27% (0.004) 94.67% (0.121) 96.40% (0.090)
HunPos 2 97.09% (0.021) 96.32% (0.004) 94.78% (0.136) 96.56% (0.082)

Multi- TnT 98.63% (0.018) 98.62% (0.007) 97.99% (0.064) 98.71% (0.029)
tagging SVMT 98.51% (0.019) 98.60% (0.008) 97.60% (0.092) 98.46% (0.049)
2 tags HunPos 98.60% (0.020) 98.70% (0.004) 98.20% (0.075) 98.74% (0.033)

Baseline 90.66% (0.027) 90.97% (0.011) 89.65% (0.105) 89.98% (0.184)

Table 1: Tagging accuracy on final results for different combinations of taggers, strategies and languages
averages and standard errors from the cross-validation are given

tagger German English Swedish Danish
TnT 96.53% 97.14% 95.14% 94.93%
SVMT 93.12% 96.43% 95.92% 94.41%
HunPos 96.52% 97.29% 95.57% 96.11%

Table 2: Stability numbers of non-monotonic tagging, i.e., the percentage of tags that did not get changed
in later output increments

ration is still about 0.5%. This can be explained
by the fact that the incremental SVMT configura-
tions used here do not include the global Viterbi
optimization. Only feature lookahead is used for
SVMT, while for the other two taggers the global
optimization was used to implement the lookahead
strategy (c.f. Section 4.1).

Alternatively non-incremental output accuracy
can be preserved, if between 2.7% (English, Hun-
Pos) and 6.9% (German, SVMT) of the tags can be
changed within 2 words after they have first been
assigned. As can be seen in Figure 3, changes are
marginal after that, which is not surprising given
the fact that no parser uses features with a distance
of more than 2 words. While the delay is the same,
reanalysis provides an advantage over lookahead
because it makes a tag available immediately with
only a minor loss of accuracy. Of course, the con-
sumer of the output needs to be able to process
non-monotonic output.

If the top-most two tags from incremental multi-
tagging output are considered, the likelihood of

the correct one being among them is higher than
the accuracy in non-incremental single best mode
for all considered languages, as can be seen in Ta-
ble 1 and in Figure 4. Of course, multi-tagging can
also be applied to the non-incremental case, where
it produced a slightly better performance than in
incremental multi-tagging, e.g., 0.3% for TnT in
German (c.f. Figure 4).

In Table 3 the errors contributing most to the
accuracy drop in best-guess incremental tagging
are shown for English and German. In German a
major source of the errors are determiner pronoun
confusions and in English a third of all the errors
(rows 1, 4 and 7 in Table 3) are wrongly assigned
preposition (IN) tags. Ambiguities like these can
usually be resolved given the next word and thus
explain the big improvement of accuracy between
a lookahead of zero and one. A noteworthy ob-
servation is the absence of confusions between
nouns and proper nouns. They rank among the
most common tagging errors in many languages
(e.g., 18% in German with TnT for NN ↔ NE

31

Decision Strategies for Incremental POS Tagging

31

TnT German TnT English
PTKVZ tagged as APPR 11.8% WDT tagged as IN 19.3%
ART tagged as PRELS 10.6% JJ tagged as NN 12.8%
ART tagged as PDS 6.2% VBN tagged as VBD 10.0%
APPR tagged as PTKZU 6.1% RB tagged as IN 9.0%
VVINF tagged as VVFIN 5.3% JJ tagged as NNP 6.3%
PRELS tagged as ART 4.9% NNP tagged as JJ 4.6%
VVFIN tagged as VVINF 4.6% DT tagged as IN 4.6%
PDS tagged as ART 4.0% NN tagged as JJ 4.2%
ADJA tagged as NN 3.6% RBR tagged as JJR 4.2%
NN tagged as ADJA 3.0% RB tagged as JJ 4.0%
. . .
VMFIN tagged as VMINF −0.7% DT tagged as WDT’ −1.8%
NE tagged as FM −0.8% VBP tagged as VB’ −2.1%
ADV tagged as PIAT −0.8% IN tagged as RB’, −2.9%

Table 3: Errors types contributing to the increased error rate of best-guess incremental tagging compared
to non-incremental tagging, exemplary for TnT for German and English. Listed are the 10 error types
which contribute most to the loss of accuracy and 3 others which even let to an improvement, ranked
according to their relative share of the overall error increase.

 92

 93

 94

 95

 96

 97

 98

 99

 100

 1 2 3 4 5

ac
cu

ra
cy

 p
er

ce
nt

ag
e

number of tokens considered

German
German, non-incr.

English

Swedish
Danish

Figure 4: Tagging accuracy of incremental and
non-incremental multi-tagging with TnT for dif-
ferent numbers of tags considered

confusion) but have little effect on further process-
ing, as noun and proper noun behave syntactically
very similar. This indicates that a BG incremental
tagger produces additional errors which are rather
severe and likely to have a high negative impact
on performance of a consumer component (like a
parser).

6 Conclusions and outlook

In this paper we have described the impact of in-
cremental processing modes on the task of POS
tagging and how accuracy can be traded against
other output parameters like timeliness, mono-

tonicity and decisiveness. A summary of possible
trade-offs is given in Figure 5.

It depends on the application which of these
trade-offs is acceptable. For non-monotonic and
inconclusive output, a consumer is needed that is
able to handle such output. Even a slight delay
might be unacceptable in applications where an
immediate analysis of the most recent input ele-
ment is needed at all times. Moreover, delay accu-
mulates for all modules in a processing pipeline.

The cost of incremental tagging are one of

• an accuracy drop between 0.7% and
2.5% depending on the language.

• a delay of 2 words (a delay of 1 al-
ready considerably reduces the accu-
racy drop to ca. 0.1%)

• a 2.7%−6.9% chance that the output
will be changed later on

• or an ambiguity factor of 2, i.e the
two best tags given by the tagger
need to be considered.

Figure 5: A summary of the possible trade-offs in
incremental POS tagging

The three identified parameters are not specific
for POS tagger output but can also be applied to
other NLP tasks. Related work has been done for

32

Niels Beuck, Arne Köhn and Wolfgang Menzel

32

speech recognition (Baumann et al., 2009) and ref-
erence resolution (Schlangen et al., 2009). Both
papers consider non-monotonic systems and focus
on the trade-off between delay and edit overhead.

To our knowledge no comparable investigation
has been carried out for syntactic parsing. Be-
sides studying the above mentioned trade-off for
the parser itself it would also be interesting to mea-
sure the impact of different kinds of incremen-
tal POS tagging on the performance of the parser.
Dependency parsing lends itself particularly well
to such an investigation, because by assigning at-
tachments to input words it shares crucial simi-
larities to POS-tagging. Parsing differs from tag-
ging however, since it considers relations instead
of atomic labels. Therefore, the output of depen-
dency arcs needs to be either delayed at least until
both ends of the dependency are known or other-
wise underspecified dependency arcs need to be
produced. The former strategy is applied, e.g.,
in MaltParser (Nivre, 2004) where words are kept
on the stack until a possible attachment becomes
available, adding a dynamic delay in addition to
the one already caused by lookahead. The incre-
mental variant of the WCDG parser (Foth, 2006)
used in Menzel (2009) instead applies the latter
approach and provides a placeholder for future
input words so that partially specified dependen-
cies can be generated. MaltParser classifies as a
monotonic but delayed incremental parser, while
output of WCDG is timely but non-monotonic.
To deal with and compare dynamic delay and
underspecified dependencies the evaluation meth-
ods presented here will have to be adapted.

Acknowledgement

This research was funded by the Deutsche
Forschungsgemeinschaft (DFG) as part of the In-
ternational Graduate Research Group CINACS.

References
Timo Baumann, Michaela Atterer, and David

Schlangen. 2009. Assessing and improving the
performance of speech recognition for incremental
systems. In NAACL ’09: Proceedings of Human
Language Technologies, pages 380–388, Morris-
town, NJ, USA. Association for Computational
Linguistics.

Thorsten Brants. 2000. Tnt - a statistical part-of-
speech tagger. In ANLC 00 Proceedings of the sixth
conference on Applied natural language processing.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of CoNLL-X.

Kilian A. Foth. 2006. Hybrid Methods of Natural Lan-
guage Analysis. Ph.D. thesis, Universität Hamburg,
Fachbereich Informatik.

Jesús Giménez and Lluı́s Màrquez. 2004. Svmtool: A
general pos tagger generator based on support vector
machines. In Proceedings of the 4th LREC.

Péter Halácsy, András Kornai, and Csaba Oravecz.
2007. Hunpos - an open source trigram tagger. In
ACL.

Anne Kilger and Wolfgang Finkler. 1995. Incremen-
tal generation for real-time applications. Technical
report, Deutsches Forschungzentrum für Künstliche
Intelligenz GmbH (DFKI).

Wolfgang Menzel, 2009. Recent Advances in Natural
Language Processing V, chapter Towards radically
incremental parsing of natural language, pages 41–
56. Number 309 in Current Issues in Linguistic The-
ory. John Benjamin’s Publisher.

Joakim Nivre. 2004. Incrementality in determin-
istic dependency parsing. In Incremental Pars-
ing: Bringing Engineering and Cognition Together,
Workshop at ACL-2004, Barcelona, Spain.

David Schlangen, Timo Baumann, and Michaela At-
terer. 2009. Incremental reference resolution: the
task, metrics for evaluation, and a bayesian filtering
model that is sensitive to disfluencies. In SIGDIAL
’09: Proceedings of the SIGDIAL 2009 Conference,
pages 30–37, Morristown, NJ, USA. Association for
Computational Linguistics.

Mats Wirén. 1992. Studies in Incremental Natural-
Language Analysis. Ph.D. thesis, Linköping Univer-
sity, Department of Computer and Information Sci-
ence, Linköping.

Mats Wirén. 1993. Bounded incremental parsing.
In 6th Twente Workshop on Language Technology
(TWLT-6).

33

Decision Strategies for Incremental POS Tagging

ISSN 1736-6305 Vol. 11
http://hdl.handle.net/10062/16955

