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Abstract

Brill’s part-of-speech tagger is defined
through a cascade of leftmost rewrite rules.
We revisit the compilation of such rules into
a single sequential transducer given by Roche
and Schabes (Comput. Ling. 1995) and
provide a direct construction of the minimal
sequential transducer for each individual rule.
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1 Introduction

Part-of-speech (POS) tagging consists in assigning
the appropriate POS tag to a word in the context of
its sentence. The program that performs this task,
the POS tagger, can be learned from an annotated
corpus in case of supervised learning, typically us-
ing hidden Markov model-based or rule-based tech-
niques. The most famous rule-based POS tagging
technique is due to Brill (1992). He introduced a
three-parts technique comprising:

1. a lexical tagger, which associates a unique POS
tag to each word from an annotated training
corpus. This lexical tagger simply associates
to each known word its most probable tag ac-
cording to the training corpus annotation, i.e. a
unigram maximum likelihood estimation;

2. an unknown word tagger, which attempts to tag
unknown words based on suffix or capitaliza-
tion features. It works like the contextual tag-
ger, using the presence of a capital letter and
bounded sized suffixes in its rules: for instance
in English, a -able suffix usually denotes an ad-
jective;

3. a contextual tagger, on which we focus in this
paper. It consists of a cascade of string rewrite
rules, called contextual rules, which correct tag
assignments based on some surrounding con-
texts.

In this note, we revisit the proof that contextual
rules can be translated into sequential transducers1

proposed by Roche and Schabes (1995): whereas
Roche and Schabes give a separate proof of sequen-
tiality and exercise it to show that their constructed
non-sequential transducer can be determinized (at
the expense of a worst-case exponential blow-up),
we give a direct translation of a contextual rule into
the minimal normalized sequential transducer, by
adapting Simon (1994)’s string matching automa-
ton to the transducer case. Our resulting sequential
transducers are of linear size (before their composi-
tion). A similar construction can be found in (Mi-
hov and Schultz, 2007), but no claim of minimality
is made there.

2 Contextual Rules

We start with an example by Roche and Schabes
(1995): Let us suppose the following sentences were
tagged by the lexical tagger (using the Penn Tree-
bank tagset):

∗Chapman/NNP killed/VBN John/NNP Lennon/NNP
∗John/NNP Lennon/NNP was/VBD shot/VBD by/IN

Chapman/NNP
He/PRP witnessed/VBD Lennon/NNP killed/VBN

by/IN Chapman/NNP

1Historically, what we call here “sequential” used to be
called “subsequential” (Schützenberger, 1977), but we follow
the more recent practice initiated by Sakarovitch (2009).
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There are mistakes in the first two sentences: killed
should be tagged as a past tense form “VBD”, and
shot as a past participle form “VBN”.

The contextual tagger learns contextual rules over
some tagset Σ of form uav → ubv (or a→ b /u v
using phonological rule notations (Kaplan and Kay,
1994)), meaning that the tag a rewrites to b in the
context of u v, where the context is of length
|uv| bounded by some fixed k + 1; in practice,
k = 2 or k = 3 (Brill (1992) and Roche and Sch-
abes (1995) use slightly different templates than the
one parametrized by k we present here). For in-
stance, a first contextual rule could be “nnp vbn →
nnp vbd” resulting in a new tagging

Chapman/NNP killed/VBD John/NNP Lennon/NNP
∗John/NNP Lennon/NNP was/VBD shot/VBD by/IN

Chapman/NNP
∗He/PRP witnessed/VBD Lennon/NNP killed/VBD

by/IN Chapman/NNP

A second contextual rule could be “vbd in →
vbn in” resulting in the correct tagging

Chapman/NNP killed/VBD John/NNP Lennon/NNP
John/NNP Lennon/NNP was/VBD shot/VBN by/IN

Chapman/NNP
He/PRP witnessed/VBD Lennon/NNP killed/VBN

by/IN Chapman/NNP

As stated before, our goal is to compile the entire
sequence of contextual rules learned from a corpus
into a single sequential function.

Let us first formalize the semantics we will em-
ploy in this note for Brill’s contextual rules.2 Let
C = r1r2 · · · rn be a finite sequence of string rewrite
rules in Σ∗ × Σ∗ with Σ a POS tagset of fixed size.
In practice the rules constructed in Brill’s contextual
tagger are length-preserving and 1-change-bounded,
i.e. they modify a single letter, but this is not a useful
consideration for our transducer construction. Each
rule ri = ui → vi defines a leftmost rewrite relation
ri=⇒
lm

defined by

w
ri=⇒
lm

w′ iff ∃x, y ∈ Σ∗, w = xuiy ∧ w′ = xviy

∧ ∀z, z′ ∈ Σ∗, w 6= zuiz
′ ∨ x ≤pref z

2This is not exactly the semantics assumed by either Brill
nor Roche and Schabes, who used iterated-application seman-
tics, resp. contextual and non contextual, instead of the single-
application semantics we use here. This has little practical con-
sequence.

where x ≤pref z denotes that x is a prefix of z. Note
that the domain of ri=⇒

lm
is Σ∗ · ui · Σ∗. The behavior

of a single rule is then the relation JriK included in
Σ∗ × Σ∗ defined by JriK = ri=⇒

lm
∪ IdΣ∗\(Σ∗·ui·Σ∗),

i.e. it applies ri=⇒
lm

on Σ∗ · ui · Σ∗ and the identity on

its complement Σ∗\(Σ∗ · ui · Σ∗). The behavior of
C is then the composition JCK = Jr1K # Jr2K # · · · #JrnK. Note that this behavior does not employ the
transitive closure of the rewriting rules.

A naive implementation of C would try to match
each ui at every position of the input string w in
Σ∗, resulting in an overall complexity of O(|w| ·∑

i |ui|). One often faces the problem of tag-
ging a set of sentences {w1, . . . , wm}, which yields
O((

∑
i |ui|) · (

∑
j |wj |)). As shown in Roche and

Schabes’ experiments, compiling C into a single se-
quential transducer T results in practice in huge sav-
ings, with overall complexities in O(|w|+ |T |) and
O(|T |+ ∑

j |wj |) respectively.

Each JriK is a rational function, being the union of
two rational functions over disjoint domains. Let |ri|
be the length |uivi| ≤ k. Roche and Schabes (1995,
Sec. 8.2) provide a construction of an exponential-
sized transducer Tri for each JriK, and compute
their composition TC of size |TC | = O(

∏n
i=1 2|ri|).

As they show that each JriK is actually a sequen-
tial function, their composition JCK is also sequen-
tial, and TC can be determinized to yield a se-
quential transducer T of size doubly exponential
in

∑n
i=1 |ri| ≤ nk (see Roche and Schabes, 1995,

Sec. 9.3). By contrast, our construction directly
yields linear-sized minimal sequential transducers
for each JriK, resulting in a final sequential trans-
ducer of size O(

∏n
i=1 |ri|) = O(2n log k).

3 Sequential Transducer of a Rule

Intuitively, the sequential transducer for JriK is re-
lated to the string matching automaton (Simon,
1994; Crochemore and Hancart, 1997) for ui, i.e.
the automaton for the language Σ∗ui. This insight
yields a direct construction of the minimal sequen-
tial transducer of a contextual rule, with at most
|ui|+ 1 states. Let us recall a few definitions:
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3.1 Preliminaries
Overlaps, Borders (see e.g. Crochemore and
Hancart, 1997, Sec. 6.2). The overlap ov(u, v) of
two words u and v is the longest suffix of u which is
simultaneously a prefix of v. A word u is a border
of a word v if it is both a prefix and a suffix of v, i.e.
if there exist v1, v2 in Σ∗ such that v = uv1 = v2u.
For v 6= ε, the longest border of v different from v
itself is denoted bord(v).

Fact 1. For all u, v in Σ∗ and a in Σ, ov(ua, v) =
ov(u, v) · a if ov(u, v) · a ≤pref v and ov(ua, v) =
bord(ov(u, v) · a) otherwise.

Sequential Transducers (see e.g. Sakarovitch,
2009, Sec.V.1.2). Formally, a sequential transducer
from Σ to ∆ is a tuple T = 〈Q,Σ,∆, q0, δ, η, ι, ρ〉
where δ : Q×Σ→ Q is a partial transition function,
η : Q×Σ→ ∆∗ a partial transition output function
with the same domain as δ, i.e. dom(δ) = dom(η),
ι ∈ ∆∗ is an initial output, and ρ : Q → ∆∗

is a partial final output function. T defines a par-
tial sequential function JT K : Σ∗ → ∆∗ withJT K(w) = ι·η(q0, w)·ρ(δ(q0, w)) for allw in Σ∗ for
which δ(q0, w) and ρ(δ(q0, w)) are defined, where
η(q, ε) = ε and η(q, wa) = η(q, w) · η(δ(q, w), a)
for all w in Σ∗ and a in Σ.

Let us note T(q) for the sequential transducer with
q for initial state. We write u∧v for the longest com-
mon prefix of strings u and v; the longest common
prefix of all the outputs from state q can be writ-
ten formally as

∧
v∈Σ∗JT(q)K(v). A sequential trans-

ducer is normalized if this value is ε for all q ∈ Q
such that dom(JT(q)K) 6= ∅, i.e. if the transducer
outputs symbols as soon as possible; any sequen-
tial transducer can be normalized. The translation
of a sequential function f by a word w in Σ∗ is
the sequential function w−1f with dom(w−1f) =
w−1dom(f) and w−1f(u) = (

∧
v∈Σ∗ f(wv))−1 ·

f(wu) for all u in dom(w−1f). As in the finite
automata case where minimal automata are isomor-
phic with residual automata, the minimal sequen-
tial transducer for a sequential function f is defined
as the translation transducer 〈Q,Σ,∆, q0, δ, η, ι, ρ〉,
where Q = {w−1f | w ∈ Σ∗} (which is finite),
q0 = ε−1f , ι =

∧
v∈Σ∗ f(v) if dom(f) 6= ∅ and ι =

ε otherwise, δ(w−1f, a) = (wa)−1f , η(w−1f, a) =∧
v∈Σ∗(w

−1f)(av) if dom((wa)−1f) 6= ∅ and
η(w−1f, a) = ε otherwise, and ρ(w−1f) =

(w−1f)(ε) if ε ∈ dom(w−1f), and is otherwise un-
defined.

3.2 Main Construction

Here is the definition of our transducer for a contex-
tual rule (see Fig.1):

Definition 2 (Transducer of a Contextual Rule). The
sequential transducer Tr associated with a contex-
tual rule r = u → v with u 6= ε is defined as
Tr = 〈pref(u),Σ,Σ, ε, δ, η, ε, ρ〉with the set of pre-
fixes of u as state set, ε as initial state and initial
output, and for all a in Σ and w in pref(u),

δ(w, a)=


wa if wa ≤pref u

w if w = u

bord(wa) otherwise

ρ(w)=


ε if w ≤pref (u ∧ v)
(u ∧ v)−1w if (u ∧ v) <pref w <pref u

ε otherwise, i.e. if w = u

η(w, a)=



a if wa ≤pref (u ∧ v)
ε if (u∧v)<pref wa<pref u

(u ∧ v)−1v if wa = u

a if w = u

ρ(w)a · ρ(bord(wa))−1

otherwise.

It remains to show that this sequential transducer
is indeed the minimal normalized sequential trans-
ducer for JrK.

Proposition 3 (Correctness). Let r = u → v with
u 6= ε. Then JTrK = JrK.

Proof. Let us first consider the case of input words
in Σ∗\(Σ∗ · u · Σ∗):

Claim 3.1. For all w in Σ∗\(Σ∗ · u · Σ∗), δ(ε, w) =
ov(w, u) and η(ε, w) = w · ρ(ov(w, u))−1.

By induction on w: since u 6= ε, the base case is
w = ε with δ(ε, ε) = ε = ov(ε, u) and η(ε, ε) =
ε = ε · ε−1 = ε · ρ(ε)−1. For the induction step, we
consider wa in Σ∗\(Σ∗ · u · Σ∗) for some w in Σ∗
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Figure 1: The sequential transducer constructed for ababb→ abbbb.

and a in Σ:

δ(ε, wa) = δ(δ(ε, w), a) i.h.= δ(ov(w, u), a)
Fact 1= ov(wa, u)

η(ε, wa) = η(ε, w) · η(δ(ε, w), a)
i.h.= w · ρ(δ(ε, w))−1 · η(δ(ε, w), a)

= w · ρ(w′)−1 · η(w′, a) ;
(by setting w′ = δ(ε, w))

we need to do a case analysis for this last equation:

Case w′a 6≤pref u Then η(w′, a) = ρ(w′) · a ·
ρ(border(w′a))−1, which yields η(ε, wa) =
w · ρ(w′)−1 · ρ(w′) · a · ρ(δ(ε, wa))−1 = wa ·
ρ(δ(ε, wa))−1.

Case w′a <pref u Then δ(ε, wa) = w′a, and
we need to further distinguish between several
cases:

w′a ≤pref (u ∧ v) then ρ(w′) = ε,
η(w′, a) = a, and ρ(w′a) = ε,
thus η(ε, wa) = wa = wa · ε−1 =
wa · ρ(w′a)−1,

w′ = (u ∧ v) then ρ(w′) = ε, η(w′, a) = ε,
and ρ(w′a) = (u ∧ v)−1 · w′a = a,
η(ε, wa) = w = wa · a−1 = wa ·
ρ(w′a)−1,

(u ∧ v) <pref w′ then ρ(w′) = (u ∧ v)−1 ·
w′, η(w′, a) = ε, and ρ(w′a) = (u ∧
v)−1 ·w′a, thus η(ε, wa) = w ·((u∧v)−1 ·
w′)−1 = wa · a−1 · ((u ∧ v)−1 · w′)−1 =
wa · ρ(w′a)−1.

The claim yields that JTrK coincides with JrK on
words in Σ∗\(Σ∗ · u · Σ∗), i.e. is the identity over
Σ∗\(Σ∗ · u · Σ∗). Then, since u 6= ε, a word in
Σ∗ ·u·Σ∗ can be written aswaw′ withw in Σ∗\(Σ∗ ·
u · Σ∗), a in Σ with wa in Σ∗ · u, and w′ in Σ∗. Let

u = u′a; the claim implies that δ(ε, w) = u′ and
η(ε, w) = w · ρ(u′)−1. Thus, by definition of Tr,
δ(ε, wa) = u′a = u and thus η(ε, wa) = η(ε, w) ·
η(u′, a) = w · ρ(u′)−1 · (u ∧ v)−1 · v;

if (u ∧ v) <pref u′ η(ε, wa) = w · ((u ∧ v)−1 ·
u′)−1 ·(u∧v)−1 ·v = w ·u′−1 ·v = wa ·u−1 ·v;

otherwise i.e. if u′ = (u∧v): η(ε, wa) = w ·u′−1 ·
v = wa · u−1 · v.

Thus in all cases JTrK(wa) = JrK(wa), and since Tr
starting in state u (i.e. Tr(u)) implements the identity
over Σ∗, we have more generally JTrK = JrK.

Lemma 4 (Normality). Let r = u → v. Then Tr is
normalized.

Proof. Let w ∈ Prefix(u) be a state of Tr; let us
show that

∧JTr(w)K(Σ∗) = ε.

If (u ∧ v) <pref w <pref u let u′ =
w−1u ∈ Σ+, and consider the two out-
puts JTr(w)K(u′) = η(w, u′)ρ(u) = (u∧ v)−1v
and JTr(w)K(ε) = ρ(w) = (u ∧ v)−1w.
Since (u ∧ v) <pref u we can write u as
(u ∧ v)au′′u′, and either v = (u ∧ v)bv′ or
v = u ∧ v, for some a 6= b in Σ and u′′, v′

in Σ∗; this yields w = (u ∧ v)au′′ and thusJTr(w)K(u′) ∧ JTr(w)K(ε) = ε.

otherwise ρ(w) = ε, which yields the lemma.

Proposition 5 (Minimality). Let r = u → v with
u 6= ε and u 6= v. Then Tr is the minimal sequential
transducer for JrK.

Proof. Let w <pref w′ be two different states in
Prefix(u); we proceed to prove that Jw−1TrK 6=Jw′−1TrK, hence that no two states of Tr can
be merged. By Thm. 4 it suffices to prove thatJTr(w)K 6= JTr(w′)K, thus to exhibit some x ∈ Σ∗
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such that JTr(w)K(x) 6= JTr(w′)K(x). We perform a
case analysis:

if w′ ≤pref (u ∧ v) then w <pref (u ∧ v) thusJTr(w)K(x) = x for all x 6∈ w−1 · Σ∗ · u · Σ∗;
consider JTr(w)K(w′−1u) = w′−1u 6= w′−1v =JTr(w′)K(w′−1u);

if w ≤pref (u ∧ v) and w′ = u thenJTr(w′)K(x) = x for all x and we con-
sider JTr(w)K(w−1u) = w−1v 6= w−1v =JTr(w′)K(w−1u);

otherwise that is ifw ≤pref (u∧v) and (u∧v) <pref

w′ <pref u, or (u ∧ v) <pref w <pref w
′ ≤pref

u, we have ρ(w) 6= ρ(w′) thus JTr(w)K(ε) 6=JTr(w′)K(ε).

4 Conclusion

The results of the previous section yield (the cases
u = ε and u = v are trivial):

Theorem 6. Given a contextual rule r = u → v,
one can construct directly the minimal normalized
sequential transducer Tr of size O(|r|) for JrK.

The remaining question is whether we can ob-
tain better upper bounds on the size of the sequen-
tial transducer TC for a cascade C = r1 · · · rn than
O(2n log k). It turns out that there are cascades of
length n for which no sequential transducer with
a subexponential (in n) number of states can exist,
thus our construction is close to optimal.
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