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Abstract. Multi-document handling is essential today, when many documents on 

the same topic are produced, especially considering the Web. Both readers and 

computer applications can benefit from a discourse analysis of this multi-

document content, since it demonstrates clearly the relations among portions of 

these documents. This work aims to identify such relations automatically using 

machine learning techniques. Particularly, this work focuses on the identification 

of relations predicted by the Cross-document Structure Theory (CST). The 

obtained results improve the state of the art. 

1. Introduction 

In the electronic media, there are many sources reporting the same topic from the same or 

different perspectives. Online newspapers are an example: the same event is reported on 

different news portals. In general, these documents are produced soon after the event and, 

subsequently, other documents are generated to update the news. Therefore, readers 

interested on a current event will find an endless number of texts, and it will be crucial to 

pick just a few to read. This requires a great effort on the part of readers. Since these texts 

are produced by different sources at different moments, they may contain contradictory or 

redundant portions. For instance, the two sentences below, S1 and S2, from different 

documents, are contradictory regarding the number of bombs in an attack, but both also 

present overlapping information (that there was a bomb): 

S1: The downtown Public Finance Department building was hit by three homemade bombs. 

S2: The Public Finance Department was also hit by a bomb. 

It is believed that, when readers know how the parts of multiple documents are related, they 

can, for example, ignore redundancy, find contradictions, and understand the temporal 

evolution of a fact or event, which would allow them to approach the information in which 

they are interested in a more organized way. In another vein, this type of knowledge might 

also be useful for several computer applications, such as web browsers and automatic 

summarizers, which would have more information available to produce their results and 

meet the users’ needs more efficiently. Some theories or models on multi-document 

relationships have been proposed for this purpose. One of the most used is the Cross-

document Structure Theory (CST) (Radev, 2000). 

 In this work, we propose to investigate the automatic identification of the relations 

among portions of several texts suggested by the CST, developing an automated multi-

document parser. We explore, in particular, the use of traditional (flat) and hierarchical 

machine learning techniques in this task, using a corpus of news texts written in Brazilian 

Portuguese, already annotated according to CST, which allows applying machine learning 

techniques and testing them. The results obtained are that the performance of some 
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classifiers improved the state of the art. It is also demonstrated that the task in question can 

be characterized as a hierarchical problem. 

 In Section 2, related work on multi-document parsing is briefly presented. In 

Section 3, we describe the proposed architecture for the multi-document parser and discuss 

the methodology for identifying multi-document relations, introducing the experiments 

carried out with machine learning. Finally, Section 4 provides conclusions and future work. 

2. Related work 

Although useful, not many researchers have defined and applied multi-document 

representation models, since instantiating such models with real texts is a difficult task. 

Pioneer work was carried out by Trigg (1983) and Trigg & Weiser (1987). They employed 

a set of relations to (manually) structure scientific text portions and their relations in 

semantic networks. Radev & Mckeown (1998) used relations among parts of several texts 

to perform multi-document summarization. These previous works and the work of Mann & 

Thompson (1987) were the basis for the CST discourse model proposed by Radev (2000). 

In a different line, Afantenos et al. (2004) proposed a methodology to define and identify 

multi-document relations, using an ontology and a set of related semantic templates. 

 Using CST,   Aleixo & Pardo (2008a) developed the first step of multi-document 

parsing for the Portuguese language, when they detected pairs of sentences to be associated. 

Later, these and other authors (Aleixo & Pardo, 2008b; Cardoso et al., 2011) built an 

annotated corpus of news texts, which is called CSTNews and is used in this paper.  During 

the manual parsing of this corpus, it was perceived that the relations could be organized in a 

typology that takes into account some features that the defined relation groups have in 

common (Maziero et al., 2010). This typology is illustrated in Figure 1, where the relations 

are at the lowest level of the hierarchy. 

 
Figure 1. Typology of CST relations 

Some relations deal mainly with the “content” of sentences. In this group, the 

“contradiction” among contents, the “redundancy”, which can be “total” or “partial”, and 

the “complementarity” among contents are analyzed, taking into consideration the 

“temporal” or “non-temporal” aspect of this feature.  Other relations deal mainly with the 

“form” of sentences, i.e., how they convey information, considering their 

“source/authorship” and the writing “style”. The relations in this group can occur jointly 

with some other relation from the “content” group, since the sentence pair under analysis 

will always have a similar content. 

 The works of Zhang et al. (2003) and Zhang & Radev (2004) consist of an attempt 

to automate the CST parsing for the English language. These authors carried out a two-step 

CST parsing: first, they developed a classifier to determine if any two segments (sentences) 

from different texts are possibly related. Next, they used other classifier to determine which 

relation there is between the segments. These authors handled only some CST relations and 



3

  

obtained average values of 45% for precision, 31% for coverage, and 35% for f-measure. 

Several other works tried to identify some relations for varied purposes.  Miyabe et al. 

(2008) tried to identify Equivalence and Transition (very similar to the CST Contradiction) 

relations between sentence pairs, using a Support Vector Machine (SVM) classifier, and 

obtained an f-measure of 75.5% for Equivalence and of 45.6% for Transition.  Zahri & 

Fukumoto (2011) also used SVM to identify the relations Identity, Paraphrase, 

Subsumption, Overlap, and Elaboration, but did not report any evaluation.  Ohki et al. 

(2011) dealt with the identification of the relations Entailment, Contradiction, Confinement 

(which represents the union of Entailment and Contradiction relations) and Unknown for 

Japanese. Interpreting semantic templates extracted from the sentences, these authors 

reported that the Confinement relation is recognized with an f-measure of 61%. Maziero et 

al. (2010) reported state of the art results with the application of a decision tree algorithm 

(J48) to identify a large group of relations (the “content” group in the CST typology 

reproduced in Figure 1), achieving average precision, recall and f-measure of 44%.  This last 

work is the basis for this paper, which builds on it by proposing new ways of exploring 

machine learning techniques. 

3. The multi-document parser 

In this work, a multi-document parser was developed following CST. Figure 2 illustrates its 

initial architecture. 

 
Figure 2. Multi-document Parser Architecture 

A group of texts on the same topic (coming from web portals, as GoogleNews, for instance) 

is the input of the process. These texts are automatically segmented in sentences. As this 

work considers CST relations among pairs of sentences, any combination between 

sentences in the several documents is checked in accordance with the measure word overlap 

(= number of words in common in S1 and S2 / (number of words in S1 + number of words 

in S2)). This measure generates a value for each pair of sentences, and the pairs with a value 

above a pre-established threshold are selected for the following steps. This is done because 

it was observed that CST relations occur between sentences with some lexical similarity 

(Zhang & Radev, 2004). This is also a strategy to make the task tractable (avoiding a 

combinatorial explosion), since it is virtually possible to find a relation between every pair 

of sentences. We use a threshold of 0.12, since this was the value used for English (Zhang 

& Radev, 2004) and that showed to be good for Portuguese too (Aleixo & Pardo, 2008a). 

 The selected pairs are then analyzed by several tools (part of speech tagger, 

syntactic parser, named entity recognizer) assisted by several resources (thesaurus, list of 

verbs of attribution – e.g., “say” and “announce”) in order to extract relevant features from 

each sentence pair. The result of this step is an attribute-value table used by classifiers that, 

after training, identify the existing relations between sentence pairs.  The result of the multi-

document parsing process is a graph, whose nodes are sentences from the several 
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documents under analysis and the edges are the identified relations. It is interesting to notice 

that this graph is probably not fully connected, since not all sentence pairs present CST 

relations. 

 Several machine learning techniques with different configurations for producing 

classifiers have been explored, so that it was possible to choose the best scenario for the 

task. Table 1 shows the features/attributes extracted from each sentence pair used to 

generate the classifiers. After this extraction, all features are normalized to avoid possible 

classification discrepancies.  

Table 1. Classifier attributes 

1. Difference in word size (S1-S2) 

2. Percentage of words in common in S1 

3. Percentage of words in common in S2 

4. Position of S1 in text (0- beginning, 2- end, 1- middle) 

5. Position of S2 in text (0- beginning, 2- end, 1- middle)  

6. Number of words in the longest substring between S1 and S2 

7. Difference in the number of nouns between S1 and S2 

8. Difference in the number of adverbs between S1 and S2 

9. Difference in the number of adjectives between S1 and S2 

10. Difference in the number of verbs between S1 and S2 

11. Difference in the number of proper nouns between S1 and S2 

12. Difference in the number of numerals between S1 and S2 

13. Difference in the number of verbs of attribution between S1 and S2 

14. Number of possible synonyms in common in S1 and S2 

15. Number of matching named entities in S1 and S2 

The first six features were obtained using only text surface information, working with the 

words from the sentences. These features help to identify information overlap between 

sentences, since sentences with redundant information present word overlap. To extract 

features 7 to 12, it was employed a part of speech tagger for Brazilian Portuguese (Aires et 

al., 2000), with a precision of more than 96%. These features do not check the word itself, 

but the amount of words in the same class that has been found in the sentences as a sign that 

there is a content relation between sentences in a pair.  The features 13 and 14 were obtained 

using the syntactic parser Palavras (Bick, 2000), which lemmatize verbs as well. The 

lemmatization was necessary to perform a search in a list of verbs of attribution to calculate 

the value of the attribute 13. This feature aims particularly at identifying the relations 

Attribution and Citation, where there is an attribution indicator, especially a verb of 

attribution or other indicator of attribution, such as “according to…”, “as stated by…”, etc. 

As to the feature 14, a synonym database was used (Maziero et al., 2008). In this feature, a 

list of synonym identifiers was compiled for each word, ignoring the stopwords. After 

matching the lists for each word from each sentence, the feature value was generated. The 

synonym database is fundamental to identify overlap when the words are not identical, but 

belong to the same set of synonyms. It is important to notice that, at this moment, the 

syntactic parser could be replaced by a part of speech tagger and a lemmatizer. However, in 

future work, we envision the creation of syntax-based symbolic rules for identifying some 

relations. So, the syntactic analysis, used to generate some features, is stored to be used in 

the future.  The last feature was calculated after the processing performed by the named 

entity recognizer Rembrandt (Cardoso, 2008), which identified in each sentence pair under 

analysis the common named entities to generate the feature value. This sharing of named 

entities may indicate that the sentences are about the same topic. 

 The CSTNews corpus used in the experiments contains 50 clusters of texts, 

totalizing 140 texts, 2,088 sentences and 47,240 words. The corpus was manually annotated 
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according the CST by four experts and the kappa agreement values (Carletta, 1996) for this 

task were computed for the following 3 items: relations, directionality of relations and type 

of relations (according to the typology shown in Figure 1). The results were 0.50, 0.44 and 

0.61, respectively (zero represents the worst case and 1 the optimal agreement). Given the 

subjectivity of this task, such values are considered good. 

 In each experiment that was carried out in this paper, classifiers were developed and 

compared using the tool WEKA (Witten & Frank, 2005). In this comparison, a paired T-test 

was applied (with a 95% confidence interval) to point out the best classifier. The techniques 

to develop the classifiers were: NaiveBayes, Support Vector Machine (SVM), and decision 

tree (J48). NaiveBayes is a probabilistic technique; SVM is mathematical; and J48 is 

symbolic. In this paper we show the results only for the techniques that produced the best 

results. 

 Some scenarios have been explored during the development of classifiers. Two 

multi-class classifiers (they seek to identify one among several classes for each instance) 

were created: one considering all CST relations and other with just some content relations – 

the most frequent ones. Given that more than one relation may happen for a sentence pair, a 

multi-label classifier (it identifies more than one class for the same instance) was 

developed. The typology of CST relations also allowed for the development of two 

hierarchical classifiers (they take into consideration the hierarchy). Finally, we explored the 

development of binary classifiers (they consider only two classes in the decision process) 

for the most frequent relations in the corpus. In this paper we show the results for only three 

experiments, namely, the multi-class classifier for content relations, the hierarchical 

classifiers, and the binary classifiers. These classifiers produced the best results. We used 

ten-fold cross-validation over the CSTNews corpus. 

 The decision for developing some classifiers that considered only the content 

relations – which were the most frequent ones in the corpus – was due to the unbalanced 

data found in the corpus (the frequency of relations is shown in Figure 3). Table 2 displays 

the results from the classifier for each content relation (using the algorithm J48), except for 

Summary, and Contradiction, given their low frequency in the corpus. 

 
Figure 3. Frequency of relations in the CSTNews corpus 

The relations Overlap and Subsumption returned f-measures higher than 49%, for they are 

very frequent in the corpus. As to Historical background, its value is 23%, since its 

frequency is low. Moreover, due to its characteristics, this relation was not satisfactorily 

identified by the employed features. A 40.2% general accuracy was obtained (for all the 

relations, differently from the numbers from Table 2, which were computed for each class 

independently). 
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Table 2. Results from the multi-class classifier for content relations 

Relation Precision Coverage F-Measure 

Subsumption 0.485 0.560 0.520 

Elaboration 0.386 0.382 0.384 

Overlap 0.486 0.503 0.494 

Follow-up 0.317 0.287 0.301 

Historical background 0.243 0.221 0.231 

Identity 0.941 0.941 0.941 

Equivalence 0.207 0.154 0.176 

Average 0.438 0.435 0.435 

Exploring the hierarchy of the typology of relations, two hierarchical classifiers have been 

developed according to the Top-Down and Big-Bang approaches. For a comparison 

between these approaches, see Freitas & Carvalho (2007).  In the Top-Down approach, a 

classifier is used at each level of the typology. For example, at the first level, a classifier is 

used to choose between “content” and “form” groups. Supposing that the “content” is the 

selected group, another classifier is then used to choose between “redundancy”, 

“complement” and “contradiction” subgroups, and so on for each typology branch. When 

the lowest level of the hierarchy is reached, the process ends with the choice of a CST 

relation. Table 3 shows the results for each classifier produced according to the Top-Down 

approach, using the J48 technique. One may see, for instance, that the first classifier 

(classifier A) decides if a sentence pair contains a “content” or a “form” relation with f-

measures of 95.3% and 48.8% for each of these classes, respectively. All average f-

measures were higher than 45%. This proves the potential of this approach to identify 

relations and corroborates that the CST typology makes sense. However, some relations still 

produced very low results, such as Modality, Translation and Summary. 

  Regarding the unbalanced data for CST relations, when these are grouped according 

to the typology discussed, the scenario becomes better. When “form” group is chosen, for 

instance, the examples in this branch will not be so unbalanced, since the relations of this 

type will be judged separately from the content relations (by another classifier). It is 

interesting to notice that, when the “form” branch is followed and one relation of this group 

is chosen, it is worth following the “content” group too, since “form” relations usually 

happen with “content” relations. This Top-Down method allows such strategy to be applied. 

Following the presented procedure, the classifiers were combined and evaluated, obtaining 

35.3% of general accuracy (differently from the numbers in Table 3, which were computed 

for each class independently). 

 The alternative hierarchical method – Big-Bang – performs the relation 

identification in just one step, taking into account the relation hierarchy as a whole. This 

approach consists of an alteration in the C4.5 algorithm (Quinlan, 1993), described by Clare 

(2003). Using this method, a general accuracy of 58.7% was obtained for the classification. 

However, differently from the previous approach, the Big-Bang technique may not reach 

the leaves of the hierarchy, stopping the classification when it is more advantageous. At the 

moment, this strategy does not fit well with our intended task, but is nonetheless interesting, 

since it may indicate a relation type instead of the relations themselves. 

 Finally, for some relations, binary classifiers were also developed. These classifiers 

test whether a sentence pair presents a specific relation or “other” relation. This way, each 

sentence pair must be checked by each classifier, i.e., the existence of each relation is 

checked independently.  When used by the parser, each classifier will then assign a label to 

each sentence pair. For choosing a class, it will be necessary only to decide among labels 

different from “other”. As a selection criterion, a confidence value provided by the classifier 
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is used in the choice of a class, and the option will be for the highest.  The results for each 

binary classifier (using the J48 machine learning method) are shown in Table 4.  

Table 3. Hierarchical Classifiers 

Classifier A – content vs. form  Classifier F – temporal vs. non-temporal 

Relation Precision Coverage F-Measure  Relation Precision Coverage F-Measure 

Content 0.933 0.974 0.953  Temporal 0.440 0.286 0.346 

Form 0.640 0.394 0.488  Non-temporal 0.851 0.918 0.884 

Average 0.786 0.684 0.720  Average 0.654 0.602 0.615 

   

Classifier B – redund. vs. compl. vs. contradiction  Classifier G – follow-up vs. historical back. 

Relation Precision Coverage F-Measure  Relation Precision Coverage F-Measure 

Redundancy 0.696 0.701 0.699  Follow-up 0.871 0.922 0.896 

Complement 0.661 0.679 0.670  Hist. back. 0.617 0.481 0.540 

Contradiction 0.045 0.022 0.029  Average 0.744 0.701 0.718 

Average 0.470 0.467 0.466   

  Classifier H – source vs. style 

Classifier C – total vs. partial  Relation Precision Coverage F-Measure 

Relation Precision Coverage F-Measure  Source 0.853 0.829 0.841 

Total 0.953 0.985 0.969  Style 0.400 0.444 0.421 

Partial 0.905 0.742 0.815  Average 0.626 0.636 0.631 

Average 0.929 0.864 0.892   

  Classifier I – attribution vs. modality 

Classifier D – identity vs. equivalence vs. summary  Relation Precision Coverage F-Measure 

Relation Precision Coverage F-Measure  Attribution 0.986 1 0.993 

Identity 0.882 0.965 0.921  Modality 0 0 0 

Equivalence 0.800 0.718 0.757  Average 0.493 0.500 0.496 

Summary 0 0 0   

Average 0.561 0.561 0.559  Classifier J – indirect speech vs. translation 

  Relation Precision Coverage F-Measure 

Classifier E – subsumption vs. overlap  Ind. speech 0.895 0.944 0.919 

Relation Precision Coverage F-Measure  Translation 0 0 0 

Subsumption 0.609 0.541 0.573  Average 0.447 0.472 0.459 

Overlap 0.806 0.846 0.825      

Average 0.707 0.693 0.699      

The relations Citation, Modality, Translation, Summary, Indirect speech, and Identity were 

not considered due to their low frequency in the corpus. It is possible to see in the table that 

the average f-measures were above 65%, showing that this approach is promising to 

identify the most frequent relations in a corpus, i.e., it produces better results than the other 

scenarios tested. Obviously, when binary classifiers are created, the class “other” (which 

contains all other relations in the corpus, except for that the binary classifier aims to 

identify) becomes prevalent (that is, it contains a higher number of examples) and obtains 

higher results. Except for the Contradiction relation, the f-measure values for the relations 

in each classifier were above 48%. For example, the classifier of Attribution identifies this 

relation with a precision of 60%. Although the relation “other” is identified with more than 

90%, the precision in the identification of Attribution is higher than in the multi-class 

classifier for all CST relations (not shown in this paper). The set of classifiers achieved a 

general accuracy of 27.5%. Such approach would also allow the identification of both 

“form” and “content” relations. Supposing that a “form” relation would be better scored and 
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selected for a sentence pair, it would be possible to select the “content” relation that was 

best scored. 
Table 4. Binary Classifiers 

Attribution classifier 
 

Follow-up classifier 

Relation Precision Coverage F-Measure 
 

Relation Precision Coverage F-Measure 

Other 0.950 0.976 0.963 
 

Other 0.814 0.887 0.848 

Attribution 0.600 0.413 0.489 
 

Follow-up 0.668 0.529 0.590 

Average 0.775 0.694 0.726 
 

Average 0.741 0.708 0.719 

            Contradiction classifier 
 

Historical Background classifier 

Relation Precision Coverage F-Measure 
 

Relation Precision Coverage F-Measure 

Other 0.957 0.994 0.976 
 

Other 0.953 0.968 0.960 

Contradiction 0.700 0.228 0.344 
 

Hist. back. 0.608 0.513 0.556 

Average 0.828 0.611 0.660 
 

Average 0.780 0.740 0.758 

            Elaboration classifier 
 

Overlap classifier 

Relation Precision Coverage F-Measure 
 

Relation Precision Coverage F-Measure 

Other 0.810 0.844 0.827 
 

Other 0.759 0.763 0.761 

Elaboration 0.677 0.622 0.648 
 

Overlap 0.697 0.693 0.695 

Average 0.743 0.733 0.737 
 

Average 0.728 0.728 0.728 

            Equivalence classifier 
 

Subsumption classifier 

Relation Precision Coverage F-Measure 
 

Relation Precision Coverage F-Measure 

Other 0.972 0.986 0.979 
 

Subsumption 0.749 0.698 0.723 

Equivalence 0.593 0.410 0.485 
 

Other 0.915 0.933 0.924 

Average 0.782 0.698 0.732 
 

Average 0.832 0.815 0.823 

Nowadays, the classifiers are attributing only one relation to each sentence pair. This is the 

cause for the low general accuracy values (despite of the good values for precision and 

recall for each class), since sentence pairs with more than one relation (which is usual) will 

have only one relation detected (the other possible relations will be considered as 

misclassified instances). 

 Compared with the results obtained by Zhang et al. (2003) and Zhang & Radev 

(2004), the values of the classifiers investigated in this research were better, demonstrating 

the potential of the developed methodology. It is worth emphasizing that these are results 

obtained for different languages and training corpora, even though this comparison may 

show possible paths to improve results in the field, also giving an idea of the state of the art 

in the area. The results of this work also show that the hierarchical classification of multi-

document relations is promising. Its results, as well as the results for the binary classifiers, 

were better than the ones reported by Maziero et al. (2010).   It is also worth noticing that 

decision trees (J48) produced the best results in all the cases. SVM also did well in some 

cases, with statistical tests showing that the differences were not significant. 

 Finally, we replicated all the previous experiments for balanced data, in order to see 

its impact in the decision process. For balancing the data, we used the traditional approach 

of systematically duplicating the instances of each class until that each class has the same 

number of instances of the majority class. Although running these tests, we think this is not 

a good strategy, since the data is too unbalanced and some instances have to be duplicated 

several times, causing the classifiers to be potentially biased, suffering from overfitting. 

Such approach also results in losing the fact that such classes are really unbalanced in actual 

occurrences in the language. Table 5 shows the general accuracy for the classifiers with and 

without data balancing. One may see the improved results. However, as it happens for 

overfitting, we expect that these classifiers have a poor performance on unseen data. 
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Table 5. General accuracies for unbalanced and balanced data 

Classification strategy Unbalanced data Balanced data 

Multi-class 40.2% 72.5% 

Hierarchical 35.3% 75.6% 

Binary 27.5% 72.4% 

For comparison and validation procedures, we also simulated a baseline method for parsing 

that simply assigns the most frequent relation (Overlap) to every sentence pair. It produces 

a general accuracy of 28.3%, which is outperformed by some classifiers explored in this 

work. Finally, we also performed attribute selection before generating the classifiers, but 

only some attributes were ignored and the results were the same. 

5. Conclusions and future work 

This work will allow for the automatic handling of multiple documents in Portuguese. Both 

users and computer applications will benefit from it.  Regarding the techniques employed to 

develop the parser, as some relations have a low frequency in the corpus, symbolic rules to 

identify these relations are being manually prepared. Some rules look simple to develop, 

since some relations have clear signals in text. For instance, the Indirect speech relation 

might be identified by finding its direct counterpart, usually marked by a dash symbol in the 

text, and the Translation relation might be easily detected by using a multi-lingual 

dictionary. We believe that approaching the problem with classifiers and rules in a hybrid 

approach may produce better results. In fact, we think that the best approach is to use 

classification for the “content” relations and the rules to “form” relations and some low 

frequency “content” relations (e.g., the Contradiction relation). This way, the multi-label 

problem might be naturally solved, since these two strategies might be simultaneously 

applied. 
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