Gibbs Sampling with Treeness Constraint
in Unsupervised Dependency Parsing

David Maret¢ek and Zdenék Zabokrtsky
Charles University in Prague, Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
{marecek, zabokrtsky}@Qufal.mff.cuni.cz

Abstract

This paper presents a work in progress on
the task of unsupervised parsing, follow-
ing the main stream approach of optimiz-
ing the overall probability of the corpus.
We evaluate a sequence of experiments for
Czech with various modifications of cor-
pus initiation, of dependency edge prob-
ability model and of sampling proce-
dure, stressing especially the treeness con-
straint. The best configuration is then ap-
plied to 19 languages from CoNLL-2006
and CoNLL-2007 shared tasks. Our best
achieved results are comparable to the
state of the art in dependency parsing and
outperform the previously published re-
sults for many languages.

1 Introduction

Unsupervised approaches receive considerably
growing attention in NLP in the last years, and de-
pendency parsing is not an exception.

In recent years, quite a lot of works in unsuper-
vised parsing (or grammar induction) was based
on Dependency Model with Valence (DMV) in-
troduced by (Klein and Manning, 2004); (Smith,
2007) and (Cohen et al., 2008) has focused on
DMYV variants, (Headden et al., 2009) introduced
extended valency model (EVG) and added lexical-
ization and smoothing. (Spitkovsky et al., 2011b)
used punctuation marks for splitting a sentence
and impose parsing restrictions over its fragments.
Gibbs sampling was used in (Naseem and Barzi-
lay, 2011).

Some of the papers focused on English only, but
some presented the results across wide rage of lan-
guages. The last such paper was (Spitkovsky et al.,
2011a), where the evaluation was done on all 19
languages included in CoNLL shared tasks (Buch-
holz and Marsi, 2006) and (Nivre et al., 2007).

1

The attachment scores are very high for English,
for which the methods seems to be optimized, but
the scores are quite low for some other languages.

In this paper, we describe our new approach to
unsupervised dependency parsing. Unlike DMV,
it is not based on constituency trees, which cannot
handle non-projectivities. We have been inspired
rather by the experiment described in (Brody,
2010), in which the dependency parsing task is
formulated as a problem of word alignment; ev-
ery sentence is aligned with itself with one con-
straint: no word can be attached to itself. How-
ever, unlike (Brody, 2010), where the output struc-
tures might not be trees and could contain cycles,
we introduce a sampling method with the acyclic-
ity constraint.

Our approach attempts at optimizing the over-
all probability of tree structures given the corpus.
We perform the optimization using Gibbs sam-
pling (Gilks et al., 1996).

We employ several ways of incorporating prior
knowledge about dependency trees into the sys-
tem:

e independence assumptions — we approximate
probability of a tree by a product of probabil-
ities of dependency edges,

e edge models and feature selection — we use
words’ distance and their POS tags as the
main indicators for predicting a dependency
relation,

e hard constraints — some knowledge on depen-
dency tree properties (such as acyclicity) is
difficult to represent by local models, there-
fore we implement it as a hard constraint in
the sampling procedure,

e corpus initialization — we study the effect of
different initializations of trees in the corpus,

Robust Unsupervised and Semi-Supervised Methods in Natural Language Processing, pages 1-8,
Hissar, Bulgaria, 15 September 2011.

e basic linguistic assumptions — according to
the dependency syntax tradition, we expect
the trees to be verbocentric. This is done
without determining which part-of-speech
tag is what.

All experiments are evaluated in detail us-
ing Czech data. The configuration which per-
forms best for Czech is applied also on other lan-
guages available in the CoNLL shared task cor-
pora (Buchholz and Marsi, 2006) and (Nivre et al.,
2007). Our goal is to achieve good results across
various languages without tuning the parser indi-
vidually for each language, so we use the other
language data exclusively for evaluation purposes.

2 Data preparation

We used Czech training part (dtrain.conll) from
CoNLL 2007 collection, which corresponds to
approximately one third of Prague Dependency
Treebank 2.0 (Haji¢ and others, 2006), PDT in
the sequel. We selected all sentences containing at
most 15 words after removing punctuation.! The
resulting data contains 123,804 words in 14,766
sentences (out of 368,640 words and 25,360 sen-
tences in the original dtrain.conl1 file).

We are aware of a strong bias caused by this
filtering. For instance, it leads to a consider-
ably higher proportion of sentences without a verb
(such as titles — recall that PDT contains mainly
newspaper articles). However, such filtering is a
usual practise in unsupervised parsing due to time
complexity issues.

Since Czech is a morphologically rich language,
there are around 3,000 morphological tags distin-
guished in PDT. They consist of 15 positions, each
of them corresponding to one morphological cate-
gory. In the CoNLL format, Czech positional tags
are distributed into three columns: CPOS (first po-
sition), POS (second position), and FEATURES
(third to fifteenth position). For the purpose of un-
supervised parsing experiments, we reduce the tag
set at two levels of granularity:

e CoarsePOS — only the first letter is consid-
ered for each tag (11 distinct values, such as
V for verbs and P for pronouns),

e FinePOS — only the first (coarse-grained
POS) and the fifth letter (morphological case)
'If a removed punctuation node was not a leaf, its children

were attached below the removed node’s parent. This occurs
mainly with coordinations without conjunctions.

is used if case is defined (such as N4 for
nouns in accusative), or the first and the sec-
ond letter otherwise (such as V£ for infinitive
verb forms); there are 58 distinct values.?

We use this data in all our tuning experiments
(Sections 6.2 — 6.5). The final evaluation on
CoNLL (Section 6.6) is different. It is made on
all the sentences (without length limit) and only
CoNLL POS tags are used there.

3 Models

Similarly to (Brody, 2010), we use two models
which are very close to IBM Model 1 and 2 for
word alignment (Brown et al., 1993). We do not
model fertility IBM Model 3), but we plan to
involve it in future work. We introduce another
model (called NounRoot) that postulates verbo-
centricity of the dependency trees and tries to re-
press Noun-Root dependencies.

3.1 Standard Dependency Models

In our models, each possible dependency edge is
characterized by three attributes:

e 19 —tag of the governing node,
e T — tag of the dependent node,

e D%9 _ signed distance between governing
and dependent word (it is negative, if the de-
pendent word precedes the governing one,
and is equal to O if the governing node is the
technical root).

The first model (called Dep) postulates that the
tag of the governing node depends only on the tag
of the dependent node. The probability that the
node d is attached below the node g is:

P(T9,T%)

P(d - g) = P(Tg’Td) = P(Td)

()

We assume that the dependencies follow a Chi-
nese Restaurant Process (Aldous, 1985), in which
the probability P(79|T%) is proportional to the
number of times 79 have governed 7' in the past,
as follows:

count=)(T?, T4 + oy
count=)(TA) + oq |T)|’

P(TY|T) =)

“This shape of tags has been previously shown to perform
well for supervised parsing.

where the index ¢ corresponds to the position of
the dependent word in the corpus, count(=" rep-
resents number of occurrences in the history (from
1toi — 1), |T| is the number of tags in the tag set
and « is the Dirichlet hyper-parameter.

The second model (called Dist) assumes that the
length of the dependency edge depends on the tag
of the dependent node:

_ dgimdy P(D™9,T%
P(d — g) = P(D%9|T%) = — P (3)
(=)(p.. T4
P(D|T?) = count'"(D;, T) + a2 @

count=)(T%) + ag|D|’
where |D| is the number of all possible distances
in the corpus. This number was set to 30.

The probability of a particular analysis (i.e., the
probability of all dependency trees 7 built on a
whole given corpus C) can be computed as:

N
P(C.T) = [P(TYITY) - P(DiITY)
i=1
H count "N (T, TE) + ay 5)
Py count =) (T) + oy |T)|
count~

V(Di, Tf) + as
count(=)(T%) + | D

We maximize this probability using Gibbs sam-
pling (Gilks et al., 1996).

3.2 Noun-Root Dependency Repression

During our first experiments, we noticed that
nouns (especially subjects) often substitute verbs
in the governing positions. Since majority of
grammars are verbocentric (verbs dominates their
subjects and objects), we decided to penalize
noun-root edges. Of course, we do not want to
state explicitly which tag represents nouns in a
particular tag set. Instead, nouns are recognized
automatically as the most frequent coarse-grained
tag category in the corpus (this simple rule holds
for all languages in the CoNLL 2006 and 2007
sets).> We add the following model called Noun-
Root:

if d is noun and g is root
Pd—g =" ’ g ©)
1 otherwise

3We are aware that introducing this rule is a kind of hack,
which departs from the line of purely unsupervised parsing
and which will become useless with automatically induced
POS tags in future experiments. On the other hand, this sim-
ple trick has a substantial effect on parsing quality. Therefore
we decided to present results both with and without using it.

This model is added into the product in Equa-
tion (5). The value of 3 was experimentally set
to 0.01.

4 Sampling

We sample from the posterior distribution of
our model P(T9, D94|T<) using Gibbs sampling
(a standard Markov chain Monte Carlo tech-
nique). We sample each dependency edge inde-
pendently. Computing the conditional probabili-
ties is straightforward, because the numerators and
denominators in the product in Equation (5) are
exchangeable. If we substitute the parent of a word
by a new parent, we can deal with the dependency
as if it were the last one in the corpus. The history
remains unchanged and updating the probability is
thus very efficient.

4.1 Basic sampling algorithm

The pseudocode of the basic sampling algorithm
is shown in Figure 1. This algorithm chooses one
parent for each word. It may create cycles and dis-
continuous directed graphs; such graphs are also
accepted as the algorithm’s initial input.

iterate {

foreach sentence {
foreach node in rand_permutation_of_nodes {

estimate probability of node’s parents

foreach parent in (0 .. |sentencel) {
next i1f parent == node;
node->set_parent (parent) ;
prob[parent] = estimate_edge_prob();

}

choose parent w.r.t. the distribution
parent = sample from prob[parent];
node->set_parent (parent) ;

Figure 1: Pseudo-code of the basic sampling ap-
proach (cycles are allowed).

4.2 Hard Constraints

The problem of the basic sampling algorithm is
that it does not sample trees. It only chooses a
parent for each word but does not guarantee the
acyclicity. We introduce and explore two hard
constraints:

e Tree — for each sentence, the set of assigned
edges constitutes a tree in all phases of com-
putation,*

“This constraint is not compliant with the RandlInit initial-
ization.

e SingleRoot — the technical root can have only
one child.

Tree-sampling algorithm with pseudocode in
Figure 2 ensures the treeness of the sampled struc-
tures. It is more complicated, because it checks
acyclicity after each sampled edge. If there is a
cycle, it chooses one edge which will be deleted
and the remaining node is then hanged on another
node so that no other cycle is created. This dele-
tion and rehanging is done using the same sam-
pling method.
iterate {

foreach sentence {
foreach node in rand_permutation_of_nodes {

estimate probability of node’s parents

foreach parent in (0 .. |sentencel|) {
next if parent == node;
node->set_parent (parent);
prob[parent] = estimate_edge_prob();

}

choose parent w.r.t. the distribution
parent = sample from prob[parent];
node->set_parent (parent);

if (cycle was created) {

choose where to break the cycle
foreach node2 in cycle {
parent = node2->parent;
node2->unset_parent () ;
prob[node2] = estimate_edge_prob();
node2->set_parent (parent) ;
}

node2 = sample from prob[node2];

choose the new parent
foreach parent {
next if node2->parent creates a cycle
node2->set_parent (parent) ;
prob[parent] = estimate_edge_prob();
}
parent = sample from prob[parent];
node2->set_parent (parent) ;

Figure 2: Pseudo-code of the tree-sampling ap-
proach (cycles are not allowed).

The second hard constraint represents the fertil-
ity of the technical root, which is generally sup-
posed to be low. Ideally, each sentence should
have one word which dominates all other words.
For this reason, we allow only one word to depend
on the technical root. If the root acquires two chil-
dren during sampling, one of them is immediately
resampled (a new parent is sampled for the child).

S Experimental Setup

This section describes the ways of initialization,
and how the final dependency trees are built from
sampling.

5.1 Corpus Initialization

We implemented four different procedures for ini-
tiating dependency edges in the corpus:

e RandInit — each word is attached below a ran-
domly chosen word from the same sentence
(or the technical root); treeness is not en-
sured,

o RandTreelnit — like RandlInit, but treeness is
ensured (only edges not leading to a cycle are
added),

e LeftChainlnit — in each sentence, each word
is attached below its left neighbor; the first
word 1s attached below the technical root,

o RightChainlnit — each word is attached below
its right neighbor; the last word is attached
below the technical root.

The last two are used only for computing the base-
line scores.

5.2 Dirichlet hyper-parameters

Following (Brody, 2010), we set the Dirichlet
hyper-parameters o and a9 to values 0.01 and
0.05 respectively. We did not optimize the val-
ues carefully because our preliminary experiments
confirm the observation of (Brody, 2010): limited
variations (up to an order of magnitude) in these
parameters have only a negligible effect on the fi-
nal results.

5.3 Number of iterations

Experiments showed that the sampling algorithm
makes only little changes of probabilities after the
30th iteration (see the Figure 3). All the exper-
iments were running with 30 “burn-in” iterations
and then other 20 iterations from which the final
dependency trees were computed.

5.4 Parsing

We can simply take the trees after the last itera-
tion and declare them as a result. A better way is,
however, take the last (in our case 20) iterations
and create an average trees (or average directed
graphs). We tested two procedures for creating
an average tree (or graph) from n different trees

(graphs):

e Max — We attach each node to its most fre-
quent parent. This method allows cycles.

-350000
-400000
-450000
-500000
-550000
-600000
-650000
-700000

-750000 [4
800000 1 1 1 1 1 1 U|Sup'| 1

0 5 10 15 20 25 30 35 40 45 50
iteration

log-likelihood

Figure 3: Log-likelihoods of the data through 50
iterations. An example of one run.

o MST — Each edge has a weight proportional
to the number of times it appeared during the
iterations. A maximum spanning tree algo-
rithm (Chu and Liu, 1965) is then applied on
each sentence. This method always creates
trees.

6 Experiments and Evaluation

6.1 Evaluation metrics

As in other unsupervised tasks (e.g. in unsuper-
vised POS induction), there is a little consensus
on evaluation measures. Performance of unsu-
pervised methods is often measured by compar-
ing the induced outputs with gold standard man-
ual annotations. However, this approach causes a
general problem: manual annotation is inevitably
guided by a number of conventions, such as the
traditional POS categories in unsupervised POS
tagging, or varying (often linguistically controver-
sial) conventions for local tree shapes representing
e.g. complex verb forms in unsupervised depen-
dency parsing. It is obvious that using unlabeled
attachment scores (UAS) leads to a strong bias to-
wards such conventions and it might not be a good
indicator of unsupervised parsing improvements.
Therefore we estimate parsing quality by two ad-
ditional metrics:

e UUAS - undirected UAS (edge direction is
disregarded),

e NED - neutral edge direction, introduced in
(Schwartz et al., 2011), which treats not only
a node’s gold parent and child as the correct
answer, but also its gold grandparent.

6.2 Baseline and upper bound estimates

We evaluate four baselines straightforwardly cor-
responding to four corpus initiation procedures de-
scribed in Section 5.1: RandBaseline, RandTree-
Baseline, LeftChainBaseline, and RightChain-
Baseline.

In order to have an upper bound limit, we use
Ryan McDonald’s implementation of Maximum
Spanning Tree parser (McDonald et al., 2005) (Su-
pervisedMST). Only features based on reduced
POS tags are accessible to the parser. We use the
data described in Section 2 both for training and
evaluation in the 10-fold cross-validation fashion
and present the average result.

The results of the baseline and upper bound ex-
periments are summarized in Table 1.

[Parser [Tags | UAS [UUAS [NED |
RandBaseline - 12.0 19.9 27.5
RandTreeB. - 11.9 21.0 31.0
LeftChainB. - 30.2 53.6 67.2
RightChainB. - 255 52.0 60.6
SupervisedMST | CoarsePOS | 73.9 78.6 86.6
SupervisedMST FinePOS 82.5 84.9 90.3

Table 1: Lower and upper bounds for unsuper-
vised parsing of Czech based on reduced POS
tags.

6.3 Results for Czech

Selected experiments and results for Czech are
summarized in Table 2. We started with a simple
configuration without sampling constraints. Then
we were gradually adding our improvements and
constraints: MST parsing, Tree and SingleRoot
constraint and NounRoot model. Everything was
measured both for CoarsePOS and FinePOS tags
and evaluated with all three measures.

We can see that CoarsePOS tags work better
if we do not use SingleRoot constraint or Noun-
Root model. Adding NounRoot model improves
the UAS by 8 percent. We choose the settings of
the experiment number 10 (which uses all our im-
provements and constraints) as the best configura-
tion for Czech. It has the highest UUAS score and
the values of the other scores are very close to the
maximum achieved values.

6.4 Learning curves

It is useful to draw learning curves in order to see
how well the learning algorithm can exploit addi-
tional data. Figure 4 shows the speed of growth
of UAS for our best unsupervised configuration in

[n. [Initialization [Tags | Models | Constraints [Parsing [UAS [UUAS [NED |
Baseline configuration:

1 Random CoarsePOS Dep+Dist - Max 45.1 51.2 55.8

2 Random FinePOS Dep+Dist - Max 41.3 47.6 51.0
Parsing with Maximum spanning tree algorithm:

3 Random CoarsePOS Dep+Dist - MST 44.8 58.8 67.1
4 Random FinePOS Dep+Dist - MST 36.7 50.1 55.1
Using tree-sampling:

5 | RandomTree | CoarsePOS Dep+Dist Tree MST 45.5 55.1 59.5

6 | RandomTree FinePOS Dep+Dist Tree MST 36.2 46.6 50.0
Single-root constraint added:

7 | RandomTree | CoarsePOS Dep+Dist Tree+SingleRoot | MST 41.8 58.9 72.2

8 | RandomTree FinePOS Dep+Dist Tree+SingleRoot MST 41.2 58.6 70.8
Noun-Root repression model added:

9 | RandomTree | CoarsePOS | Dep+Dist+NounRoot | Tree+SingleRoot | MST 49.6 62.2 73.3
10 | RandomTree FinePOS Dep+Dist+NounRoot | Tree+SingleRoot | MST 49.8 62.6 73.0
Experiments with constraints on the best configuration:

11 | RandomTree FinePOS Dep+Dist+NounRoot - MST 42.0 56.3 62.8
12 | RandomTree | CoarsePOS | Dep+Dist+NounRoot Tree MST 50.0 59.8 66.9
13 | RandomTree FinePOS Dep+Dist+NounRoot Tree MST 46.8 559 61.1
14 | RandomTree | FinePOS Dep+Dist+NounRoot SingleRoot MST 40.8 58.0 66.6
Other selected experiments:

15 | RandomTree FinePOS Dep+Dist+NounRoot - Max 45.1 51.2 55.8
16 | RandomTree FinePOS Dep+Dist+NounRoot - Max 44.6 50.5 53.0
17 | RandomTree FinePOS Dep+Dist+NounRoot | Tree+SingleRoot Max 49.9 62.5 72.8

Table 2: Evaluation of different configurations of the unsupervised parser for Czech.

comparison with the supervised parser (evaluated
by 10-fold cross validation, again).

90

Usup. AN ' I
MST ---x--- P X
80 B e 4
X
0L g
[%)] /
< 60 / T
=) /
50 7// B
40 B
30’ Il Il Il
100 1000 10000 100000 le+06

training tokens

Figure 4: Learning curves for Czech: UAS of un-
supervised (our best configuration) and supervised
(unlexicalized McDonald’s MST) parsers as func-
tions of data size. FinePOS tags were used.

One can see that from 10,000 tokens the UAS
for our best configuration grows very little and we
do not need more data if we are dealing with POS
tags only. We suppose that more data would be
needed when using lexicalization.

6.5 Error analysis

Table 3 shows attachment scores for individual
coarse-grained Czech POS tags. One can see very
low UAS values with particles, interjections, and

punctuation (special characters not filtered in the
preprocessing step), however, these categories are
not frequent in the corpus. Prepositions and con-
junctions are more frequent, but their attachment
score is still only 20.4% and 14.2% respectively.
This fact is caused mainly by reversed dependen-
cies; our parser attaches prepositions below nouns
and conjunctions below verbs, while in the cor-
pus, prepositions dominate nouns and conjunc-
tions dominate verbs. These reversed dependen-
cies are treated as correct with UUAS and NED
measures.

[CPOS [Occurrences | UAS [%] | Err. [%]]
N (nouns) 21934 48.5 18.8
A (adjectives) 12890 80.1 2.6
V (verbs) 10946 55.1 7.2
P (pronouns) 6294 66.2 2.6
D (adverbs) 4025 49.4 3.3
R (prepositions) 2596 20.4 8.2
C (numerals) 1884 40.5 2.2
J (conjunctions) 957 14.2 4.7
T (particles) 198 23.6 0.5
I (interjections) 5 27.8 0.0
Z (punctuation) 3 18.8 0.0

Table 3: UAS for individual coarse-grained Czech
POS tags. The “Err” column shows the percent-
age of errors on the whole corpus.

Nouns make most errors in total, especially in
the longer noun phrases, where the correct struc-

Language Baselines Results

name [code | CoNLL || rand. | left [right [[Our-NR [Our [Spi5 [Spi6
Arabic ar 2007 39 59.0 | 6.0 24.8 25.0 | 22.0 | 49.5
Bulgarian bg 2006 80 | 388 | 179 514 254 | 443 | 439
Catalan ca 2007 39 30.0 | 24.8 56.3 553 | 63.8 | 59.8
Czech cs 2007 74 | 29.6 | 242 333 243 | 314 | 284
Danish da 2006 6.7 | 47.8 | 13.1 38.6 30.2 | 44.0 | 383
German de 2006 72 | 220 | 234 21.8 26.7 | 33.5 | 304
Greek el 2007 4.9 19.7 | 314 334 39.0 | 214 | 132
English en 2007 44 | 21.0 | 294 23.8 24.0 | 349 | 45.2
Spanish es 2006 4.3 29.8 | 24.7 54.6 53.0 | 333 | 50.6
Basque eu 2007 11.1 | 23.0 | 30.5 34.7 29.1 | 43.6 | 24.0
Hungarian hu 2007 6.5 55 | 414 48.1 48.0 | 23.0 | 34.7
Italian it 2007 4.2 374 | 21.6 60.6 575 | 37.6 | 52.3
Japanese ja 2006 142 | 13.8 | 67.2 53.5 522 | 53.5 | 50.2
Dutch nl 2006 7.5 24.5 | 28.0 434 322 | 325 | 27.8
Portugese pt 2006 5.8 312 | 258 41.8 43.2 | 344 | 36.7
Slovenian sl 2006 79 | 26.6 | 243 34.6 254 | 33.6 | 322
Swedish sV 2006 7.8 | 27.8 | 259 26.9 233 | 425 | 50.0
Turkish tr 2006 6.4 1.5 | 654 32.1 322 | 334 | 359
Chinese zh 2007 153 | 134 | 413 34.6 21.0 | 345 | 43.2

Average: 72 | 264 | 298 394 35.1 | 36.7 | 39.3

Table 4: Directed unlabeled attachment scores for 19 different languages from CoNLL shared task.
The “rand.”, “left”, and “right” columns reports Random, LeftChain, and RightChain baselines. The
“Our-NR” and “Our” columns show results of our algorithm; “NR” means that Noun-Root dependency
suppression was used. For comparison, “Spi5” and “Spi6” are the results reported in (Spitkovsky et al.,

2011a) in Tables 5 and 6 respectively.

ture cannot be induced from POS tags only. On
the other hand, adjectives reach as much as 80%
UAS.

6.6 Results for CoNLL languages

We applied our unsupervised dependency parser
on all languages included in 2006 and 2007
CoNLL shared tasks. We used the configura-
tion that was the best for Czech (experiment 10
in Table 2) and the same configuration without
using Noun-Root dependency repression (exper-
iment 8). The parsing was run on concatenated
trainining and development sets® after removing
punctuation, but the final attachment scores were
measured on the development sets only, so that
they were comparable to the previously reported
results. Unlike in 6.3, there is no sentence length
limit and the evaluation is done for all the sen-
tences and only the POS (fifth column in the
CoNLL format) is used for the inference.

The results are shown in Table 4. The Ran-
dom, LeftChain, and RightChain baselines are
compared to our results and to the results reported
by (Spitkovsky et al., 2011a). It is obvious, that
using the Noun-Root suppression (“Our-NR” col-
umn) improves the parsing quality for the major-

Strain.conll and test.conll files for CONLL2006 languages
and dtrain.conll and dtest.conll for CONLL2007 languages.

ity of languages and has higher scores for 12 (out
of 19) languages than previous results (“Spi5” and
“Spi6”). If we do not use the Noun-Root suppres-
sion (“Our” column), the scores are higher for 6
(7) languages compared to “Spi5” (“Spi6”), but
the averaged attachment score is quite similar.

Interestingly, Arabic, Danish, and Japanese
have very high LeftChain (RightChain) baseline
and no method was able to beat them so far.

7 Conclusions

We described our novel work on unsupervised de-
pendency parser based on Gibbs sampling. We
showed that introducing treeness constraint in
sampling improves attachment score for Czech
from about 45% to 50%. The other improve-
ment was caused by repressing Noun-Root depen-
dencies. We reached 49.9% unlabeled attachment
score for Czech. If we apply the same parser con-
figuration to 19 languages available in the CoNLL
2006 and 2007 data, we outperform the previously
published results for 12 languages.

Our method does not work well for English. It
reached only 24% UAS, which is far below the
RightChain baseline. This is the opposite of other
approaches (based on DMV), which are very good
for English and whose results for other languages

are presented rarely.

In the future, we would like to add a fertility
model and introduce lexicalization. We are also
aware that the parsing quality strongly depends on
the tag set, so we plan to incorporate some form of
unsupervised tagging or word clustering.

Acknowledgement

This research ~was supported by the
grants GA201/09/HO57 (Res Informatica),
MSM0021620838, GAUK 116310, and by the
European Commission’s 7th Framework Program
(FP7) under grant agreement n° 247762 (FAUST).
We thank anonymous reviewers for their valuable
comments and suggestions.

References

D. Aldous. 1985. Exchangeability and related top-
ics. In I’Ecole d’ete de probabilites de Saint-Flour,
pages 1-198, Berlin, Germany. Springer.

Samuel Brody. 2010. It depends on the translation: un-
supervised dependency parsing via word alignment.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP
’10, pages 1214-1222, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Peter F. Brown, Vincent J.Della Pietra, Stephen
A. Della Pietra, and Robert. L. Mercer. 1993.
The Mathematics of Statistical Machine Translation:
Parameter Estimation. Computational Linguistics,
19:263-311.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning, CoNLL-X ’06,
pages 149-164, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Y. J. Chu and T. H. Liu. 1965. On the Shortest Ar-
borescence of a Directed Graph. Science Sinica,
14:1396-1400.

Shay B. Cohen, Kevin Gimpel, and Noah A. Smith.
2008. Logistic normal priors for unsupervised prob-
abilistic grammar induction. In Neural Information
Processing Systems, pages 321-328.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter.
1996. Markov chain Monte Carlo in practice. In-
terdisciplinary statistics. Chapman & Hall.

Jan Haji¢ et al. 2006. Prague Dependency Treebank
2.0. CD-ROM, Linguistic Data Consortium, LDC
Catalog No.: LDC2006T01, Philadelphia.

William P. Headden, III, Mark Johnson, and David
McClosky. 2009. Improving unsupervised depen-
dency parsing with richer contexts and smoothing.
In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, NAACL ’09, pages 101-109, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Dan Klein and Christopher D. Manning. 2004.
Corpus-based induction of syntactic structure: mod-
els of dependency and constituency. In Proceedings
of the 42nd Annual Meeting on Association for Com-
putational Linguistics, ACL 04, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Haji¢. 2005. Non-Projective Dependency Pars-
ing using Spanning Tree Algorithms. In Proceed-
ings of Human Langauge Technology Conference
and Conference on Empirical Methods in Natural
Language Processing (HTL/EMNLP), pages 523—
530, Vancouver, BC, Canada.

Tahira Naseem and Regina Barzilay. 2011. Using Se-
mantic Cues to Learn Syntax. In AAAI

Joakim Nivre, Johan Hall, Sandra Kiibler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 Shared Task on
Dependency Parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages
915-932, Prague, Czech Republic, June. Associa-
tion for Computational Linguistics.

Roy Schwartz, Omri Abend, Roi Reichart, and Ari
Rappoport. 2011. Neutralizing linguistically prob-
lematic annotations in unsupervised dependency
parsing evaluation. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
663-672, Portland, Oregon, USA, June. Association
for Computational Linguistics.

Noah Ashton Smith. 2007. Novel estimation meth-
ods for unsupervised discovery of latent structure in
natural language text. Ph.D. thesis, Baltimore, MD,
USA. AAI3240799.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 201la. Lateen EM: Unsupervised train-
ing with multiple objectives, applied to dependency
grammar induction. In Proceedings of the 2011
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2011).

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2011b. Punctuation: Making a point in un-
supervised dependency parsing. In Proceedings of
the Fifteenth Conference on Computational Natural
Language Learning (CoNLL-2011).

