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1 Introduction

I want to tell a story about computational ap-
proaches to discourse structure. Like all such
stories, it takes some liberty with actual events
and times, but I think stories put things into
perspective, and make it easier to understand
where we are and how we might progress.

Part 1 of the story (Section 2) is the past.
Here we see early computational work on dis-
course structure aiming to assign a simple tree
structure to a discourse. At issue was what its
internal nodes corresponded to. The debate
was fierce, and suggestions that other struc-
tures might be more appropriate were ignored
or subjected to ridicule. The main uses of
discourse structure were text generation and
summarization, but mostly in small-scale ex-
periments.

Part 2 of the story (Section 3) is the present.
We now see different types of discourse struc-
ture being recognized, though perhaps not
always clearly distinguished. An increasing
number of credible efforts are aimed at recog-
nizing these structures automatically, though
performance on unrestricted text still resem-
bles that of the early days of robust pars-
ing. Generic applications are also beginning
to appear, as researchers recognize the value
of these structures to tasks of interest to them.

Part 3 of the story (Section 4) is the fu-
ture. We now see the need for a mid-line be-
tween approaches hostage to theory and em-
pirical approaches free of theory. An empirical
approach underpinned by theory will not only
motivate sensible back-off strategies in the face
of unseen data, but also enable us to under-
stand how the different discourse structures
inter-relate and thereby to exploit their mu-
tual recognition. This should allow more chal-
lenging applications, such as improving the

performance of statistical machine translation
(SMT) through the extended locality of dis-
course structures and the linguistic phenom-
ena they correlate with.

2 Early computatational
approaches to discourse structure

Early computational work generally assumed
discourse structure had an underlying tree
structure, similar to the parse tree of a sen-
tence. At issue was what its internal nodes
and other formal properties corresponded to.
In Rhetorical Structure Theory (Mann and
Thompson, 1988), used in both text genera-
tion (Scott and de Souza, 1990; Moore, 1995;
O’Donnell et al., 2001) and analysis (Marcu,
1996; Marcu, 2000), an internal node corre-
sponded to a rhetorical relation holding be-
tween the text units associated with its daugh-
ters, and precedence corresponded to their or-
der in the text. In work on generating task
instructions (Dale, 1992), each internal node
corresponded to the next step to take to ac-
complish the plan associated with its par-
ent. In (Grosz and Sidner, 1986), which I
will return to in Section 4, internal nodes cor-
responded to speaker intentions, with domi-
nance in the tree corresponding to a daugh-
ter node’s intention supporting that of its
parent and precedence corresponding to one
intention needing to be accomplished before
another. The internal nodes in (Moser and
Moore, 1996) reflected an attempt to recon-
cile Grosz and Sidner’s approach with that of
Mann and Thompson.

Work that attempted to show that a sim-
ple linear model might be a better account for
types of expository text (Sibun, 1992) was, by
and large, ignored.
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NODALIDA 2011 Conference Proceedings, pp. 12–16



3 Current computatational
approaches to discourse

As well as further elaboration of recursive dis-
course structures (Asher and Lascarides, 2003;
Polanyi et al., 2004), current computational
approaches have focussed on discourse struc-
tures more easily linked to data: structure as-
sociated with changes in topic, structure as-
sociated with the function of the parts of a
text within a given genre, and structure asso-
ciated with what one might call higher-order
predicate-argument relations or discourse re-
lations.

3.1 Topic structure

Expository text can be viewed as a linear
sequence of topically coherent segments (se-
quences of sentences), where the sequence of
topics is either specific to a text or conven-
tionalized (Figure 1).

Interest in topic structure originally came
from its perceived potential to improve infor-
mation retrieval (Hearst, 1994; Hearst, 1997).
More recent interest comes from its potential
use in segmenting lectures, meetings or other
speech events, making them more amenable
to search (Galley et al., 2003; Malioutov and
Barzilay, 2006).

Computational approaches to topic segmen-
tation all assume that: (1) Relations hold be-
tween the topic of discourse segments and the
topic of the discourse as a whole (eg, History
of Vermont → Vermont). (2) The only rela-
tion holding between sister segments, if any,
is sequence, though certain sequences may be
more common than others (Figure 1). (3) The
topic of a segment will differ from those of its
adjacent sisters. (Adjacent spans that share
a topic will belong to the same segment.) (4)
Topic predicts lexical choice, either of all the
words of a segment or just of its content words
(ie, excluding “stop-words”).

Making topic structure explicit (ie, topic
segmentation) is based on either semantic-
relatedness, where each segment is taken to
consist of words more related to each other
than to words outside the segment (Hearst,
1994; Hearst, 1997; Choi et al., 2001; Best-
gen, 2006; Galley et al., 2003; Malioutov and
Barzilay, 2006) or topic models, where each
segment is taken to be produced by a dis-

tinct, compact lexical distribution (Purver et
al., 2006; Eisenstein and Barzilay, 2008; Chen
et al., 2009).

3.2 Function-based structure

Texts within a given genre (eg, news reports,
errata, scientific papers, letters to the editor,
etc.) generally share a similar structure that
is independent of topic and reflects the func-
tion played by each of its parts. Best known is
the inverted pyramid of news reports, consist-
ing of a headline; a lead paragraph, conveying
who is involved, what happened, when it hap-
pened, where it happened, why it happened,
and (optionally) how it happened; a body that
provides more detail; and a tail, containing less
important information. This is why the first
(ie, lead) paragraph can provide the best ex-
tractive summary of a news report.

In the genre of scientific papers (and, more
recently, their abstracts), high-level structure
comprises the following ordered sections: Ob-
jective (also called Introduction, Background,
Aim, or Hypothesis); Methods (also called
Method, Study Design, or Methodology); Re-
sults (also called Outcomes); Discussion and
optionally, Conclusions. This does not mean
that every sentence within a section realises
the same function: Fine-grained functional
characterizations of scientific papers (Liakata
et al., 2010; Teufel, 2010) show a range of func-
tions served by the sentences in a section.

Interest in automatic annotation of func-
tional structure comes from its value for sum-
marization (noted above), sentiment analysis,
where words may have an objective sense in
one section and a subjective sense in another
(Taboada et al., 2009), and citation analysis,
where a citation may mean different things in
different sections (Teufel, 2010).

As with computational models of topic-
based structure, computational models of
function-based structure make assumptions
that may or may not actually hold: (1) Rela-
tions hold between the function of a segment
and that of the discourse as a whole: While
relations may hold between sisters (eg, Meth-
ods constrain Results), only sequence has been
used in modelling. (2) Function predicts more
than lexical choice: it can predict indicative
phrases such as “results show” (→ Results)
or indicative stop-words such as “then” (→
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Wisconsin Louisiana Vermont

1 Etymology Etymology Geography
2 History Geography History
3 Geography History Demographics
4 Demographics Demographics Economy
5 Law and government Economy Transportation
6 Economy Law and government Media
7 Municipalities Education Utilities
8 Education Sports Law and government
9 Culture Culture Public Health

Figure 1: Structure of Wikipedia articles about US states, as shown in sub-headings

Method). (3) Functional segments usually ap-
pear in a specific order, so either sentence posi-
tion is a feature used in modelling or sequential
models are used..

While the internal structure of a functional
segment has usually been ignored in high-
level modeling (Chung, 2009; Lin et al., 2006;
McKnight and Srinivasan, 2003; Ruch et al.,
2007), (Hirohata et al., 2008) found that as-
suming that properties of the first sentence of
a segment differ from those of the rest (as in
’BIO’ approaches to Named Entity Recogni-
tion) leads to improved performance in seg-
mentation (ie, 94.3% per sentence accuracy vs.
93.3%).

While most functional modelling has been
on biomedical text, where texts with explicitly
labelled sections serve as “free” training data
for segmenting unlabelled texts, there has also
been some work on functional segmentation of
legal texts and student essays.

3.3 “Higher-order” pred-arg structure

The third type of discourse structure receiv-
ing significant attention from the computa-
tional world is what can be called higher-order
predicate-argument structure, or structure as-
sociated with discourse relations. Whereas
at the sentence level, pred-arg structures are
usually headed by a verb (Kingsbury and
Palmer, 2002) or a noun (Gerber et al., 2009),
predicate-argument structures in discourse are
usually headed by a discourse connective — eg,
a conjunction like because or but, or a discourse
adverbial like nevertheless or instead.

And just as pred-arg relations within a sen-
tence can conveyed through adjacency (eg, En-
glish noun-noun modifiers such as container
ship crane operator courses – courses to train
operators of cranes that load/unload ships
whose cargo is packed in containers), pred-arg

relations in discourse can be conveyed through
adjacency between clauses or sentences.

The Penn Discourse TreeBank is currently
the largest resource manually annotated for
discourse connectives, their arguments, and
the senses they convey (Prasad et al., 2008).
Related resources are also being created
for Modern Standard Arabic (Al-Saif and
Markert, 2010), Chinese (Xue, 2005), Czech
(Mladová et al., 2008), Danish and Italian par-
allel treebanks (Buch-Kromann and Korzen,
2010), Dutch (van der Vliet et al., 2011), Ger-
man (Stede, 2004; Stede, 2008), Hindi (Oza et
al., 2009), and Turkish (Zeyrek et al., 2010).

The potential value of being able to au-
tomatically recognize these discourse rela-
tions, their arguments and their senses comes
from their help in question generation (Man-
nem et al., 2010), extractive summarization
(Louis et al., 2010) and sentiment detection
(Taboada et al., 2009). So efforts are increas-
ing to automatically recognize them (Elwell
and Baldridge, 2008; Lin et al., 2010; Pitler
et al., 2008; Pitler et al., 2009; Pitler and
Nenkova, 2009; Prasad et al., 2010; Wellner
and Pustejovsky, 2007; Wellner, 2008).

4 Future computatational
approaches to discourse

This story closes with some speculations about
the future. I have sketched a past in which
computational approaches to discourse struc-
ture were hostage to theory and a present
in which they are essentially free of theory.
What we really want is an empirical ap-
proach underpinned by theory, that allows us
to understand (at the very least) the ways in
which the various types of discourse structures
fit together. Early on, (Grosz and Sidner,
1986) attempted to meld a theory of intention-
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based discourse structure with a theory of
attentional structure (ie, what the conversa-
tional participants were attending to), but the
link between theory and data was not suffi-
ciently robust. Later attempts to link mul-
tiple discourse structures were motivated by
purely practical concerns. (Marcu, 2000) used
semantic-relatedness methods from topic seg-
mentation to decide what RST-relation to as-
sign to adjacent non-elementary text spans be-
cause he could find no other way to do so
reliably. (Schilder, 2002) just assumed that
RST-relations could only be computed reliably
for elementary spans (ie, single clauses or sen-
tences), and used semantic-relatedness meth-
ods for other decisions. More recently, (Louis
et al., 2010) have shown that features based on
RST text structures complement those from
discourse relations when it comes to choos-
ing sentences for extractive summaries that are
similar to those chosen manually.

While these purely practical links between
discourse structures clearly lead to better per-
formance in applications, extensive improve-
ments can, I think, only come with a more
theoretically-grounded understanding of how
the different types of discourse structure fit to-
gether.
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