Fast Yet Rich Morphological Analysis

Mohamed Altantawy, Nizar Habash, and Owen Rambow
Center for Computational Learning Systems
Columbia University
New York, NY, USA
{mtantawy, habash, rambow}@ccls.columbia.edu

Abstract

Implementations of models of morphologi-
cally rich languages such as Arabic typically
achieve speed and small memory footprint at
the cost of abandoning linguistically abstract
and elegant representations. We present a so-
lution to modeling rich morphologies that is
both fast and based on linguistically rich rep-
resentations. In our approach, we convert a
linguistically complex and abstract implemen-
tation of Arabic verbs in finite-state machinery
into a simple precompiled tabular representa-
tion.

1 Introduction

Arabic is a morphologically rich and complex lan-
guage, characterized by a combination of templatic
and affixational morphemes, complex morphologi-
cal, phonological and orthographic rules, and a rich
feature system. Arabic morphological analysis and
generation are important to many NLP applications
such as machine translation (Habash, 2007; Kholy
and Habash, 2010) and information retrieval (Aljlayl
and Frieder, 2002). Much work has been done on
Arabic morphological analysis and generation in a
variety of approaches and at different degrees of lin-
guistic depths.

There is a continuum of approaches which is char-
acterized by its two poles: on one end, very abstract
and linguistically rich representations and rules (of-
ten based on particular theories of morphology) are
used to derive surface forms; while on the other
end, simple and shallow techniques focus on effi-
cient search in a space of precompiled (tabulated)

116

solutions. The first type is typically implemented us-
ing finite-state technology and can be at many differ-
ent degrees of sophistication and detail. An exam-
ple of this type of implementation is the MAGEAD
(Morphological Analysis and GEneration for Ara-
bic and its Dialects) system (Habash et al., 2005;
Habash and Rambow, 2006). This system, which
we use as starting point in this paper, compiles ab-
stract high-level linguistic information of different
types to finite state machinery. The second type is
typically not implemented in finite-state technology.
Examples include the Buckwalter Arabic Morpho-
logical Analyzer (BAMA) (Buckwalter, 2004) and
its extension ALMORGEANA (Habash, 2007). These
systems do not represent the morphemic, phonologi-
cal and orthographic rules directly at all, and instead
compile their effect into the lexicon itself.

Numerous intermediate points exist between
these two extremes (e.g., (Smrz, 2007)). The vari-
ous approaches typically trade off different degrees
of speed and memory (model size) for more abstract
and elegant representations. Precompiled tabular
systems usually have fast response time when imple-
mented using hash tables. The cost of building the
linguistic resources manually is the main drawback
for this approach since such resources are prone
to error and hard to debug and extend. Linguisti-
cally sophisticated systems are easier to understand
and extend and they allow for modeling morphology
without lexicons (to address unknown forms); how-
ever, with the complexity of some languages’ mor-
phology, the finite-state transducers (FSTs) tend to
become extremely large, causing a significant dete-
rioration in response time.

Proceedings of the 9th International Workshop on Finite State Methods and Natural Language Processing, pages 116-124,
Blois (France), July 12-15,2011. (©2011 Association for Computational Linguistics

In this paper, we present a solution to the mod-
eling of rich morphologies that combines the best
of these two approaches. In previous work, we pre-
sented MAGEAD, a multi-tier finite-state implemen-
tation of Arabic morphology (Habash et al., 2005;
Habash and Rambow, 2006; Altantawy et al., 2010).
We improve the speed by automatically convert-
ing our FST-based MAGEAD system to a precom-
piled tabular implementation that preserves all of
the rich linguistic information used in MAGEAD’s
design. The new system, MAGEAD-EXPRESS is
not only much faster and smaller in size, but it
also still allows linguistically based abstract changes
and updates in its model. Furthermore, MAGEAD-
EXPRESS produces complete linguistic analyses that
include intermediate levels of representation, an ad-
vantage MAGEAD does not have readily in its out-
put. The only disadvantage of MAGEAD-EXPRESS
is its inability to produce analyses for unknown
words (unlike MAGEAD).

The paper is organized as follows. We give a
short introduction to Arabic morphology in section
2. The related work is discussed in section 3. We
then present MAGEAD and MAGEAD-EXPRESS in
sections 4 and 5 respectively. The extraction process
of MAGEAD’s linguistic information is discussed in
section 6. Finally, the evaluation is presented in sec-
tion 7.

2 Arabic Morphology

For an extensive discussion of Arabic morphol-
ogy from a computational perspective, see (Habash,
2010); we give a short overview here. Arabic has
a rich and complex morphology. This is due to its
numerous linguistic features, such as gender, num-
ber, mood and case, and the existence of two types
of morphemes: templatic and affixational (concate-
native). Templatic morphemes come in three types
that are equally needed to create a word stem: roots,
patterns and vocalisms. The root morpheme is a
sequence of typically three consonants (termed rad-
icals) that signifies some abstract meaning shared

by all its derivations. For example, the words u\;f

kataba' ‘he wrote’ and ;_.,ujgrkaAtib ‘writer’ share

! Arabic transliteration is in the HSB scheme (Habash et al.,
2007): (alphabetically) Abt0jHxddrzss SDTDs~fgklmnhwy and

117

the root morpheme (_s)) ktb ‘writing-related’.

The pattern morpheme is an abstract template in
which roots and vocalisms are inserted. The vocal-
ism morpheme specifies which short vowels to use
with a pattern. We represent the pattern as a string
made up of numbers to indicate radical position, of
the symbol V to indicate the position of the vocal-
ism, and of pattern consonants (if needed) following
(Habash et al., 2005). As an example, the word stem
J katab is constructed from the root (L 8)) kb,

the pattern /V2V3 and the vocalism aa. This is rep-
resented as (1V2V3, ktb, aa). Arabic affixes can
be prefixes such as (+.2) sa+ ‘will’, suffixes such

as (f..i+) +hum ‘they [masculine]” or circumfixes

such as ((y+ +9) ta++na ‘[imperfective subject 2nd

person feminine plural]’. We do not distinguish be-
tween clitics and inflectional affixes in this paper.
Multiple affixes can appear in a word. An Arabic
word is constructed by first creating a word stem
from templatic morphemes, then adding affixational
morphemes. The process of combining morphemes
involves a number of morphemic, phonological and
orthographic rules that modify the form of the cre-
ated word so it is not a simple interleaving or con-
catenation of its morphemic components. See exam-
ple in section 4.

As in other languages, surface word forms in
Arabic that differ only in inflectional morphology
can be grouped into a lexicographic abstraction
called a lexeme. A lexeme is usually represented
by a conventionally chosen word form called the
lemma, but it can also be represented by a stem
and an inflectional class, and in Arabic (as in other
Semitic languages), we can represent it as the set
of radicals and an inflectional class. Thus, we can
represent a morphological analysis of any Arabic
word form in terms of its lexeme (i.e., radicals and
inflectional class), and a set of feature-value pairs
which the morphology of the word form represents.
For example, the MSA verb 3 j_é,u § waliyadsuwhu

‘and that they invite him’ corresponds to the follow-
ing lexeme-and-features representation:

(1) [1d][2¢][Bw][mbc:verb-l-au-tr]
[asp:I][vox:act][mod:s][per:3][gen:m][num:p]
[cnj:w][prt:l][pro:3MS]

This representation indicates (in order of symbols
above) that the root radicals of the word are d-¢-w;
that the verb belongs to a particular inflectional class
called /-au and that it is transitive; that aspect is in-
dicative; voice, active; mood, subjunctive; person,
third; gender, masculine; number, plural; that it has
the conjunction proclitic w ‘and’; that it has parti-
cle proclitic / ‘for/that’; and that it has a pronominal
enclitic that is 3rd person masculine singular.

3 Related Work

There has been a considerable amount of work on
Arabic morphological analysis; for an overview,
see (Al-Sughaiyer and Al-Kharashi, 2004). The
first large-scale implementation of Arabic morphol-
ogy within the constraints of finite-state methods
is that of Beesley et al. (1989) (the “Xerox sys-
tem”) with a ‘detouring’ mechanism for access to
multiple lexica, which gives rise to other works by
Beesley (1998) and Beesley and Karttunen (2000)
and, independently, by Buckwalter (2004). Unlike
the Xerox system, the Buckwalter Arabic Morpho-
logical Analyzer (BAMA) uses a hard-coded tabu-
lar approach with a focus on analysis into surface
morphemes (discussed above). Buckwalter’s work
has been since extended to handle generation as
well as the lexeme-and-features representation (AL-
MORGEANA, (Habash, 2007)) and functional mor-
phology in Arabic (ELIXIR, (SmrZ, 2007)).
Finite-state handling of templatic morphology has
been demonstrated using a variety of techniques
for several Semitic languages other than Arabic in-
cluding Akkadian (Kataja and Koskenniemi, 1988),
Syriac (Kiraz, 2000), Hebrew (Yona and Wintner,
2005), Amharic (Amsalu and Gibbon, 2005), and
Tigrinya (Gasser, 2009). Kay (1987) proposes a
framework for handling templatic morphology in
which each templatic morpheme is assigned a tape
in a multi-tape finite state machine, with an addi-
tional tape for the surface form. Kiraz (2000) ex-
tends Kay’s approach and implements a multi-tape
system for Modern Standard Arabic (MSA) and Syr-
iac. The MAGEAD system (Habash et al., 2005;
Habash and Rambow, 2006) extended Kiraz’s work

118

through a new implementation using AT&T finite
state machine toolkit (Mohri et al., 2000) with an
eye on handling morphology for Arabic and its di-
alects. In this work, we start with MAGEAD and ad-
dress three of its weaknesses: its slowness, its size,
and the absence of rich morphological information
in its output despite of its presence in model specifi-
cations.

4 The MAGEAD System

4.1 MAGEAD’s Representation of Linguistic
Knowledge

MAGEAD relates (bidirectionally) a lexeme and a set
of feature-value pairs to a surface word form through
a sequence of transformations. In a generation per-
spective, the features are translated to abstract mor-
phemes which are then ordered and expressed as
concrete morphemes. The concrete templatic mor-
phemes are interdigitated and affixes added, and fi-
nally morphological and phonological rewrite rules
are applied.

MAGEAD defines the lexeme to be a triple consist-
ing of a root and a morphological behavior class
(MBC). The MBC is characterized by the part-of-
speech and the inflectional paradigm. For verbs, the
inflectional paradigm is closely identified with the
pattern and the transitivity. MAGEAD uses a rep-
resentation of the morphemes which is independent
of the specific variant of Arabic (Standard or di-
alect). These morphemes are referred to as abstract
morphemes (AMs). For instance, in our example,
the MBC [mbc:verb-l-au-tr] maps the two feature-
value pairs [asp:l] and [vox:act] to the two AMs:
[PAT_IV:I] and [VOC_IV:l-au-act].

The AMs are then ordered into the surface-order
of the corresponding concrete morphemes. The or-
dering of AMs is specified in a context-free gram-
mar (CFG). This particular CFG is non-recursive
and compiles to an FSA; we use a CFG and its non-
terminals only for descriptive clarity. The ordered
AMs for our example look like this:

(2) [CONJ:w][PREP:[|[SUBJPRE_IV:3MP]
[d][<]W][PAT_IV:I][VOC_IV:l-au-act]
[SUBJSUF_IV:3MP_Sub][OBJ:3MS]

The AMs are then translated to their corresponding
variant-specific concrete morphemes (CMs):

(3) wa+ li+ y+ (V12V3,dgw,au) +a +hu

Next, the morphemic representation is ob-
tained by interdigitating the templatic morphemes
(root/vocalism/pattern):

(4) wa+ li+ y+ adguw +u +hu

MAGEAD has two types of rules. Morphophone-
mic/phonological rules map from the morphemic
representation (4) to the phonological and ortho-
graphic representations. This includes default rules
which copy the root and vocalism to the phono-
logical and orthographic tiers, and specialized rules
such as the rules that handle the hollow and defec-
tive verbs (our example is a defective verb, it has
a glide /w/ in its final radical). Note that a simple
concatenation of the morphemes in (4) will result in
*/waliyadsuwithu/ which is a wrong surface (phono-
logical) form. In our example, a morphophonemic
rule mandates assimilating the sequence /uw/ with
the suffix /+i/. The phonological representation of
our example is:

(5) wa+ li+ y+ adg +i +hu

Orthographic rules rewrite only the ortho-
graphic representation. These include, for exam-
ple, rules for using the Shadda (consonant doubling
diacritic). In our example, the orthographic rule
rewrites the verbal suffix long-vowel +i as (\3:+)

+uwA in a final position or as (sZ+) +uw in medial

position (i.e., when followed by a pronominal object
as in our example). The orthographic representation
is:

(6) wa+ li+ y+ adg +uw +hu

4.2 Implementation of MAGEAD in FSTs

MAGEAD follows Kiraz (Kiraz, 2000) in using a
multi-tape analysis. The five tiers are used as fol-
lows: tier 1 (pattern and affixational morphemes),
tier 2 (root), tier 3 (vocalism), tier 4 (phonological
representation), and tier 5 (orthographic representa-
tion). In the generation direction, tiers 1 through 3
are always input tiers. Tier 4 is first an output tier,
and subsequently an input tier. Tier 5 is always an
output tier. All tiers are read or written at the same
time, so that the rules of the multi-tier transducer are
rules that scan the input tiers and, depending on the
state, write to the output tier.

119

MAGEAD is implemented as a multi-tape finite
state transducer layer on top of the AT&T two-tape
finite state transducers (Mohri et al., 2000). Con-
version from this higher layer (the Morphtools for-
mat) to the Lextools format (an NLP-oriented exten-
sion of the AT&T toolkit for finite-state machines
(Sproat, 1995)) is done for different types of Lex-
tools files such as rule files or context-free grammar
files. A central concept here is that of the multi-tier
tokens (MTT), which is a token which represents
five tiers but which is compatible with Lextools. An
MTT is a sequence [T, R, V, P, O] where: T'is a to-
ken from the pattern “template”, R is a root radical,
V is a vowel from the vocalism, P is a token from
the phonological representation, and O is a letter
from the orthographic representation. The first (or
pattern) tier (7) is always required. The additional
tiers can be left underspecified or empty (¢), which
is both represented with the symbol 0. For example,
the information in (3) is conceptually represented in
the multi-tier system as follows (only the top three
tiers are filled in since no processing has taken place
yet):

In the implementation, each column becomes one
MTT (i.e., a single symbol in the underlying FST),
and the information in (7) is actually represented as
follows:

(8) [w0000] [a0000] [+0000] [I0000] [i0000]
[+0000] [y0000] [+0000] [V0a00] [1d000]
[25000] [VOuOO][3w000] [+0000] [G0000]
[+0000] [h0000] [u0000]

After applying phonological rules, the fourth
(phonological) tier has been filled in in each MTT:

(9) [wOOWO] [a00a0] [+0000] [l00I0] [i00i0]
[+0000] [y0Oy0] [+0000] [VOaa0] [1d0d0]
[2c0c0] [VOuuO][3w000] [+0000] [G00uO]
[+0000] [h0OhO] [u00UO]

Note that the last radical in the stem [3w000]
did not map to the phonological layer due to the
morphophonemic rules discussed in the previous
section. In this fourth tier, this represents the
phonological form /waliyadcuithu/. Orthographic
rules are then applied which write symbols into the
fifth tier and to modify them, ultimately yielding
waliyadsuwhu. Note that the fourth tier provides
the (phonemic) pronunciation for the orthography in

Pattern Tier wlal|+|1|i|+|y|+|V]|1]|2|V|3|+|G|+|h|u
Radicals Tier 0({0/0]0]0|0|0|0|0|d|s|O|WwW|O]O|O0O]O]|O
(7) | Vocalism Tier 0/0/0|/0|0|0|O0O|0O|a|0O|0O|u|O0O]O0O|O|0O|O]|O
Phonological Tier | 0 |O|{0|{0|0]0|0|0|0]|0O]0O]|0]0]0]0|O0O|0]|O
Orthographic Tier | 0 |O|{0|[{0|0O]0|0|0O|0]|O0O|O0O|0O]0]0]0]|]O0O|0]|O

the fifth tier. The orthographic tier always has dia-
critics; it differs from the phonological tier in terms
of spelling conventions relating to the Ta-Marbuta,
the Alif Magsura, and the Hamza forms. This does
not mean that as an analyzer, the system always re-
quires diacritized input: the input to the analyzer can
be fully diacritized, partially diacritized, or undia-
critized, since the operational system includes a step
of hypothesizing diacritics if they are absent.

4.3 Lexicon

One of the main design goals of MAGEAD was to
be able to operate without a lexicon or with only a
partial lexicon. The motivation is that despite the
similarities between dialects at the morphological
and lexical levels, it is hard to build a complete lex-
icon for every dialect. The lexicon in MAGEAD
operates as a filter that is not part of MAGEAD’s
FSTs. After the morphological analyzer generates
all morphologically possible analyses, the lexicon
removes those analyses that do not correspond to
lexical entries. Therefore, running MAGEAD with-
out a lexicon comes at the cost of over-generation.
We created another version of MAGEAD that has the
lexicon compiled into its FST, we call this version
MAGEAD-LEX. We will discuss MAGEAD-LEX in
more details in Section 7.

5 MAGEAD-EXPRESS

Similar to MAGEAD, MAGEAD-EXPRESS is a mor-
phological analyzer and generator for Arabic and
its dialects that also analyzes to or generates from
a lexeme and a set of linguistic feature-value
pairs. MAGEAD-EXPRESS is composed of two
parts: the linguistic resources and the the mor-
phological engine. MAGEAD-EXPRESS’s linguis-
tic database follows the general structure of BAMA
(Buckwalter, 2004) and ALMORGEANA (Habash,
2007). The main difference is that MAGEAD-
EXPRESS’s databases are extracted automatically

120

from MAGEAD’s FSTs. This section will give an
overview on the structure of the linguistic informa-
tion. Section 6 will go over the extraction process in
detail.

An Arabic word can be viewed as a concatenation
of three regions: a prefix, a suffix and a stem; only
the prefix and suffix regions can be null. MAGEAD-
EXPRESS’s database consists of three lexicons, one
for each word-region and three compatibility tables
(CTs): prefix-stem, stem-suffix and prefix-suffix CT.
Prefix and suffix lexicon entries cover all possible
concatenations of Arabic prefixes/proclitics and suf-
fixes/enclitics respectively. Similarly, the stem en-
tries cover all possible stems for each lexeme. Each
entry, in any of the lexicons, is minimally composed
of four fields: undiacritized surface form, morpho-
logical category, diacritized surface form and mor-
phological feature-value pairs associated with the
entry. In our example & j_é,u § waliyadsuwhu ‘and

that they invite him’, the prefix, stem and suffix en-
tries are, respectively:

(10) wly pre-10 diac:waliy asp:l per:3
gen:m num:p cnj:w prt:l

(11) dg stem-60 diac:adg 1.d 2:¢ 3w
mbc:verb-l-au-tr asp:l vox:act

(12) wh suf-23 diac:uwhu asp:l mod:s

per:3 gen:m num:p pro:3MS

The CTs specify which morphological categories
are allowed to co-occur. In our example, pre-10,
stem-60, and suf-23 have to be three-way compat-
ible to generate our example verb. Because the CTs
are built automatically in MAGEAD-EXPRESS, the
name of a category is nothing but a unique iden-
tifier; unlike BAMA/ALMORGEANA’s categories
that have human-interpretable meanings.

MAGEAD-EXPRESS utilizes the morphological
analysis/generation engine of ALMORGEANA as it
complies with the two main general specifications

of MAGEAD analysis/generation to/from a lexeme
and feature-value pairs. In analysis, the word is
segmented into all possible sets of prefix, stem and
suffix strings. In a valid segmentation, the strings
should exist in their corresponding lexicons and
their categories should be compatible. Generation
is similar to analysis but instead of matching on sur-
face forms, the matching occur on the features. For
a valid generation, the surface forms corresponding
to the compatible sets of features of each word part
are then concatenated to form the final word form.

6 Extracting MAGEAD-EXPRESS Tables
from MAGEAD FSTs

In this section, we present how we extract the
linguistic information from MAGEAD’s FSTs and
present it in a tabular format compatible with
MAGEAD-EXPRESS as descried in section 5. The
extraction process takes place in an incremental
fashion where more information is added to the ini-
tial tables in each step.

Creating the Initial AM Tables: MAGEAD’s
context-free grammar (CFG) automaton (introduced
in Section 4.1) encodes all the possible combina-
tions of abstract morphemes (AMs) that are com-
patible. We start by listing all possible AM combi-
nations. For instance, the AM combination respon-
sible for the analysis or generation of our example,
0 jﬁﬂ 3 waliyadsuwhu ‘and that they invite him’, is
as in (2). We separate the prefixes, stems and suf-
fixes into three different tables by composing the list
with appropriate FST filters that delete un-needed
AMs. We also restrict the entries in the stem-AM
table to the set of lexemes that exists in MAGEAD’s
lexicon. Each AM subsequence receives a compati-
bility category, which is computed as follows. First,
we populate three compatibility tables (CTs): prefix-
stem, stem-suffix and prefix-suffix that specify com-
patibility of the AM subsequences. We cluster the
prefixes into sets whose member are all compatible
with the exact same sets of stems and suffixes; the
set is assigned an automatically generated compat-
ibility category name. The same happens to stems
and suffixes. Finally, we augment the entries of
the prefix-AM, stem-AM and suffix-AM tables with
their compatibility categories.

For example, the AM sequence in (2) would con-

121

tribute the following three AM subsequences (paired
with their compatibility categories) to the prefix-
AM, stem-AM and suffix-AM tables, respectively:

(13) pre-AM-1 [CONJ:w][PREP:I]
[SUBJPRE_IV:3MP]

[1d][2¢][3W][PAT _IV:I]
[VOC_IV:l-au-act]

(15) suf-AM-14 [SUBJSUF_IV:3MP_Sub]
[OBJ:3MS]

Creating the Morphemic Tables: Each AM sub-
sequence in the prefix-AM, stem-AM and suffix-
AM tables is composed with the abstract morpheme-
to-concrete morpheme transducer that is responsi-
ble for translating the AM to their equivalent CM
represented in multi-tier tokens (MTTs). Also, the
AMs are composed with the abstract morpheme-to-
feature transducer that maps the AMs to their lin-
guistic features. This results in a new set of tables
that also includes the morphemic representation and
the corresponding set of the linguistic feature-value
pairs. There is no change in categories in this phase.
Each entry in any of the morphemic tables has four
columns ordered as: CM, compatibility category,
AM, feature-value pairs. Examples of the tables are
as follows for prefix, stem and suffix, respectively:

(16) [w0000][a0000][+0000][10000][i0000][+0000]
[y0000][+0000] pre-AM-1 [CONIJ:w]
[PREP:1][SUBJPRE_IV:3MP] [asp:I]
[per:3][gen:m][num:p][cnj:w][prt:1]

(14) stem-AM-1

(17) [V0a00][1d000][2<000][VOu00][3w000]
stem-AM-1 [1d][2<][3wW][PAT_IV:I]
[VOC_IV:I-au-act] [1:d][2:E][3:W]
[mbc:verb-I-au-tr][asp:I][vox:act]

(18) [+0000][a0000][+0000][h0000][u0000]
suf-AM-14 [SUBJSUF_IV:3MP_Sub]
[OBJ:3MS] [asp:I][mod:s][per:3][gen:m]
[num:p][pro:3MS]

Creating the Surface Form Tables: The CM of
prefixes, stems and suffixes cannot be converted sep-
arately to their surface form because there are mor-
phemic, phonological and orthographic rules that
target interactions among them. At this stage we use
the AM categories to form all possible morphemic
representations in our tables. So for our example, the

morphemic representation is (8). The morphemic
representations are then composed with MAGEAD’s
generation FST where the morphemic, phonological
and orthographic rules are applied. We also keep
track of the word parts to be able to divide the sur-
face form later to prefix, stem and suffix by using
+’s to mark the boundaries. The result of this oper-
ations is as follows:

(19) waliy+ ads +uwhu

Applying the rules creates new surface forms that
require new categories. For example, as discussed
earlier, the verbal suffix long-vowel +i is rewritten
as (l¢2+) +uwA in a final position or as (s2+) +uw
in a medial position. These two new surface forms
need two new categories because they are no longer
compatible with everything +i was compatible with.
The surface forms and the new categories are then
added to the entries in the morphemic tables and
a new set of surface-form tables is created (prefix,
stem, and suffix, respectively):

(20) waliy pre-10 [w0000][a0000][+0000][10000]
[10000][+0000][y0000][+0000] pre-AM-1
[CONIJ:w][PREP:1][SUBJPRE_IV:3MP]
[asp:I][per:3][gen:m][num:p][cnj:w][prt:1]

(21) ad¢ stem-60 [V0a00][1d000][2<000]
[VOu00][3w000] stem-AM-1 [1d][2¢]
[3w] [PAT_IVII][VOC_IV:I-au-act] [1:d]
[2:E][3:w][mbc:verb-I-au-tr][asp:I][vox:act]

(22) uwhu suf-23 [+0000][@0000][+0000]
[h0000][u0000] suf-AM-14 [SUBJ-
SUF_IV:3MP_Sub][OBJ:3MS] [asp:]]

[mod:s][per:3][gen:m][num:p][pro:3MS]

In a final step, we put these tables in the appropri-
ate format for ALMORGEANA as described in sec-
tion 5.

7 Evaluation

MAGEAD-EXPRESS uses MAGEAD’s linguistic re-
sources; therefore its lexical coverage should be
identical to that of MAGEAD. We do not evalu-
ate MAGEAD’s coverage here; for more informa-
tion about MSA and Levantine verb coverage, see
(Habash and Rambow, 2006) and for MSA nouns,
see (Altantawy et al., 2010). In this section, we
evaluate the conversion of MAGEAD’s linguistic re-

122

sources for MSA Verbs from their FST representa-
tion to the tabular representation used by MAGEAD-
EXPRESS. We also report on time performance
and memory usage of MAGEAD-EXPRESS versus
MAGEAD.

Both MAGEAD and MAGEAD-EXPRESS are bidi-
rectional systems. It is sufficient to evaluate them
either in analysis or generation mode. For the pur-
pose of this evaluation, we opted to do the genera-
tion mode only. The goal of this evaluation is to en-
sure that given any lexeme from MAGEAD’s lexicon
paired with a plausible set of linguistic feature-value
pairs, both MAGEAD and MAGEAD-EXPRESS will
generate the same surface forms.

MAGEAD’s verb lexicon contains 8,960 lexemes,
each of which has either 1,092 inflected surface
forms if the lexeme is for an intransitive verb or
14,196 if transitive (accepts pronominal object cli-
tics). Since it is too time-consuming to test all the
8,960 lexemes, we create a representative sample
of lexemes to serve as an evaluation dataset. We
cluster MAGEAD’s lexicon into 611 lexeme groups.
Each group represents an MBC with a particular
root type that triggers a particular set of rewrite
rules. Each lexeme group is assigned an iconic
lexeme (IL) that represents the group. The 611
ILs (240 intransitive and 371 transitive) are used as
our evaluation dataset. Each IL in the evaluation
dataset is paired with all possible combinations of
feature-value pairs and then fed to both MAGEAD
and MAGEAD-EXPRESS. The surface forms gener-
ated by both systems were identical in all cases. This
validates the correction of our conversion process.

We now evaluate the time and memory require-
ments of MAGEAD-EXPRESS against MAGEAD.
For the sake of this evaluation, we also created an-
other version of MAGEAD that has the lexicon com-
piled into its FST; we call this version MAGEAD-
LEX. Table 7 compares MAGEAD-EXPRESS to both
MAGEAD-LEX and MAGEAD. MAGEAD-LEX is
restricted by the lexicon and thus can not operate
on any lexemes that are not in the lexicon (unlike
MAGEAD but like MAGEAD-EXPRESS). MAGEAD
is the only system among these three that can run
without a lexicon. MAGEAD-EXPRESS is the only
system among the three that allows easy access to
intermediate representations such as those appearing
in (20)-(22), i.e., AMs and CMs.

MAGEAD-EXPRESS MAGEAD-LEX MAGEAD
Embedded lexicon Yes Yes No
Can run without a lexicon No No Yes
Intermediate Yes No No
representations in output
Time to build 30mins (MAGEAD) | 30mins (MAGEAD) 30mins
+ 48hrs + 30mins
Time to analyze 10K
verbs (batches of 1,000) 68 secs 100 secs 3,985 secs
Time to analyze 1 verb 3.5 secs 4.5 secs 2.1 secs
Time to analyze 1 verb
online (client-server) 0.00679 secs No No
Size of machines 7MB 388MB Not Composable
13MG14MG583K

Table 1: Comparing MAGEAD-EXPRESS, MAGEAD-LEX, and MAGEAD. All reported times are CPU seconds.

In terms of time to build, MAGEAD takes 30 mins
to compile (MAGEAD-LEX takes an hour), and then
MAGEAD-EXPRESS takes around 48 hours to ex-
tract its tables from MAGEAD’s FSTs.

As for time performance, we created a list of
10,000 verbs collected randomly from the list of
surface forms generated in the extraction evalua-
tion. We measure the time MAGEAD-EXPRESS
takes to finish analyzing the 10,000 verbs (in ten
batches of 1,000 verbs each) against the time taken
by MAGEAD and MAGEAD-LEX. As Table 7
shows, MAGEAD-EXPRESS is 1.5 times as fast as
MAGEAD-LEX and 58 times faster than MAGEAD.
We next compute the average speed of analyzing one
verb at a time offline (using all 10,000 verbs). In
this scenario, MAGEAD is the fastest due to the over-
head time (3.4 secs) that MAGEAD-EXPRESS needs
to load its tables into memory. Of course, MAGEAD-
EXPRESS is the only system among the three sys-
tems that can operate in a client-server setup where
it loads its lexicons once into memory. In such setup,
MAGEAD-EXPRESS is more than 300 times faster
than MAGEAD.

As for memory requirements, MAGEAD-
EXPRESS requires about 7MB to store its tables into
memory. When the tables get loaded in memory,
MAGEAD-EXPRESS does not require additional
resources. On the other hand, MAGEAD consists
of three FSTs that are composed with the input in
an online fashion, see Table 7 for sizes. In fact, we

123

could not compose any two of MAGEAD’s three
FSTs into a bigger FST on our 64GB memory
machine. However, MAGEAD-LEX is much smaller
than MAGEAD because it is only restricted to the
lexicon. MAGEAD-LEX’s FSTs are composed
into one big FST of size 388MB. The amount of
memory needed by MAGEAD depends mainly on
the size of the input. For 1 verb to be analyzed, the
input is composed with MAGEAD’s three FSTs and
the result is an FST of size 10KB, and for a batch of
10, 100, and 1,000 verbs the resulting FST is of size
113KB, 1.7MB, and 13MB, respectively.

8 Conclusion

In this paper, we introduced MAGEAD-EXPRESS, a
lexicon-based morphological analyzer and genera-
tor for Arabic and its dialects. MAGEAD-EXPRESS
extracts its linguistic knowledge automatically from
MAGEAD. As a result, MAGEAD-EXPRESS still
benefits from the level of abstraction with which
the linguistic information is encoded in MAGEAD’s
FSTs, while being much faster than MAGEAD.
Both systems are bidirectional and analyze to and
generate from a lexeme and a set of linguistic
feature-value pairs. MAGEAD’s main advantage
over MAGEAD-EXPRESS, is its ability to work with-
out a lexicon or with a partial lexicon. In ongoing
work, we are studying how we can combine the two
system to build a more extensive system. The main
idea is to port MAGEAD as a back-off mechanism to

deal with the out-of-vocabulary words that are not in
the lexicon. Although we only demonstrate the FST-
table conversion idea on Arabic, we believe it is ap-
plicable to other languages with comparable benefits
(depending on the language’s morphological com-

plexity).

References

Imad Al-Sughaiyer and Ibrahim Al-Kharashi. 2004.
Arabic Morphological Analysis Techniques: A Com-
prehensive Survey. Journal of the American Society
for Information Science and Technology, 55(3):189—
213.

Muhammed Aljlayl and Ophir Frieder. 2002. On Ara-
bic Search: Improving the Retrieval Effectiveness via
a Light Stemming Approach. In Proceedings of ACM
Eleventh Conference on Information and Knowledge
Management, Mclean, VA, pages 340-347.

Mohamed Altantawy, Nizar Habash, Owen Rambow, and
Ibrahim Saleh. 2010. Morphological analysis and
generation of arabic nouns: A morphemic functional
approach. In Proceedings of the International Confer-
ence on Language Resources and Evaluation, LREC.
Valletta, Malta.

Saba Amsalu and Dafydd Gibbon. 2005. Finite state
morphology of Ambharic. In International Conference
on Recent Advances in Natural Language Processing
(RANLP), pages 47-51, Borovets.

Kenneth Beesley and Lauri Karttunen. 2000. Finite-state
non-concatenative morphotactics. In acl00, Hong
Kong, China.

Kenneth Beesley, Tim Buckwalter, and Stuart Newton.
1989. Two-level finite-state analysis of Arabic mor-
phology. In Proceedings of the Seminar on Bilingual
Computing in Arabic and English, page n.p.

Kenneth Beesley. 1998. Arabic morphology using only
finite-state operations. In M. Rosner, editor, Proceed-
ings of the Workshop on Computational Approaches to
Semitic Languages, pages 50-7, Montereal.

Tim Buckwalter. 2004. Buckwalter arabic morpho-
logical analyzer version 2.0. LDC catalog number
LDC2004L02, ISBN 1-58563-324-0.

Michael Gasser. 2009. Semitic morphological analysis
and generation using finite state transducers with fea-
ture structures. In Proceedings of the 12th Conference
of the European Chapter of the ACL (EACL 2009),
pages 309-317, Athens, Greece.

Nizar Habash and Owen Rambow. 2006. MAGEAD: A
Morphological Analyzer and Generator for the Arabic
Dialects. In Proceedings of the Conference of the As-
sociation for Computational Linguistics, Sydney, Aus-
tralia.

124

Nizar Habash, Owen Rambow, and George Kiraz. 2005.
Morphological Analysis and Generation for Arabic
Dialects. In Proceedings of the ACL Workshop
on Computational Approaches to Semitic Languages,
Ann Arbor, Michigan.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den Bosch
and A. Soudi, editors, Arabic Computational Mor-
phology: Knowledge-based and Empirical Methods.
Springer.

Nizar Habash. 2007. Arabic Morphological Representa-
tions for Machine Translation. In Antal van den Bosch
and Abdelhadi Soudi, editors, Arabic Computational
Morphology: Knowledge-based and Empirical Meth-
ods. Kluwer/Springer.

Nizar Habash. 2010. Introduction to Arabic Natural
Language Processing. Morgan & Claypool Publish-
ers.

Laura Kataja and Kimmo Koskenniemi. 1988. Finite
state description of Semitic morphology. In COLING-
88: Papers Presented to the 12th International Confer-
ence on Computational Linguistics, volume 1, pages
313-15.

Martin Kay. 1987. Nonconcatenative Finite-State Mor-
phology. In Proceedings of the Conference of the
European Chapter of ACL (EACL-87), Copenhagen,
Denmark.

Ahmed EI Kholy and Nizar Habash. 2010. Orthographic
and Morphological Processing for English-Arabic Sta-
tistical Machine Translation. In Actes de Traitement
Automatique des Langues Naturelles (TALN), Mon-
treal, Canada.

George Kiraz. 2000. Multi-tiered nonlinear morphology
using multi-tape finite automata: A case study on Syr-
iac and Arabic. Computational Linguistics, 26(1):77-
105.

Mehryar Mohri, Fernando C. N. Pereira, and Michael
Riley. 2000. The design principles of a weighted
finite-state transducer library. Theoretical Computer
Science, 231:17-32, January.

Otakar SmrZ. 2007. Functional Arabic Morphology. For-
mal System and Implementation. Ph.D. thesis, Charles
University in Prague, Prague, Czech Republic.

Richard Sproat. 1995. Lextools: Tools for finite-state
linguistic analysis. Technical Report 11522-951108-
10TM, Bell Laboratories.

Shlomo Yona and Shuly Wintner. 2005. A finite-state
morphological grammar of Hebrew. In Proceedings of
the ACL Workshop on Computational Approaches to
Semitic Languages, pages 9-16, Ann Arbor, Michigan.

