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Abstract

If all we want from a syntactic parser is a
dependency tree, what do we gain by first
computing a different representation such
as a phrase structure tree? The principle of
parsimony suggests that a simpler model
should be preferred over a more complex
model, all other things being equal, and
the simplest model is arguably one that
maps a sentence directly to a dependency
tree — a bare-bones dependency parser. In
this paper, I characterize the parsing prob-
lem faced by such a system, survey the
major parsing techniques currently in use,
and begin to examine whether the simpler
model can in fact rival the performance
of more complex systems. Although the
empirical evidence is still limited, I con-
clude that bare-bones dependency parsers
fare well in terms of parsing accuracy and
often excel in terms of efficiency.

1 Introduction

The notion of dependency has come to play an in-
creasingly central role in natural language pars-
ing in recent years. On the one hand, lexical
dependencies have been incorporated in statisti-
cal models for a variety of syntactic representa-
tions such as phrase structure trees (Collins, 1999),
LFG representations (Riezler et al., 2002), and
CCG derivations (Clark and Curran, 2004). On
the other hand, dependency relations extracted
from such representations have been exploited in
many practical applications, for example, infor-
mation extraction (Culotta and Sorensen, 2004),
question answering (Bouma et al., 2005), and ma-
chine translation (Ding and Palmer, 2004). Given
these developments, it is not surprising that there
has also been a growing interest in parsing models
that map sentences directly to dependency trees,

an approach that will be referred to as bare-bones
dependency parsing to distinguish it from parsing
methods where dependencies are embedded into
or extracted from other types of syntactic repre-
sentations.

The bare-bones model can be motivated by the
principle known as Occam’s razor, which says that
entities should not be postulated beyond neces-
sity. If we can show that bare-bones dependency
parsers produce dependency trees with at least the
same accuracy and efficiency as more complex
models, then they would be preferred on grounds
of simplicity. In this paper, I will begin by ex-
plaining how the parsing problem for bare-bones
dependency parsers differs from the more familiar
parsing problem for phrase structure parsers. I will
go on to survey the main techniques that are cur-
rently in use, grouped into four broad categories:
chart parsing, constraint-based parsing, transition-
based parsing, and hybrid methods. Finally, I will
examine a number of recent studies that compare
the performance of different types of parsers and
conclude that bare-bones dependency parsers fare
well in terms of accuracy as well as efficiency.

2 Parsing Problem

A dependency structure for a sentence wy, . . ., Wy
is a directed graph whose nodes represent the input
tokens wy, ..., w, and whose arcs represent syn-
tactic relations from head to dependent. Arcs are
normally labeled with dependency types, although
unlabeled dependency graphs are also used. De-
pending on what formal constraints are adopted,
we get different classes of dependency graphs,
with different expressivity and complexity. If we
only require graphs to be connected and acyclic,
then words can have more than one head, which
is convenient for representing deep syntactic rela-
tions. If we require the graph to be a tree, then
each word can have at most one head, but we can
still represent extraction phenomena using non-
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Figure 1: Dependency graphs: directed acyclic graph (left), tree (middle), projective tree (right).

projective arcs. If we require every subtree to have
a contiguous yield, finally, we get the class of pro-
jective trees. The different classes are illustrated
in Figure 1.

Regardless of what restrictions we put on de-
pendency graphs, the parsing problem consists in
finding the optimal set of arcs, given the nodes
as input. This is different from phrase structure
parsing, where only the terminal nodes are given
as input and both internal nodes and edges have
to be inferred during parsing. Many algorithms
for dependency parsing are restricted to projective
trees, which reduces the complexity of the parsing
problem, but a number of systems are capable of
handling non-projective trees, either by using non-
standard algorithms or through post-processing.
Very few systems can deal with directed acyclic
graphs. Dependency parsers are generally evalu-
ated by measuring precision and recall on depen-
dency relations, with or without labels. When de-
pendency graphs are restricted to trees, precision
and recall coincide and are normally referred to as
the attachment score.

3 Parsing Techniques

3.1 Chart Parsing Techniques

A straightforward method for dependency parsing
is to view it as a restricted form of context-free
parsing and reuse chart parsing algorithms like
CKY and Earley, an idea that is implicit already
in Hays (1964). Thanks to the constraints on de-
pendency trees, it is possible to reduce complexity
to O(n?) for lexicalized parsing using the span-
based representation proposed by Eisner (1996).
Coupled with statistical models of increasing com-
plexity, this technique has resulted in excellent
parsing accuracy for projective trees, with features
defined over single arcs (McDonald et al., 2005a),
pairs of arcs (McDonald and Pereira, 2006; Car-
reras, 2007) or even triples of arcs (Koo and
Collins, 2010). These models are usually referred
to as first-, second- and third-order models. One
limitation of this parsing approach is that it does
not easily extend to non-projective trees, let alone

directed acyclic graphs. However, as shown by
McDonald and Pereira (2006), it is possible to re-
cover both non-projective arcs and multiple heads
through post-processing.

3.2 Parsing as Constraint Satisfaction

A different approach is to view parsing as a con-
straint satisfaction problem, starting from a com-
pact representation of all dependency graphs com-
patible with the input and successively eliminat-
ing invalid graphs through the propagation of
grammatical constraints, as originally proposed by
Maruyama (1990). By adding numerical weights
to constraints and defining the score of a graph as
a function of the weights of violated constraints,
Menzel and Schroder (1998) turned this into an
optimization problem where the goal is to find the
highest-scoring dependency graph. Constraint-
based parsing can easily accommodate different
classes of dependency graphs and do not have
the same inherent limitations on features or con-
straints as chart parsing, but the parsing prob-
lem is computationally intractable in general, so
exact search methods cannot be used except in
special cases. An interesting special case is the
arc-factored model defined by McDonald et al.
(2005b), where the score of a dependency tree is a
sum of independent arc weights. Under these as-
sumptions, finding the highest scoring dependency
tree is equivalent to finding the maximum directed
spanning tree in a complete graph containing all
possible dependency arcs, a problem that can be
computed in O(n?) time using algorithms from
graph theory. Unfortunately, any attempt to extend
the scope of weighted constraints beyond single
arcs makes the parsing problem NP complete. An-
other variation of the constraint-based approach is
the use of integer linear programming, which was
pioneered by Riedel et al. (2006) and further im-
proved by Martins et al. (2009).

3.3 Transition-Based Parsing

A third prominent method is to view parsing
as deterministic search through a transition sys-
tem (or state machine), guided by a statistical
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Parser Type UAS
Yamada and Matsumoto (2003) | Trans-Local | 90.3
McDonald et al. (2005a) Chart-1st 90.9

Collins (1999) PCFG 91.5
McDonald and Pereira (2006) | Chart-2nd 91.5
Charniak (2000) PCFG 92.1

Koo et al. (2010)

Sagae and Lavie (2006)
Zhang and Nivre (2011)
Koo and Collins (2010)

Hybrid-Dual | 92.5
Hybrid-MST | 92.7
Trans-Global | 92.9
Chart-3rd 93.0

Table 1: Dependency parsing for English (WSJ-
PTB, Penn2Malt); unlabeled attachment scores.

model for predicting the next transition, an idea
first proposed by Yamada and Matsumoto (2003).
Transition-based parsing can be very efficient,
with linear running time for projective depen-
dency trees (Nivre, 2003) and limited subsets of
non-projective trees (Attardi, 2006). For arbitrary
non-projective trees, the worst-case complexity is
quadratic, but observed running time can still be
linear with an appropriate choice of transition sys-
tem Nivre (2009), and transition systems can be
extended to handle directed acyclic graphs (Sagae
and Tsujii, 2008). Transition-based parsers can
base their decisions on very rich representations
of the derivation history (including the partially
built dependency graph) but may suffer from er-
ror propagation due to search errors especially if
the statistical model is trained to maximize the ac-
curacy of local transitions rather than complete
transition sequences. Zhang and Clark (2008)
showed how these problems can be alleviated by
global optimization and beam search, and Huang
and Sagae (2010) obtained further improvements
through ambiguity packing.

3.4 Hybrid Methods

For parsing as for many other problems, it is often
possible to improve accuracy by combining meth-
ods with different strengths. Thus, Zeman and
Zabokrtsky (2005) reported substantial improve-
ments in parsing Czech by letting a number of
parsers vote for the syntactic head of each word.
A drawback of this simple voting scheme is that
the output may not be a well-formed dependency
graphs even if all the component parsers output
well-formed graphs. This problem was solved by
Sagae and Lavie (2006), who showed that we can
use the spanning tree method of McDonald et al.
(2005b) for parser combination by letting parsers
vote for arcs in the complete graph and then ex-
tract the maximum spanning tree. Another hybrid

Parser Type UAS
Collins (1999) PCFG 82.2
McDonald et al. (2005a) Chart-1st 83.3
Charniak (2000) PCFG 84.3
McDonald et al. (2005b) MST 84.4

Hall and Novak (2005)
McDonald and Pereira (2006) | Chart-2nd+Post | 85.2
Nivre (2009) Trans-Local 86.1
Zeman and Zabokrtsky (2005) | Hybrid-Greedy | 86.3
Koo et al. (2010) Hybrid-Dual 87.3

PCFG+Post 85.0

Table 2: Dependency parsing for Czech (PDT);
unlabeled attachment scores.

technique is parser stacking, where one parser is
used to generate input features for another parser,
a method that was used by Nivre and McDonald
(2008) to combine chart parsing and transition-
based parsing, with further improvements reported
by Torres Martins et al. (2008). Finally, Koo et al.
(2010) used dual decomposition to combine third-
order chart parsing and arc-factored spanning tree
parsing with excellent empirical results.

4 Comparative Evaluation

When Yamada and Matsumoto (2003) presented
the first comparative evaluation of dependency
parsing for English, using data from the WSJ
section of the Penn Treebank (Marcus et al.,
1993) with what has later become known as the
Penn2Malt conversion to dependencies, they ob-
served that although their own bare-bones depen-
dency parser had the advantage of simplicity and
efficiency, it was not quite as accurate as the
parsers of Collins (1999) and Charniak (2000).
However, as the results reported in Table 1 clearly
show, there has been a tremendous development
since then, and the third-order chart parser of
Koo and Collins (2010) is now as accurate as any
phrase structure parser. Bare-bones dependency
parsers are also the most efficient parsers avail-
able, with an average parsing time per sentence of
20 msec for the parser of Zhang and Nivre (2011),
for example. As shown in Table 2, a very similar
development has taken place in the case of Czech
dependency parsing, as evaluated on the Prague
Dependency Treebank (Hajic et al., 2001).

Cer et al. (2010) evaluated a number of systems
for producing Stanford typed dependencies (de
Marneffe et al., 2006) and found that bare-bones
dependency parsers like MaltParser (Nivre et al.,
2006) and MSTParser (McDonald and Pereira,
2006) had considerably lower accuracy than the
best phrase structure parsers like the Berkeley
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parser (Petrov et al., 2006; Petrov and Klein, 2007)
and the parser of Charniak and Johnson (2005).
However, the evaluation was performed after con-
verting the parser output to so-called collapsed de-
pendencies, a conversion process that is less ac-
curate for dependency trees than for phrase struc-
ture trees. More importantly, the bare-bones de-
pendency parsers were run without proper opti-
mization, whereas most of the phrase structure
parsers have been optimized for a long time not
only for English but in particular for the type
of Wall Street Journal text that was used in the
evaluation. It is therefore likely that the evalu-
ation results, although representative for out-of-
the-box comparisons on this particular data set,
do not generalize to other settings. Evidence for
this conclusion comes from a similar study by
Candito et al. (2010), where different types of
parsers were evaluated on data from the French
Treebank, and where there was practically no dif-
ference in accuracy between the best bare-bones
dependency parsers (MaltParser, MSTParser) and
the best phrase structure parser (Berkeley). With
respect to efficiency, the transition-based Malt-
Parser was found to be about ten times faster than
the other two parsers.

Rimell et al. (2009) evaluated a number of sta-
tistical parsers specifically on their capacity to re-
cover unbounded dependencies like those involved
in different types of relative clauses, interroga-
tive clauses and right node raising. The eval-
uation was extended to bare-bones dependency
parsers in Nivre et al. (2010), and the overall re-
sults show that systems like MaltParser and MST-
Parser, augmented with simple post-processing for
inferring multiple heads, perform at least as well
as other types of treebank parsers, although not
quite as well as grammar-driven systems like those
of Clark and Curran (2004) and Miyao and Tsujii
(2005).

5 Conclusion

Although the available evidence is still scattered
and incomplete, the empirical results so far seem
to support the hypothesis that bare-bones depen-
dency parsers can achieve the same level of accu-
racy as more complex systems. Since they have
the advantage of simplicity and are often highly
efficient, they clearly seem to merit their place in
contexts where the main requirement on syntactic
analysis is to produce a dependency tree. To what

extent they are also adequate as theoretical models
of natural language syntax in general is of course
a completely different question.
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