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Forewords

Welcome to the second workshop on Statistical Parsing of Morphologically Rich Languages!
Following the warm reception of the first official SPMRL workshop at NAACL-HLT 2010, our aim
with the second workshop is to build upon the success of the first and offer a platform to the growing
community of people who are interested in developing tools and resources for parsing MRLs. We
decided to collocate with the International Workshop on Parsing Technologies (IWPT), both because
the themes of the two events are so closely related and because the seeds of the SPMRL workshop were
planted during IWPT 2009 in Paris. The warm welcome and support of the IWPT community made
it our unequivocal choice, and we are honored and pleased to collocate our second SPMRL workshop
with this year’s IWPT event

Fourteen papers were submitted in total to the workshop. After two withdrawals,we chose to accept
four long papers and four short papers, giving an acceptance rate of 66%. Our goal during the selection
process was to produce a varied, balanced and interesting program without compromising on quality,
and we believe that we have achieved this goal. This year’s papers cover a broad range of languages
(Arabic, Basque, French, German, Hindi, Korean,Turkish) and are concerned with the most pressing
issues (handling discontinuity, incorporating morphological information, the problems of real-world
text) over a range of parsing approaches (discriminative and generative, constituency and dependency)
We believe that they will result in a lively and productive workshop.

We are continuing the SPMRL tradition of ending the workshop with a panel discussion. We are very
proud of this year’s panel and are very grateful to our panellists (Josef van Genabith , James Henderson,
Joakim Nivre, Slav Petrov and Yannick Versley) for agreeing to participate. This year’s main theme for
the panel will be the design of a shared task on parsing MRLs, in the face of various challenges that
emerge when going beyond English and the WSJ Penn Treebank. A typical challenge when moving
away from parsing English to other languages, is, for instance, the nature of the input, which consists
of unanalyzed non-gold word tokens. Additional challenges have to do with the typological diversity of
the syntactic structures and sound evaluation across experiments using different corpora. Our ultimate
goal in this panel will be to tease apart the various issues we need to address and understand how we
might organize a shared task that will bring our burgeoning field forward.

Finally, we would like to express our gratitude to the following people who helped us organise SPMRL
2011: the IWPT chairs, Joakim Nivre and his limitless availibility, Özlem Çetinoğlu and Harry Bunt,
Alon Lavie and Kenji Sagae from SIGPARSE who continue to support this workshop, Josef van
Genabith, Laurence Danlos and, last but not least, our very knowledgeable and hard-working review
committee who did a sterling job during the off-peak review season. Thanks guys!

The SPMRL 2011 Program Committee

iii





Program Chairs:
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Özlem Çetinoğlu (Dublin City University, Ireland)
Grzegorz Chrupała (Saarland University, Germany)
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Abstract

This paper gives two contributions to depen-
dency parsing in Korean. First, we build a Ko-
rean dependency Treebank from an existing
constituent Treebank. For a morphologically
rich language like Korean, dependency pars-
ing shows some advantages over constituent
parsing. Since there is not much training data
available, we automatically generate depen-
dency trees by applying head-percolation rules
and heuristics to the constituent trees. Second,
we show how to extract useful features for
dependency parsing from rich morphology in
Korean. Once we build the dependency Tree-
bank, any statistical parsing approach can be
applied. The challenging part is how to ex-
tract features from tokens consisting of multi-
ple morphemes. We suggest a way of select-
ing important morphemes and use only these
as features to avoid sparsity. Our parsing ap-
proach is evaluated on three different genres
using both gold-standard and automatic mor-
phological analysis. We also test the impact
of fine vs. coarse-grained morphologies on de-
pendency parsing. With automatic morpho-
logical analysis, we achieve labeled attach-
ment scores of 80%+. To the best of our
knowledge, this is the first time that Korean
dependency parsing has been evaluated on la-
beled edges with such a large variety of data.

1 Introduction

Statistical parsing has recently been popular in the
NLP community; most state-of-the-art parsers take
various statistical approaches to achieve their perfor-
mance (Johnson and Ural, 2010; Nivre and McDon-

ald, 2008). The biggest advantage of statistical pars-
ing over rule-based parsing is that it can automat-
ically adapt to new domains, genres, or languages
as long as it is provided with enough and proper
training data. On the other hand, this can also be
the biggest drawback for statistical parsing because
annotating such training data is manually intensive
work that may be costly and time consuming.

For a morphologically rich language like Korean,
dependency parsing shows some advantages over
constituent parsing. Unlike phrase structure that
is somewhat restricted by word-order (e.g., an ob-
ject needs to be followed by a verb), dependency
structure does not enforce such restrictions (e.g., an
object is a dependent of a verb in any position),
which makes it more suitable for representing flexi-
ble word-order languages. Korean is known to be a
flexible word-order language in that although it gen-
erally follows the SOV (subject-object-verb) con-
struction, it still accepts sentences following differ-
ent orders. This is because subjects and objects are
usually attached to case particles, so locating them
in different positions does not create too much ambi-
guity. Furthermore, these morphemes (case particles
along with many others) often give important clues
about dependency relations to their heads, which be-
come very helpful for dependency parsing.

To perform statistical dependency parsing, we
need sufficiently large training data. There is not
much training data available for dependency struc-
ture in Korean. However, there is a Treebank, called
the Sejong Treebank1, containing a large number of
constituent trees in Korean (about 60K sentences),

1http://www.sejong.or.kr/eindex.php
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formated similarly to the Penn Treebank (Marcus et
al., 1993). The Penn Treebank style constituent trees
have been reliably converted to dependency trees us-
ing head-percolation rules and heuristics (Marneffe
et al., 2006; Johansson and Nugues, 2007). By ap-
plying a similar conversion strategy to the Sejong
Treebank, we can achieve a large set of training data
for Korean dependency parsing.

Once we generate the dependency Treebank, any
statistical dependency parsing approach can be ap-
plied (McDonald et al., 2005; Nivre, 2008). The
challenging part is how to extract features from to-
kens consisting of multiple morphemes. For exam-
ple, POS tags are typical features for dependency
parsing under an assumption that each token consists
of a single POS tag. This assumption is only partially
true in Korean; a token can consist of a sequence of
morphemes with different POS tags.2

말한다 말/NNG

talk (verb) talk (noun)

한/XSV 다/EF

do ending_marker
➔

Figure 1: Morphological analysis of a verb talk in Ko-
rean. POS tags are described in Table 1.

In Figure 1, a verb talk in Korean consists of three
morphemes, talk as a noun, do as a verb-derivational
suffix, and a final ending marker, such that although
it appears to be a single token, it is really a se-
quence of three individual morphemes where each
morpheme has its own POS tag. It is not clear which
combination of these morphemes yields the best
representation of the token for dependency parsing.
Moreover, deriving joined features from multiple to-
kens (e.g., a joined feature of POS tags between two
tokens) can be problematic; considering all combi-
nations of morphemes within multiple tokens can be
cumbersome and generate very sparse features.

Obviously, having a good morphological analy-
sis is very important for parsing. There are many
automatic morphological analyzers available in Ko-
rean (Kang and Woo, 2001; Shim and Yang, 2002).
Some of them use different kinds of morphologies
better suited for their purposes. It is useful to have
a fine-grained morphology; however, a more fine-

2English words can consist of multiple morphemes as well
(e.g., buying → buy/verb + ing/progressive suffix), but such
morphology is usually not used in parsing.

grained morphology does not necessarily mean a
better morphology for parsing. For instance, break-
ing a token into too many morphemes may cause a
loss in the overall semantics of the token. Thus, it
is worth comparing outputs from different morpho-
logical analyzers and seeing how much impact each
morphology has on dependency parsing.

In this paper, we present head-percolation rules
and heuristics to convert constituent trees in the Se-
jong Treebank to dependency trees. We then sug-
gest a way of selecting important morphemes for
dependency parsing. To get automatically gener-
ated morphemes, we use two existing morpholog-
ical analyzers. All parsing models are built by a
transition-based parsing algorithm. We evaluate our
models on test sets in three different genres. Each
test set is evaluated by using both gold-standard and
automatic morphological analysis. We also compare
the impact of fine-grained vs. coarse-grained mor-
phologies on dependency parsing. To the best of our
knowledge, this is the first time that Korean depen-
dency parsing has been evaluated on labeled edges
with such a large variety of data.

2 Related work

Marneffe et al. (2006) introduced a system for ex-
tracting typed dependencies from the Penn Tree-
bank style constituent trees, known as the Stanford
dependencies. Johansson and Nugues (2007) pre-
sented the LTH constituent-to-dependency converter
that had been used to prepare English data for the
CoNLL’08-09 shared tasks (Surdeanu et al., 2008;
Hajič et al., 2009). Choi and Palmer (2010) later en-
hanced Johansson and Nugues’ approach to handle
new updates in the latest Penn Treebank format.

Besides the Sejong Treebank, there are few other
Korean Treebanks available. The Penn Korean Tree-
bank (Han et al., 2002) contains the Penn Treebank
style constituent trees for newswire and military cor-
pora (about 15K sentences combined). There is
also the KAIST tree-annotated corpus (Lee, 1998)
containing constituent trees annotated by different
bracketing guidelines from the Penn Korean Tree-
bank (about 30K sentences). We chose the Se-
jong Treebank because it is the largest and most
recent Korean Treebank including several function
tags that are useful for the dependency conversion.

2



NNG General noun MM Adnoun EP Prefinal EM JX Auxiliary PR
NNP Proper noun MAG General adverb EF Final EM JC Conjunctive PR
NNB Bound noun MAJ Conjunctive adverb EC Conjunctive EM IC Interjection
NP Pronoun JKS Subjective CP ETN Nominalizing EM SN Number
NR Numeral JKC Complemental CP ETM Adnominalizing EM SL Foreign word
VV Verb JKG Adnomial CP XPN Noun prefix SH Chinese word
VA Adjective JKO Objective CP XSN Noun DS NF Noun-like word
VX Auxiliary predicate JKB Adverbial CP XSV Verb DS NV Predicate-like word
VCP Copula JKV Vocative CP XSA Adjective DS NA Unknown word
VCN Negation adjective JKQ Quotative CP XR Base morpheme SF, SP, SS, SE, SO, SW

Table 1: POS tags in the Sejong Treebank (PM: predicate marker, CP: case particle, EM: ending marker, DS: deriva-
tional suffix, PR: particle, SF SP SS SE SO: different types of punctuation).

Automatic morphological analysis has been one of
the most broadly explored topics in Korean NLP.
Kang and Woo (2001) presented the KLT morpho-
logical analyzer, which has been widely used in Ko-
rea. The Sejong project distributed the Intelligent
Morphological Analyzer (IMA), used to pre-process
raw texts in the Sejong Treebank.3 Shim and Yang
(2002) introduced another morphological analyzer,
called Mach, optimized for speed; it takes about 1
second to analyze 1.3M words yet performs very ac-
curately. Han (2005) presented a finite-state trans-
ducer that had been used to check morphology in
the Penn Korean Treebank. We use IMA and Mach
to generate fine-grained (IMA) and coarse-grained
(Mach) morphologies for our experiments.

Statistical dependency parsing has been explored
relatively little in Korean. Chung (2004) presented
a dependency parsing model using surface contex-
tual information. This parser can be viewed as a
probabilistic rule-based system that gathers proba-
bilities from features like lexical items, POS tags,
and distances. Oh and Cha (2008) presented another
statistical dependency parsing model using cascaded
chunking for parsing and conditional random fields
for learning. Our work is distinguished from theirs
in mainly two ways. First, we add labels to de-
pendency edges during the conversion, so parsing
performance can be evaluated on both labels and
edges. Second, we selectively choose morphemes
useful for dependency parsing, which prevents gen-
erating very sparse features. The morpheme selec-
tion is done automatically by applying our linguisti-
cally motivated rules (cf. Section 5.3).

3The system is not publicly available but can be requested
from the Sejong project (http://www.sejong.or.kr).

Han et al. (2000) presented an approach for han-
dling structural divergence and recovering dropped
arguments in a Korean-to-English machine transla-
tion system. In their approach, they used a Korean
dependency parser for lexico-structural processing.

3 Constituent-to-dependency conversion

3.1 Constituent trees in the Sejong Treebank

The Sejong Treebank contains constituent trees sim-
ilar to ones in the Penn Treebank.4 Figure 2 shows
a constituent tree and morphological analysis for a
sentence, She still loved him, in Korean.

S

NP-SBJ

AP

NP-OBJ VP

VP

그녀는 여전히 그를 사랑했다

VP

She still him loved

그녀(she)/NP+는/JX

사랑(love)/NNG+하/XSV+았/EP+다/EF

그녀는

여전히 여전히(still)/MAG

그(he)/NP+를/JKO그를

사랑했다

→

→

→

→

Figure 2: A constituent tree and morphological analysis
for a sentence, She still loved him, in Korean.

4The bracketing guidelines can be requested from the Se-
jong project, available only in Korean.
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The tree consists of phrasal nodes as described in
Table 2. Each token can be broken into several mor-
phemes annotated with POS tags (Table 1). In the Se-
jong Treebank, tokens are separated mostly by white
spaces; for instance, an item like ‘A(B+C)D’ is con-
sidered as a single token because it does not contain
any white space in between. As a result, a token can
be broken into as many as 21 individual morphemes
(e.g., ‘A’, ‘(’, ‘B’, ‘+’, ‘C’, ‘)’, ‘D’).

Notice that some phrases are annotated with func-
tion tags (Table 2). These function tags show depen-
dency relations between the tagged phrases and their
siblings, so can be used as dependency labels during
the conversion. There are three other special types of
phrase-level tags besides the ones in Table 2. X indi-
cates phrases containing only case particles, ending
markers, or punctuation. L and R indicate phrases
containing only left and right brackets, respectively.
These tags are also used to determine dependency
relations during the conversion.

Phrase-level tags Function tags
S Sentence SBJ Subject
Q Quotative clause OBJ Object
NP Noun phrase CMP Complement
VP Verb phrase MOD Noun modifier
VNP Copula phrase AJT Predicate modifier
AP Adverb phrase CNJ Conjunctive
DP Adnoun phrase INT Vocative
IP Interjection phrase PRN Parenthetical

Table 2: Phrase-level tags (left) and function tags (right)
in the Sejong Treebank.

3.2 Head-percolation rules
Table 3 gives the list of head-percolation rules (from
now on, headrules), derived from analysis of each
phrase type in the Sejong Treebank. Except for the
quotative clause (Q), all other phrase types try to
find their heads from the rightmost children, which
aligns with the general concept of Korean being a
head-final language. Note that these headrules do
not involve the POS tags in Table 1; those POS tags
are used only for morphemes within tokens (and
each token is annotated with a phrase-level tag). It is
possible to extend the headrules to token-level and
find the head morpheme of each token; however,
finding dependencies between different morphemes
within a token is not especially interesting although

there are some approaches that have treated each
morpheme as an individual token to parse (Chung
et al., 2010).5

S r VP;VNP;S;NP|AP;Q;*
Q l S|VP|VNP|NP;Q;*
NP r NP;S;VP;VNP;AP;*
VP r VP;VNP;NP;S;IP;*
VNP r VNP;NP;S;*
AP r AP;VP;NP;S;*
DP r DP;VP;*
IP r IP;VNP;*
X|L|R r *

Table 3: Head-percolation rules for the Sejong Tree-
bank. l/r implies looking for the leftmost/rightmost con-
stituent. * implies any phrase-level tag. | implies a logi-
cal OR and ; is a delimiter between tags. Each rule gives
higher precedence to the left (e.g., S takes the highest
precedence in VP).

Once we have the headrules, it is pretty easy to gen-
erate dependency trees from constituent trees. For
each phrase (or clause) in a constituent tree, we find
the head of the phrase using its headrules and make
all other nodes in the phrase dependents of the head.
The procedure goes on recursively until every node
in the tree finds its head (for more details, see Choi
and Palmer (2010)). A dependency tree generated
by this procedure is guaranteed to be well-formed
(unique root, single head, connected, and acyclic);
however, it does not include labels yet. Section 3.3
shows how to add dependency labels to these trees.
In addition, Section 3.4 describes heuristics to re-
solve some of the special cases (e.g., coordinations,
nested function tags).

It is worth mentioning that constituent trees in
the Sejong Treebank do not include any empty cat-
egories. This implies that dependency trees gener-
ated by these headrules consist of only projective de-
pendencies (non-crossing edges; Nivre and Nilsson
(2005)). On the other hand, the Penn Korean Tree-
bank contains empty categories representing long-
distance dependencies. It will be interesting to see if
we can train empty category insertion and resolution
models on the Penn Korean Treebank, run the mod-

5Chung et al. (2010) also showed that recovering certain
kinds of null elements improves PCFG parsing, which can be
applied to dependency parsing as well.
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els on the Sejong Treebank, and use the automati-
cally inserted and linked empty categories to gener-
ate non-projective dependencies.

3.3 Dependency labels

Two types of dependency labels are derived from the
constituent trees. The first type includes labels re-
tained from the function tags. When any node an-
notated with a function tag is determined to be a de-
pendent of some other node by our headrules, the
function tag is taken as the dependency label to its
head. Figure 3 shows a dependency tree converted
from the constituent tree in Figure 2, using the func-
tion tags as dependency labels (SBJ and OBJ).

그녀는 여전히 그를 사랑했다root

OBJ
ADV

ROOT
SBJ

She still him loved

Figure 3: A dependency tree with labels, converted from
the constituent tree in Figure 2.

The other labels (ROOT and ADV) belong to the sec-
ond type; these are labels inferred from constituent
relations. Algorithm 1 shows how to infer these la-
bels given constituents c and p, where c is a de-
pendent of p according to our headrules. ROOT is
the dependency label of the root node (root in Fig-
ure 3). ADV is for adverbials, and (A|D|N|V)MOD
are for (adverb, adnoun, noun, verb) modifiers, re-
spectively. DEP is the default label used when no
condition is met. These inferred labels are used
when c is not annotated with a function tag.

There are two other special types of labels. A
dependency label P is assigned to all punctuation
regardless of function tags or constituent relations.
Furthermore, when c is a phrase type X, a label X
is conjoined with its genetic dependency label (e.g.,
CMP → X CMP). This is because the phrase type X
usually consists of morphemes detached from their
head phrases (e.g., case particles, ending markers),
so should have distinguished dependency relations
from other standalone tokens. Table 4 shows the
distribution of all labels in the Sejong Treebank (in
percentile).

input : (c, p), where c is a dependent of p.

output: A dependency label l as c l←− p.
begin

if p = root then ROOT→ l
elif c.pos = AP then ADV→ l
elif p.pos = AP then AMOD→ l
elif p.pos = DP then DMOD→ l
elif p.pos = NP then NMOD→ l
elif p.pos = VP|VNP|IP then VMOD→ l
else DEP→ l

end
Algorithm 1: Getting inferred labels.

AJT 11.70 MOD 18.71 X 0.01
CMP 1.49 AMOD 0.13 X AJT 0.08
CNJ 2.47 DMOD 0.02 X CMP 0.11
INT 0.09 NMOD 13.10 X CNJ 0.02
OBJ 8.95 VMOD 20.26 X MOD 0.07
PRN 0.15 ROOT 8.31 X OBJ 0.07
SBJ 11.74 P 2.42 X SBJ 0.09

Table 4: Distribution of all dependency labels (in %).

3.4 Coordination and nested function tags
Because of the conjunctive function tag CNJ, identi-
fying coordination structures is relatively easy. Fig-
ure 4 shows constituent and dependency trees for a
sentence, I and he and she left home, in Korean.

S

NP-SBJ

나와
I_and

NP-CNJ NP-SBJ

NP-CNJ NP-SBJ

VP

NP-OBJ VP

그녀는 집을 나섰다그와
he_and she home left

OBJ
SBJ

CNJ CNJ

Figure 4: Constituent (top) and dependency (bottom)
trees for, I and he and she left home, in Korean.

According to our headrules, she becomes the head
of both I and he, which is completely acceptable but
can cause long-distance dependencies when the co-
ordination chain becomes long. Instead, we make

5



NN → NNG|NNP|SL|SH VX → VX (verb) SN → XSN
NX → NNB AX → VX (adjective) SV → XSV
NP → NP DT → MM SJ → XSA
NU → NR|SN AD → MA* IJ → IC
VI → VV (intransitive) JO → J* NR → NF
VT → VV (transitive) EP → EP UK → NA|NV|XR
AJ → VA|VCN EM → EF|EC|ET* SY → SF|SP|SS|SE|SO|SW
CP → VCP PF → XPN

Table 5: Mappings between POS tags generated by Mach and IMA. In each column, the left-hand and right-hand sides
show POS tags generated by Mach and IMA, respectively.

each previous conjunct a dependent of its following
conjunct.

Notice that the function tag SBJ is nested twice.
In the Sejong Treebank, a nested function tag in-
dicates the head of the phrase, for which we do
not need headrules. Thus, whenever a node with a
nested function tag is encountered, we take the node
as the head of the phrase, regardless of the headrules.

4 Morphological analysis

To generate automatic morphemes and POS tags for
input to our dependency parsing model, we run two
systems. One is called the Intelligent Morphologi-
cal Analyzer (IMA), which generates the POS tagset
described in Table 1.6 The other is called Mach that
gives a more coarse-grained POS tagset (Shim and
Yang, 2002). Table 5 shows mappings between POS

tags generated by these systems. Note that these
mappings are derived manually by comparing out-
puts of the two systems.

Both systems are dictionary-based analyzers us-
ing vocabularies collected from various sources, in-
cluding Korean dictionaries. Given a token, these
analyzers first generate possible sequences of mor-
phemes, then rank the sequences by adding POS tags
with probabilities measured from their training data.
Neither of these systems gave the option of retrain-
ing their probabilistic models, so we had to verify if
their models were not biased to our test data. IMA

was distributed before the Sejong Treebank project,
so was not trained on the Treebank. We got in touch
with the author of Mach and made sure their training
model was not biased to our test data.

6지능형 형태소 분석기:	 http://www.sejong.or.kr/

The reason we use outputs from two different sys-
tems is to compare the impact of fine vs. coarse-
grained morphologies on dependency parsing in Ko-
rean. IMA gives not only richer POS tags but
also more fine-grained (segmented) morphemes than
Mach. We hypothesize that a richer morphology
does not necessarily provide better features for de-
pendency parsing. We evaluate our hypothesis by
comparing parsing models trained on morphemes
and POS tags generated by these two systems.

5 Dependency parsing

5.1 Parsing algorithm

To build statistical parsing models, we use Choi and
Palmer (2011)’s transition-based dependency pars-
ing approach, which has shown state-of-the-art per-
formance in English and Czech. The key idea of this
approach is to combine transitions from projective
and non-projective dependency parsing algorithms
so it can perform projective and non-projective pars-
ing accordingly. As a result, it shows an expected
linear time parsing speed for generating both pro-
jective and non-projective dependency trees.

Our algorithm uses three lists: λ1, λ2, and β. λ1,2

contain tokens that have been processed and β con-
tains tokens that have not been processed by the al-
gorithm. For each parsing state, the algorithm per-
forms one of the five transitions: LEFT-POP, LEFT-
ARC, RIGHT-ARC, NO-ARC, and SHIFT. Transi-
tions are determined by comparing the last token in
λ1, say wi, with the first token in β, say wj . After
a transition is performed, wi either moves into λ2 or
gets removed from λ1, depending on whether or not
the oracle predicts the token is needed in later pars-
ing states. wj is then compared with the last token in
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λ1, that iswi−1. When the oracle predicts there is no
token in λ1 that has a dependency relation with wj ,
wj is removed from β and added to λ1 along with all
other tokens in λ2. The procedure is repeated with
the first token in β, that is wj+1. The algorithm ter-
minates when there is no token left in β.

5.2 Machine learning algorithm

We use Liblinear L2-regularized L1-loss SVM for
learning (Hsieh et al., 2008), applying c = 0.1
(cost), e = 0.1 (termination criterion),B = 0 (bias).

5.3 Feature extraction

As mentioned in Section 3.1, each token in our cor-
pora consists of one or many morphemes annotated
with different POS tags. This morphology makes
it difficult to extract features for dependency pars-
ing. In English, when two tokens, wi and wj , are
compared for a dependency relation, we extract fea-
tures like POS tags of wi and wj (wi.pos, wj .pos),
or a joined feature of POS tags between two tokens
(wi.pos+wj .pos). Since each token is annotated with
a single POS tag in English, it is trivial to extract
these features. In Korean, each token is annotated
with a sequence of POS tags, depending on how mor-
phemes are segmented. It is possible to join all POS

tags within a token and treat that as a single tag (e.g.,
NNP+NNG+JX for the first token in Figure 5); how-
ever, these tags usually cause very sparse vectors
when used as features.

호동왕자를 호동/NNP+왕자/NNG+를/JKO→

Hodong + Prince + JKO

사랑/NNG+하/XSV+았/EP+다/EF+./SF사랑했다. →

Love + XSV + EP + EF + .

낙랑공주는 낙랑/NNP+공주/NNG+는/JX→

Nakrang + Princess + JX

낙랑공주는 호동왕자를 사랑했다.
Nakrang_Princess Hodong_Prince loved.

Figure 5: Morphological analysis for a sentence, Princess
Nakrang loved Prince Hodong., in Korean.

An alternative is to extract the POS tag of only the
head morpheme for each token. This prevents the

sparsity issue, but we discover that no matter how
we choose the head morpheme, it prunes out too
many other morphemes helpful for parsing. Thus,
as a compromise, we decide to select certain types
of morphemes and use only these as features. Ta-
ble 6 shows the types of morphemes used to extract
features for our parsing models.

FS The first morpheme
LS The last morpheme before JO|DS|EM
JK Particles (J* in Table 1)
DS Derivational suffixes (XS* in Table 1)
EM Ending markers (E* in Table 1)
PY The last punctuation, only if there is no other

morpheme followed by the punctuation

Table 6: Types of morphemes in each token used to ex-
tract features for our parsing models.

Figure 6 shows morphemes extracted from the to-
kens in Figure 5. For unigrams, these morphemes
can be used either individually (e.g., the POS tag of
JK for the 1st token is JX) or jointly (e.g., a joined
feature of POS tags between LS and JK for the 1st
token is NNG+JX) to generate features. From our
experiments, features extracted from the JK and EM

morphemes are found to be the most useful.

FS LS JK DS EM PY

사랑/NNG - - 하/XSV 다/EF ./SF

호동/NNP왕자/NNG 를/JKO - - -

낙랑/NNP공주/NNG 는/JX - - -

Figure 6: Morphemes extracted from the tokens in Fig-
ure 5 with respect to the types in Table 6.

For n-grams where n > 1, it is not obvious which
combinations of these morphemes across different
tokens yield useful features for dependency parsing.
Trying out every possible combination is not practi-
cal; thus, we restrict our search to only joined fea-
tures of two morphemes between wi and wj , where
each morpheme is taken from a different token. It
is possible to extend these features to another level,
which we will explore in the future.

Table 7 shows a set of individual features ex-
tracted from unigrams. wi is the last token in λ1

and wj is the first token in β as described in Sec-
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tion 5.1 (they also represent the i’th and j’th tokens
in a sentence, respectively). ‘m’ and ‘p’ indicate the
form and POS tag of the corresponding morpheme.

FS LS JK DS EM PY

wi m,p m,p m,p m,p m
wj m,p m,p m,p m,p m
wi−1 m m,p p m,p m
wi+1 m m,p m
wj−1 m p m,p m,p m
wj+1 m,p m m p p m

Table 7: Individual features from unigrams.

Table 8 shows a set of joined features extracted from
unigrams, wi and wj . For instance, a joined feature
of forms between FS and LS for the first token in
Figure 5 is Nakrang+Princess.

FS LS JK

JK m+m m+m
EM m+m m+m m+m

Table 8: Joined features from unigrams, wi and wj .

Finally, Table 9 shows a set of joined features ex-
tracted from bigrams, wi and wj . Each column and
row represents a morpheme in wi and wj , respec-
tively. ‘x’ represents a joined feature of POS tags
between wi and wj . ‘y’ represents a joined feature
between a form of wi’s morpheme and a POS tag of
wj’s morpheme. ‘z’ represents a joined feature be-
tween a POS tag of wi’s morpheme and a form of
wj’s morpheme. ‘*’ and ‘+’ indicate features used
only for fine-grained and coarse-grained morpholo-
gies, respectively.

FS LS JK DS EM

FS x y,z x∗,y+,z z z
LS x x, z x∗,y+ x,z x
JK x∗,y,z+ x,y x∗,y+,z+ x,y+ x∗,y+

DS x,z y x x x, z
EM x z y, z z x, z+

Table 9: Joined features from bigrams, wi and wj .

A few other features such as dependency labels of
[wj , the rightmost dependent of wi, and the left-
most dependent of wj] are also used. Note that we

are considering far fewer tokens than most other de-
pendency parsing approaches (only wi, wj , wi±1,
wj±1). We expect to achieve higher parsing ac-
curacy by considering more tokens; however, this
small span of features still gives promising results.

6 Experiments

6.1 Corpora

The Sejong Treebank contains 20 different corpora
covering various topics. For our experiments, we
group these corpora into 6 genres: Newspaper (NP),
Magazine (MZ), Fiction (FI), Memoir (ME), Infor-
mative Book (IB), and Educational Cartoon (EC).
NP contains newspapers from five different sources
talking about world, politics, opinion, etc. MZ con-
tains two magazines about movies and educations.
FI contains four fiction texts, and ME contains two
memoirs. IB contains six books about science, phi-
losophy, psychology, etc. EC contains one cartoon
discussing world history.

Table 10 shows how these corpora are divided into
training, development, and evaluation sets. For the
development and evaluation sets, we pick one news-
paper about art, one fiction text, and one informa-
tive book about trans-nationalism, and use each of
the first half for development and the second half for
evaluation. Note that these development and evalu-
ation sets are very diverse compared to the training
data. Testing on such evaluation sets ensures the ro-
bustness of our parsing model, which is very impor-
tant for our purpose because we are hoping to use
this model to parse various texts on the web.

NP MZ FI ME IB EC
T 8,060 6,713 15,646 5,053 7,983 1,548
D 2,048 - 2,174 - 1,307 -
E 2,048 - 2,175 - 1,308 -

Table 10: Number of sentences in training (T), develop-
ment (D), and evaluation (E) sets for each genre.

6.2 Evaluations

To set an upper bound, we first build a parsing
model based on gold-standard morphology from the
Sejong Treebank, which is considered fine-grained
morphology. To compare the impact of fine-grained
vs. coarse-grained morphologies, we train two other
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Gold, fine-grained Auto, fine-grained Auto, coarse-grained
LAS UAS LS LAS UAS LS LAS UAS LS

NP 82.58 84.32 94.05 79.61 82.35 91.49 79.00 81.68 91.50
FI 84.78 87.04 93.70 81.54 85.04 90.95 80.11 83.96 90.24
IB 84.21 85.50 95.82 80.45 82.14 92.73 81.43 83.38 93.89

Avg. 83.74 85.47 94.57 80.43 83.01 91.77 80.14 82.89 91.99

Table 11: Parsing accuracies achieved by three models (in %). LAS - labeled attachment score, UAS - unlabeled
attachment score, LS - label accuracy score

parsing models, based on the output of IMA, [auto,
fine-grained], and the output of Mach, [auto, coarse-
grained]. All parsing accuracies achieved by these
three models are provided in Table 11.

The [gold, fine-grained] model shows over three
points improvement on the average LAS compared
to the [auto, fine-grained] model. The [auto, fine-
grained] morphology gives an F1-score of 89.59%
for morpheme segmentation, and a POS tagging
accuracy of 94.66% on correctly segmented mor-
phemes; our parsing model is expected to perform
better as the automatic morphological analysis im-
proves. On the other hand, the differences between
the [auto, fine-grained] and [auto, coarse-grained]
models are small. More specifically, the difference
between the average LAS achieved by these two
models is statistically significant (McNemar, p =
0.01); however, the difference in the average UAS

is not statistically significant, and the average LS is
actually higher for the [auto, coarse-grained] model.

These results seem to confirm our hypothesis, “a
more fine-grained morphology is not necessarily a
better morphology for dependency parsing”; how-
ever, more careful studies need to be done to verify
this. Furthermore, it is only fair to mention that the
[auto, fine-grained] model uses a smaller set of fea-
tures than the [auto, coarse-grained] model (Table 9)
because many lexical features can be replaced with
POS tag features without compromising accuracy for
the [auto, fine-grained] model, but not for the [auto,
coarse-grained] model.

It is interesting to see that the numbers are usually
high for LS, which shows that our models success-
fully learn labeling information from morphemes
such as case particles or ending markers. All three
models show robust results across different gen-
res although the accuracies for NP are significantly

lower than the others. We are currently working on
the error analysis of why our models perform worse
on NP and how to improve accuracy for this genre
while keeping the same robustness across the others.

7 Conclusion and future work

There has been much work done on automatic mor-
phological analysis but relatively less work done on
dependency parsing in Korean. One major reason
is the lack of training data in dependency structure.
Here, we present head-percolation rules and heuris-
tics to convert constituent trees in the Sejong Tree-
bank to dependency trees. We believe these head-
rules and heuristics can be beneficial for those who
want to build statistical dependency parsing models
of their own.

As a pioneer of using this dependency Treebank,
we focus our effort on feature extraction. Because
of rich morphology in Korean, it is not intuitive how
to extract features from each token that will be use-
ful for dependency parsing. We suggest a rule-based
way of selecting important morphemes and use only
these as features to build dependency parsing mod-
els. Even with a small span of features, we achieve
promising results although there is still much room
for improvement.

We will continuously develop our parsing model
by testing more features, treating morphemes as in-
dividual tokens, adding deterministic rules, etc. We
are planning to use our parsing model to improve
other NLP tasks in Korean such as machine transla-
tion and sentiment analysis.
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Abstract
We investigate how morphological features
in the form of part-of-speech tags impact
parsing performance, using Arabic as our
test case. The large, fine-grained tagset of
the Penn Arabic Treebank (498 tags) is dif-
ficult to handle by parsers, ultimately due to
data sparsity. However, ad-hoc conflations
of treebank tags runs the risk of discarding
potentially useful parsing information.

The main contribution of this paper is to de-
scribe several automated, language-indep-
endent methods that search for the optimal
feature combination to help parsing. We
first identify 15 individual features from the
Penn Arabic Treebank tagset. Either in-
cluding or excluding these features results
in 32,768 combinations, so we then apply
heuristic techniques to identify the combi-
nation achieving the highest parsing perfor-
mance.

Our results show a statistically significant
improvement of 2.86% for vocalized text
and 1.88% for unvocalized text, compared
with the baseline provided by the Bikel-
Bies Arabic POS mapping (and an im-
provement of 2.14% using product models
for vocalized text, 1.65% for unvocalized
text), giving state-of-the-art results for Ara-
bic constituency parsing.

1 Introduction

Parsing Arabic is challenging due to its morpho-
logical richness and syntactic complexity. In par-
ticular, the number of distinct word-forms, the
relative freedom with respect to word order, and
the information expressed at the level of words
make parsing Arabic a difficult task. Previous re-
search established that adapting constituency pars-
ing models developed from English to Arabic (and

other languages) is a non-trivial task. Significant
effort has been deployed to parse Chinese using
the unlexicalized parser of Klein and Manning
(2003a,b) with modest performance gains over
previous approaches. Due to the specification of
head rules, lexicalized parsing models also turned
out to be difficult to generalize to other languages:
Kulick et al. (2006) describe Arabic parsing re-
sults far below English or even Chinese using the
Collins parsing model as implemented in the Bikel
parser (Bikel, 2004).

In order to side-step the surface representations
involved in constituency parsing, several studies
have focused on Arabic dependency parsing. The
general assumption is that dependency structures
are better suited for representing syntactic infor-
mation for morphologically rich and free-word or-
der languages. However, the results of CoNLL
shared tasks on 18 different languages, including
Arabic (Nivre et al., 2007a) using either the Malt-
Parser (Nivre et al., 2007b) or the MSTParser (Mc-
Donald and Crammer, 2005) suggests that Arabic
is nonetheless quite a difficult language to parse1,
leaving open the question as to the effectiveness of
dependency parsing for Arabic.

One reason for this ineffectiveness is that many
parsers do not make much, if any, use of morpho-
logical information (Tsarfaty and Sima’an, 2008;
Bengoetxea and Gojenola, 2010; Marton et al.,
2010). In fact, many established parsing models
do not capture visible morphological information
provided by wordforms and thus fail to make im-
portant distributional distinctions.

In this paper, using a re-implementation of the
Berkeley latent-variable PCFG parser we study
how morphological features, as encoded in POS

1The quality and size of the treebanks certainly are impor-
tant issues.
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tags, can be learned automatically by modify-
ing the distributional restriction of initial gram-
mar symbols, and how they impact Arabic con-
stituency parsing. We have selected PCFG-LA
parsing models because they have been shown to
be relatively language-independent with state-of-
the-art performance for several languages (Petrov,
2009).

Kulick et al. (2006) reported that extending
POS tags with definiteness information helps Ara-
bic PCFG parsing2, Diab (2007) enriched the POS
tagset with gender, number and definiteness to im-
prove Arabic base phrase chunking, and Marton
et al. (2010) reported that definiteness, person,
number and gender were most helpful for Arabic
dependency parsing on predicted tag input. Our
method is comparable to this work in terms of the
investigation of the morphological features. How-
ever, the results are not comparable, as we use a
different parsing paradigm, a different form of the
treebank, and most importantly, we extend the in-
vestigation to use several automated feature selec-
tion methods.

Increasing the tagset size can lead to data
sparsity and generally exacerbates the problem
of unknown words (that is, word:POS pairs not
attested during training). To overcome this prob-
lem, we have experimented with the technique
presented in Attia et al. (2010) to handle unknown
words (out of vocabulary words – OOV) within a
generative parsing model. This method employs
a list of heuristics to extract morphological clues
from word forms and builds a set of word-classes.
Our results show that enriching basic POS tags
with morphological information, accompanied by
a method for handling unknown words, jointly
and statistically significantly improve upon the
parsing baseline, which uses the Bikel-Bies
collapsed POS tagset (Maamouri et al., 2009) and
does not employ morphological information to
handle unknown words.

This paper is organized as follows: In Section 2,
we review the PCFG-LA parsing model and the
dataset for our experiments. Section 3 addresses
the different techniques we have applied to explore
the morphological features space over the possi-
ble combinations, including a comparison with the

2By comparison, the case feature improved parsing for
Czech (Collins et al., 1999) and the combination of the num-
ber feature for adjectives and mode feature for verbs im-
proved results for Spanish (Cowan and Collins, 2005).

best morphological features of previous works. In
Section 4, we describe the results of applying the
parser.

2 General Background

2.1 Parsing Models

Johnson (1998) enriched treebank categories with
context information to improve the performance of
PCFG parsing, then Klein and Manning (2003b)
explored manual and automatic extensions of syn-
tactic categories into a richer category set to en-
hance PCFG parsing results. Later, Matsuzaki
et al. (2005) used unsupervised techniques, known
as PCFG-Latent Annotation (PCFG-LA), to learn
more fine-grained categories from the treebank.
This method involves splitting categories of the
grammar, leading to a better estimation of their
distributional properties. It uses a small amount
of random noise to break symmetries. Petrov et al.
(2006) proposed merging categories that produce a
loss in likelihood, and smoothing to prevent over-
fitting.

Petrov (2009) discussed efficient methods for
learning and parsing with these latent variable
grammars, and demonstrates that this formalism
can be adapted to a variety of languages and appli-
cations.

An important aspect of this approach is the use
of random seeds in the EM initialization points,
which was only recently treated in Petrov (2010).
Using 16 different seeds (1–16), he saw a range
of approximately 0.65% in the F -scores of the de-
velopment set, and a range of about 0.55% in the
F -scores of the test set for English. He also found
a Pearson correlation coefficient of 0.34 between
the accuracies of the development set of the Peen
Treebank and the test set, and therefore suggested
less of a reliance on any particular random seed
to yield better grammars. This led him to propose
combining grammars from several seeds to pro-
duce a higher-quality product model.

In this work, we use a re-implementation of the
Berkeley parser, which trains a PCFG-LA using
the split-merge-smooth procedure and parses us-
ing the max-rule algorithm (Petrov et al., 2006;
Petrov and Klein, 2007). For our experiments,
we apply the split-merge-smooth cycle five times3

3Petrov et al. (2006) reports that the best grammars for
English using the Penn Treebank are obtained by repeating
this cycle 5 or 6 times, depending on the test set. We opted
for five cycles due to the vast difference in training times: 2
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and we parse on sentences of less than or equal
to 40 words in length. For English, the Berke-
ley parser explores n-gram suffixes to distinguish
between unknown words ending with -ing, -ed, -
s, etc. to assign POS tags. The Berkeley parser
does not provide the same methodology to Arabic.
For Arabic, we apply the technique used by At-
tia et al. (2010) for the purpose of classification
of unknown words. The methodology uses sev-
eral heuristics based on the exploration of Arabic
prefixes, suffixes and templates, and then maps un-
known words onto 26 classes.

We present our final experiment on the test set
and all intermediate experiments on the develop-
ment set.

2.2 Corpus: Arabic Penn Treebank

We use the Penn Arabic Treebank (ATB Part3v3.2:
Maamouri et al., 2009) and apply the usual tree-
bank split (80% training, 10% development, 10%
test; Kulick et al. (2006)).4 The ATB uses written
Modern Standard Arabic newswire and follows
the style of the English Penn-II treebank (Marcus
et al., 1994). The ATB consists of 12,628 parsed
sentences which provides gold segmented, gold
vocalized and gold annotated text. More precisely,
a tokenized Arabic word is separated from its pre-
fixes and suffixes and it is also segmented to mor-
phemes. For example, the Arabic word �

Ð
�

ñ
�
J
 Ë @

is vocalized, segmented and transliterated us-
ing Buckwalter transliteration to Al+yawom+u
(the + day + NOM).

2.3 Part-Of-Speech Tagset

The POS tagset in the ATB covers nouns,
pronouns, adjectives, verbs, adverbs, prepo-
sitions, interjections, particles, conjunctions,
and subordinating conjunctions. This tagset
uses 78 atomic components, such as: ABBREV
for abbreviation, ACC for accusative case and
ADJ for adjective. While there are theoretically
hundreds of thousands of full ATB-style POS
tags (Habash and Rambow, 2005), only 498 full
tags occur in the above-mentioned version of the

hours vs. 8 hours, with F -scores being almost the same.
4Specifically for every 10 sentences, the first 8 go into the

training set, the 9th sentence go into the test set, and the 10th

sentence into the dev set.

ATB. For example, Al+dawol+atayoni
(“the states”) receives the following tag
DET+NOUN+NSUFF FEM DU GEN, annotating
a definite, feminine, dual noun in the genitive
case.

From this tagset we derive all our experi-
ments. We have identified 15 morphological fea-
tures from those present in the treebank5, and
our method, based on these features, searches for
the optimal POS tagset for parsing the ATB. Ta-
ble 1 lists these features used in our research. No
capitalization is used in Arabic orthography and
named entities are often tagged as regular nouns.
For this reason we consider “proper noun” as a
morphological feature (feature 11) .

1 Determiner Presence of the prefix al- for nouns
2 Person First person, second person, third person
3 Number Singular, dual, and plural
4 Aspect Perfective, imperfective and imperative
5 Voice Active and passive
6 Mood Indicative, subjunctive and jussive
7 Gender Masculine and feminine
8 State Construct state (id. āfa)
9 Case Nominative, accusative and genitive.

The ATB suffers from accusative-
genitive case under-specification for
feminine and masculine plurals

10 Definiteness Noun can be definite even if it does not
start with al-, e.g. proper nouns are as-
sumed to be inherently definite

11 Proper noun Name of people, places, and organizations
12 Genitive clitics Possessive pronouns
13 Negation Negative markers
14 Particles Emphatic, restrictive, negative, inter-

rogative, focus, connective, verbal, re-
sponse conditional

15 Future Presence of the future prefix sa- for verbs

Table 1: Morphological features in Arabic

We investigate two directions to find optimal
tagsets, as follows:

Direction 1: starts from ATB top tagset (|498|)
and reduces the size of the tagset by ex-
cluding the features that hurt parsing per-
formance. In our initial set of experiments,
we trained and parsed 15 different configu-
rations, each configuration starting from the
top tagset, then excluding one feature. For
instance, training and parsing after excluding
feature 9, case, produces the best results from
the first level, A>−1 (see Table 1).

5Annotation guidelines at http://projects.ldc.
upenn.edu/ArabicTreebank
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Direction 2: In order to produce the bottom ATB
tagset (|27|), we exclude all 15 features.
Then we include one feature at a time, giving
us another level A⊥+1. For instance, training
and parsing after including feature 12, gen-
itive clitics, gives the best results compared
with other individual features (see Table 1).

These approaches are further developed in Sec-
tion 3.

3 Part-Of-Speech and Morphological
Features

Since Arabic words are highly inflected, there is a
complex interaction between the morphology and
the syntax. Thus parsers that have morphologi-
cal information on hand can make better-informed
decisions regarding parse trees. The ATB repre-
sents morphological features in the form of com-
plex part-of-speech tags. Features representing ag-
glutinated morphemes are likewise agglutinated in
the POS tags, separated by a “+” symbol. Features
representing fused morphemes are likewise fused
in the POS tags, making feature extraction or con-
flation particularly challenging.

Due to the large size of the original ATB tagset
(|498|), many Arabic parsing systems use the
Bikel-Bies POS mapping (Bikel, 2004), which
maps the original ATB tagset onto a small, PTB-
style tagset of 37 tags, discarding almost all mor-
phological features that are not also present in the
English PTB.

But are some of the morphological features
helpful in parsing Arabic? Kulick et al. (2006)
showed this to be the case. They preserved two
morphological features (Determiner and Demon-
strative) that would otherwise have been lost in the
existing Bikel-Bies POS mapping, and achieved a
higher F -score. However, Arabic has many mor-
phological features. We have identified fifteen
sets of morphological features in the ATB, such
as voice, mood, and grammatical gender (see Ta-
ble 1).

Including or excluding these features allows for
32,768 combinations (215). Training and parsing
all of these combinations is prohibitively expen-
sive, so an alternative is to use various heuristics
on the powerset of the features, some of which
are described below. Many of these methods rely
on an initial heuristic function h⊥+1

(x), which is
derived by ranking the results of using individual
features. The antichain A⊥+1 in Figure 1 gives

A⊤-1

A⊥+1

Figure 1: The top node > represents the tagset con-
taining all ATB morphological features, and the bottom
node ⊥ represents the tagset excluding all morphologi-
cal features. Each node in the antichainA>−1 excludes
one morphological feature, and each node in the an-
tichain A⊥+1 includes one morphological feature.

h⊥+1
(x). Its dual, h>−1

(x), is derived by ranking
the results of not using individual features. The
antichain A>−1 in Figure 1 gives h>−1

(x).

We investigated the following automated meth-
ods to find the tagset giving the best parse results:

Non-iterative: A non-iterative best-first algo-
rithm that successively folds-in the next-
best feature. Thus if there are 5 fea-
tures ranked individually from best to worst
as 〈4, 1, 5, 3, 2〉, then there are 4 tagsets
to explore: {4, 1} {4, 1, 5} {4, 1, 5, 3}
{4, 1, 5, 3, 2} . After h⊥+1

(x) is defined, the
algorithm does not require results from previ-
ous steps, and thus can be run in parallel. At
most f–1 parses are run, where f is the num-
ber of features. The dual of this uses h>−1

(x)
to rank the results of excluding exactly one
feature.

Greedy-iterative: An iterative, greedy best-first
search algorithm with a single heuristic func-
tion throughout. We use the heuristic func-
tion h⊥+1

(x) to rank the results of includ-
ing exactly one feature, then iteratively fold-
in the next feature and retain it only if it
achieves a higher score. This requires f–
1 iterations after h⊥+1

(x) is obtained. This
method was used by Marton et al. (2010)
and Marton et al. (2011). The dual of this
uses h>−1

(x) to rank the results of excluding
exactly one feature.
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Merged: The previous two methods can instead
use a different heuristic function by merg-
ing the results of A⊥+1 with the results of
A>−1. This potentially provides more ro-
bust results than either one individually, with-
out requiring any additional iterations. The
merge function M(f) is defined as:

M(f) = (S> − S¬f ) + (Sf − S⊥)

where Sf is the F -score of including a given
feature f . The results ofM(f) are ordered to
provide the merged heuristic function hm(x).

Backtrack: An iterative, best-first backtracking
algorithm that updates its heuristic func-
tion at each iteration. Whereas the previ-
ous algorithm uses a single heuristic function
throughout (such as h⊥+1

(x)), for this algo-
rithm the next feature chosen is decided by
hi(x), which is based upon the results of the
current iteration i. The most helpful feature
at each iteration is chosen. After exhaust-
ing this path, it will backtrack, discarding the
most-recently added feature and instead re-
visit hi−1(x). The dual of this uses h>−1

(x)
to rank the results of excluding exactly one
feature, and starts from the top.

Like beam-stack search (Zhou and Hansen,
2005), this algorithm has the advantage of
being an anytime search algorithm, which
quickly finds good solutions while still find-
ing a globally optimal solution. However,
this algorithm is much simpler conceptually
than beam-stack search, it proceeds best-first,
and the beam width is determined by the
number of unused features.

4 Experimental Results

We have experimented with the strategies pre-
sented in section 3. All our feature selection exper-
iments are based on the results of vocalized no-tag
parsing on the development set where the parser
assigns the tags learned during the training phase.
However we also provide the results of gold tag
and unvocalized no-tag parsing in our final exper-
iments. We measure quality and coverage of the
output trees using the standard EVALB (Satoshi
and Collins, 1997).

The initial results on parsing are presented in
Table 2. These results describe the first stage of

traversing the powerset of features. Only one fea-
ture is included (in A⊥+1) or excluded (in A>−1)
at a time. The Bikel-Bies POS tagset included in
the Penn Arabic Treebank part 3 v3.2 represents
our baseline.6 At this stage, we use the obtained
F -scores to derive our initial h(x) for all meth-
ods, since we are interested in measuring relative
improvements when changing POS tagsets.

Bikel-Bies POS 81.33
> 81.99
⊥ 81.98

Features A>−1 A⊥+1

1 Determiner 81.52 82.33
2 Person 81.80 81.46
3 Number 81.64 81.56
4 Aspect 82.00 81.81
5 Voice 81.99 82.57
6 Mood 82.21 82.27
7 Gender 82.06 82.15
8 State 81.60 82.07
9 Case 83.00 81.68
10 Definiteness 82.10 82.41
11 Proper noun 82.13 82.27
12 Genitive clitics 82.26 82.69
13 Negation 81.71 82.42
14 Particles 81.20 82.61
15 Future 81.70 82.25

Table 2: Parsing results (F -score) for including features
1–15 in A⊥+1 and excluding features 1–15 in A>−1.

The results presented in Table 3 correspond to
the non-iterative method. Line 6 shows that the
improvement for this configuration is mainly due
to adding feature 1 (determiner) and lines 7–8
show that feature 11 (proper noun) is helpful only
when it is associated with feature 6 (mood).

Table 4 presents the results of the greedy-
iterative method using a single heuristic function
(left) and a merged heuristic function (right). The
method using single heuristic function was also
employed by Marton et al. (2010). Grey rows
indicate that the feature decreased the F -score,
and thus was discarded. The number of iterations
with this algorithm is fixed at f–1 after the initial
heuristic function is obtained, where f is the num-
ber of morphological features. We can observe
that the features 11,13 (proper noun & negation)
work together to produce the highest jump in the
score.

In contrast with the results of Marton et al.
6This tagset has 37 unique tags in the treebank.
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⊥ 81.98
{12} 82.69
{12, 14} 82.36
{12, 14, 5} 82.48
{12, 14, 5, 13} 82.20
{12, 14, 5, 13, 10} 82.49
{12, 14, 5, 13, 10, 1} 82.94
{12, 14, 5, 13, 10, 1, 11} 82.78
{12,14,5,13,10,1,11,6} 83.02
{12, 14, 5, 13, 10, 1, 11, 6, 15} 82.54
... ...

Table 3: Parsing results for the non-iterative method. The
tagset with highest F -score contains genitive clitics, parti-
cles, voice, negation, definiteness, determiner, proper noun,
and mood. The improvement over the baseline is statistically
significant.

(2010), the so-called φ-features (person, number,
gender) did not contribute to a higher score in
our experiments. We believe this is in part be-
cause morphological features are represented as
atomic tags in the Penn Arabic Treebank. Gen-
erative parsers that use this style of treebank typi-
cally do not analyze individual features and make
use of them in determining agreement relation-
ships. On the other hand, the CoNLL-X format7

provides a field where morphological features are
specified individually. This encourages depen-
dency parsers to inspect individual components of
a tag, and make use of specific features when help-
ful. The CoNLL-X format is used by most de-
pendency parsers, including the MaltParser used
in Marton et al. (2010).

The landscape of the search space contains
many local maxima, which can prevent (non-
backtracking) greedy algorithms from exploring
paths that eventually lead to high scores. Consider
the case below:

1,10,11,14
82.01

1,4,10,11,14
81.46

1,4,8,10,11,14
82.11

1,8,10,11,14
81.68

1,10,11,13,14
81.98

A greedy algorithm arriving at feature combina-
tion 1,10,11,14 moving upward will pursue an un-

7http://nextens.uvt.nl/˜conll/#dataformat

⊥ 81.98
{12} 82.69
{12, 14} 82.36
{12, 5} 82.44
{12, 13} 82.24
{12, 10} 81.79
{12, 1} 81.80
{12,11} 82.87
{12, 11, 6} 82.33
{12, 11, 15} 82.59
{12, 11, 7} 81.83
{12, 11, 8} 82.01
{12, 11, 4} 81.98
{12, 11, 9} 82.19
{12, 11, 3} 82.40
{12, 11, 2} 81.92

⊥ 81.98
{10} 82.41
{10, 13} 82.97
{10, 13, 14} 82.38
{10, 13, 1} 82.65
{10, 13, 8} 82.44
{10, 13, 3} 82.22
{10, 13, 7} 82.48
{10, 13, 5} 82.00
{10,13,11} 83.07
{10, 13, 11, 12} 82.378
{10, 13, 11, 6} 82.38
{10, 13, 11.2} 82.45
{10, 13, 11, 4} 82.89
{10, 13, 11, 15} 82.30
{10, 13, 11, 9} 82.56

Table 4: Parsing results for the greedy-best-first method
with a single heuristic, using h⊥+1(x) in the left table and
hm(x) in the right table. The tagset with highest F -score
on the left contains genitive clitics and proper noun markers.
However, the improvement over the baseline is not statisti-
cally significant. The tagset with highest F -score on the right
contains definiteness, negation and proper noun markers. In
this case, the improvement over the baseline is statistically
significant.

fruitful 1,10,11,13,14 , never arriving at the high-
est feature combination 1,4,8,10,11,14 . Features
4 (aspect) and 8 (state) may work together to pro-
vide a useful distinction for parsing that individu-
ally would otherwise only increase sparsity.

Table 5 gives the results of using the best-
first with backtracking algorithm. We join the
highest-ranked individual feature (12: genitive cli-
tics) with all other individual features (i.e. {12, 1}
{12, 2} {12, 3} . . . ), and select the combination
achieving the highest F -score ({12, 11}). The
initial heuristic function h⊥+1

(x) is used only in
the first iteration (to select feature 12 in our
case). Afterward, we join the resulting set
with all other remaining individual features (i.e.
{12, 11, 1} {12, 11, 2} {12, 11, 3} . . . ), and select
the combination achieving the highest score. With
each iteration, the number of remaining features is
decremented by one. While this algorithm is ex-
haustive, we have not explored all possible combi-
nations.

We also investigated a probabilistic search al-
gorithm to see how well it could overcome the
challenges posed by many local maxima. Using
simulated annealing (Kirkpatrick et al., 1983), we
performed 50 experiments, with 50 cycles each.
The mean of the final dev-set F -scores was 82.84,
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⊥ 81.98
{12} 82.69
. . .
{12, 11} 82.87
. . .
{12, 11, 13} 82.60
. . .
{12,11,13,1} 83.16
. . .

Table 5: Parsing results for the best-first with backtrack-
ing method. The improvement of the score over the base-
line is statistically significant. The best feature combina-
tion includes the following features: genitive clitics, proper
noun, negation, and determiner. The cardinality of the best-
performing tagset is 41.

with a standard deviation of 0.21 . As is usually
the case, the cooling schedule played an important
role in the results. We evaluated three different
cooling schedules, and found that the slowest one
resulted in many low scores, given the same num-
ber of cycles. This was due to the higher proba-
bility of jumping to a higher energy state later in
the experiment. This is often advantageous given
a large number of cycles, however we are limited
to fewer cycles due to the high cost of performing
each training/parsing cycle.

We observed that simulated annealing usually
required many more cycles to find a good score
(e.g. higher than 82.40) than the previous search
methods described. This was due to their dif-
ferences in starting points and movement strate-
gies. The previous methods started from the bot-
tom and added potentially helpful features, in var-
ious ways. On the other hand, simulated anneal-
ing started at a random location in the powerset,
and moved stochastically. The differences in the
results indicate that many of the high scores lie
relatively near the bottom, whereas there is much
greater uncertainty in the middle of the feature
powerset.

For comparative purposes, Table 6 presents the
results obtained by using the most helpful features
proposed in two previous works.8 The Determiner
feature in the first row was added by Kulick et al.
(2006) to the Bikel-Bies POS tagset, using the
Bikel parser. The features in the last two rows
were determined by using the MaltParser with the
Columbia Arabic Treebank (CATiB: Habash and
Roth, 2009) and discussed in Marton et al. (2010).

8Using the same setup as in the other experiments in this
paper (eg. PCFG-LA parser and ATB3v3.2).

While the case feature (9) helped their gold-tag
parsing, it was not helpful for either vocalized
or unvocalized parsing in our experiments. Case
markings in Arabic exhibit ambiguity with certain
noun forms—there are particular instances where
both the genitive and accusative endings are the
same, such as the duals and masculine plurals. Re-
lated to this is the imperfect alignment in Arabic
between true grammatical function and morpho-
logical case markings (in vocalized and to a lesser
extent unvocalized text).

As expected, these features do not achieve the
highest overall F -score. Given the variability with
different parsers, annotation schemes, evaluation
metrics, etc., it should not be surprising that there
is no “universally-best” tagset for a language, but
rather a tagset optimized for a given task. For ex-
ample, while the gender feature has not benefited
PCFG-LA parsing in our experiments, it could be
vitally important for MT applications. But these
systems must be able to readily access these indi-
vidual features, or they may not be utilized.

Kulick +Determiner {1} 82.33
Marton best predicted tags {1, 2, 3, 7} 79.23
Marton best gold tags {8, 9} 82.40

Table 6: F -scores on tag combinations proposed by
previous investigations, using the PCFG-LA parser.

Tables 7 and 8 present the final results on the
vocalized development set and test set. We applied
significance tests on all the results in these tables,
and significantly-improved F -scores are indicated
with asterisks. The no-tag column gives F -scores
when the parser was not given any part-of-speech
information in the test (or dev) set at all—just the
text to be parsed. Tables 9 and 10 present the final
results on the unvocalized development set and test
set.

We have also investigated multiple, automatic-
ally-learned grammars that differ only in the ran-
dom seed used to initialize the EM learning algo-
rithm. We explored seeds 1–50, and found a sta-
tistically significant difference of 1.24% between
the highest EM initialization seed and the lowest,
and decided to pursue combining seeds into prod-
uct models (Petrov, 2010). We explored differ-
ent seed combinations (rather than feature com-
binations, as before) to form the product models
of the baseline and the highest feature combina-
tion found in the development set. Using the non-
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iterative search method described in section 3, we
took the highest-scoring 16 seeds from seeds 1–
50 and successively folded-in the next-best seed.
Figure 2 shows that the F -scores of the vocal-
ized models tend to level off after incorporating
the four highest-scoring seeds. The unvocalized
counterparts see continued gradual improvements
with larger product models, possibly due to less
data sparsity.

Tagset No-tag Gold
Bikel-Bies Baseline 81.33 85.36
Bikel-Bies + OOV 82.23∗∗ 85.59∗

{12, 11, 13, 1} + OOV 83.16∗∗∗ 85.94∗∗∗

Bikel-Bies Baseline + product models 83.70 87.02
{12, 11, 13, 1}+OOV+product models 84.40∗∗∗ 87.52∗∗∗

Table 7: Final F -scores on the vocalized development
set for the best feature combination, and handling un-
known words. The best feature combination included
the following features: genitive clitics, proper noun,
negation, and determiner. Statistically significant with
*=p < 0.05, **=p < 0.01, ***= p < 0.001

Tagset No-tag Gold
Bikel-Bies Baseline 80.69 85.03
Bikel-Bies + OOV 82.45∗∗∗ 85.29
{12, 11, 13, 1} + OOV 83.55∗∗∗ 85.89∗

Bikel-Bies Baseline + product models 82.89 87.10
{12, 11, 13, 1}+OOV+product models 85.03∗∗∗ 87.57∗∗∗

Table 8: Final F -scores on the vocalized test set for
the best feature combination, and handling unknown
words. Statistically significant with *=p < 0.05, **=p <
0.01, ***= p < 0.001

Tagset No-tag Gold
Bikel-Bies Baseline 80.08 85.12
Bikel-Bies + OOV 81.44∗∗∗ 85.42
{12, 11, 13, 1} + OOV 82.30∗∗∗ 86.67∗∗

Bikel-Bies Baseline + product models 82.33 87.49
{12, 11, 13, 1}+OOV+product models 84.10∗∗∗ 87.89

Table 9: Final F -scores on the unvocalized develop-
ment set for the best feature combination, and han-
dling unknown words. The best feature combination
included the following features: genitive clitics, proper
noun, negation, and determiner. Statistically significant
with *=p < 0.05, **=p < 0.01, ***= p < 0.001

Tagset No-tag Gold
Bikel-Bies Baseline 80.26 85.61
Bikel-Bies + OOV 80.72 85.83
{12, 11, 13, 1} + OOV 82.14∗∗∗ 86.20

Bikel-Bies Baseline + product models 81.69 87.23
{12, 11, 13, 1}+OOV+product models 83.34∗∗∗ 87.38

Table 10: Final F -scores on the unvocalized test set for
the best feature combination, and handling unknown
words. Statistically significant with *=p < 0.05, **=p <
0.01, ***= p < 0.001

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Seeds in Product Model
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Features 1,11,12,13 - unvocalized
Features 1,11,12,13 - vocalized
Bikel-Bies - unvocalized
Bikel-Bies - vocalized

F-Score on ATB Development Set

Figure 2: Development set F -scores using product
models from multiple grammars.

5 Conclusion

This paper focuses on finding the best use of mor-
phological features for PCFG-LA parsing. We
identify 15 morphological features and use the
original Penn Arabic Treebank POS tagset (|498|)
and a shallow version that excludes all morpho-
logical features (|27|), and apply feature inclusion
or exclusion to calculate the optimal feature com-
bination for Arabic parsing. We show that us-
ing morphological information helps parsing even
though it results in a larger tagset. In order to di-
minish the impact of the newly created POS tags
on unknown words, we use a list of Arabic sig-
natures to differentiate between these unknown
words when assigning POS tags based on string
examination.

We have applied several search methods to find
the feature combination that improves grammar
quality the most, using i) a non-iterative best-first
search algorithm, ii) an iterative, greedy best-first
search algorithm with a single heuristic function,
iii) an iterative, best-first with backtracking search
algorithm, and iv) simulated annealing.

The best-first with backtracking algorithm has
provided the best results, achieving state-of-the-art
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F -scores of 85.03 for vocalized ATB no-tag pars-
ing and 83.34 for unvocalized ATB no-tag pars-
ing, significant improvements of 2.17% and 1.88%
over the baseline. These results, together with the
scores of the other search algorithms, suggest that
the optimal morphological feature combination for
this task involves including just a few features.
Three out of the four features from our optimal
tagset occur in noun phrases. Since noun phrases
are so common9, features that can help parse just
these phrases appear to have a great impact on
overall F -scores.

We have also performed experiments using fea-
tures highlighted in previous studies on different
parsing models, and have shown that considering
only one tagset for a language does not provide
optimal scores.
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Abstract

This article evaluates the integration of data
extracted from a French syntactic lexicon, the
Lexicon-Grammar (Gross, 1994), into a pro-
babilistic parser. We show that by applying
clustering methods on verbs of the French
Treebank (Abeillé et al., 2003), we obtain ac-
curate performances on French with a parser
based on a Probabilistic Context-Free Gram-
mar (Petrov et al., 2006).

1 Introduction

Syntactic lexicons are rich language resources
that may contain useful data for parsers like subcate-
gorisation frames, as it provides, for each lexical en-
try, information about its syntactic behaviors. Many
works on probabilistic parsing studied the use of
a syntactic lexicon. We can cite Lexical-Functional
Grammar [LFG] (O’Donovan et al., 2005; Schlu-
ter and Genabith, 2008), Head-Driven Phrase Struc-
ture Grammar [HPSG] (Carroll and Fang, 2004)
and Probabilistic Context-Free Grammars [PCFG]
(Briscoe and Carroll, 1997; Deoskar, 2008). The
latter has incorporated valence features of verbs to
PCFGs and observe slight improvements on global
performances. However, the incorporation of syntac-
tic data on part-of-speech tags increases the effect of
data sparseness, especially when the PCFG grammar
is extracted from a small treebank1. (Deoskar, 2008)
was forced to reestimate parameters of his grammar
with an unsupervised algorithm applied on a large
raw corpus. In the case of French, this observation

1Data sparseness implies the difficulty of estimating proba-
bilities of rare rules extracted from the corpus.

can be linked to experiments described in (Crabbé
and Candito, 2008) where POS tags are augmented
with some syntactic functions2. Results have shown
a huge decrease on performances.
The problem of data sparseness for PCFG is also
lexical. The richer the morphology of a language, the
sparser the lexicons built from a treebank will be for
that language. Nevertheless, the effect of lexical data
sparseness can be reduced by word clustering algo-
rithms. Inspired by the clustering method of (Koo
et al., 2008), (Candito and Crabbé, 2009; Candito et
al., 2010) have shown that by replacing each word
of the corpus by automatically obtained clusters of
words, they can improve a PCFG parser on French.
They also created two other clustering methods. A
first method consists in a step of desinflection that
removes some inflexional marks of words which are
considered less important for parsing. Another me-
thod consists in replacing each word by the combi-
nation of its POS tag and lemma. Both methods im-
prove significantly performances.
In this article, we propose a clustering method ba-
sed on data extracted from a syntactic lexicon, the
Lexicon-Grammar. This lexicon offers a classifica-
tion of lexical items into tables, each table being
identifiable by its unique identifier. A lexical item
is a lemmatized form which can be present in one or
more tables depending on its meaning and its syn-
tactic behaviors. The clustering method consists in
replacing a verb by the combination of its POS tag
and its tables identifiers. The goal of this article is
to show that a syntactic lexicon, like the Lexicon-

2There were 28 original POS tags and each can be combined
with one of the 8 syntactic functions.
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Grammar, which is not originally developed for par-
sing algorithms, is able to improve performances of
a probabilistic parser.
In section 2 and 3, we describe the probabilistic par-
ser and the treebank, namely the French Treebank,
used in our experiments. In section 4, we describe
more precisely previous work on clustering me-
thods. Section 5 introduces the Lexicon-Grammar.
We detail information contained in this lexicon that
can be used in the parsing process. Then, in section
6, we present methods to integrate this information
into parsers and, in section 7, we describe our expe-
riments and discuss the obtained results.

2 Non-lexicalized PCFG parser

The probabilistic parser, used into our experi-
ments, is the Berkeley Parser3 (called BKY thereaf-
ter) (Petrov et al., 2006). This parser is based on
a PCFG model which is non-lexicalized. The main
problem of non-lexicalized context-free grammars is
that nonterminal symbols encode too general infor-
mation which weakly discriminates syntactic ambi-
guities. The benefit of BKY is to try to solve the
problem by generating a grammar containing com-
plex symbols. It follows the principle of latent an-
notations introduced by (Matsuzaki et al., 2005).
It consists in iteratively creating several grammars,
which have a tagset increasingly complex. For each
iteration, a symbol of the grammar is splitted in se-
veral symbols according to the different syntactic
behaviors of the symbol that occur into a treebank.
Parameters of the latent grammar are estimated with
an algorithm based on Expectation-Maximisation
(EM). In the case of French, (Seddah et al., 2009)
have shown that BKY produces state-of-the-art per-
formances.

3 French Treebank

For our experiments, we used the French Tree-
bank4 (Abeillé et al., 2003) [FTB]. It is composed of
articles from the newspaper Le Monde where each
sentence is annotated with a constituent tree. Cur-
rently, most of papers about parsing of French use

3The Berkeley Parser is freely available at
http ://code.google.com/p/berkeleyparser/

4The French Treebank is freely available under licence at
http ://www.llf.cnrs.fr/Gens/Abeille/French-Treebank-fr.php

a specific variant of the FTB, namely the FTB-UC
described for the first time in (Candito and Crabbé,
2009). It is a partially corrected version of the FTB
which contains 12351 sentences and 350931 tokens.
This version is smaller5 and has specific characteris-
tics. First, the tagset takes into account the rich ori-
ginal annotation containing morphological and syn-
tactic information. It results in a tagset of 28 part-of-
speech tags. Some compounds with regular syntax
schemas are undone into phrases containing simple
words. Remaining compounds are merged into a
single token, whose components are separated with
an underscore.

4 Previous work on word clustering

Numerous works used clustering methods in or-
der to reduce the size of the corpus lexicon and the-
refore reducing the impact of lexical data sparse-
ness on treebank grammars. A method, described in
(Candito and Seddah, 2010) and called CatLemma,
consists in replacing a word by the combination of
its POS tag and its lemma. In the case of a raw text
to analyze (notably during evaluations), they used a
statistical tagger in order to assign to each word both
POS tag and lemma6.
Instead of reducing each word to the lemmatized
form, (Candito and Crabbé, 2009; Candito and Sed-
dah, 2010) have done a morphological clustering,
called desinflection [DFL], which consists in remo-
ving morphological marks that are less important
for determining syntactic projections in constituents.
The mood of verbs is, for example, very helpful. On
the other hand, some marks, like gender or number
for nouns or the person of verbs, are not so crucial.
Moreover, original ambiguities on words are kept in
order to delegate the task of POS tags desambigua-
tion to the parser. This algorithm is done with the
help of a morpho-syntactic lexicon.
The last clustering method, called Clust, consists
in replacing each word by a cluster id. Cluster ids
are automatically obtained thanks to an unsupervi-

5The original FTB contains 20,648 sentences and 580,945
tokens.

6They used the tagger MORFETTE (Chrupala et al., 2008;
Seddah et al., 2010) which is based on two statistical models,
one for tagging and the other for lemmatization. Both models
were trained thanks to the Average Sequence Perceptron algo-
rithm.
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sed statistical algorithm (Brown et al., 1992) applied
on a large raw corpus. They are computed by taking
account of co-occurrence information of words. The
main advantage of this method is the possibility of
combining it to DFL or CatLemma. First, the raw
corpus is preprocessed with one of these two me-
thods and then, clusters are computed on this modi-
fied corpus. Currently, this method permits to obtain
the best results on the FTB-UC.

5 Lexicon-Grammar

The Lexicon-Grammar [LG] is the richest source
of syntactic and lexical information for French7 that
focuses not only on verbs but also on verbal nouns,
adjectives, adverbs and frozen (or fixed) sentences.
Its development started in the 70’s by Maurice Gross
and his team (Gross, 1994). It is a syntactic lexicon
represented in the form of tables. Each table encodes
lexical items of a particular category sharing several
syntactic properties (e.g. subcategorization informa-
tion). A lexical item is a lemmatized form which can
be present in one or more tables depending on its
meaning and its syntactic properties. Each table row
corresponds to a lexical item and a column corres-
ponds to a property (e.g. syntactic constructions, ar-
gument distribution, and so on). A cell encodes whe-
ther a lexical item accepts a given property. Figure 1
shows a sample of verb table 12. In this table, we can
see that the verb chérir (to cherish) accepts a human
subject (pointed out by a + in the property N0 = :
Nhum) but this verb cannot be intransitive (pointed
out by a − in the property N0 V). Recently, these
tables have been made consistent and explicit (To-
lone, 2011) in order to be exploitable for NLP. They
also have been transformed in a XML-structured for-
mat (Constant and Tolone, 2008)8. Each lexical en-
try is associated with its table identifier, its possible
arguments and its syntactic constructions.
For the verbs, we manually constructed a hierarchy
of the tables on several levels. Each level contains
classes which group LG tables which may not share
all their defining properties but have a relatively si-
milar syntactic behavior. Figure 2 shows a sample of

7We can also cite lexicons like LVF (Dubois and Dubois-
Charlier, 1997), Dicovalence (Eynde and Piet, 2003) and Lefff
(Sagot, 2010).

8These resources are freely available at
http ://infolingu.univ-mlv.fr/

FIG. 1: Sample of verb table 12.

the hierarchy. The tables 4, 6 and 12 are grouped into
a class called QTD2 (transitive sentence with two
arguments and sentential complements). Then, this
class is grouped with other classes at the superior le-
vel of the hierarchy to form a class called TD2 (tran-
sitive sentence with two arguments). The characte-

FIG. 2: Sample of the hierarchy of verb tables.

ristics of each level are given in the Table 1 (level 0
represents the set of tables of the LG). We can state
that there are 5,923 distinct verbal forms for 13,862
resulting entries in tables of verbs9. The column
#classes specifies the number of distinct classes. The
columns AVG 1 and AVG 2 respectively indicate the
average number of entries per class and the average
number of classes per distinct verbal form.

Level #classes AVG 1 AVG 2
0 67 207 2.15
1 13 1,066 1.82
2 10 1,386 1.75
3 4 3,465 1.44

TAB. 1: Characteristics of the hierarchy of verb tables.

The hierarchy of tables has the advantage of redu-
cing the number of classes associated with each verb

9Note that 3,121 verb forms (3,195 entries) are unambi-
guous. This means that all their entries occur in a single table.
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of the tables. We will see that this ambiguity reduc-
tion is crucial in our experiments.

6 Word clustering based on the
Lexicon-Grammar

The LG contains a lot of useful information that
could be used into the parsing process. But such
information is not easily manipulable. We will fo-
cus on table identifiers of the verb entries which are
important hints about their syntactic behaviors. For
example, the table 31R indicates that all verbs be-
longing to this table are intransitive. Therefore, we
followed the principle of the clustering method Cat-
Lemma, except that here, we replace each verb of a
text by the combination of its POS tag and its table
ids associated with this verb in the LG tables10. We
will call this experiment TableClust thereafter. For
instance, the verb chérir (to cherish) belongs to the
table 12. Therefore, the induced word is #tag 12,
where #tag is the POS tag associated with the verb.
For an ambiguous verb like sanctionner (to punish),
belonging to two tables 6 and 12, the induced word
is #tag 6 12.
Then, we have done variants of the previous expe-
riment by taking the hierarchy of verb tables into ac-
count. This hierarchy is used to obtain clusters of
verbs increasingly coarse as the hierarchy level in-
creases, and at the same time, the size of the corpus
lexicon is also increasingly reduced. Identifiers com-
bined to the tag depend on the verb and the specific
level in the hierarchy. For example, the verb sanc-
tionner, belonging to tables 6 and 12, is replaced
by #tag QTD2 at level 1. In the case of ambiguous
verbs, for a given level in the hierarchy, identifiers
are all classes the verb belongs to. This experiment
will be called LexClust thereafter.
As for clustering method CatLemma, we need a
Part-Of-Speech tagger in order to assign a tag and
a lemma to each verb of a text (table ids can be de-
termined from the lemma). We made the choice to
use MElt (Denis and Sagot, 2009) which is one of
the best taggers for French. Lemmatization process
is done with a French dictionary, the Dela (Courtois
and Silberztein, 1990), and some heuristics in the
case of ambiguities.

10Verbs that are not in the LG remain unchanged.

7 Experiments and results

7.1 Evaluation metrics

As the FTB-UC is a small corpus, we used a
cross-validation procedure for evaluations. This me-
thod consists in splitting the corpus into p equal
parts, then we compute training on p-1 parts and eva-
luations on the remaining part. We can iterate this
process p times. This allows us to calculate an ave-
rage score for a sample as large as the initial cor-
pus. In our case, we set the parameter p to 10. Re-
sults on evaluation parts are reported using the stan-
dard protocol called PARSEVAL (Black et al., 1991)
for all sentences. The labeled F-Measure [F1] takes
into account the bracketing and labeling of nodes.
We also use the unlabeled and labeled attachement
scores [UAS, LAS] which evaluate the quality of un-
labeled and labeled dependencies between words of
the sentence11. Punctuation tokens are ignored in all
metrics.

7.2 Berkeley parser settings

We used a modified version of BKY enhanced
for tagging unknown and rare French words (Crabbé
and Candito, 2008)12. We can notice that BKY uses
two sets of sentences at training, a learning set and a
validation set for optimizing the grammar parame-
ters. As in (Candito et al., 2010), we used 2% of
each training part as a validation set and the remai-
ning 98% as a learning set. The number of split and
merge cycles was set to 5.

7.3 Clustering methods

We have evaluated the impact of clustering me-
thods TableClust and LexClust on the FTB-UC. For
both methods, verbal forms of each training part are
replaced by the corresponding cluster and, in order
to do it on the evaluation part, we use Melt and some
heuristics. So as to compare our results with pre-
vious work on word clustering, we have reported
results of two clustering methods described in sec-
tion 4, DFL and DFL+Clust (Clust is applied on a
text that contains desinflected words).

11These scores are computed by automatically converting
constituent trees into dependency trees. The conversion proce-
dure is made with the Bonsaı̈ software, available at http ://al-
page.inria.fr/statgram/frdep/fr stat dep parsing.html.

12Available in the Bonsaı̈ package.
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7.4 Evaluations

The experimental results are shown in the
Table 213. The column #lexicon represents the size
of the FTB-UC lexicon according to word cluste-
ring methods. In the case of the method LexClust,
we varied the level of the verbs hierarchy used. The

Method #lexicon F1 UAS LAS F1<40
Baseline 27,143 83.82 89.43 85.85 86.12
DFL 20,127 84.57 89.91 86.36 86.80
DFL+Clust 1,987 85.22 90.26 86.70 87.39
TableClust 24,743 84.11 89.67 86.10 86.53
LexClust 1 22,318 84.33 89.77 86.22 86.62
LexClust 2 21,833 84.44 89.87 86.32 86.76
LexClust 3 20,556 84.26 89.64 86.10 86.57
Tag 20478 84.11 89.58 86.00 86.40
TagLemma 24722 83.87 89.51 85.91 86.26

TAB. 2: Results from cross-validation evaluation accor-
ding to clustering methods.

method TableClust slightly improves performances
compared with the baseline. Nevertheless, using le-
vels of the hierarchy of verb tables through Lex-
Clust increases results while considerably reducing
the size of the corpus lexicon. We obtain the best
results with the level 2 of the hierarchy. These per-
formances are almost identical to those of DFL, des-
pite the fact that we only modify verbal forms while
DFL alters all inflected forms regardless of gram-
matical categories. However, DFL+Clust has high
scores and is significantly better than LexClust. As
of this writing, we tried some combination of me-
thods LexClust and Clust but we observed that both
methods are not easily mergeable.
The impact of TableClust and LexClust on a new
text is strongly influenced by the quality of the tag-
ging produced by Melt. For evaluating this impact,
we computed Gold experiments for both clustering
method. Each verb of evaluation parts, present in the
LG tables, is replaced by correct tag and table ids.
We observed a gap of almost 0.5% for both tagging
and F1. For instance, on the first evaluation part,
Melt has high but not perfect scores, with a preci-
sion of 98.2% and a recall of 97.2%, for a total of
165 errors14. About lemmatization, we have a per-
fect score of 100%.

13All experiments have a tagging accuracy of about 97%.
14We can compute precision and recall scores because some-

times Melt wrongly identifies a word as a verb or miss a verb.

Our approach is based on the combination of tags
and table ids contained in the syntactic lexicon. In
order to validate this approach, we have done two
other experiments. A first one, called Tag, consists in
replacing each verbal lemma by its verbal tag only.
The second one, called TagLemma, consists in the
combination of the tag and the lemma. Results are
reported in the Table 2. As for TableClust and Lex-
Clust, we replace only verbal forms that are present
in the LG tables. We can see that Tag has equal per-
formances to TableClust. Therefore, original table
ids combined with tags are useless. Maybe, the num-
ber of clusters is too high and consequently, the size
of the corpus lexicon is still too large. However, Lex-
Clust is better than Tag. About TagLemma, results
are almost identical to the baseline. According to
these observations, we can say that verbal clusters
created with our method LexClust are relevant and
useful for a parser like BKY.
We have indicated in Table 3, the top most F1 ab-
solute gains according to phrase labels, for our best
clustering method LexClust with level 2 of the hie-
rarchy. For each phrase, the column called Gain in-
dicates the average F1 absolute gain in comparison
to the baseline F1 for this phrase, and prop. is the
proportion of the phrase in the whole corpus. We can

Phrase label Meaning Gain (prop.)
VPpart participial phrase 4,4% (2%)
Srel relative clause 1,6% (1%)
VN verbal nucleus 1.1% (11%)
VPinf infinitive phrase 0.9% (0.4%)
AdP adverbial phrase 0.9% (3%)

TAB. 3: Top most F1 absolute gains according to phrases.

see that three of the five best corrected phrases relate
to verbal phrases (plus one if we consider that AdP
is linked to a verbal phrase). Therefore, the integra-
tion of syntactic data into a clustering algorithm of
verbs improves the recognition of verbal phrases.

8 Conclusion and future work

In this article, we have shown that by using in-
formation on verbs from a syntactic lexicon, like
the Lexicon-Grammar, we are able to improve per-
formances of a statistical parser based on a PCFG
grammar. In the near future, we plan to reproduce
experiments with other grammatical categories.
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B. Crabbé and M. Candito. 2008. Expériences d’ana-
lyse syntaxique statistique du français. In Actes de
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Abstract 

This paper presents a set of experiments per-

formed on parsing Basque, a morphologically 

rich and agglutinative language, studying the 

effect of using the morphological analyzer for 

Basque together with the morphological dis-

ambiguation module, in contrast to using the 

gold standard tags taken from the treebank. 

The objective is to obtain a first estimate of 

the effect of errors in morphological analysis 

and disambiguation on the parsers. We tested 

two freely available and state of the art de-

pendency parser generators, MaltParser, and 

MST, which represent the two dominant ap-

proaches in data-driven dependency parsing. 

1 Introduction 

There have been lots of attempts at parsing the 

Basque Dependency Treebank (BDT, Aduriz et al. 

2003), starting from the CoNLL 2007 Shared Task 

on Dependency Parsing (Nivre et al. 2007a), where 

multiple systems competed on getting the best 

parsing results, and continued by the work done by 

Bengoetxea and Gojenola (2009a, 2009b, 2010). 

However, in all of these works, the input to the 

parser was the set of gold standard part of speech 

(POS) and morphosyntactic tags (corresponding to 

case, number and a number of morphological in-

formation types) taken directly from the treebank, 

meaning that there were no errors in the first stage 

of converting raw texts to morphosyntactically 

analyzed ones, previous to applying the parsers. 

Typically, morphologically rich languages are 

morphologically very ambiguous. For example, in 

the case of Basque, each word can receive multiple 

affixes, as each lemma can generate thousands of 

word-forms by means of morphological properties, 

such as case, number, tense, or different types of 

subordination for verbs. Consequently, the  mor-

phological analyzer for Basque (Aduriz et al. 2000) 

gives a high ambiguity. If only categorial (POS) 

ambiguity is taken into account, there is an average 

of 1.55 interpretations per word-form, which rises 

to 2.65 when the full morphosyntactic information 

is taken into account, giving an overall 64% of 

ambiguous word-forms. Disambiguating the output 

of morphological analysis, in order to obtain a sin-

gle interpretation for each word-form, can pose an 

important problem, as determining the correct in-

terpretation for each word-form requires in many 

cases the inspection of local contexts, and in some 

others, as the agreement of verbs with subject, ob-

ject or indirect object, it could also suppose the 

examination of elements which can be far from 

each other, added to the free constituent order of 

the main sentence elements in Basque. The errone-

ous assignment of incorrect interpretations, regard-

ing to part of speech or to morphological features, 

can difficult the work of the parser. 

For that reason, in this work we have attempted 

the first evaluation of two data-driven parser gen-

erators, taking the output of the morphological ana-

lysis and disambiguation as their input. As 

morphological ambiguity is very high compared to 

other languages such as English, this could hypo-

thetically harm the results of syntactic analyzers. 

Although there have been several attempts at in-

tegrating morphological and syntactic processing 

of several languages such as Hebrew (Goldberg 

and Tsarfaty 2008) or Latin, Czech, Greek and 

Hungarian (Lee et al.  2011), in the present work 

we will test the simpler option of using a pipelined 

approach, where the texts are passed first through 

morphosyntactic analysis and disambiguation, 

forcing a single interpretation per word-form, and 

then passing it to the parser. This can give an upper 

limit on the increase of the error rate due to incor-

rect interpretations from morphological disam-
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biguation, and could also serve as a starting point 

for more elaborate integrated approximations.  

2 Resources 

This section will describe the main resources that 

have been used in the experiments. First, subsec-

tion 2.1 will describe the Basque Dependency 

Treebank (BDT), subsection 2.2 will explain the 

main details of the morphological analysis and dis-

ambiguation modules for Basque (Aduriz et al. 

1997, 2000), while subsection 2.3 will present the 

main characteristics of MaltParser, and MST, two 

state of the art data-driven dependency parsers. 

2.1 The Basque Dependency Treebank 

Basque can be described as an agglutinative lan-

guage that presents a high power to generate in-

flected word-forms, with free constituent order of 

sentence elements with respect to the main verb. 

The BDT can be considered a pure dependency 

treebank from its original design, due mainly to the 

syntactic characteristics of Basque.  

   Etorri  dela    esan  zien  mutilak 
    come  that-has tell  did   boy-the 
  The boy told them that he had come 

Example 1. Example of a treebank sentence. 

Figure 1 presents the sentence from example 1. 

Each word contains its form, lemma, category 

(POS), subcategory, morphological features, and 

the dependency relation (headword + dependency). 

The information in Figure 1 has been simplified 

due to space reasons, as typically each word con-

tains many morphosyntactic
1
 features (case, num-

ber, type of subordinated sentence, …), which are 

relevant for parsing. The first version of the 

Basque Dependency Treebank contained 55,469 

tokens forming 3,700 sentences (Aduriz et al., 

2003), and it was used as one of the evaluated 

treebanks in the CoNLL 2007 Shared Task on De-

pendency Parsing (Nivre et al., 2007a). Our work 

will make use of the second version of the BDT, 

which is the result of a extension and redesign of 

the original requirements, containing 150,000 to-

kens (11,225 sentences), a three-fold increase. 

2.2 Morphological Analysis 

The morphological analyzer for Basque (Aduriz et 

al. 2000) consists of two subsystems. The first one 

performs a robust analysis based on two-level 

morphology, while the second part organizes the 

rich information contained in each word-form, by 

means of a unification-based grammar. This word-

level grammar organizes the wealth of information 

provided by suffixes corresponding to derivation, 

word composition, and affixes that convey infor-

mation about case or number (nouns, adjectives, 

determiners but also verbs), aspect, tense and mor-

phemes corresponding to different types of subor-

dination (for verbal categories). 

The output of the morphological analyzer con-

tains 2.65 interpretations per word-form. For ex-

ample, the verb zien in figure 1 is ambiguous 

between a main verb and an auxiliary, and each 

interpretation is also ambiguous, as it can be a past 

tense verb, a relative sentence or an indirect inter-

rogative question, giving 6 interpretations. 

Next, there is a module for morphological dis-

ambiguation (Ezeiza et al. 1998), which uses a 

combination of knowledge-based disambiguation, 

by means of the Constraint Grammar formalism 

(Karlsson et al. 1995, Aduriz et al. 1997), and a 

posterior statistical disambiguation module, using 

an HMM. This second statistical module can be 

parameterized according to the level of disam-

biguation that the user wants to obtain, in an at-

tempt to trade off precision and recall. For 

example, the system allows to only disambiguate 

based on the main categories, abstracting over 

                                                           
1 We will use the term morphosyntactic to name the set of 

features attached to each word-form, which by the agglutina-

tive nature of Basque correspond to both morphology and 

syntax. 

auxmod 

ccomp_obj 

 

auxmod 

Etorri da+la   esan zien     mutilak  
come   has+he+that  tell he+did+them  the+boy 
  V    AUXV+3S+COMPL  V  AUXV        N-ERG-3S 

ncsubj 

Figure 1. Dependency tree for the sentence Etorri 

dela esan zien mutilak. 
(V = main verb, N = noun, AUXV = auxiliary verb, 

COMPL = completive, ccomp_obj = clausal comple-

ment object, ERG = ergative, S: singular, auxmod = 

auxiliary, ncsubj = non-clausal subject). 

 

29



morphosyntactic features. This option maintains 

most of the correct interpretations but, on the other 

hand, it still gives an output with several interpre-

tations per word-form (for example, the system 

chooses the correct category, but does not decide 

on case or number ambiguity). In our experiments 

we applied the option that disambiguated most. 

This option maintains more than 97% of the cor-

rect interpretations, still leaving a remaining ambi-

guity of 1.3 interpretations, that can be considered 

high compared to languages like English. The 97% 

limit was established as a compromise between 

recall and precision, as in Karlsson et al. (1995). 

2.3 Parsers 

We have made use of MaltParser (Nivre et al. 

2007b, Nivre 2006) and MSTParser (McDonald et 

al. 2006), two state of the art dependency parsers 

representing two dominant approaches in data-

driven dependency parsing, and that have been 

successfully applied to typologically different lan-

guages and treebanks (McDonald and Nivre 2007).  

MaltParser is a representative of local, greedy, 

transition-based dependency parsing models, 

where the parser obtains deterministically a de-

pendency tree in a single pass over the input using 

two data structures: a stack of partially analyzed 

items and the remaining input sequence. To deter-

mine the best action at each step, the parser uses 

history-based feature models and discriminative 

machine learning. The specification of the learning 

configuration can include any kind of information 

(such as word-form, lemma, category, subcategory 

or morphological features). Several variants of the 

parser have been implemented, and we will use 

one of its standard versions (MaltParser version 

1.4). In our experiments, we will use the Stack-

Lazy algorithm with the liblinear classifier. 

MSTParser can be considered a representative 

of global, exhaustive graph-based parsing 

(McDonald et al. 2005, 2006). This algorithm finds 

the highest scoring directed spanning tree in a de-

pendency graph forming a valid dependency tree. 

To learn arc scores, it uses large-margin structured 

learning algorithms, which optimize the parameters 

of the model to maximize the score margin be-

tween the correct dependency graph and all incor-

rect dependency graphs for every sentence in a 

training set. The learning procedure is global since 

model parameters are set relative to classifying the 

entire dependency graph, and not just over single 

arc attachments. This is in contrast to the local but 

richer contexts used by transition-based parsers. 

We use the freely available version of 

MSTParser
2
. In the experiments we will make use 

of the second order non-projective algorithm, 

which gave the better results on the base treebank. 

3 Experiments and Evaluation 

In this section we will first present the process of 

annotating the treebank with the tags given by 

morphological analysis and disambiguation, and 

then we will report the main results. 

3.1 Morphological Analysis / Disambiguation 

When applying morphological analysis and disam-

biguation to a treebank that was manually anno-

tated, there is the problem of matching the tokens 

of the treebank with those obtained from the mor-

phological analyzer, as there were divergences on 

the treatment of multiword units, mostly coming 

from Named Entities, verb compounds and com-

plex postpositions (those formed with morphemes 

appearing at two different words). For that reason, 

we performed a matching process trying to link the 

multiword units given by the morphological analy-

sis module and those of the treebank, obtaining a 

correct match for about two thirds of the multi-

words. Named Entities had the best matching 

score, while other phenomena such as complex 

postpositions, which have a wide variety, were not 

covered at all. After this matching stage, we se-

lected those sentences giving a one-to-one direct 

correspondence for each token. This left us with a 

considerable reduction of the data, from the origi-

nal 150,000 tokens to 97,000. The alignment of the 

rest of the sentences is left as future work. The re-

duction on the treebank size could lead to question 

about the relevance of the remaining data after the 

non-matching sentences have been discarded, be-

cause it could seem that those sentences were 

harder to parse (in principle they are candidates to 

having more morphological errors). However, the 

results on the full and the reduced treebanks con-

firmed that the reduction in accuracy was propor-

tional to the treebank size, meaning that discarding 

a portion of the treebank did not have any side ef-

fects apart from a proportional drop in the results. 

                                                           
2 http://mstparser.sourceforge.net 
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As the morphological disambiguation process 

leaves a reduced ambiguity of 1.3 interpretations 

per word-form, and the parsers we will use require 

a single interpretation, we took the simplest option 

of choosing the first interpretation, which corre-

sponds to taking the most frequent option. This 

leaves open the investigation of more complex ap-

proaches trying to select the most appropriate read-

ing. This is not an easy task, as the ambiguity left 

is the hardest to solve, because the knowledge-

based and statistical disambiguation processes 

have not been able to determine a single reading. 

Among the remaining types of ambiguity that were 

left, we can distinguish several types: 

• Nominal. It includes all the categories that can 

bear case, such as nouns, adjectives and de-

terminers (but also verbs). The case feature is 

important, as it carries the information neces-

sary to correctly attach NPs and postpositional 

phrases to main verbs. It appears only at the 

last noun of the whole phrase. 

• Verbal. Auxiliary verbs are very ambiguous, 

as all of them can also be interpreted as main 

verbs. Moreover, all of the past tense verbs 

are additionally ambiguous regarding several 

types of subordination sentences (relative 

clause, indirect interrogative or modal). 

3.2 Results 

Table 1 shows the results of applying the two pars-

ers on the selected data. We did the typical train-

development-test split, using 80%, 10% and 10% 

of the test data, respectively. In the present work 

we only performed a single run for each experi-

ment, so we did not made use of the development 

set, using directly the test set for evaluation. For 

future work, we plan to use the development set for 

experimenting different alternatives. The first line 

in table 1 shows the baseline when using the gold 

standard tags, in accord with previous results on 

parsing the BDT (Bengoetxea and Gojenola 2010). 

For testing the output of automatic  morphologi-

cal processing we performed two different kinds of 

experiment. In the first set we used the treebank 

with the gold standard tags for training. In the sec-

ond option we trained the parsers giving as input 

the training set with the tags obtained after the 

process of morphological disambiguation. This 

way, the parsers were trained on the output from 

morphological disambiguation, and we will be able 

to compare whether it is better to train the parser 

using gold morphological tags or otherwise the 

parsers can benefit learning from the real input 

using morphological analysis and disambiguation. 

The second line in table 1 shows that, when us-

ing the gold standard tags from the treebank for 

training, both parsers suffer a similar decrease in 

accuracy in LAS and UAS of approximately two 

absolute points, which is surprising in our opinion, 

as we expected a bigger drop in performance due 

to the potentially hard task of reducing 2.65 inter-

pretations per word-form to a single interpretation. 

This can be due in part to the careful approach to 

disambiguation, combining both rule-based and 

statistical disambiguation (Ezeiza et al. 1998), but 

we must also acknowledge the use of a very robust 

tool for morphological analysis (Aduriz et al. 

2000), which reduces the number of unrecognized 

or incorrectly analyzed words, incorporating so-

phisticated algorithms for handling out of vocabu-

lary words, e.g. special types of two-level rules for 

them. On the other hand, we can also say that some 

morphosyntactic errors can be transparent to the 

parsers, as some categorial errors, e.g. noun versus 

adjective, will not harm the parser as long as the 

morphological information (basically case) is cor-

rect, because the correct determination of the case 

is what the parser needs to assign the correct de-

pendency relation (subject, object or modifier). 

The table also shows (third line) that the results 

improve when training the parsers with the same 

tags provided by automatic morphological analysis 

and disambiguation, as the parsers can in some 

 MaltParser MSTParser 

 LAS UAS LAS UAS 

Baseline (training = gold tags,  

test = gold tags) 

78.78% 84.02% 78.93% 84.94% 

Training = gold tags,  

test = automatic tags 

76.57% (-2.21) 82.24% (-1.78) 76.62% (-2.31) 82.91% (-2.03) 

Training = automatic tags,  

test = automatic tags 

76.77% (-2.01) 82.46% (-1.56) 77.20% (-1.73) 83.76% (-1.18) 

Table 1. Evaluation results. 

(LAS: Labeled Attachment Score, UAS: Unlabeled Attachment Score) 
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way learn working on the errors of the morpho-

logical modules. We also see that MSTParser 

seems to be slightly more robust than MaltParser 

when dealing with automatically obtained morpho-

syntactic tags, although not statistically significant. 

In order to have a more detailed snapshot of the 

decrease of performance, we selected two subsets 

of sentences for a more detailed evaluation, with 

the aim of examining the effect of morphological 

disambiguation, counting only the sentences con-

taining disambiguation errors. This will allow a 

better estimate of the impact of errors on these sen-

tences. We distinguished two types of errors: 

• Errors in POS. In principle, these errors could 

be considered the most harmful, as an error 

determining the main category of a word can 

have devastating effects. For example, this  

errors can typically result from the confusion 

of a verb as a noun or adjective. Another im-

portant subtype of this set of errors is the dis-

tinction between main and auxiliary verbs. 

• Errors in morphosyntactic features (with the 

correct POS). They can also have an impor-

tant impact on the results. For example, there 

is a systematic ambiguity between the ergative 

and the absolutive cases, which is closely re-

lated to determining the subject and object of 

a sentence. Another type corresponds to past 

tense verbs, which are ambiguous between a 

simple past tense verb, a relative sentence or 

an indirect interrogative sentence.  

Table 2 shows how the performance drops 

around three absolute points with respect to the 

gold standard tags when we only take the sentences 

containing morphosyntactic errors (around half of 

the sentences), and six points when considering 

sentences with categorial or POS errors (which 

affects to one quarter of the sentences). 

4 Conclusions and future work 

We have presented a set of experiments studying 

the effect of using the morphological analyzer for 

Basque, in contrast to using the gold standard tags 

taken from the treebank. The objective was to ob-

tain a first estimate of the effect of errors in mor-

phological analysis and disambiguation on the 

parsers. We tested two different freely available 

and state of the art dependency parser generators, 

MaltParser and  MSTParser. 

As a main result, we can say that the errors due 

to incorrect disambiguation are not as important as 

it could be initially expected due to the high mor-

phosyntactic ambiguity given by the Basque mor-

phological analyzer. We have shown how 

morphological disambiguation errors drop the per-

formance of the parsers in 2 absolute LAS points. 

MSTParser seems to be slightly more robust than 

MaltParser, although by a small difference. 

For a future work we leave the task of correctly 

disambiguating the ambiguous sets of morphosyn-

tactic readings. This could be solved by either in-

tegrating parsing and disambiguation (Cohen and 

Smith 2007, Goldberg and Tsarfaty 2008, Lee et 

al. 2011) or also redesigning the currently used 

modules. The key could be that the morphological 

disambiguation module that we used was defined 

independently, trying to maximize the number of 

correctly disambiguated tokens, while the same 

system could also be optimized having parsing in 

mind, that is, examining which kind of disam-

biguation errors give the most/less parsing errors. 

Another important line of research consists in a 

careful examination of the errors regarding to dif-

ferent types of part of speech and dependency rela-

tions, which can provide new insights.  
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 MaltParser MSTParser 

 LAS LAS 

Baseline (training and test with gold tags) 78.78% 78.93% 

Training = automatic tags, test = automatic tags 76.77% 77.20% 

Sentences with errors in morphological tags (correct POS) 75.48% 75.96% 

Sentences with errors in POS tags 72.13% 72.21% 

Table 2. Evaluation results on sentences with morphosyntactic errors. 
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Abstract

Recent advances in parsing technology have
made treebank parsing with discontinuous
constituents possible, with parser output of
competitive quality (Kallmeyer and Maier,
2010). We apply Data-Oriented Parsing
(DOP) to a grammar formalism that allows
for discontinuous trees (LCFRS). Decisions
during parsing are conditioned on all possible
fragments, resulting in improved performance.
Despite the fact that both DOP and disconti-
nuity present formidable challenges in terms
of computational complexity, the model is
reasonably efficient, and surpasses the state of
the art in discontinuous parsing.

1 Introduction

Many natural language phenomena are inherently
not context-free, or call for structural descriptions
that cannot be produced by a context-free gram-
mar (Chomsky, 1957; Shieber, 1985; Savitch et al.,
1987). Examples are extraposition, cross-serial
dependencies and WH-inversion. However, relaxing
the context-freeness assumption comes at the peril
of combinatorial explosion.

This work aims to transcend two limitations
associated with probabilistic context-free grammars.
First in the sense of the representations produced
by the parser, which allow constituents with
gaps in their yields (see figure 1). Building on
Kallmeyer and Maier (2010), we parse with a mildly
context-sensitive grammar (LCFRS) that can be
read off directly from a treebank annotated with
discontinuous constituents.

Secondly, the statistical dependencies in our gen-
erative model are derived from arbitrarily large frag-

S

VP

NP

ART NN VMFIN PIS VVINF

Die Versicherung kann man sparen
The insurance can one save

Figure 1: A discontinuous tree from the Negra corpus.
Translation: As for the insurance, one can save it.

ments from the corpus. We employ a Data-Oriented
Parsing (DOP) model: a probabilistic tree-substitution
grammar that employs probabilities derived from the
frequencies of all connected fragments in the tree-
bank (Bod, 1992; Bansal and Klein, 2010; Sangati
and Zuidema, 2011). We generalize the DOP model
to support discontinuity. This allows us to model
complex constructions such as NP kann man VVINF.

2 Motivation

Treebank grammars need not be mere exercises in
machine learning; they may be significant steps
toward cognitively viable models of human language
processing. To develop the enterprise of corpus-
based parsing in this more ambitious direction,
substantial questions must be faced—methodological
as well as technical ones.

All successful treebank grammars now employ
very large numbers of rules; these rules, extracted
from the corpus, are extremely specific and could
never be motivated by abstract linguistic con-
siderations. They either use large and complex
fragments of the corpus trees (the Data-Oriented
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Parsing approach), or they introduce specialized
non-terminal labels which encode non-local infor-
mation about the occurrence contexts of the nodes
(the symbol-refinement approach). (These two
methods are in fact not unrelated, as we shall discuss
below.) Both approaches use “grammars" in the
technical sense (bodies of rewrite rules), but not in
the linguistic sense. The grammars do not encode
general properties of the language, but specific
properties of the corpus. All interesting treebank
grammars are thus essentially exemplar-based. This
characterization applies even more unavoidably
to discriminative models that use the corpus trees
directly without any kind of intervening grammar.

The exemplar-based models implemented by
modern statistical parsers are of potential interest to
the theory of language cognition, because they are
the first formal alternatives to the rule-based models
espoused by modern linguistics. But the tests that
drive the development of statistical parsers are not
sufficient to establish their plausibility as cognitive
models. For corpus-based language processing work
to become more relevant to language cognition,
innovations are needed along several dimensions.
One of them is evaluation methodology. F1-scores
on labeled bracketings constitute a poor criterion of
excellence. More qualitative analyses are needed; we
must try to understand what works and what doesn’t.

In the present paper we do not deal with evaluation
methods, but we take up another, related point.
A precondition for a cognitively viable model of
exemplar-based syntactic processing, is a cognitively
viable definition of “syntactic Gestalts," i.e., of the
kinds of objects that occur in the corpus and that
are to be produced by the parser. It is customary to
employ “syntactic surface trees" for this purpose,
i.e., labeled trees with ordered branches, having
the words of the sentence as their leaves. When we
look at languages with a relatively free word order
(which often correlates with a relatively non-trivial
morphology), limitations of this approach become
apparent. In such languages, the intuitive “parts" of
the sentence need not coincide with contiguous sur-
face constituents. By introducing movement features
and allowing empty constituents, it is possible to
encode non-local connections inside ordered surface
trees; at the same time, functional feature labels may
be added to the surface-syntactic categories. This ap-

proach was taken in the Penn Treebank (Taylor et al.,
2003). In principle, this makes it possible to extract
functional structures from the corpus-trees, and also,
to evaluate parsers on their capacity to correctly
construct the functional structures of test sentences.
In practice, however, this is hardly ever done.

In English, the discrepancies between functional
structure and surface constituents are less prominent
than in many other languages. It is no coincidence
that this issue was first squarely faced by the de-
signers of the annotation conventions of the German
Negra and Tiger corpora (Skut et al., 1997; Brants
et al., 2002). They chose to use unordered trees
(with crossing branches), allowing discontinuous
constituents that correspond directly to the intuitively
perceived argument structures. A model using
a corpus annotated in this way, would be more
interesting from a cognitive point of view, because
it employs more plausible exemplars, and its output
can be compared with more meaningful “gold trees."

Much of the work that used the Tiger and Negra
corpora has failed to take advantage of this situation.
Typically, these corpora are converted into traditional
phrase-structure trees, so as to allow the application
of the standard American techniques that were
developed for English corpora. Exceptions were
Plaehn (2004) and Maier (2010). The current paper
follows up on that work, and integrates it with the
Data-Oriented Parsing approach.

3 Discontinuity

Our symbolic grammar is a Linear Context-Free
Rewriting System (Vijay-Shanker et al., 1987).
LCFRS was introduced to subsume a wide variety
of mildly context-sensitive formalisms (e.g., TAG,
CCG, and even synchronous CFG). Intuitively it
can be seen as a generalization of context-free
grammar to other structures: rules are context-free,
but instead of strings they rewrite tuples, trees or
graphs. In our case a non-terminal may cover a
tuple of discontinuous strings instead of a single,
contiguous sequence of terminals. The number of
components in such a tuple is called the fan-out of a
rule, which is equal to the number of gaps plus one;
the fan-out of the grammar is the maximum fan-out
of its rules. A context-free grammar is a LCFRS with
a fan-out of 1. For convenience we will will use the
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rule notation of simple RCG (Boullier, 1998), which
is a syntactic variant of LCFRS.

A LCFRS is a tuple G = 〈N,T, V, P, S〉. N is a
finite set of non-terminals; a function dim : N → N
specifies the unique fan-out for every non-terminal
symbol. T and V are disjoint finite sets of terminals
and variables. S is the distinguished start symbol
with dim(S) = 1. P is a finite set of rewrite rules
of the form:

A(α1, . . . αdim(A))→B1(X1
1 , . . . , X

1
dim(B1))

. . . Bm(Xm
1 , . . . , X

m
dim(Bm))

for m ≥ 0, where A, B1, . . . , Bm ∈ N ,
each Xi

j ∈ V for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Aj) and
αi ∈ (T ∪ V )∗ for 1 ≤ i ≤ dim(Ai).

Rules must be linear: if a variable occurs in a rule,
it occurs exactly once on the left hand side (LHS),
and exactly once on the right hand side (RHS). A
rule is ordered if for any two variables X1 and X2

occurring in a non-terminal on the RHS, X1 precedes
X2 on the LHS iff X1 precedes X2 on the RHS.

A rule can be instantiated when its variables can
be bound to spans such that for each component αi

of the LHS, the concatenation of its terminals and
bound variables forms a contiguous span in the input,
while the endpoints of each span are non-contiguous.

As in the case of a PCFG, we can read off
LCFRS rules from a treebank (Maier and Søgaard,
2008), and the relative frequencies of rules form a
maximum likelihood estimate, for a probabilistic
LCFRS (PLCFRS). The tree in figure 1 decomposes
into the following productions:

S(x0x1x2x3) → VP2(x0, x3) VMFIN(x1) PIS(x2)

VP2(x0, x1) → NP(x0) VVINF(x1)

NP(x0x1) → ART(x0) NN(x1)

ART(Die) → ε

NN(Versicherung) → ε

VVINF(sparen) → ε

VMFIN(kann) → ε

PIS(man) → ε

Discontinuous non-terminals are annotated with a
number indicating their fan-out, to satisfy the restric-
tion that each non-terminal type A can be mapped to
a unique fan-out by dim(A). A derivation proceeds
by instantiating rules with subsequences of terminals

in the input. Each non-terminal can be seen as a pred-
icate holding over part of the sentence. Following the
framework of deductive parsing (Nederhof, 2003), a
sentence is parsed in a sequence of weighted deduc-
tion steps aiming at the goal theorem, viz., the start
symbol covering the whole input in a single span.

Algorithm 1 A probabilistic agenda-based CKY

parser for LCFRS.
1: initialize agenda A with POS tags
2: while A 6= ∅
3: 〈I, x〉 ← item with lowest score on agenda
4: add 〈I, x〉 to C and F
5: for all 〈I ′, y〉 deduced from

{〈I, J〉, 〈J, I〉, 〈I〉 | J ∈ C}
6: if I ′ 6∈ A ∪ C
7: enqueue 〈I ′, y〉 in A
8: else if I ′ ∈ A ∧ y < score for I ′ in A
9: add I ′ with old score to F

10: update weight of I ′ in A to y
11: else
12: add 〈I ′, y〉 to F

This work employs an extended version of the
agenda-based CKY parser for LCFRS in Kallmeyer
and Maier (2010). The algorithm is Knuth’s
generalization of Dijkstra’s shortest path algorithm
to the case of hypergraphs, where the shortest path is
the Viterbi derivation and the hypergraph is the chart
defining possible derivations. A requirement of a
CKY parser is that rules are binarized; we also restrict
the parser to ordered rules for efficiency. The search
space of a PCFG can be explored systematically from
left to right with constituents of increasing size;
this is what makes typical CKY parsers efficient.
Unfortunately this approach does not translate to
LCFRS because discontinuous constituents can cover
any subsequence of the input. For this reason an
explicit agenda has to be used, which we order
by inside probability; alternatively the agenda can
employ figures of merit or A* heuristics, but this is
not explored in this work.

Our implementation1 produces an exhaustive
chart instead of stopping at the Viterbi derivation.
The pseudo-code is given in algorithm 1. The

1The parser including source code is publicly available from
http://github.com/andreasvc/disco-dop. Everything was
written in Python, with pre-processing and evaluation making
use of NLTK (Bird et al., 2009), and the parser and k-best
extraction making use of Cython (Behnel et al., 2011) to translate
Python code with static type annotations to native C code.

36



S

VP

NP VB NP

Daisy loved Gatsby

S

VP

NP VB NP

loved Gatsby

S

VP

NP VB NP

Daisy Gatsby

S

VP

NP VB NP

Daisy loved

S

VP

NP VB NP

Gatsby

S

VP

NP VB NP

Daisy

S

VP

NP VB NP

loved

S

VP

NP VB NP

S

NP VP

Daisy

S

NP VP

VP

VB NP

loved Gatsby

VP

VB NP

loved

VP

VB NP

Gatsby

NP

Daisy

VB

loved

NP

Gatsby

Figure 2: DOP1 fragments as extracted from the tree of “Daisy loved Gatsby.”

S

NP VP

VB NP

loves

NP

Daisy

NP

Gatsby

S

NP VP

VB NP

Daisy loves Gatsby

Figure 3: A DOP1 derivation. Note that “Daisy” becomes the subject, because fragments are combined with left-most
substitution.

parser makes use of an agenda A (implemented as
a priority queue with the decrease-key operation),
a chart C with Viterbi probabilities, and the full
chart F including suboptimal items. Both A and C
store items I defined by a category and a span, paired
with a weight x, while F stores weighted edges
between items, representing a shared parse forest.

The algorithm is deceptively simple. Most of the
work is in producing all items that can be deduced
from a given item and items in the chart. This in-
volves iterating over all grammar rules with matching
labels, and verifying whether the yields of particular
items can instantiate the rule. This can be optimized
by representing yields as bit vectors and first verify-
ing that the two yields do not overlap. The next step is
to walk through both bit vectors in parallel and verify-
ing the conditions for instantiating a rule. Rules that
can be instantiated are given a score that is the sum
of the weights (e.g., log probabilities) of their RHS.

Any LCFRS can be binarized (as required by the
CKY parser) and parsed in O(|G| · |w|3ϕ) time,
where |G| is the size of the grammar, |w| is the
length of the sentence, and ϕ is the fan-out after bina-
rization (Gómez-Rodríguez et al., 2009). The fan-out
may increase due to binarization, but in our exper-
iments this was no cause for concern. The degree
of the polynomial reflects the maximal number of
comparisons needed to determine whether a rule can
be applied; a binarized rule has three non-terminals
with ϕ components each in the worst case.

This stands in contrast to previous formalisms

for discontinuous parsing (Johnson, 1985; Plaehn,
2004), which have exponential time complexity.
The difference is that in a LCFRS, the productions
are formally context-free in the sense that they
are applied without knowledge of the rest of the
derivation, and they are restricted to cover certain
spans in a particular order, which avoids having
to enumerate the exponential number of possible
discontinuous spans or permutations of the sentence.

4 Data-Oriented Parsing

Data-Oriented parsing (DOP) was introduced by
Scha (1990) as both a cognitive and computational
approach to analyzing language in terms of exem-
plars instead of rules. Concretely this works by
allowing arbitrarily large fragments in the corpus
to recombine with each other. The intuition is that,
in terms of cognitive load, reuse is cheaper than
computation, so remembering fragments is more
effective than deriving them anew.

The first concrete DOP model was DOP1 (Bod,
1992). In DOP1, a fragment is defined as a connected
subset of nodes in a tree, such that for every non-
terminal node, the fragment either has all children
in common with the tree, or none. In the latter case
the node is a frontier node, which functions as a
substitution site (this is analogous to an open slot in a
construction). The weight of a fragment is its relative
frequency in the training data. Figure 2 illustrates
the DOP1 fragments extracted from the tree of an
example sentence. Note that the smallest fragments
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Figure 4: Discontinuous fragments as extracted from the tree of “is Gatsby rich?”
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Die Versicherung kann man sparen

Figure 5: A discontinuous DOP derivation of the tree in figure 1.

correspond to CFG productions, such that a CFG is
a DOP1 model restricted to fragments of depth 1.

A derivation is defined as a sequence of fragments
combined through left-most substitution. Left-most
substitution is defined for any two trees t1 and
t2, such that t1 has a frontier node labeled X and
root(t2) = X; the result of t1 ◦ t2 is a new tree
where t2 is substituted for the first frontier node
labeled X in t1. The probability of a derivation is
the product of the weights of its fragments. Figure 3
shows a derivation with the fragments in figure 2.

We can generalize the DOP1 model to the case of
discontinuous trees. By substituting an LCFRS for the
CFG backbone of DOP1, we obtain a discontinuous
DOP model—Disco-DOP. The Disco-DOP model
employs the same definition of a fragment, but
applies it to a broader class of trees. Figure 4 shows
the fragments extracted from a discontinuous tree.
Note that when a discontinuous node becomes
a frontier node, it specifies where its yield will
end up with respect to the yield of other nodes in
the fragment. Figure 5 shows a derivation with
discontinuous fragments of the tree in figure 1.

Parsing with all fragments explicitly is not pos-
sible, as there are exponentially many. One solution
is to select a subset of fragments (e.g., Sangati
and Zuidema, 2011). In this work we employ the
approach introduced by Goodman (1996, 2003), who
defines a PCFG which decomposes the probabilities
of fragments into several PCFG productions, such that

the same parse trees can be recovered as in a DOP

model with explicitly represented fragments. This
reduction generalizes straightforwardly to a PLCFRS.

Each node A in the training corpus is decorated
with a unique address Aj . Given a node Aj with
children Bk and Cl, the number of fragments headed
by Aj is given by aj = (bk + 1)(cl + 1). The total
number of subtrees (fragments) forA is given by a =∑

j aj . We also apply a normalization factor ā which
is the frequency of non-terminals of type A in the
training data. The probabilities of Disco-DOP deriva-
tions can then be encoded in the following reduction,
applied to each production in the training corpus:

Aj(~α) → B( ~αB) C( ~αC) (1/aj)

Aj(~α) → Bk( ~αB) C( ~αC) (bk/aj)

Aj(~α) → B( ~αB) Cl( ~αC) (cl/aj)

Aj(~α) → Bk( ~αB) Cl( ~αC) (bkcl/aj)

A(~α) → B( ~αB) C( ~αC) (1/(aā))

A(~α) → Bk( ~αB) C( ~αC) (bk/(aā))

A(~α) → B( ~αB) Cl( ~αC) (cl/(aā))

A(~α) → Bk( ~αB) Cl( ~αC) (bkcl/(aā))

Where ~α refers to the arguments of the LHS

non-terminal. Each addressed non-terminal rep-
resents an internal node of a fragment, while the
unaddressed nodes represent both the root and the
frontier nodes of fragments. The latter allow a switch
from one fragment to another during parsing, viz.
they simulate substitution sites of DOP fragments.
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S (20)

VP (4)

NP (3) VB (2) NP (3)

Daisy loved Gatsby

S (20)

VP@2 (4)

NP@1 (1) VB@3 (1) NP@4 (1)

Daisy loved Gatsby
1/20 S(x0x1)→ NP(x0) VP(x1)
4/20 S(x0x1)→ NP(x0) VP@2(x1)
1/20 S(x0x1)→ NP@1(x0) VP(x1)
4/20 S(x0x1)→ NP@1(x0) VP@2(x1)
1/4 VP(x0x1)→ VB(x0) NP(x1)
1/4 VP(x0x1)→ VB(x0) NP@4(x1)
1/4 VP(x0x1)→ VB@3(x0) NP(x1)
1/4 VP(x0x1)→ VB@3(x0) NP@4(x1)
1/4 VP@2(x0x1)→ VB(x0) NP(x1)
1/4 VP@2(x0x1)→ VB(x0) NP@4(x1)
1/4 VP@2(x0x1)→ VB@3(x0) NP(x1)
1/4 VP@2(x0x1)→ VB@3(x0) NP@4(x1)
1/3 NP(Daisy)→ ε
1/1 NP@1(Daisy)→ ε
1/2 VB(loved)→ ε
1/1 VB@3(loved)→ ε
2/3 NP(Gatsby)→ ε
1/1 NP@4(Gatsby)→ ε

S (20)

VP2 (4)

VB (2) NP (3) ADJ (1)

is Gatsby rich

S (20)

VP2@6 (4)

VB@7 (1) NP@9 (1) ADJ@8 (1)

is Gatsby rich
1/20 S(x0x2x1)→ VP2(x0, x2) NP(x2)
1/20 S(x0x2x1)→ VP2(x0, x2) NP@9(x2)
4/20 S(x0x2x1)→ VP2@6(x0, x2) NP(x2)
4/20 S(x0x2x1)→ VP2@6(x0, x2) NP@9(x2)
1/4 VP2(x0, x1)→ VB(x0) ADJ(x1)
1/4 VP2(x0, x1)→ VB(x0) ADJ@8(x1)
1/4 VP2(x0, x1)→ VB@7(x0) ADJ(x1)
1/4 VP2(x0, x1)→ VB@7(x0) ADJ@8(x1)
1/4 VP2@6(x0, x1)→ VB(x0) ADJ(x1)
1/4 VP2@6(x0, x1)→ VB(x0) ADJ@8(x1)
1/4 VP2@6(x0, x1)→ VB@7(x0) ADJ(x1)
1/4 VP2@6(x0, x1)→ VB@7(x0) ADJ@8(x1)
1/1 ADJ(rich)→ ε
1/1 ADJ@8(rich)→ ε
1/1 NP@9(Gatsby)→ ε
1/2 VB(is)→ ε
1/1 VB@7(is)→ ε

Figure 6: The pairwise Cartesian product of the productions in the original and the addressed tree gives the productions
in the reduction.

The use of the normalization factor is called the
Equal Weights Estimate; this formulation follows
Bod (2003). Goodman (2003) first suggested this
normalization but his formula appears to contain a
mistake, having aj in the denominator of the last four
rules instead of a. The normalization is intended to
counter the bias for large subtrees in DOP1—when all
fragments are considered, the majority will consist of
large fragments, which results in the majority of prob-
ability mass being assigned to rare, large fragments.

Intuitively, the reduction can be seen as state-
splitting in the limit. A state-split partitions a
non-terminal into two or more new non-terminals to
cover more specific and fine-grained contexts. Taken
to the extreme, we can keep splitting non-terminals
until each resulting non-terminal refers to one
specific occurrence of that non-terminal in a single
sentence, which greatly increases the amount of
hierarchical information that can be extracted and
exploited from the training corpus. This is exactly
what happens in Goodman’s reduction. Compared
to other automatic state-splitting approaches such
as latent variable grammars, this approach has the
advantage of being conceptually much simpler.

Figure 6 shows a concrete example of the reduc-
tion, using the tree from figure 1. The eight produc-
tions per node of the reduction can be considered as
the pairwise Cartesian product of the original pro-
duction and the one with addressed nodes. To get
the reduction of a complete tree, this operation is

applied to all productions of both trees in parallel.
The probabilities are derived from the number of sub-
trees, shown in brackets after the node labels. The
normalization step has been left out, for simplicity’s
sake. Productions without addressed nodes, i.e., the
original productions, will recur, and their probabil-
ities must be summed. In our case productions are
considered equivalent when both the non-terminals
and their arguments match.

The large number of non-terminals and pro-
ductions in this grammar make parsing with this
reduction inefficient. In order to optimize parsing
with the DOP reduction, we apply coarse-to-fine in-
ference in the spirit of Bansal and Klein (2010). The
principle is to parse first with a coarse grammar, in
this case the treebank PLCFRS, and use information
from the resulting chart to prune parsing with the full
grammar, in this case the DOP reduction. Figure 7 il-
lustrates the approach. The fine grammar is projected
onto the coarse grammar by mapping nodes Aj to
the original nodes A. Pruning is implemented by
blocking items 〈A,~a〉which are not part of the n-best
derivations in the coarse chart; such items are simply
prevented from entering the agenda. Although this
approach is reminiscent of re-ranking (Charniak and
Johnson, 2005), in our approach items can recom-
bine to form parse trees not present in the n-best
derivations. We use n = 50 in all experiments.

We aim at maximizing the chance of obtaining the
correct structure for a given sentence, viz. finding its
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(2)
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Figure 7: The coarse-to-fine inference. On the left are the
n-best derivations from the coarse chart. In the middle
the chart items (category and spans) extracted from those
derivations. On the right are all items for the fine grammar
that map to these coarse items. The latter will be the only
items allowed to enter the agenda when parsing with the
fine grammar.

most probable parse (MPP). In DOP the probability of
a parse tree is the sum of all its possible derivations.
However, as there can be exponentially many
derivations for each parse tree, finding the MPP is
NP-hard (Sima’an, 1996). Therefore the MPP must be
approximated with a restricted set of derivations: a
list of derivations is produced using the algorithm of
Huang and Chiang (2005) which efficiently extracts
the exact k-best list from an exhaustive chart with
Viterbi probabilities. We use k = 10, 000 in all
experiments. After this list is obtained, we sum the
probabilities of all derivations generating the same
parse tree by applying the projection, and select the
best one. Note that probabilities of DOP derivations
are spread over multiple derivations in Goodman’s
reduction. In our experiments the list of derivations
in the reduction often collapses to just 5 parse trees.

words train test
PLCFRS

rules
Disco-DOP

rules

≤ 15 9025 1015 24020 678659
≤ 25 14870 1639 53773 1769507
≤ 30 16490 1845 50381 1799797

Table 1: Number of sentences and rules.

5 Experiments

We evaluate on version 2 of the German Negra tree-
bank (Skut et al., 1997). Results are for models based
on splits of 90% training data and 10% test data.
The setup follows Kallmeyer and Maier (2010) as
much as possible. The parser is presented with (gold)
part-of-speech tags from the treebank. The DOP

model, however, does exploit its knowledge of lexical
dependencies by using fragments with terminals. In
a pre-processing step, function labels are discarded
and all punctuation is lowered to the best matching
constituent. Heads are marked using the head finding
rules for the Negra corpus used by the Stanford parser,
after which trees are binarized head-outward (Klein
and Manning, 2003a,b). The markovization setting is
v=1 (i.e., no parent annotation), and h ∈ {1, 2,∞},
dictated by efficiency concerns. Lower values for
h give better performance because they allow more
flat structures to be covered through re-combinations
of parts of different constituents. However, this
also greatly increases the number of possible edges
which have to be explored. For this reason we had to
increase the value of h for parsing longer sentences,
at the cost of decreased performance and coverage.
Figure 8 illustrates the binarization. With these set-
tings the grammar has a fan-out of 5 for the grammar
of up to 15 word sentences, and a fan-out of 7 for the
other two. Table 1 lists the size of the training & test
corpora and their grammars for the respective length
restrictions. Note that Kallmeyer and Maier (2010)
apply the length restriction before the 90-10 split,
but the difference is not more than 12 sentences.

X

A B C D E F

X

XA

XA,B

XB,F

XF,E

XE,D

XD,C

A B C D E F

Figure 8: A head-outward binarization with h=2 v=1
markovization; C is the head node.
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NEGRA words coverage LP LR F1 EX

Plaehn (2004): DPSG ≤ 15 96.04 73.61 72.72 73.16 39.0
Kallmeyer and Maier (2010): PLCFRS ≤ 15 - - - 81.27 -
This work: Disco-DOP v=1, h=1 ≤ 15 99.90 84.09 85.03 84.56 54.68
Kallmeyer and Maier (2010): PLCFRS ≤ 25 99.45 73.03 73.46 73.25 -
This work: Disco-DOP v=1, h=2 ≤ 25 98.90 78.26 79.37 78.81 39.11
Maier and Kallmeyer (2010): PLCFRS ≤ 30 97.00 72.39 70.68 71.52 -
This work: Disco-DOP v=1, h=∞ ≤ 30 96.59 73.05 74.93 73.98 34.80

Table 2: Results for discontinuous parsing on the Negra treebank.

Evaluation is performed using a generalization
of the PARSEVAL measures, which compares
bracketings of the form 〈A,~a〉 where ~a is the yield
described by a tuple of intervals (Maier, 2010); we
used Maier’s publicly available implementation.2

We use PARSEVAL, in spite of its serious shortcom-
ings (Rehbein and van Genabith, 2007), to enable
comparison with previous work. Unparsed sentences
are assigned a baseline parse with all tags directly
under the root node.

Our model performs consistently better than
previous results on discontinuous parsing; see
table 2 for the results, including comparisons to
previous work. Figure 9 plots the time required to
parse sentences of different lengths with v=1 h=2,
showing a strikingly steep curve, which makes clear
why parsing sentences longer than 25 words was
not feasible with these settings. The coarse-to-fine
inference appears to work rather well, apparently
displaying a linear observed time complexity on the
DOP grammar; unfortunately exhaustive parsing with
the coarse grammar forms a bottleneck. The total
time to parse was 1, 16 and 52 hours for 15, 25, and
30 words respectively, using about 4 GB of memory.

6 Remaining challenges

From these results it may appear as if the combina-
tion of the formalism and treebank parsing forms an
inherent barrier to parsing longer sentences. Even
Kallmeyer and Maier (2010), who employ a precom-
puted table of outside estimates, could not parse be-
yond 30 words, because of memory limitations. Their
four-dimensional table is indexed on non-terminals,
span length, length of gaps, and number of words to

2Cf. http://www.wolfgang-maier.net/rparse
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Figure 9: Efficiency as a function of the number of words
in the coarse (PLCFRS) and the fine stage (Disco-DOP).The
data are from parsing 10 Negra sentences, hand-picked
to illustrate the worst case.

the left and right. This implies a space complexity of
O(|N |·n3) where |N | is the number of non-terminals
and n the maximum sentence length. With approx-
imately 12,000 non-terminals as cited by Kallmeyer
and Maier (2010), a limit of 100 words per sentence,
and double precision, this implies a table of 96 GB.

Another issue is that it is not clear whether
obtaining k-best lists with these estimates works well
or is possible at all. Pauls and Klein (2009) present
an algorithm for extending an A* parser to a parser
that builds the k-best derivations during parsing, but
the estimates of Kallmeyer and Maier (2010) are
not monotone, a property which is assumed by Pauls
and Klein (2009). Monotonicity guarantees that the
Viterbi parse will be found first.

We consider extending the coarse-to-fine approach
to be more promising. Instead of only making the
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categories coarser, we can also resort to a coarser
formalism. Following Barthélemy et al. (2001), we
can extract a grammar that defines a superset of the
language we want to parse, but with a fan-out of 1.
Concretely, a context-free grammar can be read off
from discontinuous trees that have been transformed
to context-free trees by the procedure introduced
by Boyd (2007). Each discontinuous node is split
into a set of new nodes, one for each component;
for example a node NP2 will be split into two nodes
labeled NP*1 and NP*2 (like Barthélemy et al.,
we can mark components with an index to reduce
overgeneration). Because Boyd’s transformation
is reversible, derivations from this grammar can be
converted back to discontinuous trees, and can guide
parsing with the LCFRS. Results with this approach
will be reported in future work.

Aside from these technical issues, many linguistic
features have been glossed over in this work to
limit its scope. A proper parser and evaluation
should work with grammatical functions as well, and
parsing languages with less strict word-order implies
that morphology provides important information
about constituents that have been moved or extra-
posed. Movement and extraposition could also be
modeled statistically, which can reduce data sparsity.
Scrambling is known to be beyond the power of
LCFRS (Becker et al., 1992); however, the question
is whether it needs to be part of the formalism at all.
As the work of Tsarfaty (2010) shows, it is possible
to incorporate morphology, grammatical functions,
and word-order in a statistical model built on a PCFG

backbone. Perhaps this approach could be combined
with the work presented here, such that it can produce
discontinuous structures using LCFRS, and to weaken
its independence assumptions through a DOP model.

7 Conclusion

A data-oriented model of discontinuous phrase-
structure has been presented which outperforms
all previously published results. This has been
achieved by combining a variety of techniques: a
linear context-free rewriting system as the symbolic
grammar, data-oriented parsing as the probabilistic
framework, a general method for enumerating
k-best derivations from a chart, and a coarse-to-fine
optimization to tame the complexity of DOP.

It turns out that using a grammar formalism with
a parsing complexity that is well beyond cubic is not
an impediment for making a DOP model with consid-
erably better performance. The remaining difficulty
with parsing longer sentences lies squarely on the
side of discontinuity, not DOP. It is quite plausible
that further innovations in binarization, pruning and
estimates will enable parsing longer sentences.
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Abstract

In this paper, we investigated the impact of ex-
tracting different types of multiword expres-
sions (MWEs) in improving the accuracy of a
data-driven dependency parser for a morpho-
logically rich language (Turkish). We showed
that in the training stage, the unification of
MWEs of a certain type, namely compound
verb and noun formations, has a negative ef-
fect on parsing accuracy by increasing the lex-
ical sparsity. Our results gave a statistically
significant improvement by using a variant of
the treebank excluding this MWE type in the
training stage. Our extrinsic evaluation of
an ideal MWE recognizer (for only extracting
MWEs of type named entities, duplications,
numbers, dates and some predefined list of
compound prepositions) showed that the pre-
processing of the test data would improve the
labeled parsing accuracy by 1.5%.

1 Introduction

Multiword expressions are compound word forma-
tions formed by two or more words. They gener-
ally represent a different meaning than the words
which compose them. The importance of detecting
multiword expressions in different NLP problems is
emphasized by many researchers and is still a topic
which is being investigated for different NLP lay-
ers (Kordoni et al., 2011). It is impossible to ne-
glect the importance for machine translation where
the translation of a MWE would be totally different
than the translation of its constituents. But the effect
of different MWE types on parsing accuracy is still

an open research topic and needs to be analyzed in
detail.

Hogan et al. (2011) recently give their prelim-
inary results on detecting named-entities and re-
ports no improvement in parsing accuracy for En-
glish. Nivre and Nilsson (2004) reports a 5% pars-
ing accuracy increase for Swedish by using a depe-
dency parser which uses a memory-based learner as
its oracle. In this study, they only focus on multi-
word names and compound function words. Caffer-
key (2008) reports very small (falling short of their
initial expectations) but statistically significant im-
provements for a PCFG parser (on English). Ko-
rkontzelos and Manandhar (2010) reports an im-
provement of sentence accuracy 7.5% in shallow
parsing by concentrating on MWE of types com-
pound nominals, proper names and adjective noun
constructions. The conflicting results and the differ-
ence in success ranges may be caused by many fac-
tors; such as the parsing paradigm, the language in
focus, the MWE types used in the experiments and
the evaluation metrics.

In this study, we are making a detailed investiga-
tion of extracting different MWE classes as a pre-
processing step for a statistical dependency parser
(MaltParser v1.5.1 Nivre et al. (2007)). We con-
ducted our experiments on Turkish Dependency
Treebanks (Oflazer et al., 2003; Eryiğit, 2007).
We semi-automatically created different versions of
the data by manually annotating and classifying
MWEs. We made an in depth analysis of using the
new treebank versions both on training and testing
stages. We evaluated the parser’s performance both
on MWEs and the remaining parts of the sentences.
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Our results showed that different MWE types
have different impacts on the parsing accuracy. For
Turkish, we showed that the preprocessing of com-
pound verb and noun formations causes a consid-
erable decrease in accuracy. We also demonstrated
that a MWE extractor which finds the MWEs from
the remaining types would make a significant im-
provement for parsing. For now, it is not possible to
generalize the results for other languages and pars-
ing paradigms. But we believe, we present a system-
atic approach for evaluating the scenario.

2 Motivation

Eryigit et al. (2008) in their article “Dependency
Parsing of Turkish” points out to a decrease of nearly
4 percentage points when they test their parser on
the raw data. Although they only look at this de-
crease from the point of the errors caused by parts-
of-speech (POS) tagging, the decrease could actu-
ally be due to two reasons: 1. The errors caused by
the automatic POS tagging, 2. The lack of MWE
handling which exists in the gold standard. In this
study, we will focus on to the second item and on
the improvement that could be reached by handling
MWEs. With this purpose, we are asking and an-
swering the following questions during the remain-
ing of the paper:

1. What is the success of available MWE extrac-
tors on detecting the MWEs manually anno-
tated in the treebank?

2. When we analyze the “false positives”1 of the
MWE extractors, we see that most of them are
actually valid MWEs. Should we as well man-
ually annotate these in the treebanks?

3. When we decide to annotate these MWEs2,
the results of the automatic parsing become
worse then the previous results with the orig-
inal treebank. Should we concentrate on differ-
ent MWE types?

The paper is structured as follows: Section 3
makes a short description of the Turkish language.
Section 4 presents the configuration used in our ex-
periments. Section 5 gives our experimental results.

1the group of words which are tagged as MWEs by the au-
tomatic analyzers but not in the current treebanks (somehow
missed by the human annotators).

2described in the 2nd item

Section 6 gives our conclusion and comments for fu-
ture works.

3 Turkish

Turkish is an agglutinative language with a very
rich morphological structure. The dependencies be-
tween the words constructing a sentence is almost
entirely head-final in the written text. The deriva-
tional and inflectional richness of the language re-
sults in shorter sentence lengths when compared to
other languages (8.16 words/sentence3). In simi-
lar studies, the Turkish words are most of the time
analyzed as a sequence of one or more inflectional
groups (IGs). Each IG consists of either a stem or
a derivational suffix plus all the inflectional suffixes
belonging to that stem/derivational suffix. The head
of a whole word is not just another word but a spe-
cific IG of another word. Figure 1 shows the IGs
in a simple sentence: “k̈uçük odadayım” (I’m in the
small room). The word “odadayım” is formed from
two IGs; a verb is derived from an inflected noun
“odada” (in the room). In the example, the adjec-
tive “küçük” (small) should be connected to the first
IG of the second word. It is the word “oda” (room)
which is modified by the adjective, not the derived
verb form “odadayım” (I’m in the room). So both
the correct head word and the correct IG in the head
word should be determined by the parser.

Figure 1: Word and dependency representations
A1sg = 1sg number/person agreement, A3sg = 3sg num-
ber/person agreement, Loc = Locative case, Pnon = No pos-
sessive agreement, Pres = Present Tense

These properties of the language makes it very

3where the number differs between 13.16-27.7 for other lan-
guages (Nivre et al., 2007)
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hard for dependency parsing4. Buchholz and Marsi
(2006) reports the Turkish Treebank having the
highest number of different surface forms and the
second with new lemma within 13 different lan-
guages. As a result, any change on lexical repre-
sentation could end up with severe lexical sparsity
problems.

4 Configuration

4.1 Parser

We are using MaltParser v1.5.1 (Nivre et al., 2007)
which is a data-driven dependency parser whose
success is reported to be very high across a vari-
ety of different languages (Nivre et al., 2006). For
the repeatability of the results we used exactly the
same feature representation and parser options from
Eryigit et al. (2008) . The cited reference gives these
options in details so we do not repeat them here
again. The parser’s current version uses a support
vector machine (SVM) classifier for predicting the
parser’s actions. The usage of SVM in this area has
been proven to be very successful. And we know
that the parser’s capability is very high at learning
many syntactic structures especially the ones with
shorter distances. In the following sections, we will
see that the extraction of MWE types where the
parser is already good at determining have a negative
effect on parsing accuracy by increasing the lexical
sparsity.

4.2 Data Sets

In our experiments, we are using the METU-Sabancı
Turkish Treebank (Oflazer et al., 2003) which con-
sists of 5635 sentences (in Conll format). The
second column of Table 1 gives the statistics for
the original treebank (Vo); there exist 2040 MWEs
which are manually combined into single units. Fig-
ure 2-a gives the symbolic representation of MWEs
in the original treebank. In the figure, w1 w2 w3 are
the three constituents of a MWE and are collapsed
into a single unit (by the use of underscores) which
acts as a single word in the dependency structure.
We created 3 new versions of the treebank:

1. Detached Version (Vd): is the version where
the annotated MWEs are detached and a new

4Interested reader may refer to Eryigit et al. (2008) for de-
tailed examples.

a)

b)

Figure 2: MWE representation in the Turkish Treebank
(picture drawn with MaltEval TreeViewer(Nilsson and Nivre,
2008))

dependency type “MWE” is created between
the MWE constituents (Figure 2-b). The strat-
egy that is adopted while creating these de-
pendencies is to connect the last IG of the de-
pendent to the first IG of the head except for
compound functional words (explained later in
this section). In the treebank, the gold-standard
POS tag and inflectional features given for the
MWE in focus is only valid for the last con-
stituent of that MWE. After the detachment
process, we need to assign the correct tags (to-
ken index, lemma, surface form, postag, inflec-
tional features, dependency type and head in-
dex) to the new coming IGs (words are con-
structed from one or more IGs each having
their own tags). In order to select the correct
postags, we passed these words from a morpho-
logical analyzer (Oflazer, 1994) and then man-
ually disambiguated the ones having more than
one possible analyses (1265/2437 words). Af-
ter this stage, we created the new tags, inserted
them to the sentences and renumbered the to-
ken indices, incoming and outgoing dependen-
cies within the remaining of the sentence.

2. Enlarged Version (Ve): We needed to create
the following two versions of the treebank dur-
ing the evaluation of the automatic MWE ex-
tractors that will be introduced in the follow-
ing section. In order to create version Ve,
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Turkish Treebank
Validation Set

Version Vo Vd Ve Ve-o

# of sentences 5635 5635 5635 5635 300
# of tokens 65184 67803 63318 65887 4513
# of words inc. punctuations 53992 56424 52267 54642 3610
# of words exc. punctuations43572 45999 41847 44217 3080
# of combined collocations 2040 0 3674 1697 89

Table 1: Data sets’ statistics: Version (Vo - Version Original; Vd - Version detached; Ve - Version enlarged; Ve-o -
Version enlarged excluding the combined collocations of Vo)

we first extracted a MWE list consisting the
30150 MWEs available in the Turkish Dictio-
nary (TDK, 2011) and then automatically listed
the entire treebank sentences where the lemmas
of the co-occurring words could match5 the
lemmas of the MWE constituents in the list. We
manually marked the sentences where the co-
occurring words may be actually accepted as
a MWE (but somehow missed during the con-
struction of the treebanks) and then automat-
ically combined these words into single units
and renumbered the token indices and incom-
ing and outgoing dependencies within the re-
maining of the sentence. By this process, 1697
new MWEs are added to the treebank (Table 1).

3. Version Ve-o: is the treebank version where
only the MWEs coming from the dictionary are
annotated over the detached version. In other
words, the annotated MWEs in Ve-o is the rel-
ative complement of Vo in Ve.6

Table1 gives the statistics for all the versions and
the validation set (Eryiğit, 2007). We see from the
table that different versions change the number of
tokens and dependencies that should be discovered
by the parser; as an example Vd increases the de-
pendency number that will be evaluated from 43572
to 45999. In Table 1, the difference between # of
combined collocations 1697 and 3674-2040 are due
to overlapping MWEs consisting 2 or more words.

In the Turkish Treebank, there exists a very small
amount (54) of compound functional words which

5The lemmas of the words in the treebank are gold-standard.
But in order to create the possible lemmas for the MWE con-
stituents of the dictionary list, we used a morphological ana-
lyzer.

6Thus this version similarly to the version Vd, consists also
a new dependency label “MWE”.

are combined into a single unit. These are mostly
the conjunctions which has an extra -da/-de/-ki encl-
itics written on the right side of and separately from
the conjunction they attach to. We see that since
these head-initial dependencies do not obey the gen-
eral head-final dependency tradition of the treebank,
only this type of compound functional words are
preferred to be combined into single units in the con-
struction phase of the treebank. While creating the
detached version, we only process these differently
and detach them in a head-initial manner.7 Figure 3
shows the detachment for the “ya da” (or) conjunc-
tion.

Figure 3: The detachment of Combined Functional
Words

4.3 MWE Extractors

In order to understand the structure of the data in
hand and the behavior of the current MWE extrac-
tors on it, we evaluated the success of two different
MWE extractors. Table 2 gives the precision, recall
and F values. All the experiments have been con-
ducted on the detached version of the treebank and
evaluated both on the original and enlarged versions.

7In our preliminary tests, we have detached these as regular
MWEs and observed that the parser tends to find the actually
correct dependencies but we penalize it unnecessarily.
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The first MWE extractor is the rule based processor
of Oflazer et al. (2004). For the second one, we
developed a MWE checker by using the dictionary
MWE list described in the previous section. Due
to the inflectional structure of Turkish, MWE con-
stituent words go under inflection as well. That’s
why we tried 3 different models while catching the
MWEs in the treebank:

• Model 0: The co-occurring words in the tree-
bank sentences are accepted as a MWE if and
only if they have the exact surface forms with
the MWE’s constituents in the dictionary list.

• Model 1: Only the last constituent of the MWE
is allowed to go under inflection (the ones at the
beginning should have exactly the same surface
form).

• Model 2: All of the constituents are allowed to
be inflected.

Ofl.(2004) Mod.0 Mod.1 Mod.2

Vo
P 57.27 27.54 35.00 28.43
R 30.93 12.22 46.29 49.48
F 40.17 16.93 39.86 36.11

Ve
P 75.09 90.15 84.93 73.52
R 22.54 22.24 62.45 71.15
F 34.68 35.68 71.97 72.32

Table 2: Performance of MWE Extractors: Ofl.(2004):the
MWE processor of Oflazer et al. (2004);Mod.x:Model x

We see from Table 2 that the results of the eval-
uation by using the version Vo is very low than ex-
pected; the highest F score that could be obtained
with Ofl.(2004) is 40.17 and the dictionary list is
39.86. When we look at the cause, we notice that
many of the compound verb and noun formations in
the Turkish Dictionary are not marked in the original
treebank and that causes very low precision scores
(Mod.0 27.54). In order to alleviate this problem
and with the hope to achieve better results in pars-
ing accuracy, we created the version Ve of the tree-
bank described in the previous section. By evalu-
ating with this new version of the treebank, we see
that the precision values are increased drastically for
all of the models; Ofl.(2004) from 57.27→ 75.09,
Mod.0 from 27.54→ 90.15. The recalls are still low
for many of the models; Mod.2 with the highest re-
call value. The next section will search the answer

of the question what will happen to the parsing per-
formance if we develop a perfect MWE recognizer
with an F score of 100%.

5 Experiments

We have four sets of experiments. Before introduc-
ing them, we will first explain our evaluation strat-
egy.

5.1 Evaluation Metrics

We exactly follow the evaluation metrics used in
Eryigit et al. (2008): We use ten-fold cross-
validation in the experiments on the treebank (ex-
cept the experiments on the validation set). We re-
port the results as mean scores of the ten-fold cross-
validation, with standard error. The main evalua-
tion metrics that we use are the unlabeled attachment
score (ASU ) and labeled attachment score (ASL),
namely, the proportion of IGs that are attached to
the correct head (with the correct label forASL).
A correct attachment is one in which the dependent
IG (the last IG in the dependent word) is not only
attached to the correct head word but also to the cor-
rect IG within the head word. We also report the (un-
labeled) word-to-word score (WWU ), which only
measures whether a dependent word is connected
to (some IG in) the correct head word. We will re-
fer to this metric (WWU ) especially while evaluat-
ing the dependencies between MWEs’ constituents
since we are automatically creating these dependen-
cies (thus automatically selecting the IG to which
the dependent will be connected). Where relevant,
we also test the statistical significance of the results.

5.2 Evaluation Type

In order to see the impact of different approaches,
we are making 3 different evaluations:

1. overall;ASU , ASL, WWU scores provided

2. the dependencies with “MWE” labels (appear-
ing after the detachment of MWE units Figure
2-b): ASU , precision, recall,WWU scores pro-
vided

3. the dependencies excluding the ones with
“MWE” labels (the surrounding structure in the
sentence):ASU , ASL, WWU scores provided
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5.3 Experiment Set I

In this set of experiments we first repeated the re-
sults of Eryigit at al. (2008) with the new Malt-
parser version. And then, tested the trained model
on the different treebank versions that we had pre-
pared. The first two lines of Table 3 gives the results
reported in Eryigit at al. (2008); the second line is
their results on the raw data where the pos tagging
has been done by using an automatic analyzer. The
fourth line gives our results when we test our parser
on the detached version of the treebank. We see that
our results on this version are better than the results
obtained with raw data (73.3 - 74.7ASU ) since we
are using gold standard pos tags in order to be able
to focus on the errors caused by the lack of MWE
annotation. So, if we compare the tests on Vo with
Vd, we see that the parser’s performance drops from
76.1 to 74.7 (-1.4) inASU , 83.0 to 81.8 (-1.2) in
WWU and 67.4 to 63.3 (-4.1) inASL. We provide
two values for the labeled accuracy on Vd: Since
there is not any dependency with “MWE” label in
the training model trained with the original treebank,
it is impossible for the parser to assign correct labels
to this kind of dependencies. If we accept all the la-
bels assigned to these dependencies as correct than
we will obtain a labeled accuracy of 66.5 given after
the slash in theASL cell. And in this case, the drop
in labeled accuracy would be 0.9. Of course this is
a very optimistic evaluation but the real labeled ac-
curacy should be something in between these two if
the parsing model have already seen this dependency
type.

tested on ASU ASL WWU

Ery.(2008)
76.0±0.2 67.0±0.3 82.7±0.5

Vo
Ery.(2008)

73.3±0.3 63.2±0.3 80.6±0.7
Raw Data
Vo 76.1±0.2 67.4±0.3 83.0±0.2

Vd 74.7±0.2 63.3/66.5±0.3 81.8±0.2

Ve 75.5±0.2 66.7±0.3 82.5±0.2

Ve-o 74,0±0,2 62,4/65.7±0,3 81,1±0,1

Table 3: The parser’s performance trained on the original
treebank (Vo)

The fifth line of the Table 3 gives the results on
the enlarged version of the treebank. We see that al-

though the results are higher than Vd, they are not
as good as Vo. From here, we understand that by
collapsing some words into single units, we disap-
peared some of the dependencies where the parser
was already very successful at finding; the average
scores were getting higher by the success coming
from this type of dependencies. As a final step in
this set of experiments, we tested our parser on ver-
sion Ve-o and saw that the results are worse than the
results on the detached version (Vd): Collecting the
new MWE components into single units gives worse
results than doing no MWE processing at all. But is
this just an illusion8 or is there really a bad effect on
the discovery of the remaining dependencies also?
Actually the results provided here is not enough for
answering this question. In order to see the exact
picture we should examine the results more closely
(Section 5.5).

5.4 Experiment Set II

In this set of experiments, we are looking at the re-
sults by using the new treebank versions in the train-
ing stage as well. Table 4 shows that in all of the test
set combinations, the worst results are obtained by
training with the enlarged treebank (Ve).

train. test. ASU ASL WWU

Vo
Ve 75.5±0.2 66.7±0.3 82.5±0.2

Vo 76.1±0.2 67.4±0.3 83.0±0.2

Vd 74.7±0.2 63.3±0.3 81.8±0.2

Vd
Ve 75.3±0.2 65.9±0.3 82.4±0.2

Vo 76.0±0.2 66.7±0.3 82.9±0.1

Vd 76.0±0.2 65.9±0.3 82.7±0.2

Ve
Ve 75.3±0.2 66.7±0.3 82.3±0.2

Vo 75,7±0.2 67,1±0.3 82,7±0.2

Vd 74.3±0.2 63.0±0.3 81.4±0.2

Table 4: Parser’s performance by training and testing
with the different versions of the treebank

Table 4 shows that the results on the detached test
set (Vd) are better when trained by Vd (76.0±0.2

ASU ) rather than the original treebank Vo (74.7±0.2

ASU ). This means that the parser is better at find-

8caused by the removed dependencies after the combination
of the MWE constituents into single units in Ve-o: if the parser
was already highly successful at finding these, the combination
operation would certainly give the effect of a success decrease
in the average.
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ing the dependencies if it has samples from the same
genre. But again by just looking the results this way,
it is not possible to understand the situation entirely.

5.5 Experiment Set III

In order to be able to understand what is happen-
ing on the dependencies within MWEs and their sur-
rounding structures, we are evaluating the results on
3 different ways described in Section 5.2. Table
5 gives the scores in all of thees three evaluation
types; The first column block states each training
and testing combination together with the number
of combined MWEs and the total number of depen-
dencies in the test sets. The second column block
gives the overall results of the parser. The fourth
column block lists the results obtained on the depen-
dencies (with MWE label) occurring between the
constituent words which appeared after the detach-
ment of the MWEs annotated on the original tree-
bank. The third column block gives the results ob-
tained on the remaining dependencies (excluding the
ones with MWE label). Example: The number of
MWE labeled dependencies is 0 for the Vo and 2427
for Vd meaning that the detachment of 2040 com-
bined MWEs (two or more words) on Vo resulted
to 2427 dependencies. Thus, the average number of
dependency per MWE is 1.19.

From the Table 5, we may now analyze the
parser’s performance in detail; We observe that the
parser’s performance (trained on the original tree-
bank) drops significantly when it is tested on the
detached version both on the overall results (76.1
→ 74.7ASU ) and excluding MWEs (76.1→ 75.9
ASU , 83.0→ 82.8WWU the difference is small but
statistically significant (McNemar p<0.01)). We see
that the tests on Ve-o not only causes a decrease on
the overall accuracy (74.7→ 74.0 ASU ) but also
a decrease on the dependencies excluding MWEs
(75.9→ 74.7 ASU ). Thus, we may say that the
combination of MWEs listed in the dictionary has
a harming effect on the determination of other syn-
tactic structures as well. On the other side, we ob-
serve that the combination of MWEs annotated in
the original treebank has a positive effect on the de-
termination of other syntactic structures (from Vd to
Vo theASU differs 75.9→ 76.1 but from Vd to Ve-o
theASU differs 75.9→ 74.7).

These results bring the question: “What is the dif-

ference between the dictionary MWE list and the
treebank MWE list?” In order to answer this ques-
tion, we manually classified the MWEs in the Turk-
ish treebank into six categories which are listed in
Table 6. The second column in the table lists the
number of MWEs in each categories, the third col-
umn lists the number of dependencies when we de-
tach these MWEs and the fourth column gives the
WWU scores on the dependencies from these spe-
cific MWE categories. We only look at theWWU

scores since the IG-based links are created automat-
ically and WWU scores is considered to be more
informative. The results are obtained with a parsing
model trained with Version Vd. (it is obvious that a
model trained with Vo won’t be able to find most of
these dependencies because of the lack of samples.)

MWE type #of MWEs #of Dep. WWU

Named ent. 618 941 83.7
Num. exp. 98 123 82.1
Comp. func. 54 54 5.6
Dup. 206 206 66.5
Comp. vn. 1061 1103 93.0

Table 6: Parser’s success on special MWE types:
Named Entities (Named ent.), Numerical Expressions
(Num.exp.), Compound function words (Comp.func.),
Duplications (Dup), Compound verb and noun forma-
tions (Comp.vn.)

We see from the Table 6, the parser is very bad
(5.6 WWU ) at determining the compound function
words (which are very rare) (Figure 3) and duplica-
tions9 (66.5WWU ). These dependencies could ac-
tually be easily discovered by a rule-based extractor.
The success on named entities (83.7) and number
expressions (82.1) could be considered as good but
one shouldn’t forget that the training and testing data
is from the same treebank and the sentences could
actually not be considered as random. Thus on a to-
tally unseen data, these results would be lower. But
again we believe a rule-based extractor for numer-
ical and date expressions could be developed with

9“These are partial or full duplications of the forms in-
volved and can actually be viewed as morphological deriva-
tional processes mediated by reduplication across multiple to-
kens.” Oflazer et al. (2004) Example: “uyur uyumaz” ((he)
sleeps (he) doesn’t sleep) the MWE meaning is “as soon as (he)
sleep”.
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Overall results Results Excl. MWE type Results on MWE
train test # of comb. # of dependencies(# of Dep= 43572) type dependencies
on on MWEs Dep. ASU ASL WWU ASU ASL WWU # of Dep. ASU P R WWU

Vo

Vo 2040 43572 76.1±0.2 67.4±0.3 83.0±0.2 n/c n/c n/c 0 n/a n/a n/a n/a
Vd 0 45999 74.7±0.2 63.3/66.5±0.3 81.8±0.2 75.9±0.2 67,2±0.3 82.8±0.1 2427 62.1 n/a n/a 73.1
Ve 3674 41847 75.5±0.2 66.7±0.3 82.5±0.2 n/c n/c n/c 0 n/a n/a n/a n/a
Ve-o 1697 44217 74,0±0,2 62,4/65.7±0,3 81,1±0,1 74.7±0.2 65.9±0.3 81.7±0.2 2369 60.7 n/a n/a 71.9
S1 976 44675 75,6±0,2 65,4/67.2±0,3 82,8±0,1 76.0±0.2 67.3±0.3 83.0±0.2 1103 72.1 n/a n/a 91.4
S2 770 44881 75,4±0,2 65,1/67.0±0,3 82,6±0,1 76.0±0.2 67.3±0.3 82.9±0.2 1309 67.2 n/a n/a 84.2
S3 716 44935 75,2±0,2 64,9/66.9±0,3 82,4±0,1 75.9±0.2 67.2±0.3 82.8±0.1 1363 64.6 n/a n/a 81.0

Vd

Vo 2040 43572 76.0±0.2 66.7±0.3 82.9±0.1 n/c n/c n/c 0 n/a n/a n/a n/a
Vd 0 45999 76.0±0.2 65.9/68.0±0.3 82.7±0.2 76.0±0.2 66.6±0.3 82.8±0.2 2427 81.6 71.3 57.2 86.2
Ve 3674 41847 75.3±0.2 65.9±0.3 82.4±0.2 n/c n/c n/c 0 n/a n/a n/a n/a
Ve-o 1697 44217 75.2±0.2 65.1/67.0±0.3 82.0±0.2 74.9±0.2 65.7±0.3 81.9±0.2 2369 79.9 73.4 55.4 84.6
S1 976 44675 76.0±0.2 66.2/67.8±0.3 82.9±0.2 76.0±0.2 66.6±0.3 82.9±0.2 1103 85.6 51.9 53.3 93.0
S2 770 44881 75.9±0.2 66.1/67.8±0.3 82.8±0.2 76.0±0.2 66.7±0.3 82.9±0.2 1309 82.1 55.7 52.2 88.9
S3 716 44935 75.8±0.2 65.9/67.7±0.3 82.6±0.1 76.0±0.2 66.6±0.3 82.9±0.2 1363 79.0 54.0 50.1 85.5

Table 5: Overall Parsing Results (on and outside MWEs) with different treebank versions:
n/c:no change with the previous results on the left column block (overall results); n/a:not available
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high success. The best performance (93.0) of the
parser is on the MWE of types compound verb and
noun formations. We see that this is the class with
the highest number of MWEs. And when we look at
the dependencies on the dictionary list, we see that
almost all of the MWEs are from this class; i.e. com-
pound verb and noun formations. So actually by cre-
ating the enlarged version (Ve) of the treebank, we
added 1697 more MWEs into this category where
the parser is already very good at discovering. So
what is going wrong when we combine these MWEs
into single units in the preprocessing step? Instead
of having an accuracy of 93% with automatic detec-
tion, we would have an accuracy of 100% with our
deterministic approach. The problem is that when
we do this we actually increase the lexical sparsity.
For example, the verb “etmek” (to do) in Turkish
may produce many MWEs such as “ikaz etmek” (to
warn), “buyur etmek” (to welcome), “fark etmek”
(to notice) and so on. And this is a very frequent
verb in Turkish; it occurs 388 times in the current
Turkish Treebank where in 340 of them it formed
a MWE (already annotated in the treebank). With
the addition of the dictionary list, 27 more MWEs
constructed with “etmek” is added to the treebank.
When we combine the MWEs constructed with this
verb into single units we are actually splitting its fre-
quency to many rarely occurring MWEs.

The next question is “If the addition of more
MWEs of type compound verb and noun forma-
tions caused an accuracy decrease in parsing perfor-
mance, could we obtain better or similar results by
detaching the MWEs from this type and leaving the
others as in the original?” If the answer is yes, then
we could develop type specific MWE extractors ac-
cording to the results. To answer our new question,
we tested on 3 new versions of the treebank which
consists the following subsets of MWEs:

• Subset 1 (S1)- Vo excluding MWEs of type
compound verb and noun formations (meaning
that only this type of MWEs are detached into
their constituents and the others are left com-
bined.)

• Subset 2 (S2)- S1 excluding MWEs of type du-
plications.

• Subset 3 (S3)- S2 excluding MWEs type com-
pound function words.

Table 5 gives the results for the subsets as well.
We see from the table that S1 has 1103 dependencies
with MWE label (of type compound verb and noun
formations). The unlabeled results of the tests on S1
are better than the tests on Vd, Ve, Ve-o and very
close to the results on Vo. This means that, a MWE
extractor concentrating only on the MWEs of type
named entities, numerical expressions, duplications
and some compound function words already anno-
tated in the treebank could obtain similar results to
the scores on the original treebank. But we see that
we still have a problem with labeled accuracies. The
addition of the new label increased the complexity
for the parser and caused false positive assignments
on dependencies from other types.

5.6 Experiment Set IV

To alleviate the problem observed in the labeled ac-
curacy, instead of assigning the new “MWE” label
to the detached MWEs, we developped a rule based
dependency label chooser which assigns an appro-
priate label to these dependencies obeying the Turk-
ish Treebank annotation approach. We have 16 rules
similar to the following one:
if DEPENDENCY LABEL eq ‘MWE’{
if HEAD’s POSTAG eq ‘Verb’
&& DEPENDENT’s POSTAG eq ‘Adverb’
then change MWE→ MODIFIER
}
We changed the MWE labels in S1 and Vd by using
this rule based dependency label chooser. Table 7
gives the results at the end of this operation.

train. test. ASU ASL WWU

Vo
Vo 76.1±0.2 67.4±0.3 83.0±0.2

Vd* 74.7±0.2 66.1±0.2 81.8±0.2

S1*
S1* 76.1±0.2 67.6±0.3 82.9±0.2

Vd* 75.3±0.2 66.7±0.2 81.9±0.2

Table 7: Parsing results with MWE labels replaced by the
label chooser

The results are as we expected. In the train-
ing stage, if we use our new version of the tree-
bank (S1*) (where we detached the MWEs of type
compound noun and verb formations) instead of the
original one, the results on raw data (Vd*) (2nd
and 4th lines of Table 7) became significantly bet-
ter (ASU andASL difference is statistically signif-
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icant with McNemar (p< 0.01)). We also vali-
dated this outcome by testing on the validation set.
Table 8 gives the results on both the original ver-
sion of the validation set (ITU-Vo) and the detached
version (ITU-Vd*). Although the small number of
available MWEs (only 89), we observe an improve-
ment by using the model trained with S1*. For
the first two lines the improvement is rather small
but statistically significant on labeled accuracy with
Mcnemar(p<0.05).

train. test. ASU ASL WWU

Vo ITU-Vo 80.42 72.47 84.55
S1* ITU-Vo 81.01 73.25 84.68
Vo ITU-Vd* 80.02 72.21 84.13
S1* ITU-Vd* 80.65 72.94 84.32

Table 8: Results on Validation Set
(The trained model is on the data of 9 cross validation fold; the
training set size is the same with other experiments)

Another outcome that could be observed from Ta-
ble 7 (by comparing the first and third lines of re-
sults) is that a MWE extractor for only MWEs of
types named entities, duplications, numbers, dates
and some predefined list of compound prepositions
would be enough for obtaining the results of the
gold-standard treebank (there is no statistically sig-
nificant results between these two lines). As a fi-
nal comment, we may conclude that the prepro-
cessing of the test data would improve the results
by nearly 1.5 in IG-based evaluations (74.7→76.1,
66.1→67.6) and 1.1 (81.8→82.9) in word-based
evaluation (2nd and 3rd lines of Table 7) if we also
train with S1* instead of the original treebank. One
should remember that there are in total 1324 fewer
dependencies (Table 5) in S1 compared to Vd. These
dependencies are expected to be discovered by the
MWE extractor.

6 Conclusion

In this paper, we made a detailed analysis on mul-
tiword expression extraction on parsing accuracy of
a statistical dependency parser. Our results showed
that different MWE types have different impacts on
the parser’s performance. During the experiments,
for the representation of MWEs in parsing data, we
used a highly adopted strategy and combined the

MWEs’ constituents into single units. But we ob-
served that when this approach is applied to the
MWE types that could already be determined by the
parser with a high success, the overall performance
is decreased instead of increasing. The reason is
mostly due to the lexical sparsity caused by the rep-
resentation of the MWEs (as a single unit).

Although the development of a high accuracy
MWE extractor was out of scope of this paper, dur-
ing the analysis of different MWE types, we ob-
served that most of them (which helped to increase
parsing performance) could be easily found by creat-
ing rule-based MWE extractors. As the future work,
we plan to develop such an extractor and evaluate
the real parsing performance by using it. Another re-
search topic will certainly be to investigate different
MWE representations (others than the combination
strategy).
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#",8' "#8' R-E0&' GIJJSM )*"0")2&0-N&' -#' 8&2"-,' 2*&'
.;&)-B-)'&00+0';"22&0#.'-#'?@(A"0.&0:'/&)&#2'<+0=.'
.%)*' ".' @"$"&' "#8' !"E-&' GIJJTM3' ' R-E0&' "#8'
?)H+#",8' GIJJUM3 V*"#$' "#8' 1,"0= GIJJUM3' P++'
"#8'1+,,-#.'GIJWJM3'*"E&'20-&8'2+'-C;0+E&'2*&';"0.5
-#$' "))%0")7' &-2*&0' 97' -#2&$0"2-#$' 2*&' 2<+';"0.&0.'
E-"'.2")=-#$3'&2):'+0'97' -#20+8%)-#$'9&22&0',&"0#-#$'
C+8&,.:

4#'2*-.'<+0='<&'207'2+'-#E&.2-$"2&'-B';"0.-#$'")5
)%0")7'%.-#$'?@(A"0.&0')"#'9&' -C;0+E&8'97';0+5
E-8-#$' -2' "' )+#.20"-#2'$0";*' -#.2&"8'+B' "' )+C;,&2&'

$0";*' 8%0-#$' 2*&' 8&0-E"2-+#' .2&;:' X%0'<+0=' -.' 0&5
,"2&8' 2+' Y&0$.C"' "#8' 1*&0073' GIJWJM3' <*&0&' 2*&7' 207'
.+C&2*-#$'.-C-,"0'2+'-#)0&".&';"0.&0' .;&&8:'>&'C+8-B7'
2*&'1*%5!-%5Z8C+#8.'",$+0-2*C'.%)*'2*"2'-2'<+%,8'
.2"02'<-2*'2*&'C+8-B-&8'$0";*'-#.2&"8'+B'"')+C;,&2&'
$0";*:'
",$+0-2*C' ".' 2*&' 6-#8-' 20&&9"#=' )+#2"-#.' [W\]'
#+#5;0+^&)2-E&' "0).' G?"##&C' &2' ",:3' IJJQM:'>*-,&'
<&'8+'#+2')*"#$&'2*&',&"0#-#$';*".&3 -2'<-,,'9&'-#5
2&0&.2-#$'2+'.&&'<*"2'&BB&)2')&02"-#',-#$%-.2-)'=#+<5
,&8$&' ",+#&' )"#' *"E&' +#' 2*&' +E&0",,' "))%0")7: F'
)+#.20"-#2 $0";*' -.' B+0C&8' 97' %.-#$' ,-#$%-.2-)'
=#+<,&8$&' +B' "' )+#.20"-#2' 9".&8' ;"0.-#$' .7.2&C
GY*"0"2-' &2' ",:3' IJJQM:'(*0+%$*'"' .&0-&.'+B' &D;&0-5
C&#2.' <&' B+0C%,"2&' 2*&' +;2-C",' )+#.20"-#2' $0";*'
2*"2'$-E&.'%.'2*&'9&.2'"))%0")7:'(*&.&'&D;&0-C&#2.'
.*+<' 2*"2'.+C&'+B' 2*&';0&E-+%.'?@(A"0.&0'&00+0.'
)"#' 9&' )+00&)2&8' )+#.-.2&#2,7:' 42' ",.+' .*+<.' 2*&'
,-C-2"2-+#.'+B'2*&';0+;+.&8'";;0+")*:

(*&';";&0'-.'"00"#$&8'".'B+,,+<.3'-#'.&)2-+#'I'<&'
90-&B,7'8-.)%..'2*&'#+2-+#'+B'"')+#.20"-#2'$0";*'B+0
"' .&#2&#)&L @&)2-+#' _' 8&.)0-9&.' 2*&' &D;&0-C&#2",'
.&2%;: (*& &D;&0-C&#2.'"0&'8-.)%..&8' -#'.&)2-+#'\3'
B+,,+<&8'97'2*&'0&.%,2.'"#8'+9.&0E"2-+#.'-#'.&)2-+#'
K:'>&'B-#",,7')+#),%8&'2*&';";&0'",+#$'<-2*'B%2%0&'
8-0&)2-+#.'-#'.&)2-+#'T:

C D9#&'0)"#',/0)1.

Y*"0"2-' &2' ",:3' GIJJQM' ;0+;+.&8 "' 2<+5.2"$&' )+#5
.20"-#2'9".&8'*790-8'8&;&#8&#)7';"0.-#$'";;0+")*'
B+0'B0&&'<+08'+08&0',"#$%"$&.:'(*&7'8-E-8&'2*&'2".='
+B';"0.-#$'-#2+' -#20"5),"%.",'"#8' -#2&05),"%.",'.2"$5
&.:'F2'&")*'.2"$&'E",&#)7 B0"C&.'B+0'E"0-+%.'*&"8.
GC"-#,7' B+0' E&09.' "#8' )+#^%#)2-+#.M' "0&' %.&8' 2+'
)+#.20%)2' "' )+#.20"-#2' $0";*:' (*&' ;"0.&0' )%00&#2,7'
%.&.' ),+.&' 2+' K_T' C"#%",,7' "##+2"2&8' E",&#)7
B0"C&.: (*& )+#.20"-#2'$0";* -.'2*&#')+#E&02&8'-#2+'
"#'-#2&$&0';0+$0"CC-#$';0+9,&C'2+'$&2'2*&';"0.&'"2'
&")*'.2"$&:'!&2'%.',++='"2'"'."C;,&')+#.20"-#2'$0";*'
B+0'"'6-#8-'.&#2&#)&:
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`-$%0&'W:'1+#.20"-#2'$0";*'B+0'.&#2&#)&'W:
GF,2*+%$*'"')+#.20"-#2'$0";*'*".'"0)',"9&,.3'2*&7'"0&'#+2'%.&8'-#'+%0'&D;&0-C&#2.:M

GWM'!"##$% &$% '""(')*$ +$,""%%% +'""-""%%
)*-,8 Z/a *"#8b<-2* 9"#"#" &"2
"./"%%%%%%%*0%%%%%%%%%%%1"-""
"#8 .,&&; AF@(

"2& 2*&'9"#"#" <-2*'*-.'*"#8 "#8'

`-$%0&'W' .*+<.' 2*&'W.2' .2"$&' "#8' 2*&'I#8' .2"$&'
1+#.20"-#2' $0";*' G1aM' B+0' ZD"C;,&' W:' R+2&' 2*"2'
2*&'"0).'-#'W.2'.2"$&'1a'"0&',+)",-N&8'2+'-#8-E-8%",'
),"%.&.: (*&'b/XX(b'#+8&'-.'0&c%-0&8'-#'+08&0'2+'
$&2'2*&';"02-",';"0.&'"2'2*&'&#8'+B'2*&'W.2'.2"$&: F,5
.+'#+2&'2*"2'-#'2*&'I#8'.2"$&'+#,7'2*&'-#2&05),"%.",'
0&,"2-+#.' "0&' )+#.-8&0&8' G*&0&' B-#-2&' E&09.' "#8' "'
)+#^%#)2-+#.M: 4#'.%)*'"'.)&#"0-+'W.2 .2"$&'"#8'I#8
.2"$&'1a.'"0&'8-.2-#)2'"#8'E"07'80".2-)",,7'-# .-N&:
(*-.')"#'9&'),&"0,7'.&&#'-#'`-$%0&'W:

(*&'1a'B+0'&")*'.&#2&#)&';0+E-8&.'2*&',-#$%-.2-)'
=#+<,&8$&'2*"2'<&'<-,,'%.&'-#'E"0-+%.'&D;&0-C&#2.'
-#' 2*-.';";&0:'>&')"#'%.&' 2*-.' -#B+0C"2-+#' -#' 2<+
<"7.d
"M 1+C;,&2&'1a'+0'.2"$& .;&)-B-)'1a')"#'9&'8-5

0&)2,7'%.&8'-#.2&"8'+B'"')+C;,&2&'$0";*'8%0-#$'
2*&'8&0-E"2-+#:

9M @;&)-B-)' -#B+0C"2-+#' B0+C'1a' )"#' 9&' %.&8' 2+'
;0%#&' +%2' )&02"-#' "0).' -#' 2*&' )+C;,&2&' $0";*'
<*-,&'0&2"-#-#$'+2*&0.:

`+0'2*&'&D;&0-C&#2.'8-.)%..&8'-#'2*-.';";&0'<&'
%.&'2*&',"22&0:'>&'#+2&'2*"2'",2*+%$*'1a'",.+ ;0+5

E-8&.'"0)',"9&,.3'B+0'",,'+%0'&D;&0-C&#2.'<&'"0&'+#5
,7')+#)&0#&8'<-2*'2*&'"22")*C&#2'-#B+0C"2-+#:'(*-.'
-.'9&)"%.&'2*&'.;"##-#$'20&&'&D20")2-+#'",$+0-2*C'-#'
?@(A"0.&0'%.&.'%#,"9&,&8'$0";*:'?@(A"0.&0'%.&.'
"'.&;"0"2&'),"..-B-&0'2+',"9&,'2*&'20&&.:

E FG130"<3#')*,;3'%1

F,,' 2*&' &D;&0-C&#2.' "0&' )+#8%)2&8' +#' 6-#8-:'>&'
%.&'2*&'8&;&#8&#)7'20&&9"#='0&,&".&8'".';"02'+B'2*&'
41XRIJWJ'2++,.')+#2&.2'G6%."-#'&2'",:3'IJWJM: (*&'
20"-#-#$' 8"2"' *"8' I3QS_ .&#2&#)&.:' H&E&,+;C&#2'
"#8 2&.2-#$ *"8'K\_'"#8'_IW .&#2&#)&.'0&.;&)2-E&5
,7: ?@(A"0.&0W <".' C+8-B-&8' .+' 2*"2' -2' )"#' %.&'
1a' 8%0-#$' 8&0-E"2-+#:'>&' %.&' 2*&' #+#5;0+^&)2-E&'
",$+0-2*C3' +08&0eW "#8' 20"-#-#$' =eK: >&' %.&' 2*&'
B&"2%0&' .&2' +;2-C-N&8' B+0' 6-#8-' 97' Y*"0"2-' &2' ",:'
GIJJUM: ZD;&0-C&#2.' <&0&' B-0.2' )+#8%)2&8' %.-#$'
20"-#-#$' "#8' 8&E&,+;C&#2' 8"2":' X#)&' 2*&' &D;&0-5
C&#2",' 8&.-$# <". B0+N&#3' +#,7' 2*&#' 2*&' 2&.2' 8"2"'
<".'%.&8:

H FG130"<3#'&

`+0' "# -#;%2 @' e'<J3'<W #3' -:&:' 2*&' .&2' +B' ",,'
<+08.'-#'"'.&#2&#)&3',&2'a@ 9&'2*&')+C;,&2&'$0";*3
"#8' 1a@ 9&' 2*&' )+#.20"-#2' $0";*' ;0+E-8&8' 97' 2*&
)+#.20"-#2';"0.&0:'!&2'R f<J3'<W #g'9&'2*&'

W?@('h&0.-+#'J:\9
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.&2'+B'E&02-)&.'-#'a@: Fa e R'D'R "#8'F1a R'D'R
-. 2*&'.&2'+B "0). -#'2*&'2<+'$0";*.:'F#'"0)'9&2<&&#'
<- "#8'<^3'.*+<#'".'G<-3<^M .-$#-B-&.'<- ".'2*&';"05
&#2'+B'<^: i -. 2*&'.&2'+B'",,'2*&'#+8&.'<*-)*'+))%0.
".'"')*-,8'-#'F1a: F,.+3 ,&2'1'9&'2*&'.&2'+B'",,'E&05
2-)&.' <*-)*' "0&' )+#^%#)2-+#.3' h' 9&' 2*&' .&2' +B' ",,'
E&02-)&.'<*-)*'"0&'E&09.3'P'9&'2*&'.&2'+B'",,'E&02-)5
&.'<*-)*'"0&'#+%#.3'A'9&'2*&'.&2'+B'",,'E&02-)&.'2*"2'
*"E&' "' )".&5C"0=&0j;+.25;+.-2-+# "#8' k' 9&' 2*&' .&2'
+B'"8^&)2-E&.:

(*&' .&2' +B' "0).' <*-)*' <-,,' 9&' ;0%#&8' B0+C' 2*&'
)+C;,&2&'$0";*'-#'&D;&0-C&#2'W'-.'.*+<#'-# ("9,&'
W: (*-.'C&"#. 2*"2'",,'2*&'"0).'-#'a'<-,,'9&';0%#&8'
&D)&;2'2*&'+#&. ;0&.&#2'-#'1a:

`+0'7'-#'id'
'''''''`+0'D'-#'@d'
'''''''''''''''4B' GD37M'-# F1ad'
'''''''''''''''''''''/&C+E&'GD37M'B0+C'Fa'

("9,&W:'ZD;&0-C&#2'W E",-8'"0).

`-$%0&'I:'4,,%.20"2-+#'+B'ZD;&0-C&#2'W

ZD;&0-C&#2'W'-.'-,,%.20"2&8' -#'`-$%0&'I:'@2&; W'
-.' "' ."C;,&' )+#.20"-#2' $0";*' B+0' "' .&#2&#)&' <-2*'
2*0&&'<+08.'<*-)*'"0&'0&;0&.&#2&8'".'W3 I'"#8'_:'4#'
.2&;' I' <&' ;0%#&' "0).' "))+08-#$' 2+' 2*&' 1+#.20"-#2'
$0";*: `+0'#+8&.'<*-)*'*"E&'#+';"0&#2.'-#'1a'<&'
=&&;' ",,' 2*&-0' -#)+C-#$' "0).' -#2")2' ".' .*+<# -#'
`-$%0&' I'<-2*' 8".*&8' "0).: 4#' .2&;' _'<&' "88' "0).'
B0+C'bb/XX(bb'2+'",,' 2*&'#+8&.:'(*&'B-#",'$0";*'
-.'%.&8'97'?@(A"0.&0'2+'&D20")2'2*&';"0.&'20&&'8%05
-#$'8&0-E"2-+#:

(*&';"0.&0'-#'&D;&0-C&#2'W'GZWM'+%2;&0B+0C&8'
2*&'9".&,-#&'OF@ GC+0&'8&2"-,. -#'.&)2-+#'KM:'`%05
2*&0'"#",7.-.'.*+<&8'2*"2'2*&';0%#-#$'9".&8'+#'ZW3
",2*+%$*'%.&B%,3 ",.+'*"8'.+C&'#&$"2-E&'&BB&)23'-:&:'
-2' ",.+';0%#&.'+%2'C"#7';+2&#2-",,7'E",-8'"0).' 2*"2'
<+%,8' *"E&' 9&&#' +0-$-#",,7 )+#.-8&0&8' 97'
?@(A"0.&0: (*0+%$*' &D;&0-C&#2.' I5U'<&' &D;,+0&'
-B' <&' )"#'C-#-C-N&' .%)* -#E",-8' ;0%#-#$:'>&' 8+'
2*-.'97'.7.2&C"2-)",,7')+#.-8&0-#$';"02.'+B'2*&'1a
"#8'%.-#$'+#,7'2*+.&';"02.'B+0';0%#-#$'a:

`-$%0&'_:'4,,%.20"2-+#'+B'ZD;&0-C&#2'I

ZD;&0-C&#2 I'G("9,&'I3'W.2 0+<M'9&$-#. <-2*'B+)%.5
-#$ +#')*-,8'#+8&.'<-2*';+.25;+.-2-+#.:'F,.+'-#)+05
;+0"2&8' "0&' 2*&' )+#^%#)2-+#' *&"8.:' @-#)&' "'1a' -.'
B+0C&8'9".&8'+#'&D;,-)-2' ,-#$%-.2-)' )%&.3' -2'C"=&.'
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.&#.&'2+'9".&'+%0'8&)-.-+#'<*&0&')+#)0&2&'-#B+0C"5
2-+#'-.'"E"-,"9,&: ZD;&0-C&#2'I'-.'-,,%.20"2&8'-#'`-$5
%0&'_:'ZD;&0-C&#2'_'G("9,&'I3'I#8 0+<M'%.&.'.-C-,"0'
)+#8-2-+#.3' &D)&;2' 2*&' )+#.20"-#2' +B' #+8&.' <-2*'
;+.25;+.-2-+#' -.' +#,7' +# #+%#' )*-,80&#:' Y7' 8+-#$'
2*-.'<&'"0&' 207-#$' 2+' &D;,+0& 2*&'C+.2'";;0+;0-"2&'
-#B+0C"2-+#'-# 2*&'1a:

`+0'7'-#'id'
'''''''`+0'D'-#'@d'
'''''''''''''''4B' F1ad'
'''''''''''''''''''''/&C+E&'GD37M'B0+C'Fa'
'''''''''''''''4B'' F1a'"#8'7 d'
'''''''''''''''''''''/&C+E&GD37M'B0+C'Fa'

`+0'7'-#'id'
'''''`+0'D'-#'@d'
''''''''''4B' F1ad'
'''''''''''''''''''''/&C+E&'GD37M'B0+C'Fa'

'''''''''''''''''''''/&C+E&GD37M'B0+C'Fa'

("9,&'I:'ZD;&0-C&#2'I "#8'_ E",-8'"0).

`+0''7'-#'id'
'''`+0'D'-#'@d'
''''''''''4B' F1ad'
'''''''''''''''/&C+E&'GD37M'B0+C'Fa'

'''''''''''''''''''''/&C+E&GD37M'B0+C'Fa'
("9,&'_:'ZD;&0-C&#2'\'E",-8'"0).

42'-.'-#2&0&.2-#$'2+'#+2&'2*"2'-#'&D;&0-C&#2'\'<&'"0&'
207-#$' 2+' ;0%#&' +%2' -#E",-8' "0).' 0&,"2&8' 2+' 2*&' "05
$%C&#2' .20%)2%0&' -#B+0C"2-+#' +B' "' E&09 GD hM
"E"-,"9,&'-#'"'1a: O.-#$'1a'+#,7'B+0'E&09",'"0$%5
C&#2.' <-2*' )".&5C"0=&0' )";2%0&.' E"0-+%.' E&09",'
",2&0#"2-+#.'C"#-B&.2&8'E-"')".&5C"0=-#$.:

ZD;&0-C&#2'K'"#8'T'&D2&#8.'&D;&0-C&#2.'\'"#8'_'
0&.;&)2-E&,7' 97' -#20+8%)-#$' "#' &D)&;2-+#' <*&0&' "'
#+%#' )*-,8' - <-2*' #+' )".&5C"0=&0' -.' )+#.-8&0&8'
+#,7' -B' 2*&0&' &D-.2.' +2*&0' ;+2&#2-",' )+#^%#)5
2-+#j"8^&)2-E",'*&"8'B+0'-:'X<-#$' 2+' 2*&'B0&&5<+08'
+08&0';0+;&027'+B'6-#8-3' -8&#2-B7-#$' 2*&'*&"8'+B' "'
#+%#'<-2*'#+')".&5C"0=&0'-.'"'0"2*&0'8-BB-)%,2'2".=:'
4#'.;-2&'+B' 2*&-0'"E"-,"9-,-27'C"#7'0+9%.2'$&#&0",-5
N"2-+#.' G2*"2' *&,;' 8-."C9-$%"2&' 0&,"2-+#.' <-2*'
#+%#.' <-2*' #+' )".&5C"0=-#$.M' .%)*' ".' "$0&&C&#2'
0&C"-#'%#&D;,+-2&8'8%0-#$' 20"-#-#$'GFC9"2-'&2'",:3'
IJWJM:' 4#' 2*-.' &D;&0-C&#2' 2*&0&B+0&3'<&'"0&' 207-#$'

2+' &#.%0&' 2*"2' 2*&' "C9-$%-27' +B' )+00&)2' *&"8.' B+0'
#+%#.'<-2*'#+';+.25;+.-2-+#'-.'#+2'0&.+,E&8'97'1a:

`+0''7'-#'id'
''''`+0'D'-#'@d'
'''''''''4B' F1ad'
'''''''''''''''''''''/&C+E&'GD37M'B0+C'Fa'

F1a'''"#8'GN 1'+0'N kM
'''''''''''''''''''''''''''''/&C+E&GD37M'B0+C'Fa'
`+0''7'-#'id'
'''''`+0'D'-#'@d'
'''''''''4B' F1ad'
'''''''''''''''''''''/&C+E&'GD37M'B0+C'Fa'

F1a'''"#8'GN 1'+0'N kM
'''''''''''''''''''''''''''''/&C+E&GD37M'B0+C'Fa'

("9,&'\:'ZD;&0-C&#2'K'"#8'T'E",-8'"0).

ZD;&0-C&#2.'I5T'+#,7')"2&0&8'2+'E&09",3')+#^%#)5
2-+#'+0'"8^&)2-E",'*&"8:'ZD;&0-C&#2'S'"#8'U'&D2&#8'
K' "#8' T' 2+' *"#8,&' #+C-#",' ;0&8-)"2&' *&"8.:' >&'
#+2&'*&0&'2*"2'2*-.'-#B+0C"2-+#'-.'#+2'+92"-#&8'B0+C'
2*&' 1a' "#8' -.' 9&-#$' 20&"2&8' ".' "' *&%0-.2-) 0"2*&0'
2*"#'*"E-#$'.+C&',-#$%-.2-)'E",-8-27:'(*&')+#.20"-#2'
;"0.&0'*".'E&07' ,-C-2&8' )+E&0"$&' B+0'#+C-#",';0&5
8-)"2&.'"#8' 2*&0&B+0&'<&')"##+2' 0&,7'+#' -2' B+0' 2*-.'
=-#8'+B'-#B+0C"2-+#:'(*&'*&%0-.2-)')+#.-8&0.'"';+.5
.-9-,-27'+B'"#'"22")*C&#2'9&2<&&#' 2<+')+#.&)%2-E&'
#+%#. "#8'8+&.'#+2'0&C+E&'.%)*'"0).'B0+C'2*&'a:

I -3&%*'& )#4,5"&(%&&"9#

`-$%0&' \ .*+<.' 2*&' 0&.%,2.' B+0' ",,' 2*&' &D;&0-C&#2:
(*&' 9".&,-#&' OF@' <".' UU:TT' "#8' 2*&' 9&.2' 0&.%,2'
<".'+92"-#&8'B0+C'&D;&0-C&#2'U'<-2*' 2*&'OF@'+B'
UQ:_W:'(*-.'-.'"#'-#)0&".&'+B'J:TK]:'(*&0& <".'",.+'
"#' -#)0&".&' +B' J:\K]' -#' 2*&' !F@:' ' F,,' 2*& -C5
;0+E&C&#2.'-#'2*& 0&.%,2.'<&0&'.2"2-.2-)",,7'.-$#-B-5

G;lJ:JW B+0'
-C;0+E&C&#2'-#'OF@M:
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`-$%0&'\:'OF@'+B'",,'2*&'&D;&0-C&#2.:

("9,&'K .*+<.'2*"2'2*&'-C;0+E&C&#2'-#'2*&'"))%5
0")-&.'-.'.;0&"8'")0+..'8-BB&0&#2'=-#8.'+B'0&,"2-+#.:'
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Abstract

Problems for parsing morphologically rich
languages are, amongst others, caused by the
higher variability in structure due to less rigid
word order constraints and by the higher num-
ber of different lexical forms. Both properties
can result in sparse data problems for statis-
tical parsing. We present a simple approach
for addressing these issues. Our approach
makes use of self-training on instances se-
lected with regard to their similarity to the an-
notated data. Our similarity measure is based
on the perplexity of part-of-speech trigrams of
new instances measured against the annotated
training data. Preliminary results show that
our method outperforms a self-training setting
where instances are simply selected by order
of occurrence in the corpus and argue that self-
training is a cheap and effective method for
improving parsing accuracy for morphologi-
cally rich languages.

1 Introduction

Up to now, most work on statistical parsing has been
focussed on English, a language with a configura-
tional word order and little morphology. The in-
herent properties of morphologically rich languages
include a higher variability in structure due to less
rigid word order constraints, thus leading to greater
attachment ambiguities, and a higher number of dif-
ferent word forms, leading to coverage problems
caused by sparse data. These issues pose a great
challenge to statistical parsing.

One sensible way to treat these issues is the de-
velopment of more sophisticated parsing models

adapted to the language-specific properties of mor-
phologically rich languages. Another, simpler ap-
proach, tries to overcome the problems outlined
above by expanding the training data. Possible ap-
proaches for expansion include self-training and ac-
tive learning.

For self-training a parser is trained on a seed
dataset of gold trees and applied to new text, either
coming from the same domain or, in the context of
domain adaptation, from a domain different from the
seed data. The parser output trees are then added to
the seed data and the parser is re-trained on its own
output. For the in-domain setting it is quite unin-
tuitive why this approach should work, as we only
add more of what the parser already knows, and we
also include a considerable amount of errors in the
training set.

Active learning, on the other hand, tries to expand
the training set by selecting those instances which
provide the parser with a high amount of new infor-
mation.1 The underlying idea is that those instances
have yet to be learned by the parser and thus will
support the learning process. These instances have
to be labelled by a human coder (often called the or-
acle) and then added to the seed data. The parser is
re-trained and new instances can be selected, based
on the new model. The intuition why this approach
should work is more straightforward than for the
self-training setting: we do provide the model with
new, unseen information and, assuming that our or-
acle is right, the amount of noise is kept to a mini-
mum. The great advantage of self-training, however,

1Common measures for data point selection are based on the
uncertainty of the model with regard to its own predictions.
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is that it is unsupervised, thus obviating the need for
human annotation.

In this study we test the potential of self-training
for parsing morphologically rich languages. We
present experiments for German, a language with
rich morphology (relative to English) and semi-free
word order, and show that self-training can improve
parsing accuracy when only a small amount of la-
belled training data is available. Furthermore, we
show that selecting sentences for self-training on the
basis of similarity to the training data is a good strat-
egy which can further improve results while avoid-
ing the downside of expensive human annotation.

The paper is structured as follows. Section 2 re-
ports on related work. Section 3 describes the setup
of our experiments and reports preliminary results.
In Section 4 we conclude and outline future work.

2 Related work

The question whether or not self-training can be em-
ployed to improve parsing accuracy and to over-
come sparse data problems has gained a lot of at-
tention in recent years. While training a generative
parsing model on its own output (Charniak, 1997;
Steedman et al., 2003) does not seem to work well,
McClosky et al. (2006a; 2006b) showed promising
results when combining the self-training approach
with a two-stage reranking parser model (Charniak
and Johnson, 2005). This triggered a number of
follow-up studies especially in the area of domain
adaptation (Bacchiani et al., 2006; Foster et al.,
2007; McClosky et al., 2010), where self-training is
used to adapt the parser to a target domain for which
no (or only a small amount of) annotated training
data is available.

(Reichart and Rappoport, 2007) are the first to re-
port successful self-training using a generative pars-
ing model only. They claim that the crucial differ-
ence to earlier studies is the size of the seed data
and the number of parser output trees added to the
training data. In their experiments they train a reim-
plementation of Collins’ parsing model 2 on a small
seed set of trees (100-2000 trees) from the WSJ and
add automatically parsed analyses for WSJ sections
2-21. Then they test their models on section 23 of
the WSJ and report a substantial improvement for
the in-domain self-training setting.

Discussion has focussed on the question of which
factors are responsible for the success (or failure) of
self-training. Reichart and Rappoport (2007) show
that the number of unknown words is a good indi-
cator of the usefulness of self-training when applied
to small seed data sets. McClosky et al. (2008) have
provided a thorough analysis and conclude that an
important source of improvement comes from see-
ing words already known to the parser in new con-
texts. A question which, until now, has not gained
much attention is the impact of language-specific
features on the effect of self-training.

Another strand of research related to our work is
that of cross-language adaptation of parsers, where
there exists labelled data for one language but
none (or only little) for the other. Zeman and
Resnik (2008) present cross-language adaptation of
a constituency parser by mapping the part-of-speech
tags from the source and target languages into a uni-
versal tagset, claiming that the similarities between
two closely related languages allow for abstraction
from the level of word forms. They apply their
method to Danish and Swedish, two closely related
languages, and present an f-score of 66.4% for con-
stituency trees for Swedish after having trained their
parser on data from the Danish treebank.

Sørgaard (2011) pushes this line of research fur-
ther and applies it to languages as different as
Arabic, Bulgarian, Danish and Portuguese. The
basic approach is similar to (Zeman and Resnik,
2008). Sørgaard (2011) delexicalises the treebanks
and maps the part-of-speech tags into one common
tagset. Crucial for the success of his approach is the
filtering of the training data. Sørgaard only trains on
the 90% of the source trees which are most similar
to the target language. As a similarity measure he
uses perplexity on the basis of POS ngrams. The
results are quite impressive. Despite the very dif-
ferent properties of the languages Sørgaard achieves
f-scores in the range of 50-75% on full-length sen-
tences.

We take up the idea of data point selection based
on similarity and apply it to our self-training sce-
nario. Is is not straightforward whether this strategy
will work or not, as it may seem to be diametrically
opposed to the idea of active learning, where the sys-
tem is provided with instances with a high informa-
tion content. Here, on the contrary, we select in-
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stances which are similar to the training data, which
might mean that they do not contribute new, useful
information for the parser. Nevertheless, we hope
that, since they are similar to what the parser already
knows, it might handle these instances reasonably
well and therefore the amount of noise added to the
training set will be small. At the same time we as-
sume with McClosky et al. (2008) that one important
factor in self-training is providing the parser with ad-
ditional context for already known words, and there-
fore presume that selecting similar sentences will
support the learning process.

3 Self-training experiments

3.1 Data

In our experiments we use data from two German
treebanks. We take syntactically annotated trees
from the TiGer treebank (Brants et al., 2002) and
raw text from the TüBa-D/Z treebank (Telljohann
et al., 2005). The TüBa-D/Z (Release 6) consists
of 55 814 sentences, TiGer (Release 2) includes 50
474 sentences. Sentence length in the two tree-
banks is comparable, with around 17 words per sen-
tence. TiGer is annotated with phrase structure trees,
dependency (grammatical relation) information and
POS tags, according to the Stuttgart Tübingen Tag
Set (STTS) (Schiller et al., 1995). The tree struc-
ture is flat and does not contain unary nodes as non-
local dependencies are encoded by the use of cross-
ing branches.

Both treebanks include German newspaper text,
coming from two different newspapers (Frank-
furter Rundschau and taz). Rehbein and van Gen-
abith (2007) showed that there are considerable do-
main differences between the two treebanks and that
the texts can easily be separated on the basis of the
distribution of part-of-speech tags in the two cor-
pora.

3.2 Preprocessing

We use the TiGer trees as our training data and the
sentences in the TüBa-D/Z for expanding the corpus.
Our setup is as follows.

First we normalised different forms of apostro-
phes in the text.2 Then we divided the 50474 trees

2TiGer uses “ and ‘ for opening and ” and ’ for closing dou-
ble quotes, TüBa-D/Z uses ‘ for opening and ’ for closing single

in TiGer into training and test set, following the pro-
posal described in Dubey (2004). We split the data
into 20 buckets by placing the first tree of the tree-
bank into bucket 1, the second tree into bucket 2,
and so on. We then combined the content of buckets
1 to 19 into the training set (47951 trees), and used
bucket 20 as our test set (2523 trees).

From the randomly ordered training set we cre-
ated 8 new training subsets of increasing size,
putting the first 5000 trees in the training set in sub-
set 1, the first 10000 trees in subset 2, and so on, up
to 40000 trees (subset 8). We resolved the crossing
branches in the TiGer trees by attaching the non-
head child nodes higher up in the tree, following
(Kübler, 2005).

3.3 Data point selection

In the next step we created language models for
each of the 8 TiGer training subsets on the basis of
the part-of-speech trigrams3 and computed the per-
plexity for each sentence in the TüBa-D/Z treebank
based on its part-of-speech trigrams. The TüBa-
D/Z POS tags used in our experiments have been
assigned using the RFTagger (Schmid and Laws,
2008). For TiGer, we used the gold POS tags.

Perplexity (Equation 1) is an information-
theoretic measure and can be used to assess the ho-
mogeneity of a corpus. It can be unpacked as the
inverse of the corpus probability, normalised by cor-
pus size. The perplexity of a sentence from the
TüBa-D/Z tells us how similar this sentence is to the
TiGer training data.

PP (W ) = N

√
1

P (w1w2...wN )
(1)

For each of the 8 subsets we selected the 25000
sentences from the TüBa-D/Z with the lowest per-
plexity, thus the TüBa-D/Z sentences most similar
in structure to the respective TiGer training subset.
Then we parsed the selected sentences and added
them to the TiGer training data (subsets 1-8). We
re-trained the parser and evaluated against the TiGer
test set, comparing the results against the perfor-

quotes but does not distinguish between opening and closing
double quotes.

3The language models were produced and calculated using
the CMU/Cambridge toolkit (http://mi.eng.cam.ac.
uk/prc14/toolkit.html).
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mance of the parser when trained on the original
subset from the TiGer treebank.

3.4 Parsing experiments

For our experiments we use the unlexicalised Berke-
ley parser (Petrov et al., 2006) and the lexicalised
form of the Stanford parser (Klein and Manning,
2003). The Berkeley parser is an unlexicalised la-
tent variable PCFG parser which uses a split-and-
merge technique to automatically refine the train-
ing data. The splits result in more and more fine-
grained subcategories, which are merged again if not
proven useful. We train a PCFG from each of the
8 training subsets by carrying out six cycles of the
split-and-merge process. The model is language-
agnostic. The Stanford parser provides a factored
probabilistic model combining a PCFG with a de-
pendency model. We use the Stanford parser in its
lexicalised, markovised form.4

Both parsers were trained on the syntactic nodes
of the trees only, stripping off the grammatical func-
tion (GF) labels from the trees. We add the GF
to the parser output in a postprocessing step, using
the method of (Seeker et al., 2010), and include GF
in the evaluation. Training the parser on syntactic
node labels without GF has the advantage of con-
siderably reducing the number of atomic labels in
the grammar. As a result, we obtain smaller gram-
mars which are more efficient for parsing, and we
also avoid sparse data problems. We also lose infor-
mation, but the treebank refinement techniques used
by the Berkeley parser easily recover this informa-
tion and thus yield comparable results for both set-
tings. As an additional benefit we avoid the problem
of multiple governable GF assigned to children of
the same parent node, an error occasionally made
by the Berkeley parser. The method by (Seeker et
al., 2010), on the other hand, uses linguistically in-
formed hard constraints to prevent these errors.

While we computed perplexity on the basis of the
gold POS tags in TiGer treebank and automatically
assigned POS tags to the TüBa-D/Z sentences, for
parsing we used raw text as input and let the parsers
assign their own POS tags.

4Parameters: hmarkov=1, vmarkov=2

3.5 Results

We compare the impact of self-training on parsing
accuracy for a lexicalised (Stanford) and an unlexi-
calised (Berkeley) parsing model. For self-training
we test the following settings: a) selecting new
training data from TüBa-D/Z based on perplexity,
adding the 25 000 parser output trees most similar
to the TiGer training subset (PERPLEXITY) and b)
adding the first 25 000 sentences from the TüBa-D/Z
(FIRST) to each of the TiGer training subsets.

Table 1 shows results for the different settings in-
cluding GF in the evaluation.5 In general, the results
for the Berkeley parser are much higher (according
to the PARSEVAL metric) than the results for the lex-
icalised version of the Stanford parser. The most
striking finding is that for the Stanford parser self-
training was not able to improve parsing accuracy
over the baseline of training the parser on the (much
smaller) TiGer training subsets only, while for the
Berkeley parser we get a significant improvement of
2.9% and 1.9% f-score for the two smallest train-
ing subsets. With increasing size of the training set
the gap between the results achieved on the original
TiGer training data and on the expanded training sets
becomes smaller, but even for the largest training set
we achieve a significant improvement of 0.9%.

While results for the Stanford parser are much
lower than the ones for Berkeley and self-training
fails to outperform the baseline in all cases, the gen-
eral trend for the self-training settings (PERPLEX-
ITY, FIRST) is the same. Selecting new training in-
stances on the basis of similarity helps mostly for
smaller data sets, while for the larger training sets
there does not seem to be a significant difference be-
tween the two settings. This finding is quite intu-
itive. In the self-training setting we have a trade-off
between new information provided to the parser and
noise added to the training set. For small training
sets new context information has a far higher im-
pact, while for training sets of increasing size we
already have more information in the labelled data,
and thus the gains from providing additional context
to the parser are lower than the harm we cause by

5For significance testing we use the Randomized
Parsing Evaluation Comparator provided by Dan Bikel
(http://www.cis.upenn.edu/˜dbikel/
software.html#comparator)
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subset 5000 10000 15000 20000 25000 30000 35000 40000
Stanford parser (BASELINE)

precision 57.77*** 62.22*** 64.32*** 65.57*** 66.18*** 66.38*** 67.34*** 68.13***
recall 61.24 . 64.37*** 65.85*** 66.81*** 67.17*** 76.29*** 68.07*** 68.81***
f-score 59.46 63.27 65.08 66.18 66.67 66.84 67.70 68.40

Stanford parser, self-trained (PERPLEXITY)
precision 55.02 59.89 62.43 63.20 63.82 64.86 65.61 66.53
recall 60.57 63.38 64.94 65.28 65.61 66.33 66.81 67.62
f-score 57.66 61.59 63.66 64.22 64.70 65.58 66.20 67.02

Stanford parser, self-trained (FIRST)
precision 54.60 59.89 62.42 63.34 64.36 64.93 65.94 66.75
recall 60.20 63.52 64.85 65.42 66.11 66.49 67.17 67.86
f-score 57.26 61.65 63.61 64.36 65.22 65.70 66.55 67.30

Berkeley parser (BASELINE)
precision 63.39 66.65 69.16 70.50 71.03 72.54 72.79 73.06
recall 63.22 66.50 68.88 70.07 70.72 72.11 72.41 72.71
f-score 63.30 66.58 69.02 70.28 70.87 72.32 72.60 72.88

Berkeley parser, self-trained (PERPLEXITY)
precision 66.39*** 68.66*** 70.23** 71.42** 71.55 73.59*** 73.44 . 74.08***
recall 65.98*** 68.43*** 69.82** 71.05** 71.02 73.10*** 72.74 73.55**
f-score 66.18 68.54 70.02 71.23 71.28 73.34 73.09 73.82

Berkeley parser, self-trained (FIRST)
precision 65.79*** 68.20*** 70.15** 71.02 71.03 72.23 73.20 73.21
recall 65.46*** 67.69*** 69.71* 70.47 70.72 71.82 72.55 72.71
f-score 65.63 67.94 69.93 70.74 70.87 72.03 72.88 72.96

Table 1: Parsing results (PARSEVAL) for the different self-training settings, including GF in the evaluation (asterisks
indicate significant differences between self-training and the baseline: p=0.001***, p=0.005**, p=0.01*, p=0.05 .)

including erroneous parser output trees.
So far, it is not clear to us why the lexicalised

parser performs poorly in the self-training setting.
This result is in line with (Huang and Harper, 2009),
who observed that the PCFG-LA parser used in their
experiments benefitted more from self-training as
compared to a lexicalised generative parser. How-
ever, our results are not necessarily an effect of lex-
icalisation, but might be due to the overall lower
accuracy of the Stanford parser on German (see
Kübler (2008)). A quantiative and qualitative error
analysis might give us some interesting insight into
the underlying reasons and into the question when
and why self-training will work for parsing.

4 Conclusions and future work

We presented preliminary results on self-training ex-
periments for German, a language with rich mor-
phology and semi-free word order. We proposed a
new approach to self-training where we select new
instances on the basis of similarity to the seed train-
ing data. Our results show that this strategy helps to

boost self-training results especially for small seed
data, but also obtains a significant improvement for
larger training sets.

Our approach offers plenty of room for improve-
ment. In future work we plan to investigate the
adequacy of different similarity measures for self-
training, and also to measure similarity on different
levels (so far we have only considered the part-of-
speech level). An obvious extension is the integra-
tion of a reranker in order to add a different view on
the selection process. We expect that this will have
a positive impact on our results.

Finally, we plan to have a closer look at the impact
of language-specific properties on self-training. Our
intuition is that the potential of self-training might
be larger for morphologically rich languages, but
this claim has yet to be tested.
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Sandra Kübler. 2005. How do treebank annotation
schemes influence parsing results? or how not to com-
pare apples and oranges. In Proceedings of the 5th
International Conference on Recent Advances in Nat-
ural Language Processing (RANLP).
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