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Abstract

This paper gives two contributions to depen-
dency parsing in Korean. First, we build a Ko-
rean dependency Treebank from an existing
constituent Treebank. For a morphologically
rich language like Korean, dependency pars-
ing shows some advantages over constituent
parsing. Since there is not much training data
available, we automatically generate depen-
dency trees by applying head-percolation rules
and heuristics to the constituent trees. Second,
we show how to extract useful features for
dependency parsing from rich morphology in
Korean. Once we build the dependency Tree-
bank, any statistical parsing approach can be
applied. The challenging part is how to ex-
tract features from tokens consisting of multi-
ple morphemes. We suggest a way of select-
ing important morphemes and use only these
as features to avoid sparsity. Our parsing ap-
proach is evaluated on three different genres
using both gold-standard and automatic mor-
phological analysis. We also test the impact
of fine vs. coarse-grained morphologies on de-
pendency parsing. With automatic morpho-
logical analysis, we achieve labeled attach-
ment scores of 80%T. To the best of our
knowledge, this is the first time that Korean
dependency parsing has been evaluated on la-
beled edges with such a large variety of data.

1 Introduction

Statistical parsing has recently been popular in the
NLP community; most state-of-the-art parsers take
various statistical approaches to achieve their perfor-
mance (Johnson and Ural, 2010; Nivre and McDon-
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ald, 2008). The biggest advantage of statistical pars-
ing over rule-based parsing is that it can automat-
ically adapt to new domains, genres, or languages
as long as it is provided with enough and proper
training data. On the other hand, this can also be
the biggest drawback for statistical parsing because
annotating such training data is manually intensive
work that may be costly and time consuming.

For a morphologically rich language like Korean,
dependency parsing shows some advantages over
constituent parsing. Unlike phrase structure that
is somewhat restricted by word-order (e.g., an ob-
ject needs to be followed by a verb), dependency
structure does not enforce such restrictions (e.g., an
object is a dependent of a verb in any position),
which makes it more suitable for representing flexi-
ble word-order languages. Korean is known to be a
flexible word-order language in that although it gen-
erally follows the SOV (subject-object-verb) con-
struction, it still accepts sentences following differ-
ent orders. This is because subjects and objects are
usually attached to case particles, so locating them
in different positions does not create too much ambi-
guity. Furthermore, these morphemes (case particles
along with many others) often give important clues
about dependency relations to their heads, which be-
come very helpful for dependency parsing.

To perform statistical dependency parsing, we
need sufficiently large training data. There is not
much training data available for dependency struc-
ture in Korean. However, there is a Treebank, called
the Sejong Treebank!, containing a large number of
constituent trees in Korean (about 60K sentences),

"http://www.sejong.or.kr/eindex.php
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formated similarly to the Penn Treebank (Marcus et
al., 1993). The Penn Treebank style constituent trees
have been reliably converted to dependency trees us-
ing head-percolation rules and heuristics (Marneffe
et al., 2006; Johansson and Nugues, 2007). By ap-
plying a similar conversion strategy to the Sejong
Treebank, we can achieve a large set of training data
for Korean dependency parsing.

Once we generate the dependency Treebank, any
statistical dependency parsing approach can be ap-
plied (McDonald et al., 2005; Nivre, 2008). The
challenging part is how to extract features from to-
kens consisting of multiple morphemes. For exam-
ple, POS tags are typical features for dependency
parsing under an assumption that each token consists
of a single POS tag. This assumption is only partially
true in Korean; a token can consist of a sequence of
morphemes with different POS tags.”

2t
talk (verb)

W/NNG  3H/XSV  THEF

talk (noun)  do ending marker

Figure 1: Morphological analysis of a verb ralk in Ko-
rean. POS tags are described in Table 1.

In Figure 1, a verb talk in Korean consists of three
morphemes, talk as a noun, do as a verb-derivational
suffix, and a final ending marker, such that although
it appears to be a single token, it is really a se-
quence of three individual morphemes where each
morpheme has its own POS tag. It is not clear which
combination of these morphemes yields the best
representation of the token for dependency parsing.
Moreover, deriving joined features from multiple to-
kens (e.g., a joined feature of POS tags between two
tokens) can be problematic; considering all combi-
nations of morphemes within multiple tokens can be
cumbersome and generate very sparse features.
Obviously, having a good morphological analy-
sis is very important for parsing. There are many
automatic morphological analyzers available in Ko-
rean (Kang and Woo, 2001; Shim and Yang, 2002).
Some of them use different kinds of morphologies
better suited for their purposes. It is useful to have
a fine-grained morphology; however, a more fine-

English words can consist of multiple morphemes as well
(e.g., buying — buy/verb + ing/progressive_suffix), but such
morphology is usually not used in parsing.

grained morphology does not necessarily mean a
better morphology for parsing. For instance, break-
ing a token into too many morphemes may cause a
loss in the overall semantics of the token. Thus, it
is worth comparing outputs from different morpho-
logical analyzers and seeing how much impact each
morphology has on dependency parsing.

In this paper, we present head-percolation rules
and heuristics to convert constituent trees in the Se-
jong Treebank to dependency trees. We then sug-
gest a way of selecting important morphemes for
dependency parsing. To get automatically gener-
ated morphemes, we use two existing morpholog-
ical analyzers. All parsing models are built by a
transition-based parsing algorithm. We evaluate our
models on test sets in three different genres. Each
test set is evaluated by using both gold-standard and
automatic morphological analysis. We also compare
the impact of fine-grained vs. coarse-grained mor-
phologies on dependency parsing. To the best of our
knowledge, this is the first time that Korean depen-
dency parsing has been evaluated on labeled edges
with such a large variety of data.

2 Related work

Marneffe et al. (2006) introduced a system for ex-
tracting typed dependencies from the Penn Tree-
bank style constituent trees, known as the Stanford
dependencies. Johansson and Nugues (2007) pre-
sented the LTH constituent-to-dependency converter
that had been used to prepare English data for the
CoNLL’08-09 shared tasks (Surdeanu et al., 2008;
Hajic et al., 2009). Choi and Palmer (2010) later en-
hanced Johansson and Nugues’ approach to handle
new updates in the latest Penn Treebank format.
Besides the Sejong Treebank, there are few other
Korean Treebanks available. The Penn Korean Tree-
bank (Han et al., 2002) contains the Penn Treebank
style constituent trees for newswire and military cor-
pora (about 15K sentences combined). There is
also the KAIST tree-annotated corpus (Lee, 1998)
containing constituent trees annotated by different
bracketing guidelines from the Penn Korean Tree-
bank (about 30K sentences). We chose the Se-
jong Treebank because it is the largest and most
recent Korean Treebank including several function
tags that are useful for the dependency conversion.



NNG General noun MM  Adnoun EP Prefinal EM JX Auxiliary PR

NNP  Proper noun MAG  General adverb EF Final EM JC  Conjunctive PR

NNB  Bound noun MAJ Conjunctive adverb | EC Conjunctive EM IC Interjection

NP Pronoun JKS  Subjective CP ETN Nominalizing EM SN Number

NR Numeral JKC Complemental CP | ETM Adnominalizing EM | SL.  Foreign word

vV Verb JKG  Adnomial CP XPN  Noun prefix SH  Chinese word

VA Adjective JKO  Objective CP XSN  Noun DS NF  Noun-like word

VX Auxiliary predicate | JKB  Adverbial CP XSV Verb DS NV  Predicate-like word

vCP  Copula JKV  Vocative CP XSA  Adjective DS NA  Unknown word

VCN Negation adjective | JKQ Quotative CP XR Base morpheme SF, SP, SS, SE, SO, SW
Table 1: PoOS tags in the Sejong Treebank (PM: predicate marker, CP: case particle, EM: ending marker, DS: deriva-

tional suffix, PR: particle, SF SP SS SE SO: different types of punctuation).

Automatic morphological analysis has been one of
the most broadly explored topics in Korean NLP.
Kang and Woo (2001) presented the KLT morpho-
logical analyzer, which has been widely used in Ko-
rea. The Sejong project distributed the Intelligent
Morphological Analyzer (IMA), used to pre-process
raw texts in the Sejong Treebank.> Shim and Yang
(2002) introduced another morphological analyzer,
called Mach, optimized for speed; it takes about 1
second to analyze 1.3M words yet performs very ac-
curately. Han (2005) presented a finite-state trans-
ducer that had been used to check morphology in
the Penn Korean Treebank. We use IMA and Mach
to generate fine-grained (IMA) and coarse-grained
(Mach) morphologies for our experiments.

Statistical dependency parsing has been explored
relatively little in Korean. Chung (2004) presented
a dependency parsing model using surface contex-
tual information. This parser can be viewed as a
probabilistic rule-based system that gathers proba-
bilities from features like lexical items, POS tags,
and distances. Oh and Cha (2008) presented another
statistical dependency parsing model using cascaded
chunking for parsing and conditional random fields
for learning. Our work is distinguished from theirs
in mainly two ways. First, we add labels to de-
pendency edges during the conversion, so parsing
performance can be evaluated on both labels and
edges. Second, we selectively choose morphemes
useful for dependency parsing, which prevents gen-
erating very sparse features. The morpheme selec-
tion is done automatically by applying our linguisti-
cally motivated rules (cf. Section 5.3).

3The system is not publicly available but can be requested
from the Sejong project (http://www.sejong.or.kr).

Han et al. (2000) presented an approach for han-
dling structural divergence and recovering dropped
arguments in a Korean-to-English machine transla-
tion system. In their approach, they used a Korean
dependency parser for lexico-structural processing.

3 Constituent-to-dependency conversion

3.1 Constituent trees in the Sejong Treebank

The Sejong Treebank contains constituent trees sim-
ilar to ones in the Penn Treebank.* Figure 2 shows
a constituent tree and morphological analysis for a
sentence, She still loved him, in Korean.

S
NP-SBJ VP
AP/ \VP
NP-OBJ VP
ade oh3d  aE AR
She still him loved
e — 1Y (she)/NP+=/JX

o3

ag

— o] 23] (still)/MAG
— Z1(he)/NP+E/JKO
Argaitt — AleF (love)/NNG+3H/XSV+3L/EP+T}EF

Figure 2: A constituent tree and morphological analysis
for a sentence, She still loved him, in Korean.

“The bracketing guidelines can be requested from the Se-
jong project, available only in Korean.



The tree consists of phrasal nodes as described in
Table 2. Each token can be broken into several mor-
phemes annotated with POS tags (Table 1). In the Se-
jong Treebank, tokens are separated mostly by white
spaces; for instance, an item like ‘A(B+C)D’ is con-
sidered as a single token because it does not contain
any white space in between. As a result, a token can
be broken into as many as 21 individual morphemes
(e.g., ‘A, *C, ‘B, ‘+, ‘)C’, Y, ‘D).

Notice that some phrases are annotated with func-
tion tags (Table 2). These function tags show depen-
dency relations between the tagged phrases and their
siblings, so can be used as dependency labels during
the conversion. There are three other special types of
phrase-level tags besides the ones in Table 2. X indi-
cates phrases containing only case particles, ending
markers, or punctuation. L and R indicate phrases
containing only left and right brackets, respectively.
These tags are also used to determine dependency
relations during the conversion.

Phrase-level tags Function tags
S Sentence SBJ  Subject
Q Quotative clause OBJ Object
NP Noun phrase CMP  Complement
VP Verb phrase MOD  Noun modifier
VNP  Copula phrase AJT Predicate modifier
AP Adverb phrase CNJ Conjunctive
DP Adnoun phrase INT Vocative
IP Interjection phrase | PRN  Parenthetical

Table 2: Phrase-level tags (left) and function tags (right)
in the Sejong Treebank.

3.2 Head-percolation rules

Table 3 gives the list of head-percolation rules (from
now on, headrules), derived from analysis of each
phrase type in the Sejong Treebank. Except for the
quotative clause (Q), all other phrase types try to
find their heads from the rightmost children, which
aligns with the general concept of Korean being a
head-final language. Note that these headrules do
not involve the POS tags in Table 1; those POS tags
are used only for morphemes within tokens (and
each token is annotated with a phrase-level tag). It is
possible to extend the headrules to token-level and
find the head morpheme of each token; however,
finding dependencies between different morphemes
within a token is not especially interesting although

there are some approaches that have treated each
morpheme as an individual token to parse (Chung
etal., 2010).

S r VP;VNP;S;NP|AP;Q; *
0 1 S|VP|VNP|NP;Q; *

NP r NP;S;VP;VNP;AP; %
VP r VP;VNP;NP;S;IP;*
VNP r VNP;NP;S;*

AP r AP;VP;NP;S; *

DP r DP;VP; *

IP r IP;VNP; *

X|LIR r =

Table 3: Head-percolation rules for the Sejong Tree-
bank. 1/r implies looking for the leftmost/rightmost con-
stituent. » implies any phrase-level tag. | implies a logi-
cal OR and ; is a delimiter between tags. Each rule gives
higher precedence to the left (e.g., S takes the highest
precedence in VP).

Once we have the headrules, it is pretty easy to gen-
erate dependency trees from constituent trees. For
each phrase (or clause) in a constituent tree, we find
the head of the phrase using its headrules and make
all other nodes in the phrase dependents of the head.
The procedure goes on recursively until every node
in the tree finds its head (for more details, see Choi
and Palmer (2010)). A dependency tree generated
by this procedure is guaranteed to be well-formed
(unique root, single head, connected, and acyclic);
however, it does not include labels yet. Section 3.3
shows how to add dependency labels to these trees.
In addition, Section 3.4 describes heuristics to re-
solve some of the special cases (e.g., coordinations,
nested function tags).

It is worth mentioning that constituent trees in
the Sejong Treebank do not include any empty cat-
egories. This implies that dependency trees gener-
ated by these headrules consist of only projective de-
pendencies (non-crossing edges; Nivre and Nilsson
(2005)). On the other hand, the Penn Korean Tree-
bank contains empty categories representing long-
distance dependencies. It will be interesting to see if
we can train empty category insertion and resolution
models on the Penn Korean Treebank, run the mod-

SChung et al. (2010) also showed that recovering certain
kinds of null elements improves PCFG parsing, which can be
applied to dependency parsing as well.



els on the Sejong Treebank, and use the automati-
cally inserted and linked empty categories to gener-
ate non-projective dependencies.

3.3 Dependency labels

Two types of dependency labels are derived from the
constituent trees. The first type includes labels re-
tained from the function tags. When any node an-
notated with a function tag is determined to be a de-
pendent of some other node by our headrules, the
function tag is taken as the dependency label to its
head. Figure 3 shows a dependency tree converted
from the constituent tree in Figure 2, using the func-
tion tags as dependency labels (SBJ and OBJ).

ROOT
SBJ
ADV
\L \11_ OBJ _I
root 1UE o] ] 3] aE AbeFa) ok
She still him loved

Figure 3: A dependency tree with labels, converted from
the constituent tree in Figure 2.

The other labels (ROOT and ADV) belong to the sec-
ond type; these are labels inferred from constituent
relations. Algorithm 1 shows how to infer these la-
bels given constituents ¢ and p, where c is a de-
pendent of p according to our headrules. ROOT is
the dependency label of the root node (root in Fig-
ure 3). ADV is for adverbials, and (A |D|N|V)MOD
are for (adverb, adnoun, noun, verb) modifiers, re-
spectively. DEP is the default label used when no
condition is met. These inferred labels are used
when c is not annotated with a function tag.

There are two other special types of labels. A
dependency label P is assigned to all punctuation
regardless of function tags or constituent relations.
Furthermore, when c is a phrase type X, a label X
is conjoined with its genetic dependency label (e.g.,
CMP — X_CMP). This is because the phrase type X
usually consists of morphemes detached from their
head phrases (e.g., case particles, ending markers),
so should have distinguished dependency relations
from other standalone tokens. Table 4 shows the
distribution of all labels in the Sejong Treebank (in
percentile).

input : (c,p), where c is a dependent of p.

output: A dependency label [ as ¢ & p.
begin
if p=root then ROOT — [
elif c.pos = AP then ADV — [
elif p.pos = AP then AMOD — [
elif p.pos =DP then DMOD — [
elif p.pos = NP then NMOD — [
elif p.pos =VP | VNP | IP then VMOD — [
else DEP — [

end
Algorithm 1: Getting inferred labels.

AJT 11.70 | MOD 18.71 | X 0.01
CMP 1.49 | AMOD 0.13 | Xx.AJT 0.08
CNJ 247 |DMOD  0.02 | x_cMP  0.11
INT 0.09 | nMOD  13.10 | X_.CNJ  0.02
OBJ 8.95 | vMOD 20.26 | X MOD 0.07
PRN  0.15 | ROOT 8.31 | x.0BJ 0.07
SBJ 11.74 P 242 | XxSBJ 0.09

Table 4: Distribution of all dependency labels (in %).

3.4 Coordination and nested function tags

Because of the conjunctive function tag CNJ, identi-
fying coordination structures is relatively easy. Fig-
ure 4 shows constituent and dependency trees for a
sentence, I and he and she left home, in Korean.

S
/ \
NP-SBJ VP
NP-CNJ NP-SBJ NP-OBJ VP
NP-CQ Q’-SBJ
g} :'9} avEe "de Ay
I and he and she home left

ﬁCNJJ II\—CNJJT LOB\JJ
SBJ

Figure 4: Constituent (top) and dependency (bottom)
trees for, I and he and she left home, in Korean.

According to our headrules, she becomes the head
of both I and he, which is completely acceptable but
can cause long-distance dependencies when the co-
ordination chain becomes long. Instead, we make



NN — NNG|NNP|SL|SH | VX — VX (verb) SN — XSN

NX — NNB AX — VX (adjective) | SV — XSV

NP — NP DT — MM SJ — XSA

NU — ©NR|SN AD — MAx IJg — 1IC

VI — VV (intransitive) JO — Jx NR — NF

VI — VV (transitive) EP — EP UK — ©NA|NV|XR

AJ — VA|VCN EM — EF|EC|ETx* SY — SF|SP|SS|SE|SO|SW
CP — VCP PF — XPN

Table 5: Mappings between POS tags generated by Mach and IMA. In each column, the left-hand and right-hand sides

show POS tags generated by Mach and IMA, respectively.

each previous conjunct a dependent of its following
conjunct.

Notice that the function tag SBJ is nested twice.
In the Sejong Treebank, a nested function tag in-
dicates the head of the phrase, for which we do
not need headrules. Thus, whenever a node with a
nested function tag is encountered, we take the node
as the head of the phrase, regardless of the headrules.

4 Morphological analysis

To generate automatic morphemes and POS tags for
input to our dependency parsing model, we run two
systems. One is called the Intelligent Morphologi-
cal Analyzer (IMA), which generates the POS tagset
described in Table 1.° The other is called Mach that
gives a more coarse-grained POS tagset (Shim and
Yang, 2002). Table 5 shows mappings between POS
tags generated by these systems. Note that these
mappings are derived manually by comparing out-
puts of the two systems.

Both systems are dictionary-based analyzers us-
ing vocabularies collected from various sources, in-
cluding Korean dictionaries. Given a token, these
analyzers first generate possible sequences of mor-
phemes, then rank the sequences by adding POS tags
with probabilities measured from their training data.
Neither of these systems gave the option of retrain-
ing their probabilistic models, so we had to verify if
their models were not biased to our test data. IMA
was distributed before the Sejong Treebank project,
so was not trained on the Treebank. We got in touch
with the author of Mach and made sure their training
model was not biased to our test data.

6X|sd el BM7|: http://www.sejong.or.kr/

The reason we use outputs from two different sys-
tems is to compare the impact of fine vs. coarse-
grained morphologies on dependency parsing in Ko-
rean. IMA gives not only richer POS tags but
also more fine-grained (segmented) morphemes than
Mach. We hypothesize that a richer morphology
does not necessarily provide better features for de-
pendency parsing. We evaluate our hypothesis by
comparing parsing models trained on morphemes
and POS tags generated by these two systems.

5 Dependency parsing

5.1 Parsing algorithm

To build statistical parsing models, we use Choi and
Palmer (2011)’s transition-based dependency pars-
ing approach, which has shown state-of-the-art per-
formance in English and Czech. The key idea of this
approach is to combine transitions from projective
and non-projective dependency parsing algorithms
so it can perform projective and non-projective pars-
ing accordingly. As a result, it shows an expected
linear time parsing speed for generating both pro-
jective and non-projective dependency trees.

Our algorithm uses three lists: A\i, Ao, and 3. A1 2
contain tokens that have been processed and 3 con-
tains tokens that have not been processed by the al-
gorithm. For each parsing state, the algorithm per-
forms one of the five transitions: LEFT-POP, LEFT-
ARC, RIGHT-ARC, NO-ARC, and SHIFT. Transi-
tions are determined by comparing the last token in
A1, say w;, with the first token in 3, say w;. After
a transition is performed, w; either moves into A\ or
gets removed from \;, depending on whether or not
the oracle predicts the token is needed in later pars-
ing states. w); is then compared with the last token in



A1, thatis w;_1. When the oracle predicts there is no
token in A; that has a dependency relation with w,
w; is removed from 3 and added to A1 along with all
other tokens in Ag. The procedure is repeated with
the first token in (3, that is w;;1. The algorithm ter-
minates when there is no token left in 5.

5.2 Machine learning algorithm

We use Liblinear L2-regularized L1-loss SvM for
learning (Hsieh et al., 2008), applying ¢ = 0.1
(cost), e = 0.1 (termination criterion), B = 0 (bias).

5.3 Feature extraction

As mentioned in Section 3.1, each token in our cor-
pora consists of one or many morphemes annotated
with different POS tags. This morphology makes
it difficult to extract features for dependency pars-
ing. In English, when two tokens, w; and w;, are
compared for a dependency relation, we extract fea-
tures like POS tags of w; and w; (w;.pos, w;.pos),
or a joined feature of POS tags between two tokens
(w;.pos+w;.pos). Since each token is annotated with
a single POS tag in English, it is trivial to extract
these features. In Korean, each token is annotated
with a sequence of POS tags, depending on how mor-
phemes are segmented. It is possible to join all POS
tags within a token and treat that as a single tag (e.g.,
NNP+NNG+JX for the first token in Figure 5); how-
ever, these tags usually cause very sparse vectors
when used as features.

e sEgaAs A
Nakrang Princess Hodong Prince loved.

AL

o

FTFE — SH/NNP+EF/NNGHE/IX
Nakrang + Princess + JX

YRS o T F/NNP+EA/NNG+S/JKO

il

fol

Hodong + Prince + JKO
Atk — AFE/NNG+3HXSV+L/EP+T}/EF+./SF
Love + XSV + EP + EF +.

Figure 5: Morphological analysis for a sentence, Princess
Nakrang loved Prince Hodong., in Korean.

An alternative is to extract the POS tag of only the
head morpheme for each token. This prevents the

sparsity issue, but we discover that no matter how
we choose the head morpheme, it prunes out too
many other morphemes helpful for parsing. Thus,
as a compromise, we decide to select certain types
of morphemes and use only these as features. Ta-
ble 6 shows the types of morphemes used to extract
features for our parsing models.

FS | The first morpheme

LS | The last morpheme before JO | DS | EM

JK | Particles (I« in Table 1)

DS | Derivational suffixes (XS« in Table 1)

EM | Ending markers (Ex in Table 1)

PY | The last punctuation, only if there is no other
morpheme followed by the punctuation

Table 6: Types of morphemes in each token used to ex-
tract features for our parsing models.

Figure 6 shows morphemes extracted from the to-
kens in Figure 5. For unigrams, these morphemes
can be used either individually (e.g., the POS tag of
JK for the 1st token is JX) or jointly (e.g., a joined
feature of POS tags between LS and JK for the 1st
token is NNG+JX) to generate features. From our
experiments, features extracted from the JK and EM
morphemes are found to be the most useful.

| Fs | 1S | JK | DS | EM | PY |
Y#/NNP[&F/NNG| /X | - - -
$E/NNP|YA/NNG|E/JKO| - - -
AF/NNG - - |3W/XSV|tHEF | ./SF

Figure 6: Morphemes extracted from the tokens in Fig-
ure 5 with respect to the types in Table 6.

For n-grams where n > 1, it is not obvious which
combinations of these morphemes across different
tokens yield useful features for dependency parsing.
Trying out every possible combination is not practi-
cal; thus, we restrict our search to only joined fea-
tures of two morphemes between w; and w;, where
each morpheme is taken from a different token. It
is possible to extend these features to another level,
which we will explore in the future.

Table 7 shows a set of individual features ex-
tracted from unigrams. wj; is the last token in A\;
and w; is the first token in 3 as described in Sec-



tion 5.1 (they also represent the ’th and j’th tokens
in a sentence, respectively). ‘m’ and ‘p’ indicate the
form and POS tag of the corresponding morpheme.

| Fs | Ls | JK [ DS | EM | PY
W; m,p m,p m,p m,p m
w; mp | m,p | m,p m,p | m
Wi;—1 m m,p P m,p m
Wi41 m m,p m
’LUj_l m P m,p m,p m
Wiyl | Mp | m m | p p | m

Table 7: Individual features from unigrams.

Table 8 shows a set of joined features extracted from
unigrams, w; and w;. For instance, a joined feature
of forms between FS and LS for the first token in
Figure 5 is Nakrang+Princess.

\ FS \ LS \ JK
JK m+m m-+m
EM m-+m m-+m m-+m

Table 8: Joined features from unigrams, w; and w;.

Finally, Table 9 shows a set of joined features ex-
tracted from bigrams, w; and w;. Each column and
row represents a morpheme in w; and wj;, respec-
tively. ‘X’ represents a joined feature of POS tags
between w; and w;. ‘y’ represents a joined feature
between a form of w;’s morpheme and a POS tag of
w;’s morpheme. ‘z’ represents a joined feature be-
tween a POS tag of w;’s morpheme and a form of
w;’s morpheme. “*’ and ‘+’ indicate features used
only for fine-grained and coarse-grained morpholo-
gies, respectively.

FS | Ls| K | bps | EM
FS X vz | x*y"tz z z
LS X X,z | x%y*t X,Z
K | x%yzt | xy | xSyt | xyT | xRyt
DS X,Z y X X X, Z
EM X z Y, Z z x,zt

Table 9: Joined features from bigrams, w; and w;.

A few other features such as dependency labels of
[w;, the rightmost dependent of w;, and the left-
most dependent of w;] are also used. Note that we

are considering far fewer tokens than most other de-
pendency parsing approaches (only w;, wj, w41,
wj+1). We expect to achieve higher parsing ac-
curacy by considering more tokens; however, this
small span of features still gives promising results.

6 Experiments

6.1 Corpora

The Sejong Treebank contains 20 different corpora
covering various topics. For our experiments, we
group these corpora into 6 genres: Newspaper (NP),
Magazine (Mz), Fiction (FI), Memoir (ME), Infor-
mative Book (IB), and Educational Cartoon (EC).
NP contains newspapers from five different sources
talking about world, politics, opinion, etc. MZ con-
tains two magazines about movies and educations.
FI contains four fiction texts, and ME contains two
memoirs. IB contains six books about science, phi-
losophy, psychology, etc. EC contains one cartoon
discussing world history.

Table 10 shows how these corpora are divided into
training, development, and evaluation sets. For the
development and evaluation sets, we pick one news-
paper about art, one fiction text, and one informa-
tive book about trans-nationalism, and use each of
the first half for development and the second half for
evaluation. Note that these development and evalu-
ation sets are very diverse compared to the training
data. Testing on such evaluation sets ensures the ro-
bustness of our parsing model, which is very impor-
tant for our purpose because we are hoping to use
this model to parse various texts on the web.

| NP [ MZ | FI [ ME | IB [ EC
T [ 8,060 [ 6,713 [ 15,646 | 5,053 [ 7,983 [ 1,548
D[2048 ] - 2174 | - [1307 ] -
E [2048 ] - 2175 - [1308] -

Table 10: Number of sentences in training (T), develop-
ment (D), and evaluation (E) sets for each genre.

6.2 Evaluations

To set an upper bound, we first build a parsing
model based on gold-standard morphology from the
Sejong Treebank, which is considered fine-grained
morphology. To compare the impact of fine-grained
vs. coarse-grained morphologies, we train two other



Gold, fine-grained

Auto, fine-grained

Auto, coarse-grained

LAS | UAS | LS

LAS | UAS | LS

LAS | UAS | LS

NP | 82.58 | 84.32 | 94.05 || 79.61 | 82.35 | 91.49 || 79.00 | 81.68 | 91.50
FI || 84.78 | 87.04 | 93.70 || 81.54 | 85.04 | 90.95 || 80.11 | 83.96 | 90.24
IB || 84.21 | 85.50 | 95.82 || 80.45 | 82.14 | 92.73 || 81.43 | 83.38 | 93.89

Avg. | 83.74 | 85.47 | 94.57 || 80.43 [ 83.01 | 91.77 || 80.14 | 82.89 | 91.99

Table 11: Parsing accuracies achieved by three models (in %). LAS - labeled attachment score, UAS - unlabeled

attachment score, LS - label accuracy score

parsing models, based on the output of IMA, [auto,
fine-grained], and the output of Mach, [auto, coarse-
grained]. All parsing accuracies achieved by these
three models are provided in Table 11.

The [gold, fine-grained] model shows over three
points improvement on the average LAS compared
to the [auto, fine-grained] model. The [auto, fine-
grained] morphology gives an Fl-score of 89.59%
for morpheme segmentation, and a POS tagging
accuracy of 94.66% on correctly segmented mor-
phemes; our parsing model is expected to perform
better as the automatic morphological analysis im-
proves. On the other hand, the differences between
the [auto, fine-grained] and [auto, coarse-grained]
models are small. More specifically, the difference
between the average LAS achieved by these two
models is statistically significant (McNemar, p =
0.01); however, the difference in the average UAS
is not statistically significant, and the average LS is
actually higher for the [auto, coarse-grained] model.

These results seem to confirm our hypothesis, “a
more fine-grained morphology is not necessarily a
better morphology for dependency parsing”; how-
ever, more careful studies need to be done to verify
this. Furthermore, it is only fair to mention that the
[auto, fine-grained] model uses a smaller set of fea-
tures than the [auto, coarse-grained] model (Table 9)
because many lexical features can be replaced with
POS tag features without compromising accuracy for
the [auto, fine-grained] model, but not for the [auto,
coarse-grained] model.

It is interesting to see that the numbers are usually
high for LS, which shows that our models success-
fully learn labeling information from morphemes
such as case particles or ending markers. All three
models show robust results across different gen-
res although the accuracies for NP are significantly

lower than the others. We are currently working on
the error analysis of why our models perform worse
on NP and how to improve accuracy for this genre
while keeping the same robustness across the others.

7 Conclusion and future work

There has been much work done on automatic mor-
phological analysis but relatively less work done on
dependency parsing in Korean. One major reason
is the lack of training data in dependency structure.
Here, we present head-percolation rules and heuris-
tics to convert constituent trees in the Sejong Tree-
bank to dependency trees. We believe these head-
rules and heuristics can be beneficial for those who
want to build statistical dependency parsing models
of their own.

As a pioneer of using this dependency Treebank,
we focus our effort on feature extraction. Because
of rich morphology in Korean, it is not intuitive how
to extract features from each token that will be use-
ful for dependency parsing. We suggest a rule-based
way of selecting important morphemes and use only
these as features to build dependency parsing mod-
els. Even with a small span of features, we achieve
promising results although there is still much room
for improvement.

We will continuously develop our parsing model
by testing more features, treating morphemes as in-
dividual tokens, adding deterministic rules, etc. We
are planning to use our parsing model to improve
other NLP tasks in Korean such as machine transla-
tion and sentiment analysis.
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