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Preface

Welcome to the IJCNLP Workshop on Advances in Text Input Methods (WTIM 2011)!

Methods of text input have entered a new era. The number of people who have access to computers and
mobile devices is skyrocketing in regions where people do not have a convenient method of inputting
their native language. It has also become commonplace to input text not through a keyboard but through
different modes such as voice and handwriting recognition. Even when people input text using a
keyboard, it is done differently from only a few years ago – adaptive software keyboards, word auto-
completion and prediction, and spell correction are just a few examples of such recent changes in text
input experience. The changes are global and ubiquitous: users are no longer willing to input text without
the help of new generation input methods regardless of language, device or situation.

The challenges in text input have many underlying NLP problems in common. For example, a high
quality dictionary is called for, but it is far from obvious how to construct and maintain one. A dictionary
also needs to be stored in some data structure, whose optimal design may depend upon the usage.
Prediction and spell correction features can be very annoying if they are not smart enough. For many
applications, user input can be very noisy (imagine voice recognition or typing on a small screen), so
the input methods must be robust against such noise. We expect input methods to learn from the history
of text input, but we are yet to see such an intelligent system. Finally, there is no standard data set or
evaluation metric, which is necessary for quantitative analysis of user input experience.

The goal of this workshop is to bring together the researchers and developers of text input technologies
around the world, and share their innovations, research findings and issues across different applications,
devices, modes and languages. This volume contains contributions on diverse aspects of text input
methods research on a variety of languages. We hope that the workshop serves as a starting point for
deepening our understanding of the field as a whole, and for facilitating further innovations in user text
input experience.

Hideto Kazawa, Hisami Suzuki and Taku Kudo
Organizers, WTIM 2011
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Abstract 

Back-transliteration based Input Method 

Editors are very popular for Indian Lan-

guages. In this paper we evaluate two 

such Indic language systems to help un-

derstand the challenge of designing a 

back-transliteration based IME. Through 

a detailed error-analysis of Hindi, Bang-

la and Telugu data, we study the role of 

phonological features of Indian scripts 

that are reflected as variations and am-

biguity in the transliteration. The impact 

of word-origin on back-transliteration is 

discussed in the context of code-

switching. We also explore the role of 

word-level context to help overcome 

some of these challenges. 

1 Introduction 

Automatic Machine Transliteration finds practi-

cal use in various Natural Language Processing 

applications like Machine Translation, Mono 

lingual and Cross lingual information retrieval. 

Backward transliteration – the reverse process 

of converting a transliterated word into its na-

tive script, has been employed as a popular 

mechanism for multilingual text-input (Sandeva 

et al, 2008; Ehara and Tanaka-Ishii, 2008).  This 

has given rise to many Input Method Editors 

(IME)s that allow the use of a normal QWER-

TY keyboard to input text in non-Roman scripts 

like Japanese, Chinese, Arabic and several Indic 

languages  

Roman transliteration is widely used for in-

putting Indian languages in a number of do-

mains. A lack of standard keyboards, a large 

number of scripts, as well as familiarity with 

English and QWERTY keyboards has given rise 

to a number of transliteration schemes that are 

used for generating Indian language text in ro-

man transliteration. Some of these are an at-

tempt to standardise the mapping between the 

Indian language script and the Roman alphabet, 

e.g., ITRANS (Chopde, 1991) but mostly the 

users define their own mappings that the readers 

can understand given their knowledge of the 

language. A number of Indian language IMEs 

exist that employ either standardised mappings 

or try to account for user variations through 

rules, statistical methods or a combination of 

both. These Machine Transliteration systems 

may be used as Input Method Editors (IMEs) 

for desktop application, e.g., Baraha
1
 or as web 

applications, e.g., Google Transliterate
2

 and 

Quillpad
3
. Microsoft Indic Language Input Tool 

(MSILIT)
4
 supports both a desktop as well as a 

web-based version. While all the above systems 

are popular and seem to serve their purpose ad-

equately, there has not been any systematic 

evaluation to identify and address common 

problems that they may face, either specific to 

the languages concerned or due to the process of 

back-transliteration.  As Knight and Graehl 

(1998) point out back-transliteration is “less 

forgiving” than forward transliteration for there 

may be many ways to transliterate a word in 

another script but there is only one way in 

which a transliterated word can be rendered 

back in its native form. For example, “London” 

                                                 
1
 http://www.baraha.com/  

 
2
 http://www.google.com/transliterate/ 

 
3
 http://quillpad.in/hindi/ 

 
4
 http://specials.msn.co.in/ilit/Hindi.aspx 
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may be transliterated as “लंदन” or “लण्डन” in 

Hindi but any back-transliteration can generate 

only one correct case, that is, “London”.  
One reason for the absence of any mean-

ingful evaluation is the lack of a standard 
dataset. The NEWS workshop (Li et al, 2009) 

made available training and test data in three 

Indian Languages – Hindi, Tamil and Kannada, 

but as this was constrained to named entities, it 

is of limited use for evaluating a general pur-

pose transliteration system. Sowmya et al 

(2010) describes the creation of a dataset for 

three Indian languages, viz., Hindi, Bangla and 

Telugu transliterated into Roman alphabet. The 

availability of this dataset has made it possible 

to evaluate transliteration based Input mecha-

nisms on common grounds and identify areas 

for improvement.  

In this paper, we use the dataset described in 

(Sowmya et al, 2010) to evaluate two back-

transliteration based Indian language IMEs to 

identify some of the common challenges faced 

by such systems. We discuss in some details the 

errors caused due to a) phonological variation or 

the variability in transliteration caused by the 

phonological properties of the source language, 

and b) word-origin – the transliteration of words 

or origin other than the source language. We 

also discuss how word-level context can help 

resolve some of these issues. While the exam-

ples presented here are mainly from Hindi, 

many of the experiments were also repeated for 

Telugu and Bangla, and can be generalized 

across these languages.  

The rest of the paper is organized as follows: 

The next section presents evaluation data, 

methodology and a top-level error-analysis. In 

Section 3, we discuss the various phonological 

variations that cause ambiguous transliterations. 

In Sec 4, the role of word origin on back-

transliteration is discussed.   Section 5 discusses 

the impact of word-level context on back-

transliteration. Further issues and possible fu-

ture directions are discussed in Section 6. 

 

2 An Evaluation of Indic IMEs 

Two of the publicly available systems were 

chosen for evaluation on the same test data. 

Both the systems, as is usual for most Indic lan-

guage IMEs, take continuous Roman input and 

convert it automatically into the relevant Indic 

language string after pause or punctuation. The 

user can select from a list of other possible op-

tions by a right-click on the relevant word. The 

aim of this evaluation was neither competitive 

nor to discover which system was better but to 

uncover common issues that plague back-

transliteration based IMEs. The assumption was 

that an in-depth analysis of the common errors 

produced would help in a better understanding 

and ultimately in better systems. Further, the 

systems remain a black-box for this study as we 

do not have access to the internal models and 

algorithms being used and are therefore labeled 

as System A and B to mask their identity.  

2.1 Data 

The evaluation data for the three languages, 

Bangla, Hindi and Telugu, was collected 

through a series of user experiments. The meth-

odology for the design and creation of the da-

taset is described in greater detail in Sowmya et 

al (2010). However, it is important to point out 

that these user experiments were conducted in 

three modes: 

1. Dictation: Users were asked to listen to 

some speech files in their respective lan-

guages and transcribe them using Roman 

script. This was done on around 20 users 

per language, with 75 sentences per user, of 

which 50 were common to all the users. 

This common set was used to capture the 

variations in spellings across users.  

2. Topic writing: Users were given a list of 

topics to choose from and write a few lines 

on two of them in their language, but using 

Roman script. Around 100 words were col-

lected per user in this mode. 

3. Chat: Users were asked to chat with another 

person for a few minutes using an Instant 

Messenger. These were general informal 

chat sessions, where the users used Roman 

script to chat about any topic of their choice 

in their own language. Around 50 words 

were collected per user. 
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Around 20000 words were collected per lan-

guage, and the gold standard transcriptions were 

obtained manually.  

2.2 Evaluation Methodology and Results 

The dataset described above was used for 

evaluating the two commercial IME systems.  

Roman transliterations for all the words for each 

language were input to obtain the Top-1 result 

from both the engine. The output from the 

systems was analyzed quantitatively as well as 

manually to identify common patterns of errors.  

The accuracies of both the systems were found 

to be comparable across the number of unique 

words in the test set (Type), as well as the total 

number of words counting multiple occurrences 

of the same type (Token).  Type level 

accuracies for the systems were around 55%, 

whereas the Token level accuracies lay between 

75-78%. 

 

 

 
Figure 1: Cumulative Top-N token accuracy percent-

ages for Hindi 

 

 

Figure1 shows the cumulative Top-N token ac-

curacy percentages for Hindi. It shows the per-

centage of words which the systems got right 

within Top-N (N varying from 1 to 5). As men-

tioned before, the test set had three kinds of da-

ta: words collected through speech transcription 

(speech), by chatting with the users (chat) and 

through the users writing a few lines on differ-

ent topics (Topic writing). It may be noted that 

the Scenario data performed better over Chat 

data and Speech data. The performance was 

relatively poorer with Speech and this might be 

attributed to the noise in speech which made the 

users enter the wrong words. Bangla and Telugu 

showed similar trends. 

2.3 Error Analysis 

We have performed a manual error analysis on a 

random sample of around 400 words under each 

category.  The errors observed may be classified 

as below: 

 Abbreviations: When a given acronym or 

abbreviation in English is transliterated as a 

native word in Hindi, instead of being spelt 

out. For example, CBI is transliterated as 

कबी [kəbi] (Top-1) not as सीबीआइ 

[si#bi#ɑ:ɪ] 
 Code-mixing: The interspersing of Hindi 

text with other language words, usually 

English, is known as code-mixing. This re-

sults in an English word being transliterated 

as a native Hindi word. For example, the 

word “missile” is transliterated as मिस्सील े
[mɪs:ile] (Top-1) not मिसाइल [mɪsɑ:ɪl]. 

 Misspellings: The word is spelt incorrectly 

due to a typing error or other reasons. For 

examples, spelling tayyariyon as tyyariyon 

gives as त्य्यरियों [təj:ərɪjõ] as output instead 

of तयैारियों [təɪjɑ:rɪjõ]. 
 Phonological variations: All words that do 

not fall into the above three classes were 

studied for the variation in the way certain 

phonological features are represented in the 

two scripts. The mapping of certain features 

like aspiration or vowel length that is 

marked on the script for an Indian language 

like Hindi on the Roman alphabet can result 

in ambiguous transliteration. For example, 

the voiced aspirated velar in घि [ghər] may 

be represented as “ghar” or “gar”. Similar-

ly, the difference between the long and the 

short vowels is also not necessarily main-

tained in the Roman transliterations. Hence, 

िन [mən] and िान [mɑ:n] can both be 

transliterated as “man”.  
 Others: There are other sources of errors 

like incorrect transliteration in the gold 

standard, named entities being transliterated 

as normal text, and so on. These are either 

negligible in number or are not an error 

generated by the system 

3



Table 1 shows the distribution of errors over 

these various categories for the three languages 

Hindi, Bangla and Telugu. While the absolute 

numbers vary across the languages, they clearly 

show that tackling these issues would go far 

towards increasing the accuracies of these sys-

tems.  

 

Table 1: The classification of errors for Hindi(H), 

Bangla (B) and Telugu (T) 

 

3 Phonological Variations 

The representation of sounds of one language 

using the script of another can lead to a many-

to-many mapping between the sounds and the 

letters of the two scripts. This in turn results in 

many ambiguities in transliterations due to a 

many-to-many mapping between the ortho-

graphic units of the two scripts. For instance, 

the letter „t‟ is used to transliterate the Hindi 

sounds /ʈ/ (retroflex) or /t/ (dental plosive), 

which are represented in the Hindi script (De-

vanagari) as two distinct characters ट and त, 

respectively. Thus, if the input Roman string 

contains a „t‟, then depending on the context it 

can be transliterated as either ट or त, as there is 

no clear orthographic distinction in Roman 

script for the corresponding phonemic distinc-

tion in Devanagari.   

On the other hand, the Devanagari character 

त is usually transliterated as „t‟ or „th‟, while 

„th‟ is also used commonly for representing the 

aspirated counterpart of त, that is, थ. These in-

dividual differences are not arbitrary and users 

are usually cognizant of the linguistic explana-

tions behind them. 

Thus, the problem of many-to-many mapping 

between characters during in the context of In-

dian language IMEs requires detailed discussion 

as many of these ambiguities are systematic in 

nature, have valid linguistic reasons and hold 

good for all Indian languages. In this section we 

categorize the different kinds of systematic 

phonological ambiguities which arise in the 

context of Indic language IMEs due to certain 

unique features of Indic scripts and their diver-

gence from the Roman scripts. 

3.1 Retroflex and Aspiration 

Many Indian languages like Hindi, Bangla and   

Telugu show a two way contrast between voic-

ing and aspiration to obtain a four member stop 

consonant series. Aspiration in consonants is 

generally assumed to be represented in Roman 

alphabet as the addition of “h”. Thus, the aspi-

rated velar stop, ख is represented by “kh”, the 

aspirated voiced velar घ as “gh”. 

There are hence, four retroflex stop conso-

nants represented by the characters “ट, ठ, ड, ढ” 
in Devenagari. As mentioned in the above sec-

tion, our analysis clearly indicates that “t” is 

used to represent the unaspirated retroflex con-

sonant ट (98.51%) and its dental counterpart त 

(96.55%). While “th” is almost always used for 

the aspirated versions: ठ (89.89%) and थ 

(95.56%). This trend is observed across the 

voiced counterparts as well.  

In Telugu, however, the results are less 

straightforward. While “th” is used for the retro-

flex unaspirated ట (99.9%), its use to represent 

the other three consonants retroflex aspirated 

ఠ(70%), dental unaspirated త (68.85%) and the 

dental aspirated థ (62.29%) shows a lot more 

variation. Table 2 shows the variation of the 

retroflex and the dental voiceless stops with “t” 

and “th” across the two languages. 

 

This trend holds true to a large extent for all 

aspirated consonants. Thus, though to a large 

extent “h” is used to indicate aspiration for Hin-

di, Telugu presents a different result with the 

around 38% of the aspirated consonants spelt 

without ”h” and 15% of the cases where an un-

aspirated consonant was spelt with “h”. 

 

 

Class % of Occurrence 

 H B T 

Abbreviations 6.5 % 

 

- 10.31% 

Code Mixing 9.25% 2 % 17.71% 

Misspellings 13.25% 

 

8% 25.71% 

Phonological vari-

ation 
13.75% 

 

36% 14.28% 
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Hindi     

 ट ठ त थ 

Spelt 

“t” 

98.51% 10.10% 96.44% 4.43% 

Spelt 

“th” 

1.49 %  89.89% 3.55 % 95.56% 

     

Telugu     

 ట ఠ త థ 

Spelt 

“t” 

0.06%  70% 68.8% 37.7% 

Spelt 

“th” 

99.93%   30% 31.15% 62.29% 

Table 2: Spelling variations for retroflex voiceless 

stop series in Hindi and Telugu 

 

3.2 Vowels, Diphthongs and Semi-vowels 

As length cannot be represented in the Roman 

alphabet as a single character, the transliteration 

of short and long vowels is another major 

source of considerable ambiguity for Indian 

languages. Thus, for any long-short vowel pairs 

which are phonemic in nature, and for which 

two different characters occur in Indian lan-

guages, the options available to the users are to 

either use the same single vowel or use two o 

characters to indicate length. For example, for 

the Hindi words सनुा [sʊnɑ] “heard”, and सनूा 
[sunɑ] “lonely”, a user may use two different 

transliterations: “suna” and “soona”, respective-

ly, or they might use the same transliteration, 

“suna” to represent both the words. Our analysis 

of the data shows that over 73% of the time, 

long vowels are spelt the same way as their 

shorter counterparts in Hindi. The other two 

languages show similar trends.  

As far as diphthongs are concerned, all lan-

guages do use a sequence of the component 

vowels to represent diphthongs, however, there 

is much variability in this. For example, in Hin-

di, the diphthong “औ” [əʊ] may be transliterated 

as “au, ou, o,aw, ow”. Similar multiple map-

pings are used for semi-vowels as well. Further, 

there is some overlap between the representa-

tion of diphthongs and semi-vowels as well. For 

example, the semi-vowel య in Telugu is repre-

sented by “y, ya, yi, ey, ay”, and the diphthong 

ఐ by “i,ai,ei,a,ey,y,ay” 

 

3.3 Fricatives and Affircates 

The fricatives in Indian languages pose two 

main problems for transliteration:  

a) The presence of similar graphemes used 

for stop consonants. E.g., The characters  ज़ [z] 

and फ़ [f]  in Hindi are most often confused 

even in the native script with their correspond-

ing stop consonants, ज [ʤ] and फ [ph], and this 

often leads them to be represented by the same 

Roman alphabets, “j” and “f” respectively,  

b) The sibilants often have an overlap within 

the series, say, between Hindi retroflex ष [ʂ] and 

palatal श [ʃ], both represented by “sh”. Further, 

the same Roman transliteration may be used for 

palatal affricates and sibilant fricatives, for ex-

ample, the Hindi alveolar fricative स [s] is a 

potential source of ambiguity since it is spelt 

both as “s” as well as “c”, the latter being used 

to spell the palatal affricate consonant च [ʧ].  

4 Errors due to Foreign Origin Words 

The results in Table 1 indicate that a prominent 

source of error in IMEs for Indic languages is 

the inability of the transliteration systems to 

handle abbreviations and code-mixing, both of 

which are foreign origin words. The errors re-

sult from an implicit assumption made by the 

system that the user is typing an Indic (say Hin-

di) origin word in Roman. Therefore, if the in-

put is “WHO”, the system tries to transliterate it 

as व्हो [wʱo], which would be the case if we do a 

letter by letter mapping assuming the standard 

rules for English-Hindi back-transliteration, in-

stead of more appropriate results हु [hʊ] 
(transliteration of the English word “who”) or 

डब्ल्यूएचओ [dəbʎju#etʃ#o] (transliteration of the 

Abbreviation WHO).  

These errors is not restricted to abbreviations, 

acronyms or English origin words, but can arise 

whenever the input word is of foreign origin, 

and the input form is not a transliterated Roman 

form, such as non-native names (e.g., “Mi-

chael”). However, we observe that abbrevia-

tions and code-mixing of English words (includ-

ing English names) are the most common types 

of foreign origin words that lead to system er-
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rors. Figure 2 shows a taxonomy of foreign and 

mixed origin words that is relevant to the pre-

sent discussion. 

4.1 Abbreviations 

In this class we include both Acronyms (e.g., 

LASER), that is, words created from combining 

sub-parts of two or more words, as well as Ini-

tialism (e.g., BBC), where a word is created by 

taking the first letters or initials of a phrase. 

Both could be considered a special case of 

blends or words formed from partial content of 

existing words (Cook and Stevenson, 2010). 

 

 

 

 
Figure2: Different classes and sub-classes of the in-

put text 

 

 

Most users writing in transliterated Hindi pre-

serve these forms in text. Thus, instead of trans-

literating the above example of initialism as 

“bee bee see” in Hindi, they use the original 

“BBC”. The system, expecting a word of Hindi-

origin, might exclude the right result from the 

top relevant results in such cases.  

Most of the abbreviations are incorrectly 

transliterated by the IME systems, except for 

some very common ones. It seems that instead 

of generic technique for identifying abbrevia-

tions, the Indic IMEs presently list-lookup 

based approach where very common abbrevia-

tions are explicitly listed out. While it might be 

a hard task to automatically identify abbrevia-

tions with high accuracy, IMEs can at the least, 

provide the transliteration of the abbreviation as 

one of the options. Note that abbreviations can 

be very easily transliterated using a set of map-

ping rules. 

4.2 Code-mixing 

Code-mixing refers to instances where lexical 

items and grammatical features of two lan-

guages appear in a single utterance (Muysken 

2000) and is a common and well-studied phe-

nomenon in a bilingual society where it exists at 

all except the most extremely formal form of 

spoken and written language (Romaine and Ka-

chru, 1992). In the context of transliterated text, 

code-mixing can be viewed as a form of noise 

caused due to multilinguality in text. Sowmya et 

al (2010) study the extent of code mixing and its 

patterns in Hindi, Bangla and Telugu translit-

erated text. Their analysis shows that though the 

context (formal versus informal) does play a 

vital role in this, and the strategies may vary 

from language to language, in general, all three 

languages show similar trends in code-mixing.  

Error analysis shows that code-mixing can 

occur at different levels of language structure, 

that is, the mixing can be at the level of words 

as well as inflection. Thus, we can have code-

mixing where English words are interspersed in 

Hindi text. For example, “mere friends kal train 

se ayenge” (my friends will come tomorrow on 

the train) where “friends” and “train” appear in 

their English form. If we assume that friends 

and train are of Hindi origin words, then fol-

lowing the commonly observed rules of translit-

eration we would get फ्रिएंड्स [frɪeɳɖs] or 
फ्रिएन्द्स [frɪen d s] and त्रैन [t rɛn] respectively, 

while the correct transliterations should have 

been either िें ड्स [freɳɖs] and टे्रन [ʈren ], or 

their original Roman spellings (which might 

look a little informal style of writing, but not 

unsual). 

It should be possible to handle foreign origin 

words through a two step process: first, 

identification of the origin of the word using a 

classifier, and second, transliteration of non-

native words using a different statistical  

transliterator or by using different sets of rules. 

In fact, Khapra and Bhattacharyya (2009) and 
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Chinnakotla et al (2010),  have both reported 

improved accuracies in transliteration tasks 

through origin detection. 

There are also instances of an English word 

with Hindi inflections, as in “computeron” 

[kəmpjuʈərõ] (computer + Hindi plural marker 

on), and Hindi words with English inflections – 

“sadaks” [səɽəkõ] (sadak meaning road in Hindi 

+ English plural marker s). Such cases are rare 

in the dataset, and it might be much harder a 

challenge to automatically identify morpheme 

level code-mixing and subsequent translitera-

tion. We do not know of any previous studies 

addressing this issue, and therefore, it would be 

a very interesting topic of future research. 

5 Effect of Word-level Context  

Word-level context can provide useful infor-

mation to resolve some of the errors due to pho-

nological and spelling variation as well as mis-

spellings reported in Section 2.  Consider the 

following example: The Roman string choti can 

be transliterated as छोटी [tʃʰoʈi] (small) or चोटी 
[tʃoʈi] (peak or braid). Thus, it is a case of genu-

ine ambiguity resulting from phonological vari-

ations. छोटी has a higher unigram frequency 

than चोटी, and therefore, most IMEs output the 

former as the first option for the input „choti‟.  

However, in the context of “himalaya ki choti” 

the most likely back-transliteration would be 

“हहिालय की चोटी” [hɪmɑləjə#ki#tʃoʈi] meaning 

“peak of the Himalayas”, and not “हहिालय की 
छोटी” [hɪmɑləjə#ki#tʃʰoʈi] meaning “Himalaya‟s 

small”. Similarly, in the sentence mujhe aaj kam 

ko jaana hai [mʊʤʰe#ɑ:ʤ#kɑm#ko#ʤɑnɑ#hɛ] 

(“I have to go to work today”), the system trans-

literates kam as “कि” [kəm] (with a short vowel) 

meaning “less” instead of “काि” [kɑm] (with a 

long vowel) meaning “work”.  

On the contrary, none of the commercial 

IMEs studied during this work incorporates con-

text aware transliteration. The top ranked output 

for choti is छोटी irrespective of the context. In 

other words, the back-transliteration based 

IMEs transliterate each word independently. 

Clearly, word-level context is crucial in back-

transliteration. IMEs incorporating context-

aware transliteration schemes can help the user 

type faster by getting the correct suggestion on 

top more often saving a few clicks, and thereby 

improving the user experience. 

We conducted language model (LM) based 

experiments in order to obtain some estimate of 

the possible benefits of a simple word-level lan-

guage model in IMEs. The aim of conducting 

the LM experiments is not to discover which 

kind of models and algorithms are best suited 

for IME; rather our aim is to establish the fact 

that language models, even in their simplest 

avatars, can indeed help improving performance 

of Indian language IMEs. We present some first 

cut experimental results in this direction.  

Standard noisy channel model, 

p(target|source)=p(source|target)p(target), 

where the first part is the channel model and the 

second part is the language model, cannot be 

used for our experiments. While we can com-

pute p(target) using standard language model 

features, we do not have the probabilities of the 

channel model, because we are using a black-

box transliteration engine which returns a 

ranked list of candidates for a given source 

word.  

In our experiments, we suppose for the input 

string “w1 w2 w3”, the ranked outputs for w3 by 

an IME are h1, h2, h3, h4 and h5. We assume 

that we know the correct outputs for w1 and w2, 

say w1* and w2*, which can be obtained from 

the gold standard transliterations. Then we 

search for the strings “w1* w2* hi” (where i is 

between 1 and 5) on the Web using a commer-

cial search engine and re-rank the outputs based 

on the number of webpages returned. We started 

by exploring n-gram models learnt from a Hindi 

corpus consisting of newspaper articles. How-

ever, on analyzing the results we discovered that 

the n-gram statistics for the dataset used in 

Sowmya et al (2010), especially the chats and 

blog, follow a very different distribution from 

those we observe in the newspaper corpus. 

Therefore, we decided to obtain the n-gram sta-

tistics from the Web. 

This web count based re-ranking experiment 

on the Sowmya et al (2010) data shows a rela-

tive improvement of 10-20% for the top-1 accu-

racy. The values are summarized in table 3.  

The absolute improvement figures are small 

because as evident from Fig. 1, in most of the 

cases, whenever the current transliteration is 

generated by the system, it is usually at top rank. 
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Type of 

Data 

Accuracy 

without 

LM 

Absolute 

Accuracy 

with LM 

Relative im-

provement in 

Accuracy 

Chat 78.86% 80.22% 21.95% 

Scenario 78.56% 79.52% 13.10% 
Table 3: Accuracy improvement using web-search 

based LM 

 

Therefore, we report the relative improvement 

in accuracy which shows the percentage of cas-

es where the correct transliteration was present 

in top 5, but not in top 1, and the re-ranking 

based approach has been able to pull it to top-1 

rank. Thus, there are further opportunities for 

improving user experience in Indic language 

IMEs through context aware back-transliteration. 
 

6 Discussion 

In this paper, we have attempted to do a system-

atic evaluation of the common challenges faced 

for designing back-transliteration based IME 

systems for Indic-languages through a thorough 

analysis of the errors produced. We focused on 

a few of the main sources of errors that occurred 

due to the inability of the systems to deal with a) 

phonological variations, and b) words of differ-

ent origin  

As our error-analysis showed, spelling varia-

tion can occur because of certain phonologically 

motivated phenomenon. This is primarily a re-

sult of trying to map a 50+ set of phonemes of 

the Indian languages on to a 26 character set of 

the Roman alphabet. This results in many-to-

many mappings between the two scripts and 

conventions which may be region or language 

specific. Thus, a Hindi speaker might translit-

erate a dental stop as “t” while a South Indian 

might use the same character to denote a retro-

flex. Some other conventions might be specific 

to an individual. Hence, the ability to identify 

user-specific patterns or mapping could help 

tackle errors induced by variation and user-

adaptation could go a long way in achieving a 

more accurate back-transliteration based IME 

with a much higher utility. 

Code-mixing and abbreviations add another 

dimension of transliteration errors, and one that 

is largely ignored by the current IMEs. In the 

Indian context, a module to handle at the very 

least, English words, would go a long way in 

resolving this problem. Given the extent of 

code-mixing in Indian languages this is a rele-

vant research problem. 

Lastly, we have shown that a context-aware 

Indic language IME that takes into account a 

Language Model at word-level can possibly 

help address some of these challenges. A re-

ranking based approach can be further explored 

to not only boost accuracies but design innova-

tive ways to improve user experience.  
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Abstract

The most popular type of input method
in Japan is kana-kanji conversion, conver-
sion from a string of kana to a mixed kanji-
kana string.

However there is no study using discrim-
inative methods like structured SVMs for
kana-kanji conversion. One of the reasons
is that learning a discriminative model
from a large data set is often intractable.
However, due to progress of recent re-
searches, large scale learning of discrim-
inative models become feasible in these
days.

In the present paper, we investigate
whether discriminative methods such as
structured SVMs can improve the accu-
racy of kana-kanji conversion. To the best
of our knowledge, this is the first study
comparing a generative model and a dis-
criminative model for kana-kanji conver-
sion. An experiment revealed that a dis-
criminative method can improve the per-
formance by approximately 3%.

1 Introduction

Kana-kanji conversion is conversion from kana
characters to kanji characters, the most popular
way of inputting Japanese text from keyboards.
Generally one kana string corresponds to many
kanji strings, proposing what the user wants to in-
put is not trivial. We showed how input keys are
processed in Figure 1.

Two types of problems are encountered in kana-
kanji conversion. One is how to reduce conversion
errors, and the other is how to correct smoothly
when a conversion failure has occurred. In the
present study, we focus on the problem of reduc-
ing conversion errors.

Early kana-kanji conversion systems employed
heuristic rules, such as maximum-length-word
matching.

With the growth of statistical natural language
processing, data-driven methods were applied for
kana-kanji conversion. Most existing studies on
kana-kanji conversion have used probability mod-
els, especially generative models. Although gen-
erative models have some advantages, a number
of studies on natural language tasks have shown
that discriminative models tend to overcome gen-
erative models with respect to accuracy.

However, there have been no studies using only
a discriminative model for kana-kanji conversion.
One reason for this is that learning a discriminative
model from a large data set is often intractable.
However, due to progress in recent research on
machine learning, large-scale learning of discrim-
inative models has become feasible.

The present paper describes how to apply a dis-
criminative model for kana-kanji conversion. The
remainder of the present paper is organized as
follows. In the next section, we present a brief
description of Japanese text input and define the
kana-kanji conversion problem. In Section 3, we
describe related researches. Section 4 provides the
baseline method of the present study, i.e., kana-
kanji conversion based on a probabilistic language
model. In Section 5, we describe how to apply
the discriminative method for kana-kanji conver-
sion. Section 6 presents the experimental results,
and conclusions are presented in Section 7.

2 Japanese Text Input and Kana-Kanji
Conversion

Japanese text is composed of several scripts. The
primary components are hiragana, katakana, (we
refer them as kana) and kanji.

The number of kana is less than hundred. In
many case, we input romanized kana characters
from the keyboard. One of the task of a Japanese
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BOS

苦科学 咎

学習

終

か　  が　　く　　と　　が　　く　　し　　ゅ　　う

が蚊 苦 と

EOS

input (kana):

火 蛾

ka　  ga　  ku　　to　  ga　　ku　　shu　　       uinput (romanized):

constructed graph:

Figure 1: A graph constructed from an input string. Some nodes are omitted for simplicity.

input method is transliterating them to kana.
The problem is how to input kanji. The num-

ber of kanji is more than ten thousand, the ordinal
keyboards in Japan do not have a sufficient number
of keys to enable the user to input such characters
directly.

In order to address this problem, a number
of methods have been proposed and investigated.
Handwriting recognition systems, for example,
have been successfully implemented. Another
successful method is kana-kanji conversion, which
is currently the most commonly used method for
inputting Japanese text due to its fast input speed
and low initial cost to learn.

2.1 Kana-kanji conversion
Kana-kanji conversion is the problem of convert-
ing a given kana string into a mixed kanji-kana
string. For simplicity, in the following we describe
a mixed kanji-kana string as a kanji string.

What should be noted here is that kana-kanji
conversion is the conversion from a kana sentence
to a kanji sentence. One of the key points of kana-
kanji conversion is that an entire sentence can be
converted at once. This is why kana-kanji conver-
sion is great at input speed.

Since an input string is non-segmented sen-
tence, every kana-kanji conversion system must be
able to segment a kana sentence into words. This
is not a trivial problem, recent kana-kanji conver-
sion softwares often employ the statistical meth-
ods.

Although there is a measure of freedom with re-
spect to the design of a kana-kanji conversion sys-
tem, in the present paper, we discuss kana-kanji
conversion systems they comply with the follow-
ing procedures:

1. Construct a graph from the input string.

We must first construct a graph that repre-
sents all possible conversions. An example
of such a graph is given in Figure 1.

We must use a dictionary in order to construct
this graph.

Since all edges are directed from the start
node to the goad node, the graph is a directed
acyclic graph (DAG).

2. Select the most likely path in the graph.

This task is broken into two parts. The first is
setting the cost of each vertex and edge. The
cost is often determined by supervised learn-
ing methods. The second is finding the most
likely path from the graph. Viterbi algorithm
is used for this task.

Formally, the task of kana-kanji conversion can
be defined as follows. Let x be an input, an un-
segmented sentence written in kana. Let y be a
path, i.e., a sequence of words. When we write
the jth word in y as yj , y can be denoted as
y = y1y2 . . . yn, where n is the number of words
in path y.

Let Y be a set of candidate paths in the DAG
built from the input sentence x. The goal is to
select a correct path y∗ from all candidate paths in
Y .

2.2 Parameter estimation with a probabilistic
language model

If we defined the kana-kanji conversion as a graph
search problem, all edges and vertices must have
costs. There are two ways to estimate these pa-
rameters. One is to use a language model, which
was proposed in the 1990s, and the other is to use
a discriminative model, as in the present study.
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This subsection describes kana-kanji conver-
sion based on probabilistic language models,
treated as a baseline in the present paper.

In this method, given a kana string, we calcu-
late the probabilities for each conversion candidate
and then present the candidate that has the highest
probability.

We denote the probability P of a conversion
candidate y given x by P (y|x).

Using Bayes’ theorem, we can transform this
expression as follows:

P (y|x) =
P (x|y)P (y)

P (x)
∝ P (y)P (x|y),

where P (y) is the language model, and P (x|y) is
the kana-kanji model.

The language model P (y) assigns a high prob-
ability to word sequences that are likely to occur.
Word n-gram models or class n-gram models are
often used in the natural language processing.

The definition of n-gram model is denoted as
follows:

P (y) =
∏

j

P (yj |yj−1, yj−2, . . . , yj−n+1),

where n−1 indicates the length of the history used
to estimate the probability.

If we adopt a word bigram (n = 2) model, then
P (y) is decomposed into the following form:

P (y) =
∏

j

P (yj |yj−1), (1)

where P (yj |yj−1) is the probability of the appear-
ance of yj after yj−1. Let c(y) be the number of
occurrences of y in the corpus, and let c(y1, y2)
be the number of occurrences of y1 after y2 in the
corpus. The probability P (yj |yj−1) is calculated
as follows:

P (yj |yj−1) =
c(yj , yj−1)

c(yj−1)
.

The kana-kanji model P (x|y) is assigned a
high probability if x corresponds to y several
times. In Japanese, most characters have multiple
pronunciations. For example, 雨 (rain) could be
read as “ame”, “same” or “u”. In the case of 雨,
most of Japanese expect the reading to be “ame”.
Therefore P (ame|雨) should be assigned a higher
probability than for “same” or “u”.

Mori et al. (1999) proposed the following de-
composition model for kana-kanji model:

P (x|y) =
∏

j

P (xj |yj)

where each P (xj |yj) is a fraction of how many
times the word yj is read as xj . Given that
d(xj , yj) is the number of times word yj is read
as xj , P (xj |yj) can be written as follows:

P (xj |yj) =
d(xj , yj)∑
i d(xi, yj)

.

2.3 Smoothing

In Eq. (1), if any P (yj |yj−1) is zero, P (y) is also
estimated to zero. This means that P (y) is always
zero if a word that does not appear in the training
corpus is appeared in y. Since we use a language
model to determine which sentence is more natu-
ral as a Japanese sentence, both probabilities be-
ing zero does not help us. This is referred to as the
zero frequency problem.

We apply smoothing to prevent this prob-
lem. In the present paper, we implemented both
of additive smoothing and interpolated Kneser-
Ney smoothing (Chen and Goodman, 1998; Teh,
2006). Surprisingly, the additive smoothing over-
came the interpolated Kneser-Ney smoothing.
Therefore we adopt the additive smoothing in the
experiments.

3 Related Research

Mori et al. (1999) proposed a kana-kanji con-
version method based on a probabilistic language
model. They used the class bigram as their lan-
guage model.

Gao et al. (2006) reported the results of ap-
plying a discriminative language model for kana-
kanji conversion. Their objective was domain
adaptation using a discriminative language model
for reranking of top-k conversion candidates enu-
merated by a generative model.

Kana-kanji conversion and morphological anal-
ysis are similar in some respects. Most notably,
both are the same type of extension of the se-
quential labeling problem. Therefore, it would be
worthwhile to consider studies on morphological
analysis.

Nagata (1994) showed that a pos-trigram
language model-based morphological analyzer
achieved approximately 95% precision and recall,
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which was a state-of-the-art result at that time.
Ten years later, Kudo el al. (2004) applied the
conditional random field (CRF) to Japanese mor-
phological analysis. They reported that this major
discriminative probabilistic model does not suffer
from label bias and length bias and is superior to
the hidden Markov model (HMM) and maximum
entropy Markov model (MEMM) with respect to
accuracy.

The purpose of the present study is to investi-
gate whether this increase in performance for mor-
phological analysis also applies to kana-kanji con-
version.

4 Kana-Kanji Conversion Based on
Discriminative Methods

In this section, we present a description of kana-
kanji conversion based on discriminative methods.

In discriminative methods, we calculate a score
for each conversion candidate y1, y2, y3 . . . for in-
put x. The candidate that has the highest score is
presented to the user.

We herein restrict the score function such
that the score function can be decomposed into
weighted sum of K feature functions Ψ, where Ψ
is a vector of each feature function Ψk. We also re-
strict arguments of feature functions to x, yj−1, yj

in order to use the Viterbi algorithm for fast
conversion. A feature function Ψk(x, yj−1, yj)
returns 1 if the feature is enabled, otherwise
Ψk(x, yj−1, yj) returns 0.

The score of a conversion candidate y over x is
calculated as follows:

f(x, y) =
∑

j

∑

k

wkΨk(x, yj−1, yj),

where wk is the weight of feature function Ψk, and
w is a vector of each feature weight wk.

Since the output of kana-kanji conversion is a
vector, the problem is a structured output problem,
which can be addressed in a number of ways, in-
cluding the use of CRF (Lafferty et al., 2001) or
SSVM (Tsochantaridis et al., 2005; Ratliff et al.,
2007).

The performances of CRF, SSVM and other
learner models are similar if all of the models use
the same feature set (Keerthi and Sundararajan,
2007). We use the SSVM as the learner because
it is somewhat easier to implement.

4.1 Structured SVM
The SSVM is a natural extension of the SVM for
structured output problems.

We denote the ith datum as (x(i), y(i)). Here,
Li(y) is the loss for the ith datum, and we as-
sume that Li(y) ≥ 0 for all y 6= y(i), and that
Li(y

(i)) = 0. Note that the value of Li is zero if
and only if y = y(i). This means that all of other
y are treated as negative examples.

We adopt the following loss function, which is
similar to Hamming loss:

Li(y) =
∑

j

l(yj),

where l(yj) is 1 if the path is incorrect, otherwise
l(yj) is 0.

The objective function of SSVM is expressed as
follows:

1

n

n∑

i=1

ri(w) + λ‖w‖, (2)

where ri(w) is the risk function, which is defined
as follows:

max
y∈Y

(wf(x(i), y)+L(y))−wf(x(i),y(i)). (3)

Note that the loss and the risk are differentiated
in the structured output problems, while they are
often not in binary classification problems.

Here, ‖w‖, which is the norm of w, is referred
to as a regularization term. The most commonly
used norms are L1-norm and L2-norm. We used
L1-norm in the experiment because it tends to
find sparse solutions. Since input methods are ex-
pected to work with modest amounts of RAM, this
property is important. L1-norm is calculated as
follows:

‖w‖1 =
∑

k

|wk|. (4)

The positive real number λ is a parameter that
trades off between the loss term and the regular-
ization term.

In order to minimize this objective function,
we used FOBOS as the parameter optimization
method (Duchi and Singer, 2009).

4.2 Learning of the SSVM using FOBOS
FOBOS is a versatile optimization method for
non-smooth convex problems, which can be used
both online and batch-wise. We used online FO-
BOS for parameter optimization.
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Algorithm 1 Learning of SSVM
for (x(i), y(i)) do

y∗ = argmaxy f(x(i), y) + L(x(i), y)

if y∗ 6= y(i) then

wi+ 1
2 = w(i) − ηt ∇(f(x(i), y∗) − f(x(i), y(i)))

for k ∈ K do

w
(i+1)
k = sign(w

i+ 1
2

k )max{|w(i+ 1
2
)

k | − ληt, 0}

end for
end if

end for

In the case of online FOBOS, FOBOS is viewed
as an extension of the stochastic gradient decent
and the subgradient method.

FOBOS alternates between two phases. The
first step processes the (sub)gradient descent, the
second step processes the regularization term in a
manner similar to projected gradients.

The first step of FOBOS is as follows:

w(i+ 1
2
) = w(i) − ηig

f
i , (5)

where ηt is the learning rate and gf
t is a subgradi-

ent of the risk function.
The second step of FOBOS is defined as the fol-

lowing optimization problem:

w(i+1) =

argmin
w

{
1

2
‖w − w(i+ 1

2
)‖2 + ηi+ 1

2
‖w‖

}
.

(6)

If the regularization term is L1-norm or L2-
norm, the closed-form solutions are easily derived.
For the case of the L1-norm, each element of vec-
tor w(i+1) is calculated as follows:

w
(i+1)
k = sign(w

i+ 1
2

k ) max{|w(i+ 1
2
)

k | − ληt, 0},
(7)

where sign is a function which returns 1 if the ar-
gument is greater than 0 and otherwise returns −1.

We present a pseudo code of SSVM by FOBOS
as Algorithm 1.

In general, execution of the following expres-
sion needs exponential amount of calculation.

y∗ = argmax
y

f(x(i),y) + L(x(i), y). (8)

Name # sentences Data Source
OC 6,476 Yahoo! Chiebukuro

(Q&A site in Yahoo! Japan)

OW 5,934 White Book
PN 17,007 News Paper
PB 10,347 Book

Table 1: Details of Data Set

However, we restricted the form of our feature
functions to Ψk(x, yj−1, yj) so that we can use the
Viterbi algorithm to obtain y∗. The time complex-
ity of the Viterbi algorithm is linear, proportional
to the length of y.

Here, ∇f denotes a subgradient of function f .
The derived subgradient for f is as follows:

∇f(x, y) =
∑

j

∑

k

Ψk(x, yj−1, yj).

Therefore, the first parameter update rule of FO-
BOS can be rewritten as follows:

wi+ 1
2 =w(i) − ηt(

∑

j

∑

k

Ψk(x, y∗
j−1, y

∗
j )

−
∑

j

∑

k

Ψk(x, y
(i)
j−1, y

(i)
j )).

(9)

5 Evaluation

In order to evaluate our method, we compared the
generative model explained in Section 2 and our
discriminative model explained in Section 4 using
a popular data set.

5.1 Settings

As the data set, we used the balanced cor-
pus of contemporary written Japanese (BCCWJ)
(Maekawa, 2008). The corpus contains sev-
eral different data set, and we used human-
annotated data sets in our experiments. The
human-annotated part of the BCCWJ consists of
four parts, referred to as OC, OW, PN and PB.
Each data set is summarized in Table 1.

In addition, we constructed a data set (referred
to as ALL) that is the concatenation of OC, OW,
PN and PB.

The baseline method we used herein is a lan-
guage model based generative model. The lan-
guage model is the linear sum of logarithm of a
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Type Template
Word Unigram 〈yi〉
Word Bigram 〈yi−1, yi〉
Class Bigram 〈POSi−1, POSi〉
Word and the Read 〈yi, xi〉

Table 2: Feature Templates

class bigram probability, a word bigram probabil-
ity and a word unigram probability. The smooth-
ing method is additive smoothing, where δ =
10−5. The performance was insensitive to the δ
when the value was small enough.

As the discriminative model, we used SSVM.
The learning loop of the SSVM was repeated until
convergence, i.e., 30 times for each data set. The
learning rate η is a fixed float number, 0.1. We
used L1-norm with λ = 10−7 as the regularization
term.

We implemented our SSVM learner in C lan-
guage, the calculation time for the ALL data set
was approximately 43 minutes and 20 seconds us-
ing an Intel Core 2 Duo (3.16GHz).

All of the experiments were carried out by five-
fold cross validation, and each data set was ran-
domly shuffled before being dividing into five data
sets.

5.2 Feature functions

We summarized feature functions which we used
in the experiments in Table 2. We used the second
level part of speech (In some Japanese dictionar-
ies, part of speech is designed to have hierarchical
structure) as classes.

5.3 Criteria

We evaluated these methods based on precision,
recall, and F-score, as calculated from the given
answers and system outputs.

In order to compute the precision and recall,
we must define true positive. In the present pa-
per, we use the longest common subsequence of
a given answer sentence and a system output sen-
tence as true positive. Let NLCS be the length of
the longest common subsequence of a given an-
swer and a system output. Let NDAT be the length
of the given answer sentence, and let NSY S be the
length of the system output sentence.

The definitions of precision, recall, and F-score

are as follows:

precision =
NLCS

NDAT
,

recall =
NLCS

NSY S
,

F-score = 2
precision · recall
precision + recall

.

5.4 Difference between the discriminative
model and the generative model

We compared the performance of the SSVM and
the generative method based on a language model
(baseline).

The results of the experiment were shown in Ta-
ble 3. The precision, recall, and F-score for the
SSVM and a baseline model are listed.

The experimental results revealed that the
SSVM performed better than the baseline model
for all data sets. However, the increase in per-
formance for each data set was not uniform.
The largest increase in performance was obtained
for PN, whose data source is newspaper arti-
cles. Since newspaper articles are written by well-
schooled newspersons, sentences are clear and
consistent. Compared to newspapers, other data
sets are noisy and inconsistent. The small im-
provement in performance is interpreted as being
due to the data set being noisy and the relative
difficulty in improving the performance scores as
compared to newspapers.

5.5 Relationship between data set size and
performance

In order to investigate the effect on performance
change related to data set size, we examined the
performance of the SSVM and the baseline model
for each data set size. The ALL data set is used in
this experiment.

The results are shown in Figure 2. The horizon-
tal axis denotes the number of sentences used for
training, and the vertical axis denotes the F-score.

The SSVM consistently outperforms the base-
line model whereas the number of sentences is
more than roughly 1000.

Interestingly, the baseline model performed bet-
ter than the SSVM, where the data set size is rel-
atively small. Generative models are said to be
superior to discriminative models if there is only a
small amount of data (Ng and Jordan, 2002). The
result of the present experiment agrees naturally
with their observations.
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baseline SSVM
Precision Recall F-score Precision Recall F-score

avg. SD avg. SD avg. SD avg. SD avg. SD avg. SD
OC 87.4 0.31 86.9 0.17 87.2 0.22 88.0 0.41 89.1 0.27 88.5 0.33
OW 93.7 0.09 93.1 0.12 93.4 0.10 96.1 0.09 96.4 0.13 96.2 0.10
PN 87.4 0.11 86.4 0.16 86.9 0.13 91.1 0.24 91.6 0.17 91.4 0.20
PB 87.8 0.13 86.9 0.15 87.3 0.13 89.5 0.24 90.3 0.28 89.9 0.24
ALL 88.6 0.08 87.2 0.12 87.9 0.10 92.2 0.16 92.4 0.21 92.3 0.19

Table 3: Performance comparison for the SSVM and the baseline with the language model. (SD: standard
deviation.) Performance is measured by precision, recall and F-score.
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Figure 2: F-score vs. data set size. With the in-
crease of the data set size, SSVM has overcome
baseline method.

5.6 Examples of misconversions
In this subsection, we present examples of miscon-
versions, which are categorized into four types.

Mori et al. (1999) categorized misconversions
into these three types, and their categorization was
also applicable to the proposed system. In addi-
tion, we present a number of misconversions that
could not be categorized into three categories.

5.6.1 Homonym failures
Japanese has numerous homonyms. For correct
conversion, syntactically and semantically correct
homonyms must be chosen.

Corpus 多分衛星放送でやっているのだと
思います。
Perhaps that show is broadcast by satellite.

System 多分衛生放送でやっているのだと
思います。
Perhaps that show is broadcast by health.

The system failed to recognize the compound
word satellite broadcast. This type of errors will
decrease as the data set size increases.

Corpus 暴力団の抗争も激化。
Bloody conflicts of gang is also escalated.

System 暴力団の構想も激化。
Concept of gang is also escalated.

Since ‘暴力団’ (gang) and ‘抗争’ (bloody con-
flicts) are strongly correlated, this problem would
be solved if we can use a feature which considers
long-distance information.

In principle, some fraction of homonym failures
could not be solved because of ambiguity of kana
string. A typical example is the name of a per-
son. The number of conversion candidates of ’Hi-
royuki’ is over 100.

5.6.2 Unknown word failures
It is difficult to convert a word which is not in the
dictionary. This type of misconversions cannot be
reduced with the SSVM of the present study. In
the following, we present an example of unknown
word failure.

Corpus 家でチキンナゲット作れますか？
Can you make chicken nuggets at home?

System 家でチキンなゲット作れますか？
Can you make chicken ??? at home?

The underlined part of system output is broken
as Japanese, and it cannot be converted into En-
glish. This type of errors often causes misdetec-
tions of word boundaries. This error is caused by
the absence of particlesナゲット from the dictio-
nary.

5.6.3 Orthographic variant failures
Some words have only one meaning and one pro-
nunciation, but have multiple expressions. Num-
bers are examples of such words. As a typical
case, six could be denoted as six or 6 or VI. In
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addition, in Japanese, six can also be denoted as
‘六’ (roku) or ‘陸’ (roku).

Some of these expression are misconversions.
For example, ‘陸’ is seldom used, and in most
cases converting ’roku’ as ‘陸’ would be con-
sidered a misconversion. Nevertheless, with
the exception of human judgment, we have no
way to distinguish misconversions from non-
misconversions. Thus, in the present paper, all or-
thographic variants are treated as failures.

Corpus 一歳年下の弟は中学三年になるところ
だった．

System １歳年下の弟は中学三年になる所だ
った．

5.6.4 Other failures
Failures that do not fit into any of the above three
categories are salient in these experiments. The
following are two examples:

Corpus 太すぎず、細すぎないジーンズ。
Not too thick, not too thin jeans.

System 太すぎ図、細すぎないジーンズ。
Too thick figure, not too thin jeans.

The reason of misconversion is that the score for
‘図’ is too high.

Corpus ようやく来たかって感じです。
I feel that it has finally come.

System ようや茎たかって感じです。

The score for ‘茎’ (kuki/caulome) is too high.
In this case, misconversion is accompanied by se-
rious word boundary detection errors, and most of
the system output is difficult to interpret.

These errors are caused by poorly estimated pa-
rameters.

5.6.5 Discussion of misconversions
Although the discriminative method could im-
proves the performance of kana-kanji conversion
if there is sufficient data, there are still misconver-
sions.

Based on the investigation of the misconver-
sions, if a much larger data set is used, several
misconversions will be vanish. In fact, there are
several errors that do not exist in the closed test
results.

However, there are some types of errors that can
not be eliminated just by using a large amount of

data. Some of these errors will vanish if we can
use long-distance information in the feature func-
tions.

6 Conclusion

In the present paper, we suggested the possibility
of the discriminative methods for kana-kanji con-
version.

We proposed a system using a SSVM with FO-
BOS for parameter optimization. The experiments
of the present study revealed that the discrimina-
tive method is 1 to 4% superior with respect to pre-
cision and recall.

One of the advantages of the discriminative
methods is the flexibility allowing the inclusion of
a variety of feature functions. However, we used
only the set of a kana, a word surface and a class
(part of speech) in the experiments. using the en-
tire input string is expected to reduce homonym
failures, and further exploration of this area would
be interesting.

The data set used in the present study was mod-
est size. The increase in performance due to a
large data set should be investigated in the fu-
ture. In general, a large annotated data set is dif-
ficult to obtain. There are numbers of ways to
tackle the problem. There are two important op-
tions, one is applying of semi-supervised learning,
another is use of a morphological analyzer. We
will choose the latter option because building an
affective semi-supervised discriminative learning
model would be difficult for the case of kana-kanji
conversion.

Since the optimization method used in the
present study is online learning, the optimization
method can also be used for personalization from
the correction operations log of the user. There
have been few studies on this subject, and there
has been no report of discriminative models be-
ing used. Learning from the correction log of the
user is difficult because users often make mistakes.
Kana-kanji conversion software users sometimes
complain about the degradation of the conversion
performance as a side effect of personalization.
Therefore, an error detection mechanism will be
important. In the future, we plan to implement a
complete Japanese input method that embeds the
kana-kanji conversion system developed for the
present paper. Moreover, we intend to take into
account statistics and investigate input errors.
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Abstract

Reducing size of dictionary and language
model is critical when applying them
to real world applications including ma-
chine translation and input method edi-
tors (IME). Especially for IME, we have
to drastically compress them without sac-
rificing lookup speed, since IMEs need to
be executed on local computers. This pa-
per presents novel lossless compression al-
gorithms for both dictionary and language
model based on succinct data structures.
Proposed two data structures are used in
our product “Google Japanese Input”1,
and its open-source version “Mozc”2.

1 Introduction

Statistical approaches to processing natural lan-
guage have become popular in recent years. Input
method editor is not an exception and stochastic
input methods have been proposed and rolled out
to real applications recently (Chen and Lee, 2000;
Mori et al., 2006; Yabin Zheng, 2011). Compared
to the traditional rule-based approach, a statistical
approach allows us to improve conversion qual-
ity more easily with the power of a large amount
of data, e.g., Web data. However, language mod-
els and dictionaries which are generated automat-
ically from the Web tend to be bigger than those
of manually crafted rules, which makes it hard to
execute IMEs on local computers.

The situation is the same in machine translation.
Language model compression is critical in statis-
tical machine translation. Several studies have
been proposed in order to scale language model to
large data. Example includes class-based models

1http://www.google.com/intl/ja/ime/
2http://code.google.com/p/mozc/

(Brown et al., 1992), entropy-based pruning (Stol-
cke, 1998), Golomb Coding (Church et al., 2007)
2007) and randomized lossy compression (Talbot
and Brants, 2008). The main focus of this research
is how efficiently the language model, especially
n-gram model, can be compressed. However, in
Japanese input methods, lexicon plays more im-
portant role in actual conversion than language
model, since users don’t always type Japanese
text by sentence, but by phrase or even by word.
Lexicon coverage is one of the key factors with
which to evaluate the overall usability of IMEs.
In addition, modern Japanese input methods need
to support a variety of features, including auto-
completion and reconversion, which accelerate in-
put speeds as well as help users to edit what they
typed before. It is non-trivial to implement a com-
pact dictionary storage which supports these com-
plicated use cases.

In this work, we propose novel lossless com-
pression algorithms for both dictionary and lan-
guage model based on succinct data structures.
Although the size of our dictionary storage ap-
proaches closer to the information-theoretic lower
bound, it supports three lookup operations: com-
mon prefix lookup, predictive lookup and reverse
lookup. Proposed two data structures are used
in our product “Google Japanese Input”, and its
open-source version “Mozc”.

2 Statistical approach to input method
editors

The model of statistical input method editor is ba-
sically the same as those of statistical machine
translation. An input is converted according to
the probability distribution P (W |S), where W
is target output and S is source user input char-
acters (e.g. Hiragana sequence). The probabil-
ity P (W |S) is usually decomposed as a prod-
uct of language model P (W ) and reading model

19



P (S|W ), corresponding to the language model
and translation model in statistical machine trans-
lation.

Wopt = argmax
W

P (W |S) (1)

= argmax
W

P (W )P (S|W ) (2)

In Mozc, we use a class language model for rep-
resenting P (W ) to reduce overall memory foot-
print. The class corresponds to the part of speech
of Japanese.

P (W ) =
∏

i

P (wi|ci)P (ci|ci−1), (3)

where ci is a word class (part of speech) of wi. If
we assume that reading probabilities are mutually
independent, P (S|W ) could be rewritten as

P (S|W ) =
∏

i

P (si|wi), (4)

where P (si|wi) is the conditional probability that
a Japanese word wi is typed as Japanese Hira-
gana si. This probability can be estimated from
a tagged corpus and/or a manually crafted dictio-
nary. By combining P (W ) and P (S|W ), Wopt

can be rewritten as

Wopt = argmax
W

∏

i

P (si|wi)P (wi|ci)P (ci|ci−1). (5)

The first two terms P (si|wi)P (wi|ci) are con-
text independent. This part can be represented
as a tuple d = 〈s, w, c, cost〉, where cost is
− log(P (s|w)P (w|c)). P (ci|ci−1) is a transition
probability of the class language model. For our
convenience, we call the set of dictionary entries
d as dictionary and transition probability as lan-
guage model in this paper. Dictionary and lan-
guage model are compressed with different algo-
rithms.

3 Dictionary compression

3.1 General setting of dictionary lookup
We describe the general setting and structure of
dictionary for Japanese IME.

• Dictionary D is a set of dictionary entries di,
e.g., D = {d1, . . . , dn}

• Dictionary entry d is a tuple of reading, word,
part-of-speech id and cost. Part-of-speech id
and cost are 16 bit integers in Mozc.

To implement a Japanese IME, the dictionary stor-
age had better to support the following three oper-
ations.

• Common Prefix Lookup
Given a query s, returns all dictionary en-
tries whose reading parts are prefix of s. This
operation allows us to build a lattice (word
graph) for user input in O(n), where n is
the length of user input. A lattice represents
all candidate paths or all candidate sequences
of output token, where each token denotes a
word with its part of-speech.

• Predictive Lookup
Given a query s, returns all dictionary entries
which have s as a prefix of reading. Modern
Japanese IMEs, especially IMEs for mobile
devices, provide a suggestion feature which
predicts a word or phrase that the user wants
to type in without the user actually typing it
in completely. Predictive lookup is used in
implementation of the suggestion feature.

• Reverse Lookup
Basically the same as Common Prefix
Lookup and Predictive Lookup, but the direc-
tion of lookup is opposite. Reverse lookup
retrieves readings from words. Commercial
input methods implement a feature called re-
conversion with which user can re-convert
sentences or phrases already submitted to ap-
plications. To support this, Reverse Lookup
is necessary.

A trie is a useful data structure which supports
common prefix and predictive lookup in constant
time. Each node in the trie encodes a character,
and paths from the root to the leaf represent a
word. A trie encodes a set of words with a small
footprint when they share common prefixes.

3.2 Double Array

In the initial implementation of Mozc, we had used
the Double Array trie structure for dictionary stor-
age (Aoe, 1989). Double array is known to be
the fastest implementation for a trie and supports
every operation described in the previous section.
However, one critical issue of Double Array is
its scalability. Since Double Array uses an ex-
plicit pointer to represent a node in a trie, it uses
O(n log(n)) space to store a trie with n nodes.
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3.3 LOUDS

In Mozc, we use a succinct data structure LOUDS
trie for compact dictionary representation (Jacob-
son, 1989). The main idea of LOUDS is that
a trie is encoded in a succinct bit array string
which doesn’t use any pointers to represent nodes.
LOUDS stores an n-node ordinal tree as a bit array
of 2n + 1 bits.

A LOUDS bit string is constructed as follows.
Starting from the root nodes, we walk through a
trie in breadth-first order. When seeing a node
having d children (d > 0), d “1”s and one ” 0” are
emitted. In addition to that, “10” is added to the
prefix of the bit string, which represents an imagi-
nary super root node pointing to the root node. For
example, three “1”s and one “0” are emitted when
seeing the node “1” in Figure 1.

101110110010000

super-root

1

2 3 4

5 6 7

s 1 2 3 4 5 6 7

Figure 1: LOUDS trie representation

Navigation on the LOUDS trie is performed by
rank and select operations on the bit array.

• rank(k, i): Returns the number of k ∈
{0, 1} bits to the left of, and including, po-
sition i.

• select(k, i): Given an index i, returns the po-
sition of the ith k ∈ {0, 1} bit in the bit-
string.

Given a bit array of length k, rank and select can
be executed in O(1) time with o(k) space. With
rank and select operations, first child, next sibling
and parent of m-th node can be computed as fol-
lows.

• first child(m) = select(0, rank(1,m))+1

• next sibling(m) = m + 1

• parent(m) = select(1, 1 + rank(0,m))

3.4 Space efficient dictionary data structure
for Japanese IME

The key idea of Mozc’s dictionary structure is that
both readings and words are compressed in two
independent LOUDS tries. This structure helps us
not only to compress both readings and words by
merging the common prefixes but to enable the re-
verse lookup required for Japanese IME. Dictio-
nary entries associated with the pairs of reading
and word are stored in a token array. A token
stores part-of-speech id, cost and leaf node id as-
sociated with the word.

Figure 2 illustrates the dictionary data structure
which encodes the dictionary entries shown in Ta-
ble 1. Here we show how we perform forward
lookup and reverse lookup on this dictionary.

Reading Word Leaf node id in Leaf ndoe id in
reading trie word trie

a A 20 30
b B 10 40
b C 10 50

Table 1: Example of dictionary entries

Forward lookup (reading to word)
1. Given a query reading in Hiragana, retrieve a

set of key node ids by traversing the reading
trie.

2. By accessing the token array, obtain metadata
of dictionary entries, e.g. POS and emission
cost, and the set of word node ids.

3. By traversing the word trie from leaf to root,
we can retrieve the word string.

Reverse lookup (word to reading)
1. Given a query word, retrieve a set of reading

node ids by traversing the word trie

2. Unlike forward lookup, we cannot directly
access the token array. Instead, we perform
linear search over the token array to obtain
the set of reading node ids.

3. By traversing the reading trie from leaf to
root, we can retrieve the reading string.

Reverse lookup is generally slower than forward
lookup because of linear search. This issue can
easily be solved by caching the result of linear
search. Since reconversion is only occasionally
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(10)

(50)
(40)

(30)

10 20

(POS, cost), 40 (POS, cost), 50(POS, cost), 30

Reading Trie Word Trie

Token array

(20)

Reading b

Reading a Word C
Word B

Word A

Figure 2: Dictionary structure

used, the cache is created on-the-fly when recon-
version is requested to reduce the total amount of
memory usage.

3.5 Additional heuristics for further
compression

We combine the following three heuristics to per-
form further compression.

• String compression
Mozc uses UTF-8 as an internal string repre-
sentation, but not for storing the dictionary
and language model. The reason is that it
is not space-efficient to use UTF-8 directly,
because UTF-8 encoding needs 3 bytes to
encode Hiragana, Katakana and Kanji. In-
stead of UTF-8, we use a special encod-
ing in the dictionary which encodes common
Japanese characters, including Hiragana and
Katakana, in 1 byte. With our new encoding,
all Japanese characters are encoded in 1 or 2
byte.

• Token compression
Part of speech distribution tends to be biased,
since large portions of words are categorized
as noun. By using shorter codes to represent
frequent part-of-speech, we can compress the
token arrays. With this compression, we have
to encode the token array with variable length
coding. For this purpose, we use a rx library
3, which also uses a succinct bit array struc-
ture.

• Katakana bit
3http://sites.google.com/site/neonlightcompiler/rx/

Converting Hiragana word to Katakana word
is trivial in Japanese, as Hiragana and
Katakana character have one-to-one map-
ping. We can remove all Katakana words
from the word trie if a token have a Katakana
bit. If a dictionary entry is a Hiragana to
Katakana conversion, we set Katakana bit
and do not insert the word in the word trie.

3.6 Experiments and evaluations

We compared our LOUDS based dictionary struc-
ture and three additional heuristics. Table 2 shows
the total dictionary size and compression ratio
against the plain text dictionary. LOUDS + To-
ken is a LOUDS-based dictionary structure with
token compression. LOUDS + Token/Katakana is
a LOUDS-based dictionary with token compres-
sion and Katakana bit. LOUDS + all uses the all
heuristics described in the previous section. Table
2 also shows the size of reading trie, word trie and
token array in each dictionary.

The dictionary storage is reduced from 59.1MB
to 20.5MB with LOUDS. On the other hand, space
efficiency of Double Array trie is much worse
than LOUDS. It uses about 80MB to encode all
the words, which is larger than the original plain
text. By combining three additional heuristics, the
size of reading and word tries are drastically re-
duced. When using Katakana bit, the size of word
trie is reduced since the Hiragana to Katakana en-
tries are not registered into the word trie. The
most effective heuristics for compressing the dic-
tionary is string compression. Reading trie with
string compression is about 40% the size of the
original trie. Our succinct data structure encodes
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Dictionary type Size (Mbyte) Size / word (byte) detailed size (Mbyte)
plain text 59.1 46.0

Double Array 80.8 63.0
LOUDS+Token 20.5 16.0 Token: 8.5 Reading: 5.8 Word: 6.2

LOUDS+Token/Katakana 18.3 14.2 Token: 7.9 Reading: 5.8 Word: 4.6
LOUDS+all 13.3 10.4 Token: 7.9 Reading: 2.4 Word: 3.0

Table 2: Summary of dictionary compression

1,345,900 words in 13.3MByte (10.4 bytes per
word) and supports common prefix, predictive and
reverse lookup required for Japanese input meth-
ods.

4 Language model compression

4.1 Sparse matrix compression
As we described in the section 2, Mozc uses a
class language model as base language model for
conversion. The class basically corresponds to
the part of speech of Japanese. Because a naive
class language model is weak in capturing sub-
tle grammatical differences, all Japanese function
words (e.g. particles and auxiliary-verbs), fre-
quent verbs, and frequent adjectives are lexical-
ized, where the lexical entry itself is assigned to
unique class. With such an aggressive lexicaliza-
tion, the number of classes amounts to 3000. One
observation of the lexicalized transition probabil-
ities is that the transition matrix becomes surpris-
ingly sparse. More than 80% of transitions have 0
probability4.

Several methods have been proposed for com-
pressing a sparse matrix(Barrett et al., 1993).
These algorithm are not optimal in terms of space,
because they use a pointer to access to the indices.
Our proposed data structure is based on succinct
bit array which does not rely on any pointers.

Given a transition probabilities table M [i, j],
our succinct data structure is constructed as fol-
lows:

1. Converts the original two dimensional ma-
trix into a one dimensional array with a lin-
ear conversion of the indices, e.g. M [i, j] =
A[size · i + j], where size is the number of
classes.

2. Collects all probabilities and their indices
having non-zero probability.

4Since Mozc’s langauge model is generated from large
amount of web data, we found that language model smooth-
ing is not always necessary. We gave a reasonably big default
cost to the transition having 0 probability.

3. Represents the index in bit array.

4. Splits the bit array into sub bit arrays of size
3. Each split sub bits can represent 8 (23 = 8)
different states.

5. Insert the split sub-bits into a tree structure.
A node in the tree always has 8 children.

0 100 100 0

0 000 100 0 0 100 100 0

1 000 000 0 0 000 100 0 0 100 000 0

cost 1 cost 0

rank(1, 6)

rank(1, 16+2)

rank(1, 8+6)

level 0

level 1

level 2

cost 2costs

0 1 2 3 4 5 6 7

Figure 3: Succinct tree structure for class language
model

Figure 3 shows how 1-dimensional indices 434,
406 and 176 are represented in a tree with 8
branches. Here we assume that indices 434,
406 and 176 have a transition log probabil-
ity cost 0, cost1 and cost2 respectively. 434,
406 and 176 can be expressed as 110110010,
110010110, 010110000 in bit array. By split-
ting them into sub-arrays, they can be written
as [6,6,2] (=110,110,010), [6,2,6] (=110,010,110),
and [2,6,0] (=010,110,000). These sub arrays are
inserted into a tree of depth 3. For example, when
inserting the index 434 (6,6,2), the 6th bit of level
0 node, 6th bit of level 1 node, and 2nd bit of level
2 node are set to be 1. The leaf node stores the
actual cost.

A key characteristic of this tree structure is that
it is not necessary to store pointers (arrows in the
Figure 3) from parent to children. If we were to
create a bit array Bk by concatenating all nodes
at level k, the child node of mth bit at level k is
pointing to the rank(1, m)-th node at level (k+1).
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4.2 Caching the transition matrix
One problem of our succinct tree structure for lan-
guage model is that it requires huge numbers of
bit operations in lookup. Our preliminary experi-
ment showed that the lookup of matrix consumed
about 50% of total decoding time (IME conversion
time). To cope with this problem, we introduced a
simple cache for transition matrix. Figure 4 shows
a pseudocode of the cache. N is the size of cache.

argument: lid: class id of previous word
rid: class id of current word

returns: cached cost (log probability)

N ← 1024 // cache size
size← number of classes

// initialization
cache value[N ]← {−1, . . . ,−1}
cache index[N ]← {−1, . . . ,−1}

function GetCachedTransitionCost(lid, rid)
begin

// get the hash h from lid/rid.
h← (3 ∗ lid + rid) % N
// i is the one dimensional index.
i← (lid · size + rid)
if cache index[h] ! = i then

cache index[h]← i
cache value[h]←

GetRealTransitionCost(lid, rid)
endif
return cahce value[h]

end

Figure 4: Pseudocode of cache

4.3 Experiments and evaluations
Table 3 shows the size of language model with
different implementations. The size of class is
3019 and cost (transition probability) is encoded
in 2 byte integer. We found that 1,272,002 prob-
abilities are non-zero; i.e., around 86% elements
have zero probability. If we use a naive two di-
mensional matrix, 18 Mbyte storage is required
(3019 ·3019 ·2 = 18, 228, 722 byte). STL map re-
quires more memory than baseline. Our proposed
structure only uses 2.9 MB storage, where the suc-
cinct tree and cost tables consume 0.51 Mbyte and
2.4 Mbyte respectively. The “Random” is a theo-
retical lower bound of required storage, if we as-

sume that the indices of non-zero probability are
randomly selected. Our compact data structure is
only 16% the size of the original matrix. Also,
the size of our structure is close to the theoret-
ical lower bound. The reason why the size be-
comes even smaller than the lower bound is that
indices of non-zero probabilities are not actually
randomly distributed in a real language model.

Table 4 shows the effect of the cache for the
transition matrix. Even with a small cache size,
the conversion speed is drastically improved. In
practical, it is enough to set the cache size to be
512.

data structure Size (Mbyte)
Two dimensional matrix 17.4
STL map 39.8
Succinct Tree (8-branches tree) 2.9
Random 3.1

Table 3: summary of language model compression

Cache size conversion speed (sec/sentence)
0 0.0158

32 0.0115
128 0.0107
512 0.0102

1024 0.0099
4096 0.0097

Table 4: Cache size and conversion speed

5 Future work

This paper mainly focused on lossless algorithms.
However, it would be possible to achieve more ag-
gressive compression by introducing lossy com-
pression. Furthermore, Mozc encodes all costs
(log probabilities) in 2 byte integers. We would
like to investigate how the compression of costs
affects final conversion quality.

6 Conclusion

This paper presented novel lossless compression
algorithms for dictionary and language model.
Experimental results show that our succinct data
structures drastically reduce space requirements
by eschewing the space-consuming pointers used
in traditional storage algorithms. In dictionary
compression, we also proposed three methods to
achieve further compression: string compression,
token compression, and Katakana bit. In language
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model compression, we showed that a naive cache
algorithm can significantly improve lookup speed.
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Abstract 

We live in the age of touch screen gadgets. The 

future trends also show promising growth for 

them. Currently available input systems devel-

oped for standard PCs have room for improve-

ment in efficiency, visibility and usability etc. 

particularly for Perso-Arabic scripts e.g., Urdu. 

In addition, small touch screen devices expose 

users to health hazards. We put forth Ergonom-

ics in prime focus to reduce potential health 

hazards. We proposed distinct touch-screen 

keypads for different devices that are practically 

applicable for fast, correct and easy composing. 

We computed the estimated input time and tap-

counts using automated procedure to compare 

contemporary keypads with our proposed key-

pads. Our experiments on a considerably large 

Urdu corpus reveal results of ample signifi-

cance. Our optimization technique for arrange-

ment of alphabets and unique interface for data 

input is extendable and equally applicable to 

other natural languages. 

1 Introduction 

NLP has numerous applications at the “Char-

acters level” as shown by Figure 1. These in-

clude Romanization, Transliteration, Script Gen-

eration, Input System and/or Interface Designs 

etc. This research targets on the Interface De-

signs. We have come up with novel keyboard 

and keypads for text input on various types of 

touch-screen devices such as mobile phones, tab-

let PCs and completely touch screen PCs.   

Urdu is the 2nd largest Arabic script language 

according to the number of speakers (Lewis and 

M. Paul, 2009; Weber 1999). However its little 

presence on the internet does not qualify its rank. 

Among its major causes is the limited platform 

support and meager interface designs for com-

posing write-ups in Urdu. Designing optimized 

Urdu keypads for small screen widgets is a knot-

ty problem since Urdu has a relatively large al-

phabet set. Various sources and/or authors report 

different number of letters in Urdu letter set i.e. 

38 to 58 (Ijaz and Hussain, 2007; Malik et al. 

1997; Habib et al. 2010). Arabic loan low fre-

quency Ligatures and Diacritics are Used in reli-

gious texts. Ligatures are fixed blocks of letters 

each represented by a Unicode. Diacritics are 

small macrons like characters used for correct 

pronunciation of letters in a word.  

We used unigram and bigram frequencies in a 

large corpus and developed novel Urdu touch-

screen keypads as shown in Figures 2, 4 and 5. 

Letters with highest unigram frequencies are se-

lected as base letters of our keypad for small 

touch-screen devices as shown in Figure 2. Ar-

rangement of letters is based on their bigram fre-

quencies. Figure 3 illustrates its mechanism of 

displaying the hidden high frequency neighbor-

ing letters when a key is pressed. On the contrary, 

the keypad in Figure 4 is ordered and based on 

type-face shape property of individual letters. 

This keypad is designed for tablet PCs but it can 

also be used in smaller devices. Unigram letter 

frequencies are also used in arrangement of keys 

for large touch screen systems such that the 

highest frequency letters are typed by the strong-

est typing fingers. Experiments revealed promis-

ing results; explained in section 3.1.  

At present, more and more data is being gen-

erated and uploaded using touch-screen smart 

gadgets that come in various shapes and screen 

sizes such as tablet PCs and mobile phones etc. 

Recently, there have been zero button touch 

screen laptop systems in the market e.g., the 

Acer ICONIA.  The current trends and types of 

new gadgets being introduced in the market sug-
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Table 1: Multi-tap input table for T9 keypads 

 

gest the growth of touch screen systems in the 

days to come.  

Different interfaces suit different devices for 

users composing different natural languages. Full 

keyboard replica designs with base and shift ver-

sions e.g., QWERTY and Dvorak etc. cause usa-

bility as well as visibility problems; hence not 

viable for small touch-screen systems. Besides, 

small screen devices bring about health hazards 

to the user. Eyesight weakness, RSI (Repetitive 

Strain Injuries) and CTS (Carpal Tunnel Syn-

drome) etc. are only a few health hazards caused 

by the technology/devices that we use.  

For example, in case of eyesight, the closer ob-

jects put greater strain on muscles converging the 

eyes retina (Ankrum, 1996). Stress on conver-

gence system of eyes is crucial factor for strain 

(Jaschinski-Kruza, 1988; NASA, 1995) Thus we 

need to keep hygiene in prime focus during design 

and development of input systems, particularly for 

small touch-screen devices. We tried to develop 

touch-screen keypads that would be health friend-

ly having much visibility and usability coupled 

with crafty arrangement of keys that is ideal for 

fast, correct, easy and efficient composing.  

2 Proposed Keypads 

2.1 Motivation for new keypad designs 

Apart from the conventional QWERTY and 

Dvorak keyboards, there are a number of key-

pads used for text entry e.g., Muti-tap, odometer-

like, touch-and-flick, Septambic keyer and 

Twiddler etc. (Wigdor, 2004).  

Existing on-screen Urdu keyboard is replica of 

Microsoft Windows QWERTY type keyboard. 

For Mobile phones, Multi-tap T9 replica keypads 

are in use. The working of existing Urdu Multi-

tap keypad is explained in the Table 1. The col-

umns show the characters that will be typed 

when the corresponding key (numeral in row 

header) is tapped/pressed a specified number of 

times.  

 

VII VI V IV III II I Tap/Key 

 2 ب پ ت ۃ ٹ ث 

 3 ا آ ؤ ۂ ء ئ 

 4 س ش ص ض   

 5 د ڈ ذ ر ڑ ز ژ

 6 ج چ ح خ   

 7 ن و ھ ی ے ۓ 

 8 ف ق ک گ ل م ں

 9 ط ظ ع غ   

 

Full sized QWERTY like keyboards are not 

feasible for touch screen devices, in particular 

devices with small screen where limited screen 

area needs to be used astutely. This issue be-

comes more challenging when we design key-

pads for languages with a large number of alpha-

bets. The trade-off issues in size and position of 

keyboard, editor, and buttons etc. require great 

care at design time. A good design must comply 

with the five principles of Ergonomics; safety, 

comfort, ease of use, productivity/performance 

and aesthetics (Karwowski, 2006).  

Keeping the above points in view, we propose 

the following two keypads for small size touch 

screen devices and one keypad for large size 

touch screen devices.  

2.2 Proposed keypad for small size touch 

screen devices (Smart phones) 

Figure 2 shows the base image of proposed 

frequency-based keypad for touch screen mobile 

phones. The individual characters are selected 

based on their unigram frequencies in 55-million 

characters corpus. The arrangement of characters 

is done on the basis of their corresponding bi-

gram neighborhood frequencies. The letters in 

the base version, as shown in Figure 2, are not 

arranged in alphabetical order in Urdu. For the 

sake of easy understanding, all the remaining 

Urdu letters are shown in small font on the corre-

sponding edges of each button. The button on the 

lower left will be used for space, delete, carriage 

return and changing language etc. Similarly the 

three diamond-like small buttons can be used for 

showing the extremely low frequency ligatures, 

diacritics and for numeric characters.  

Comparison statistics of various keypads have 

been tabulated in section 3.1. The base form of 

keypad shows the most frequently used Urdu 

letters. The bigram neighborhood statistics reveal 

that this non-alphabetic arrangement of Urdu 

letters alone gives additional 17% improvement 

in composing Urdu text. Other statistics related 

to comparison of different keypads are explained 

in section 3.1.   
 

 

 

 
 

Figure 2: Proposed keypad for touch-screen 

mobile phone 
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Figure 5: Urdu letters with their corre-

sponding positions on QWERTY keyboard 

 

 

Figure 4: Proposed keypad for Tablet PCs 

 

In the event of a “button press” a single button 

can expand up to 8 neighbors showing the 8 new 

letters. These 8 letters consist of 4 horizontal and 

vertical neighbors and 4 diagonal neighbors. Be-

ginners will need to look at the screen to select 

the correct neighboring letter. However experi-

enced users can “touch type” in order to type 

their desired letter(s). The individual button sizes 

are big enough for blind touch and/or thumb typ-

ing. The size of buttons and their dimensions are 

flexible and can be adjusted according to the de-

vice on which the keypad is to be deployed. The 

event of a “button press” is illustrated in Figure 3.   
 

 
 

Horizontal and Vertical 

Neighbors 

Diagonal Neighbors 

 

 

2.3 Proposed keypad for middle size touch 

screen devices (Tablet PCs) 

Urdu letters can be grouped based on their 

shapes and their alphabetical order can still be 

preserved. The similar shaped letters have been 

grouped on a single button in our proposed key-

pad for Tablet PCs as shown in Figure 4.  

There are 10 buttons for typing Urdu that 

show the corresponding letters in native alpha-

betical order with some letters shown on the edg-

es of buttons.  All the letter typing buttons are 

shown on a single row called the home row. Un-

like hardware keyboards, it is very difficult to 

return fingers to exactly the same position on a 

touch-screen keypad. Thus we arranged all the 

letters on a single row so that the user doesn’t 

need to lift the entire hand in order to type a let-

ter. The user will keep both hands all the time 

above the single/home row. The user just needs 

to touch and flick in order to type a certain letter. 

The little finger of right hand will type the 

rightmost button on the keypad while the little 

finger of the left hand will be used to type the 

leftmost button on the keypad. The four middle 

buttons will be typed using the index fingers of 

both hands. The reason for this is that the index 

fingers are the strongest typing fingers 

(Krestensson, 2009).  

The lower row includes some special buttons 

such as Lig (Ligatures) and Diac (Diacritics).  

2.4 Proposed keypad for large size touch 

screen devices (PCs) 

Figure 5 shows our frequency based full key-

board layout. The current layout of Urdu key-

board used in touch screen devices is a replica of 

Microsoft Windows OSK (On-Screen Keyboard) 

with standard base and shift versions. Urdu has 

no concept of lower and upper case alphabets. 

 

The contemporary OSK keyboard has room 

for improvement in that some high frequency 

letters are typed in combination of Shift-key, the 

last thing a user will need. Similarly, the 

keys/buttons arrangement is not frequency based. 

We propose frequency based full keyboard lay-

out as shown in Figure 5. Along with other pro-

posed keypads, its detailed performance exami-

nation with human subjects will be done in near 

future. However the new layout has eliminated 

the Shift version of Microsoft Windows replica. 

We also re-arranged the position of keys based 

on the frequencies of individual letters such that 

the most frequent letters should be typed by the 

strongest typing finger i.e. the index finger.  

Additional issues related only to the touch-

screen keyboards such as the inter-keys distance 

will also be investigated and proper accommo-

dating solutions would be put forward. Similarly 

Figure 3: Illustration of a button press event  
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the neighborhood of some standard keys might 

also be required to change. One such example is 

the neighboring keys of the “Backspace/Delete” 

and the “Enter/Return” keys.   

3. Experiment 

We carried out experiments on a general gen-

re corpus of size 15,594,403 words. We estimat-

ed the performance of proposed keypads for 

small touch-screen and Table PCs. Existing 

Touch-screen systems start word prediction as 

soon as the user types the first letter. For words 

with length up to two letters, this seems to bring 

hardly any improvement to the typing speed. On 

the contrary, it makes the system more complex 

and larger in size putting more load on CPU. We 

recommend that word prediction should start af-

ter the second letter has been typed by the user. 

Out of 15,594,403 words, 4,784,234 words are 

less than or equal to two letters in length. Hence 

for the experiments of this study, we used a re-

duced corpus of size 10,810,169 words. In prac-

tice it is faster to type on touch-screen than on 

multi-tap systems. Research that studies compar-

ing the performance of touch screen and multi-

tap systems could not be found. Thus for this 

study, we assumed “a touch” equal to the “a tap”.  

3.1 Comparison  

We compared the performance of proposed 

keypads with the existing counterparts. The re-

duced corpus size and assumption of 

“touch=tap=1 sec” puts the bias in favor of the 

existing systems. However, we still achieved re-

sults that show substantial improvement over the 

existing systems. The comparison of time required 

to type the corpus using existing Multi-tap and our 

proposed keypads are tabulated in Table 2.  
 

 Multi-tap 

(existing) 

Touch 

Screen 

Tablet PC 

Seconds 263,380,598 135,249,436 120,096,926 

Days 3048.4 1565.4 1390 

 

 
 Multi-tap 

(existing) 

Touch 

Screen 

Tablet 

PC 

 170,580,560 80,818,830 73,242,564 

Improve-

ment 

 
52.62% 57.06% 

 

The comparison of the number of 

taps/touches has been summarized in Table 3.  

 

Table 4 shows the comparison on keypad 

sizes between the existing and proposed keypad 

layouts. The table shows that all the Urdu letters 

can be typed using reduced size keypads with 

almost half number of touch-taps. Hence the 

proposed keypads are more suitable for fast and 

time saving text input. 

 

 Multi-tap 

(existing) 

Touch 

Screen 

Tablet PC 

 154 83 80 

Improve-

ment 

 
46.10% 48.05% 

 

4. Conclusion  

We proposed different types of keyboard and 

keypads for different types of touch-screen de-

vices. The comparison analysis shows promising 

results. In addition to considerable improvement 

over existing keypads, our proposed designs are 

flexible because the size and dimensions of key-

pads, buttons, and editors can be adjusted ac-

cording to the device on which the keypad is de-

ployed. Similarly our keypads offer greater usa-

bility because Urdu letters include all the letters 

of Arabic and Persian. Hence these layouts are 

equally usable by the Arabic and Persian users. 

The keypads are optimized for Urdu but with 

minor additions, our input systems are extendible 

to other Perso-Arabic languages as well. Our op-

timization technique for arrangement of alpha-

bets and unique interface for data input will be 

extendable and equally applicable to other natu-

ral languages and various sizes of touch screen 

devices. 

5. Future directions  

We intend to carry out thorough testing of our 

keypads by human subjects. We shall perform 

evaluations for our keypad for large size touch 

screen devices also. Additionally, we want to 

extend our keypads to include other Perso-Arabic 

languages such as Punjabi, Pashto, Dari and 

Potohari etc. Another possibility to exploit this 

study can be in the design of single finger oper-

ated keypad and single hand operated keyboard 

for touch screen devices.  
Table 3: Comparison of number of taps/touches 

required to type the corpus 
 

Table 2: Comparison of time required to type the corpus 

 

 

 

 

Table 4: Comparison of Keypad sizes 

 

 

29



References  

Asad Habib, Masayuki Asahara, Yuji Matsumoto and 

Kohei Ozaki. 2010. JaPak IEOU: Japan-

Pakistan`s Input English Output Urdu (A Case 

Sensitive Proposed Standard Input System for 

Perso-Arabic Script clients). In prodeedings of 

ICIET. Karachi.  

Mark D. Dunlop and Finbarr Taylor. 2009. Tactile 

Feedback for Predictive Text Entry. In pro-

ceedings of Conference on Human Factors in 

Computing Systems Boston. MA. USA.  

A. Malik, L. Besacier, C. Boitet and P. 

Bhattacharyya. 2009. A hybrid Model for Urdu 

Hindi Tranliteration”, In proceedings of 
ACL-IJCNLP, Suntec, Singapore. 

M.Ijaz and S.Hussain. 2007. Corpus Based Urdu 

Lexicon Development.  In proceedings of CLT07. 

Pakistan. 

Ankrum, D.R., (1996). Viewing Distance at Com-

puter Workstations, Workplace Ergonomics, Sep-

tember. pp. 10-13. 

Jaschinski-Kruza, W. 1988. Visual strain during 

VDU work: the effect of viewing distance and 

dark focus. Ergonomics, 31, 10, 1449 - 1465 

M.Amer, M.Abid. A.Habib and M.N. Ali. 2009. 

Corps based mapping of Urdu characters for 

cell phones. CLT 09. Lahore.  

Lewis, M. Paul (ed.), 2009. Ethnologue: Languages 

of the World, Sixteenth edition. Dallas, Tex.: SIL 

International. Online version: 

http://www.ethnologue.org/ethno_docs/distribution.as

p?by=size  (Retrieved on July 22, 2011).  

 

NASA, 1995, NASA-STD-3000, Man Systems Inte-

gration Standards. National Aeronautics and 

Space Administration: Houston 

Leonard J. West. 1998. The Standard and Dvorak 

Keyboards Revisited:  Direct Measures of 

Speed. Technical report, Santa Fe Institute 

Daniel J. Wigdor. 2004. Chording and Tilting For 

Rapid, Unambiguous Text Entry to Mobile 

Phones. University of Toronto.  

W Karwowski. 2006. Handbook of human factors 

and ergonomics, Chapter-1. Wiley Online Li-

brary.  

Unicode. 1991-2001. Unicode Standard version. 
Online version: 

http://unicode.org/charts/PDF/U0600.pdf  

(Retrived on July 23, 2011).  

P. O. Krestensson. Winter 2009. Five Challenges 

for Intelligent Text Entry Methods. In proceed-

ings of Association for the Advancement of Artifi-

cial Intelligence. 

K. Knight and J. Graehl. 1998. Machine Translit-

eration. University of Southern California. 

George Weber. 1999. The World's 10 most influen-

tial Languages. American Association of Teach-

ers of French (ATTF), National Bulletin, vol. 24, 

3:22-28 

http://www.andaman.org/BOOK/reprints/weber/re

p-weber.htm  (Retrieved on July 23, 2011).   

30



Proceedings of the Workshop on Advances in Text Input Methods (WTIM 2011), pages 31–37,
Chiang Mai, Thailand, November 13, 2011.

�� ���������� 	
��� ��
�� ����
� �
� ��
����� ��������� �������

������� ���	
��

����������	�
���

�
��� ��������

������� ��	
�� �����
����� ��� ��	
��� ���������� �������
��� �����  ! "�����

	�
�������������
�	

�

��
 ��


��
��������������
�	

�

�
� ���
��


���������������
�	

�

��������

��� ��������	
 ����
 ������
 ��������

���� �� 	� 	��������
� ����� ����� ������

��� �	�	���� ���� ������� �� 	 �	�	
 �� 	��

����� 	 ���	�� �
����	

� ����	� 
������ 

��!����� ������������� �� ��� �	�	 	��


�� �	�� �� ��� "#$ ��������!����
������

�	��� ��	�	�����
 �� 	
�� 	������ 	 �������

��%� �&� ��� ������ ���� &���� �������

���� 	�� ���	�� ���������	���� ��� 	 �	�	�

'��� ��� ��	��	�� (��
��� �����	�� �� %���

��	
 ��� �� 	 �	�
����
 ��� ��	����� ��

��� ������ ��	�
� 	 ��%��� ���� �� �����

�	�	���� ���� ����� ��� �	�	�����	��� ����

%������ �� ��������� ��� ������������� ���

�	�� ��� 	 �	�	 	�� 	 &�

���	���� ���� ��

���� ���� �	�� &��� 
��� �	������

� ����
	
���
�

'�������	� ����
� ������ 	�� �	�
����� �	%�

������� �� 	 ��	��� �� ����� %	����� ������� ���

���� ����� ��� ������� 	 ������	
 �����	��� )� �	��

����
	�
 ��	�� ������ ��� �����	���%� 	��*�� �������

�	��� ���� ������	��� �� 	 ����� ������� )�	��

���
 ��&�%��
 &��� ��� ���� ����� 	 %	�� 	�����

�� ���� �� 	 ��	

 ����� ������ &��� ��� �� �&�

�� ��� +������ ���� ��� &�

 ���� ���� 	 ������

�	
 ��	��	�� �����	�� �� %����	
 ��� �� 	 �	�
�����

�,�� ��	��
�
 ��� -�&��
 -	-���	
 	�� .������

�/000 	�� ���� �12/2 ��� %����	
 �����	���� 

3� ��� ����� �	��
 ���� �� ��� ������� 	����

�%�� ��������� ����� ���� 	� ������
 �	��&������


	�� ������� ����������� �.4�
��� 	�� ����
 1221 �

���� �	%�
 ��&�%��
 ��� 	����%�� ���� �������

�	��� �� ��	������

��� ����	����� ��
� ��� �	�	���� ���� ������ ����

�	��� ��������� ����� ������� ��� 	 ���	� 	�����

�� �	�	���� ���� ���� 	� 	�	����� 	�� ����	���

	����
��
 ��%�
�
 	�� 
��� �
���� )� ���������� 	

�	�	���� ����� ������ ��	�
 &��� ��� ��	��	�� (��

�
��� �����	�� �� %����	
 ���
 ��	�
�� 	 ��%���

���� �� ����� �	�	���� ���� 	�� 	 &�

���	���� ����

�� ���� ���� �	�� &��� 
��� �	������

� �������� ���
� ����
	�� ���� !�"��#

��� ������	� 
��
��� 	�	
��

5
���� 	

 ����	
 �	�	���� &������ �� 	 ������� ��

�	����
 �	�	�
 	�� ������� .	���� 	�� 6������ ��	��

	������ �,�� ���	�
 �� �	�	���� &������ ������ 	��

���������� �� 	 %	����� �� �	�	���� ������ �����

���
 ��� 7	�	�	 �/0$8 � ��� 
	����� �	��� �������

�	�� ���	� 
���� ���� ��	� #2
222 �������� �	�����

���� 	�� ���� ��� ����� 	�� ��� %��� �����
 	��

�����%��
 	�%����
 	�� ��� 
���� ��� ��� �� �	�	�

�������� �� �&� ������� �� ��

	�	����
 ���	�	�	�

	�� �	�	�	�	�
 �	�� �� &���� �� ���� �� �	�� ��

�� 	���� $2 
������� 9��	�	�	� 	�� ���� �� &���� ���

:������� 	�� ����� ��	��	���	
 �	��� �� ���������

	�� �	�	�	�	 	�� ���� ��� ��� ��	���������� �� ����

���� &����� ;	�� ��������� �	���� ��	� �	%� ����

������ ��	����� �	� �	%� ��� �	�� ��	����� ��	�

��
 ���� 	�� ����������� �� ��� �	�� �	�	 ��������

���� �� �	

�� ����	��
� 	���
���

��� �����
������� ������	���

��� ����
����� �� �	�	���� &������ ������ �	� 
��

�� ��� ��%�
������ �� 	 %	����� �� �	�	���� ����

��� �������� 5���� ��� ������ �������
 �	�	�

����	��� ���%������ &��� ��� ���	�� �
����	

� ����

�	� 
������� ����� ��� ��� �	�	� �� ��� ���� ����

�
	�� )� 	

 �	���� 	�� ����� ��	��
� 	� ���� 	��

����������
 	�� �� 	

 ��������� ����
��� 	��

��
%�� �� ����	���� 	��*�� ���	���� 	�	
����
 ����

�	�	�����	��� ���%������ ����� �� �� ���� ��
�����

��� ��� ����� ����
���

��� ����� ����
 ��
���

<�������	��
�
 ��� �	�� ����	�
�� ���%��� �	�	�

����	��� ���%������ ���� ����� 	� ���	
 �����

������� ��� ��������� ����
�� �� ��� ����

��%��� ��� 	��
 �� �	�	�����	��� ���%������ ����

����
 	

 ���������� �	���� 	�� ����
	��� 	� ����

31



	�� ��� ���� ���� ��
��� ��� ������� ��� �� 	� 	��

������	�� ������	���� ���� 	� ������ �� ���������

���� �����	���%� ��	���� �� �	�	�����	��� ���%���

���� ���%���� �� ���� ����� ������ 	�� �	��� ��

�����	��� �� �	�	���� ������ �	���

5
������ �	��� �������	���� 
���� �	�� ��������

�	����
 ��� �����	�� ���
 &� �	�	���� ��	
 &���

��
� 	���� /
222 	�� ��� ��=� �� ��� ������	��

�	��� ��� �����	���
 �� �� ����	�� /
#22 �� ��

��� 	� ��+�� �� /2 ����
� �7	�	�	
 /0$8 � ,��

������� �� ��� �����	�� ��	�� �� �	����
 ���� ���

��	������ �	%� ��%�
���� ����� ����� ������� ��

&���� �	�� �� ��� �	�	� 	�� ���!����
������ �	��

��� �� ����� �� ��������%� �&� ��� ����� ��� �������

�� ��� ��	��	�� (��
��� �����	��� <�
��� �	�	����

�	��� ���%������
 	 ����� ����� ������ ���� 	� ���

������ �9��	�	
 3��
 	�� 7	�	�	
 /0$2 	�� ���

�������� �3��&	
 �	�	����	
 	�� ;�����
 /0$8 

������ ����� �� ����� �	�	���� ����� �� ����� ����

��� 	���� ����� ��	����� 	�� 	�!���� ��� ������ ���

����
�� �� ����� ����� ������� �� ��	� �� �	��� ��

"22 �� /
222 ����� �� 	�!���� �����

5� 	������ �� ������� 	 ����� ����� ������

&��� �����	�� �	�	�����	��� ���%������ ��	�
�� 	

��%��� ���� �� ����� �	�	���� ���� �� ��*��� 	� 
�	��


�	��� ��� ����� ��� ��� �	�	�� )� �	�����
	�
 	

����� ����� ������ &��� 	� ���	������� �� �	�	�

����	��� ���%������ �	

�� ��
�����
� ������� ��
�

������
 �	��
� ��
%�� ��� ��������� ����
�� ���

�	���
 �� ��� ������
 ����� ������� �	� �� �	���	

�

����������� �� �	���
 &���� ������� ��� ������ ��

����������� �,�� �	�����	�	 ������� ���%������


��� 3�� �/002 � 

���� �	��� ���������� 	 ��& ����� �����

������ �	��� ��� ��������	
 ����
 ������
 ��

&����
 �� �	�� �	�	
 	 ���	�� ��!����� ������

�������� �� ��� �	�	 �� 	������� 	��
 �� �	�� �� ���

"#$ ��������!����
������ �	��� ��	�	�����
 	 ����

�����%� �&� ��� ������ ���� &���� ������� ���� 	��

���	�� ���������	���� ��� 	 �	�	 �� 	�������� '���

��� ��	��	�� (��
��� �����	��
 ��� ��	����� �� ���

������ ��	�
� 	 ��%��� ���� �� ����� �	�	���� ����

����� ��� �	�	�����	��� ���%������ �� ���������

��� ������������� ���	�� ����	� 
����� ��� 	 �	�	

	�� 	 &�

���	���� ���� �� ���� ���� �	�� &��� 
���

�	������

���	� ����
� �����	��
� ��� �	�	��	��� ���%���

���� ������� ��� ��������� �	�	���� ����� >��	���

�	�� �� ���� �	� ���������� ��� ���	��� ��� ���

�	�	�
 ��� ������ &��� �	�	��	��� ���%������ ��

���� 	�������
� ��	� ��� ����� ����� ����� �����

��� �� &���� �%�� ��� �	�	� 	�� ����� �� ��	��

���
��� 	�� ����	�����	��%� �&� ��� ����� ����

��������

$ %���&� '������(��

��� ����������
	

��� ������ ��!��������� �� ��� ������ 	�� ��� �	��

�������
���� 	�� ���+�������� ��	� ��
 	 ���� ����

��� 	�� ��!����� �� ������ ��� ��

�&��� ��	�����?

/� @�%��� ����� &�� �	%� 
�	���� (��
��� ����

��� �	� �	��
� ��� ��� �	�	���� ���� ������ ���

������ &��� �	�	�����	��� ���%�������

1� 5 ���� 
�%�
 �� ����� ����� �� 	��	��	�
��

8� <���� ������ ���� 
��� ��	������� ��� �	������

���� �� ��������
� ��	����� �� �������� ������

	���%� ������ �� �	���� ��	� 	�� ����
	��� ��

��� ������
 ��� ��	��
��

"� 5 ���� �	�� �� 	����	�� �	� �� �	���	�����

��	� ��
 ��� ����� ����
� ��� �� ���������
�

�� ��������� +���� ��������

��� 
	�� ����� �� ���� �������� &��� ����� �� ���

������ �9��	�	
 3��
 7	�	�	
 /0$2 �

����� �	����� 	�� �
���
� �����
	��� �� �	��

������ 3� ����
 �	���������� ���	� ��
 
��� �����	��

��%� 	�� ����� 	�� �� 	 &	� ��� ���� ������%�
 	��

	
�� ��� ���� 	���	
��� �	����� 	
������ ���� 	��

����&�	� �����	��������

5 ������ ������ &��
� �� �	���+�� &��� 	

��
��������� ���� ������ �� ��� ��	��	�� (��
���

�����	��
 &���� &� ���� 	 �	�	 �� ��� ���	�� ���

��� ������ 	�� �	�� �� ��� ��������!����
������

�	���� �� �&� ��������%� ��� ������� &���� ������

���� 	�� ���	�� ���������	���� ��� 	 �	�	� ����

������	��
� ���
��� ��	� ��� ������ �� ��	�
� ��

	� ����	���� ���� 	��
 ��� 	 ��	���� ����
 �� �� ���

�	� ���� �	�� &��� 
��� �	����� ���	��� �� 
��� ���

���	���%� ������� �� �	�����

��� ��	���

��� ������ �	���	

� 	����� ��� �	�� ���	���� ��

��� �	������� ��
������ 	�� ��� 	��������� �� �&��

������ ����� 	� ��� ������ ����
 ���	��� �/ ���

������ ��
��� �� ��� ������ �	���+�� ��!���������

1�" 	�� �1 ����� 	�� ��%��	
 ��
��������� �������

�������
� ���
������� 	�� ��� �� ���
 	�� 	����

����
 ��� ���� �	���� ��� �� ��� ������ ��	� �	�

��� ��

�&��� �����+�	����� �7	�	�	
 /0$8A 9��

�	�	
 3��
 	�� 7	�	�	
 /0$2 �

32



/� 3�
� "2 ��� �� "$ �������� ��� 	�� �����

1� ��� ����� ��� 	�� ��	�� �	� 	�� ��� ��%�
%��

�� ��	�	���� ������

8� 3�� �� "2 � "2 B /
C22 ������
� �&��������

�	���
 ���� �� ����� ��	� ��%�
%� ��� ������&

���� 	�� ��� ����� )� �	�����
	�
 ��� �	���

�	�� �	��� ��%�
%��� ��� ������& ���� 	�� 	
�

���� 	

 ������� ���� �	%� �� 	���� /
122

��	�
� �	���
 &���� ����
� ��%�� ���� ��	�

0# ������� �� �	����
 �� ���� ��	� 0$ �������

�� ��� ���	
 ��	�	�����
 �� �����	�� ����� ���

��%��	�� �� 	
���� /22 ������� �� ��� ���� ���

�� ����� �� ��� �	�� �� 	 �����+� ����� �� ���

��%���	
�

"� ����� ���� �� �� �� �������+� �	�	 �����	����

&���� �� ��� ������ �	�� ��� ��	����� 	
����	���

�	�� ��������� ��� ������ ����� �� ��	�� &���

��� ����� �	�� ���� &��� ��� 
��� A ��	� ��
 ���

���� ���!����
� ���� ��	�	����� 	�� ����� ��

�- �	���
 ���� �� �� �	���
 	�� +�	

� -�

�	���
 &���� �	��� ��� �������� 
����� �� ���

	
����	������	�� ��!������ 
	������

#� ��� 	���	
 	��������� �� ����� �� ��	�	�����

�� �	�� �� ������=� %	����� �	�	�������

��� ��	��� ��	
���
���	

<�
��� ��� ������
 ��� ������ ���� ��
� 82 ������

��� ���� ��	� 	�� ��� ��� ������& ����� 3�� �� 82�

82 B 022 �&�������� �	���
 ��
� "#$ �	��� 	�� ����

��� ��� �	��� ������� ���� �� ���	���


/� �� �	����
 ��� ������ �	���� 	����� ��� �&��

������ ����� ��	� �	��� ��� +��� �&� 
������ ��

	 ���	�� ������������ 	 �	�	 ��

1� �� 	
�� �	���� ��� ����� �� &���� ��� +���

������ �� ��� 	 %�&�
? D	
E D�
E D�
E D�
E �� D�
E

	�� 	 ������	�����

) ��� %����������
� 
 ��� ����� ���

��� �	��� ��� ��
������ �� �	��� ���� ��� ���!����

���� �� ��� ��	�� �� �	���� �� ����� �� ��� &��� ,��

����
 &� ��� ��� /���	� �	�	 �� ��� '�� �	�	����

@���	� �	�	 �� ��� ��� �� 	���� 122
222
222 ����

������ ��	� F���
� ��

����� ���� ��� &�� 	��

	�	
���� �.��� 	�� .	=	&	
 122G � ��� ��� ���

�	���� 	��

/� 人

1� 日

8� 方

"� 者

#� 中

C� 的

G� 私

$� 一

0� 年

/2� 時�

6���������� 	 ��	������	
 �	�� ��	� 	���� #22

�	��� 	�� /#2 �	�	 ��	�	����� 	�� ���� �� 	� 	%�

��	�� ������ ��� ��� �	�
� ��� �9��	�	
 3��
 	��

7	�	�	
 /0$2 
 	
������ ��� ��� �	� ��	��� ��	��

�	

�
 ��� ��
������ �� ��� �	��� ��� ����� ��	����

	�
��

* +
	��& 
 ��� ����� ���

��� �	��� ������ �� �	��� �� ��� ��+������ ��

+���� ��%������ ���� 
��� ������� ��� ������

������ �	�� �	����
 	��	���� �� ��� ����� �� ���

���!����� �� ��	��
 �� ��� ��� �	��� 	��	���� �� 	

����	�
� �������� 	� ��+��� ��
�&� H����� �����

	���������� &�

 �� �	�� 	����&	����

��� ������ ���	��� ��� �������� �� ��� �	���

�� 	�������� ����	�� &������ �� ����	�� ��	�	�����

������ �� �	�� ������� 	�� ����� ����� 
���	� ���

��� �	�� ��� �	��� )� ��%�� 	 
	���� &����� �� ��	��

	���������� ��	� ����� �� �	%� 	 ���	��� ������	����

��� 	��������� &�

 ����� �� ��� �������� �� "#$

��� �	��� �� 	 82���� �����	���

���� ��������
 ��&�%��
 �� ��� ������	��
� ���

	�
� �� +� ��� 	��������� �� ��	�	����� ������
�


���	��� ��� ������ ������� �� ��� 	 ��

������ ��

���
	��� ��� �	���
 ��� ����� ���������� ��!������

)�
 ��� ��	��
�
 ��� �	�� ��� �� �� &��� 	 ����

�����
 ���� ��� ��
 ��� ��%����
 &��
� 	
�� �� &���

	 ���� �����
 ��� ��� ���!���� 	���	�	���� �� �����

�&� ��� �	��� &��
� ����
� �� ��� ���!���� �	�����

������ �� ��� �	��� ��� �� 	�� ��� �� �� ��� �����%	


�� ���������%� ��� ��� 	�� ��� ���
 �� %��� %���	


&���� 	�� ���&� �� �� 
��� ���������� ���� &��
�

	
�� �� 	�%���� �� 	
����	�� �	�� �������� 	� &�

�

������� ���� ��������	�����
 9��	�	
 3��
 	��

7	�	�	 �/0$2 ����
���� ��	� ��� �����	�
� ����

��	�� ��	�	���������� �	� �� �����=�� 	� ��

�&�?

33



/� ��� &��
� ������ ��������� �� �� ���� 	�

���� ������ ������ 	� ������
�� ,
����

������
 	� &�

 	� ���� 	%��	�� �� ������

�����
 �� ���� ��	
�=�� �� 	
����	�� ��������

�� ���� �	���� ����
 �� &��
� �� ��� �������

�	
 �������%� �� 
�� ��� ���� ������ �� ����

��	� �� &��
� 	

�& 	
����	�� �	�� �������� 	�

���� 	� ������
��

1� 9	��� ����
� ��� �� ��%��� �� 	�� ��&� ���

����	��
� �� ��� ��&�
 ��� ��	� �� ��� �	��

��& 	� ����� ����
 ������� �� ��� ���� ��&

����
� �� ���� 	� ���� 	� ������
� 	�� ���

�������� �� ����� ��&� ����
� �� ��
� ����

����� 6���	���� ���&��� ��� ����� 	��

��� ������ ��&�
 	

 �%������� ����� ��� ��	�

�	��� 	�� ���� :���� �� ��� ����� ��&
 ��

��� �	����� �� ��&� ����
� �� �� ��� �������

���� ����� �� ��� ����
 ��� �����
 	�� ���

�������

8� ,������ ����
� �� 
�	��� �� ���������� ��

����� ���������� )� ������ �������
 +�����

	�� ��%���� ���� ��� �������� ���� ������ 	��

����
� +����� 	�� ��� &�	��� ���� ����� 	��


���
� +����� � )���� 	�� ����
� +����� 	��

��� �� ���� ��������� �� ����� �	�	���� 	��

���������� 9�&�%��
 &� ���� ���� �� ����

��	� �	�� ����� +���� ���� ��%�� �&� �����

��
����� ��� ���������� ���&��� ���� 	��


���
� +����� �� 	
�� ��� �� ��%����� 5
������

	 ���� +���� �� �������� �� ��� �������� �����

�� ������ �������
 	 
���
� +���� �	� �	%�

��� 	�%	��	�� �� ��� �&������ ������ �� ���

&����� �)� ��� ������
 
���
� +����� &�

 ��

��%�� ���� ����	��� ��	� ��� ����� 

"� ��� ������ �� 	&�&	�� ������ ��!������

���� �� �����	��� 	� ���� 	� ������
�� 5
�

���� 	

 	&�&	�� ��� �	��� 	�� �� �����	����

��������
 	�	�� 	�������� �� ��� ������	��� ��

	
����	�� �	�� ��������� ��� �	��� 	&�&	��

��� �	�� ��!������
 �� ��� ����� �� ����� ����

	�%	��	��� 	��?

�	 9���
���? ��� �������� ���� ��� ����� ��

��� ������ ��& %��� %���	
 ������� �%��

��� ���� ��&�

�� ��	�����? ��� �������� �� ��������� ����

&��� ��� �	�� +�����

�� �	�����? ��� �������� �� ��� �	�� ����

�� �������? �������� &��� 	��	���� +�����


������	

� ���� 	� ����� �� 	� ����� ����

��� ������ &�������� ������� ��	��� �� 	�����

���	���� ��� ��������� �/ 	��%�� ��� ��� �	���

	�� ��%���� ���� " �
����
 �	��
� �-
 ��
 --
 	��

-� �
����
 &���� �����
� - 	�� � ��	�� ��� ���

�	��� ��	� ������ ��� ���� �� ��� �	��� ��� �
����

	�� ��%�� ���������� �� ��� ����� 	��%�
 	�� ���

�	��� �� �	�� �� ��� �
���� 	�� ���� ������� �� �	��

��� ������� ���������� ���� 	������� '����� �����

%���	
 �
����
 ���������� �1 
 �8 
…
 	�� �%	
�	���

	�� &������ 	��������
�
 	�� ��� &��
� ��������

�� �������� 5&�&	�� ��!������ 	�� ��
����	��
�

��%�� ���	��%� &������ �� ����� �� ����� ��&� �����

�	�����
 ���� �����	���� ����� ����������� &���

��� ����� 	�� �����

)� ��� ������
 &� 	����� 	 ��� �	�� �� ��� �����

�� 	 �	��� �� ��� ��������������!����� ����� �� ���

��
����� �	��� ��� ��������� �� ��� ���%���� �������

��
��� ��� �	�� �	����� ��� +��� �&� 
������ �� 	

���	�� ���������	���� ��� 	 �	�	� ��� ������ ����

�	�
� ��� ��� �	��� ��� �� ��%�� �� ��� 	��������

, -"�(
���
�

��� ���� ������ ���� &��
� �� �� 	���	

� ��	����

��� ������ ����� 	�� ����� �	�� �� 	 ��	
 �������

��� ����
 ��&�%��
 ��!����� ���� ���� 	�� �����

9����
 &� ���& ���� ��	������	
 +����� 	����

������ ����%��
 	�	��
 ���� ��� '�� �	�	���� @�

��	� �	�	 �� ��� ��� �� 	���� 122
222
222 ����

������ ��	� F���
� ��

����� ���� ��� &�� 	��

	�	
���� �.��� 	�� .	=	&	
 122G �

,������ / 	�� 1 �

����	�� ��� +���� 
�	���� 	��

��& ������������� �� ��� ������� ,��� ��� +�����


&� ��� ��� ��� ���� ��	�?

/� 9	��� 	�� �%��
� 
�	���
 �
����
� 
������ ���

��� &�	��� 
��� �	���

1� 5���� "G 	�� 8# �������� �� ������� �	

 ��

��� ����� 	�� ���� ��&��

8� ��� 
�	���� �� +����� �� �
����
� ���������

���� ��� ����������� ��������� �� ��� +������

)� �	�����
	�
 ��� 
���
� +���� 
�	���� �� ���


��� �	�� �� ��
	��%�
� ������A 5
�� ��� ����

+���� 
�	���� �� ��� ����� �	�� �� ��
	��%�
�

�������

)� ��� ������
 	���� 1" 	�� #C �������� ��

������� �	

 �� ��� ����� 	�� ���� ��&� 	��
 �� ���

��������
 	���� 8" 	�� #C �������� �� ������� ���

,����������
 �� ���� ��� ������ 	�� ��������


��� 
�	���� �� +����� �� �� 	 !�	
��	��%� 	��������

&��� ��� ����������� ��������� �� ��� +������ ���

34



#���$�

/8�2I

%���

G�0I

&���$�

//�8I

'���(

/C�/I

'���(

18�GI

&���$�

0�#I
%���

/G�/I

$���$�

/�"I

-��� �	�� ����� �	��

,����� /? ,����� 
�	���� �������������

����
�� �� ����� 	�	
���� �	� 
�	� �� �� 	 ����
��

���� ��	� ��� ������ �� 
��� ��+����� ��	� ��� ��

���� 	�� ��������� ���� �� ���	��� ���� ��� ��

��� +%� %�&�
� 	�� �� ��� ����� ��& 	�� %�&�
 D	E

�� ����� �� ��� 
���
� +���� �� ��� ��	��	�� (��
���

�����	���

. +
��(
	��& !������

���� �	��� �������� 	 ��& ����� ����� ������

�	��� ��� ��������	
 ����
 ������
 ��� ��� �����

�� �	�	���� ������ )� ��� ������
 �� �	�� �	�	
 	

���	�� ��!����� ������������� �� ��� �	�	 �� 	��

������ 	��
 �� �	�� �� ��� "#$ ��������!����
��

���� �	��� ��	�	�����
 	 ��������%� �&� ��� ������

���� &���� ������� ���� 	�� ���	�� ���������	�

���� ��� 	 �	�	 �� 	�������� '��� ��� ��	��	�� (��

�
��� �����	��
 ��� ��	����� �� ��� ������ ��	�
� 	

��%��� ���� �� ����� �	�	���� ���� ����� ��� �	�	�

����	��� ���%������ �� ��������� ��� �������������

���	�� ��� 	 �	�	 	�� 	 &�

���	���� ���� �� ����

���� �	�� &��� 
��� �	������ ��� �������	
 ��	
 �	�

���� �� ��	
�=� 	� ����� ������ ��	� &��
� 	

�& 	

���� ������ �� ����� ������� ��� ������ �� �����

�����	
 ��� �������
 ��� �� ���%���� ����� �	���� 	��

�������
��� �� ����������

'� �	%� ���
������� 	 ������ ������ �����

��� .	������ '�� ������ �.	������ '��
 122C 

��	� ��	�
�� �� �� ����� �	�	���� ����� �� 	 �����

����� ������ �� ��� '����&�� '� �	%� 	
�� ���

%�
���� ��� ��������� ��� ��� J%��	� ����
��

+�� �����	�� �J%��	�
 /0"8 � ��� ���������
�� ���� ��+����� ��	� ��� ������
 ���	��� ���

+%� %�&�
� 	�� �� ��� 
�����	�� ���� ��& 	��

��� ��������!����� ������	��� �� ��� �������	��

���� ��&� ,���������
 ��� ����������� �� ��� ���

�	�� ������ ���� ��� ������ ������ ��	� �� 	� �����

�	
 ���	�� ������ ������� �� �� ������ ���� �	��

��� �� ���� ��� ������ 	�� ��� ��������� �

,����������
 &� �	%� ����������� 	���� /
#22

��������� ��� ��	����� ��� ������ ����� ��� ��


*�H

���


*�H
 122# ��	� �� 	 ������ ��� ��	������� 	

����� ����� ������ �� 	 &�� ���&����

 ����
!������
	

���� ����	��� &	� �	��
� ��������� �� ��� ;�������

�� (���	����
 H������
 H����� 	�� 6�
����
 F�	���

���5�� ��� H������+� ����	��� �> 
 188222G8


12//�

!� �������

/� J%��	�
 5� �/0"8 � ����� �� 	 ������ �����

&����� �����	��� �����
�
 ����
��� ������

���
 �������
�
 /1
 #/�#$ACC�

1� ���
*�H �122# � ������������	�
�

��
����
�
���	�����������

��
�������� �	������� �� /8 ;	� 12/2 �

)����* "C�CI

��*� 8#�1I

&���$� /$�/I

,����� 1? ��& �������������

35



8� .	������ '�� �122C � �����

�������	�
���
����
�
���	��

������������
������ �	������� �� /8

;	� 12/2 �

"� .4�
���
 ;� 	�� ;� ���� �1221 � .����	���

&������ �����	���? 	 ���%�� �� %����	
 ����

��	���� ����
���
 ��	���  !! � "
 <6H>


H	��	 >	��	�	
 65�

#� .���
 �� 	�� 9� .	=	&	 �122G � #��

$�	�
��� ��%��� &�����
 "
 F���� H�����

.���	��

C� 9��	�	
 7�
 7� 3��
 	�� 9� 7	�	�	 �/0$2 �

5� 	��������� �� ��������� ��� 	 �	�	����

��	�	���� �����	��� '�������
%� �( ��� )��

*
���
����
�
 +�
(���
�� �
 +��	������
�


,�
%�������
 1"0�1#C�

G� ;	�.��=��
 )� H�
 H� K� L�	��
 	�� �� '�

H�������� �/000 � ���� ����� ����� ���� ����

��	���� ��������� �
� *
(�������
 ����
�
�

�%�
 /$�" 
 18#�1""�

$� ����
 �� �12/2 � M������	��� ������=	�����

�� %����	
 �����	��� ��� ��������	��� ���� ���

��� �� 	 �������	��� �	�
����� '�������
%�

�( ��� �-�
�������� .

��
 .+/ 0��	�����

�
 ���� *
���(��� 0�(�-��� �
� ����
�
�%�

1�*0�2"!3 GG�$C�

0� 3��&	
 9�
 �� �	�	����	
 3� ;����� �/0$8 �

5 ;����� �� ������������ �	�	���� �����

*'0$ $���
�

 1"�C 
 GG1�GG0� �)� �	�	���� 

/2� 3��
 7� �/002 � 5���
�	�� ����� ������� ���

��6��� ������ ? 	 �	�=������ ������	����

	�� 	 �	�=������� ���%������� *'0$ $���
�



8/�8 
 "2"�"/"� �)� �	�	���� 

//� 7	�	�	
 9� �/0$8 � 6���	�� ����
��� 	����

��	��� &��� ��� ������ �� ����� �����	��� ���

�	�	���� &������� )�? +�%
����� .�	���� �(

0��

�� ��	�-����
%
 ������ �� '� (� 6�����


82#�"2G
 H��������N��
	��

�����	�/� ������ ���(�

���	
 "#$ .	����

��人 ��日 ��方 ��者 ��中
��的 ��私 ��一 ��年 ��時

�前 ��店 
�見 ��何 
�等

�月 ��今 ��本 ��第 ��円
��事 �!上 �!後 �!気 �&目
�&性 
�分 �&会 
�大 
!市

&県 ��他 ��出 ��名 ��次
��家 ��度 ��数 ��二 ��回
��用 ��話 �!化 ��笑 �!件
�&車 �&内 ��来 ��様 �%万

�%駅 ��順 ��先 �%力 ��法
��別 �=手 �=点 �=品 ��料

�心 ��新 
%所 ��版 
�夏

=物 
�系 ��三 ��花 ��町
��国 �%色 ��誰 �=水 ��得
��各 �%場 ��屋 ��曲 �%十
�=声 ��下 �=間 ��部 ��感
��子 ��僕 �!書 �&際 ��顔
��君 ��元 ��俺 ��朝 ��型
�A全 �A社 �A体 �
権 
�達

�
歳 
�地 �
高 
�金 
A頃
��風 ��夜 ��号 
�氏 ��男
��味 ��彼 ��集 ��約 �A道
��区 �A条 �
位 �
代 ��枚
�
音 �
外 ��夢 ��酒 �
表
��旅 ��頭 ��超 ��街 �*為
�*女 �*海 �� 機 

室 �� 村

�同 �� 再 
�線 
*生 
� 当
��雨 ��主 ��番 �A猫 �
語
�
式 �*個 �� 足 �
御 ��側

��米 �
犬 ��長 �*員 ��量
�*帯 �� 館 �� 形 ��戦 ��観
��空 ��初 ��台 ��株 ��級
��昔 ��面 ��絵 ��小 ��愛
��口 ��山 ��着 ��記 ��局
��姿 �!四 �!率 �!寝 �&例
�&学 �!編 �&未 ��光 ��倍
��娘 ��宿 ��木 ��食 !�五
!�春 !�帳 !	星 &�母 &�肌
��費 &�図 !�似 &�付 ��森

��券 !�百 !�器 �!右 !�税
�!最 &�便 �&歌 &�黒 �&種
!&無 &!左 ��欄 �%白 ��千
�%行 ��親 ��役 ��都 �%値
��島 �=作 �=裏 �=項 ��箱
��魚 �%安 ��額 ��訳 ��身
�=薬 ��桜 ��汗 ��楽 %�商
%�逆 ��低 ��馬 %�赤 ��章
��士 =�業 =�文 =�組 ��神
��肉 ��冬 %�雪 ��六 ��八
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=�発 ��板 �%差 %�南 ��階
��北 %�横 �%期 =�億 �=美
=%巻 %=席 =�七 �=派 ��割
��秋 �%恋 %�涙 ��冊 ��川
=�賞 �=科 ��剤 �%師 ��良
��郡 �%可 ��製 !�不 !%紙
�=父 !�服 �=石 !=材 &�症
&%杯 ��週 &�重 ��耳 !�脳
&=非 &�葉 ��著 ��制 %�論
��激 %�類 ��変 ��皆 �!東
=�糸 %!園 =�病 �!茶 =!夫
�&実 ��湯 %&末 �&団 =&多
�!産 ��暇 ��技 ��九 ��旧
��軍 ��土 ��髪 ��熱 �A壁
�A王 �A客 ��毛 �
丸 ��々
:西 �
術 �A柄 �
緑 ��麺
��嫌 ��胸 ��半 ��和 ��妻
��奴 ��塩 ��居 ��袋 !�天
!�鍋 �A牛 !�窓 �A程 !A選
&�鳥 &�火 �
歩 &�祭 �
昼
!
死 &A堂 &
質 !�真 !�敵
��急 !�城 ��匹 !�青 &�旬
!�歯 &�層 �
命 ��誌 �
秒
��院 ��隣 �
卵 ��船 ��玉
��謎 �*盤 �*字 �*庭 �
史
�� 奥 ��首 �� 姫 ��流 �� 総
�*状 �� 隊 ��展 ��塾 %�入
%�指 ��太 %�橋 ��某 ��職
=�府 �A銀 =�省 %A靴 =�角
�A弾 =A運 ��穴 �
対 ��両
%
腕 ��豚 �
界 =
波 �A友
�
強 �
枠 ��爆 %
案 %�虫
��副 �
泊 %�豆 ��辺 ��輪
=
噂 �*油 =�経 %*証 =�血
�*毎 =*幅 �
英 �� 票 ��肩
%� 諸 ��州 �� 列 =� 即 �*有
�� 魂 �
又 ��縁 �
里 ��酢
��計 ��妹 !
座 !�炎 �*腰
!�骨 �*圏 !*連 &
校 &�要
�� 皮 &�龍 �� 画 !� 詩 &*問
&� 床 ��悪 %�通 ��雲 %�林
��草 =�世 ��鶏
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Abstract

We present an approach to help editors of
Japanese on a language learning SNS cor-
rect learners’ sentences written in Roman
characters by converting them into kana.
Our system detects foreign words and con-
verts only Japanese words even if they
contain spelling errors. Experimental re-
sults show that our system achieves about
10 points higher conversion accuracy than
traditional input method (IM). Error anal-
ysis reveals some tendencies of the errors
specific to language learners.

1 Introduction

The Japan Foundation reports that more than 3.65
million people in 133 countries and regions were
studying Japanese in 2009. Japanese is normally
written in thousands of ideographic characters im-
ported from Chinese (kanji) and about 50 unique
syllabic scripts (kana). Because memorizing these
characters is tough for people speaking European
languages, many learners begin their study with
romaji, or romanization of Japanese.

However, sentences written in kana are eas-
ier to edit for native Japanese than the ones in
Roman characters. Converting Roman characters
into kana helps Japanese editors correct learners’
sentences, but naive romaji-kana conversion does
not work well because there are spelling errors in
learners’ sentences. Even though traditional in-
put methods have functionality to convert Roman
characters into kana, existing IMs cannot treat
learners’ errors correctly since they are mainly de-
signed for native Japanese speakers.

In this paper, we present an attempt to make the
learner’s sentences easier to read and correct for
a native Japanese editor by converting erroneous
text written in Roman characters into correct text
written in kana while leaving foreign words un-
changed. Our method consists of three steps: iden-

tification of language, spelling correction and con-
verting text from Roman to kana. First, learners
often write a word from their native language di-
rectly in a Japanese sentence. However, they are
not converted correctly into their kana counterpart
since the original spelling is usually not equiva-
lent to the Japanese transliteration. Thus it is bet-
ter to leave these word unchanged for the read-
ability of editors. Second, since erroneous words
cannot be converted correctly, spelling correction
is effective. We combined filtering with cosine
similarities and edit distance to correct learners’
spelling errors. Third, we greedily convert Ro-
man characters to kana for manual correction by
native Japanese teachers. We compared our pro-
posed system with a standard IM and conducted
error analysis of our system, showing the charac-
teristics of the learner’s errors.

2 Related Work

Our interest is mainly focused on how to deal
with erroneous inputs. Error detection and correc-
tion on sentences written in kana with kana char-
acter N-gram was proposed in (Shinnou, 1999).
Our approach is similar to this, but our target is
sentences in Roman characters and has the addi-
tional difficulty of language identification. Error-
tolerant Chinese input methods were introduced in
(Zheng et al., 2011; Chen and Lee, 2000). Though
Roman-to-kana conversion is similar to pinyin-to-
Chinese conversion, our target differs from them
because our motivation is to help Japanese lan-
guage teachers. Japanese commercial IMs such
as Microsoft Office IME1, ATOK2, and Google
IME3 have a module of spelling correction, but
their target is native Japanese speakers. (Ehara and
Tanaka-Ishii, 2008) presented a high accuracy lan-
guage detection system for text input. We perform

1http://www.microsoft.com/japan/
office/2010/ime/default.mspx

2http://www.atok.com/
3http://www.google.com/intl/ja/ime/
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error correction in addition to language identifica-
tion. Correcting Japanese learners’ error is also
proposed in (Mizumoto et al., 2011). They try to
correct sentences written in kana and kanji mixed,
whereas we aim at texts in Roman characters.

3 Romanization of Japanese

There are some different standards of romaniza-
tion in Japanese. The three main ones are Hepburn
romanization, Kunrei-shiki Romaji, and Nihon-
shiki Romaji. Most Japanese learners write in the
Hepburn system, so we use this standard for our
conversion system. Hepburn romanization gen-
erally follows English phonology with Romance
vowels. It is an intuitive method of showing the
pronunciation of a word in Japanese. The most
common variant is to omit the macrons or circum-
flexes used to indicate a long vowel.

4 Romanized Japanese Learners Corpus
from Lang-8

To our knowledge, there are no Japanese learn-
ers’ copora written in Roman characters. There-
fore, we collected text for a romanized Japanese
learners’ corpus from Lang-84, a language learn-
ing SNS. Since it does not officially distribute the
data, we crawled the site in Dec 2010. It has ap-
proximately 75,000 users writing on a wide range
of topics. There are 925,588 sentences written by
Japanese learners and 763,971 (93.4%) are revised
by human editors (Mizumoto et al., 2011). About
10,000 sentences of them are written in Roman
characters. Table 1 shows some examples of sen-
tences in Lang-8. As a feature of learners’ sen-
tences in Roman characters, most of them have
delimiters between words, but verbs and their con-
jugational endings are conjoined. Another is the
ambiguity of particle spelling. For example, “は”
(topic marker) is assigned to ha by the conver-
sion rule of Hepburn romanization, but it is pro-
nounced as wa, so both of them are found in the
corpus. Pairs of “を” wo (accusative case marker)
and o, “へ” he (locative-goal case marker) and e
also have the same ambiguity.

5 Error Tolerant Romaji-kana
Conversion System

The system consists of three components: lan-
guage identification, error correction with approx-
imate matching, and Roman-to-kana conversion.

4http://lang-8.com/

5.1 Language Identification

Language identification is done by exact match-
ing input sequences in English with a roman-
ized5 Japanese dictionary. Learners sometimes di-
rectly write words in their native language without
adapting to Japanese romaji style. Since we are
not focusing on implementing full transliteration
(Knight and Graehl, 1998), we would like to con-
vert only Japanese words into kana. To achieve
this, we use an English word dictionary because
most foreign words found in learners’ sentences
are English words. By adding dictionary, we
can easily extend our system to another language.
Those words matched with the dictionary are not
converted. WordNet 2.16 is used as the dictionary.
It has 155,287 unique words.

We also use a Japanese word dictionary to de-
cide whether a word goes to the approximate word
matching phase or not. The Japanese word dic-
tionary is IPADic 2.7.0. We also use a dictionary
of Japanese verb conjugations, because verbs in
learners’ sentence are followed by conjugational
endings but they are separated in our word dic-
tionary. The conjugation dictionary is made of
all the occurrences of verbs and their conjugations
extracted from Mainichi newspaper of 1991, with
a Japanese dependency parser CaboCha 0.537 to
find bunsetsu (phrase) containing at least one verb.
The number of extracted unique conjugations is
243,663.

5.2 Error Correction

Words which are not matched in either the En-
glish or the Japanese dictionary in the language
identification step are corrected by the following
method. Spelling error correction is implemented
by approximate word matching with two different
measures. One is the cosine similarity of character
unigrams. The other is edit distance. We use only
IPADic to get approximate words.

5.2.1 Candidate Generation with
Approximate Word Matching

First, we would like to select candidates with
the minimum edit distance (Wagner and Fischer,
1974). Edit distance is the minimum number of
editing operations (insertion, deletion and substi-
tution) required to transform one string into an-

5Romanization was performed by kakasi 2.3.4. http:
//kakasi.namazu.org/

6http://wordnet.princeton.edu/
7http://chasen.org/˜taku/software/

cabocha/
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Table 1: Examples of learners’ sentences in Lang-8. Spell errors are underlined.
learners’ sentence correct kana
yorushiku onegia shimasu. yoroshiku onegai shimasu. よろしくおねがいします。

::::::
Muscle

::::::
musical wo mietai. Muscle musical wo mitai. Muscle musicalをみたい。

anatah wa aigo ga wakarimasu ka. anata wa eigo ga wakarimasu ka. あなたはえいごがわかりますか。

other. However, the computational cost of edit dis-
tance calculations can be a problem with a large
vocabulary.8 Therefore, we reduce the number of
candidates using approximate word matching with
cosine distance before calculating edit distance
(Kukich, 1992). Cosine distance is calculated us-
ing character n-gram features. We set n = 1 be-
cause it covers most candidates in dictionary and
reduces the number of candidates appropriately.
For example, when we retrieved the approximate
words for packu in our dictionary with cosine dis-
tance, the number of candidates is reduced to 163,
and examples of retrieved words are kau, pakku,
chikau, pachikuri, etc. Approximate word match-
ing with cosine similarity can be performed very
efficiently (Okazaki and Tsujii, 2010)9 to get can-
didates from a large scale word dictionary.

5.2.2 Selecting the Most Likely Candidate
The system selects the correct word by choos-
ing the most likely candidate by N-gram cost
normalized by a word length. It is calculated
with a romanized character 5-gram model built
from kakasi-romanized Mainichi newspaper cor-
pora of 1991 using SRILM 1.5.1210 with Witten-
Bell smoothing.11

5.3 Converting Roman Characters into Kana

We greedily convert Roman characters into the
longest match kana characters. If a word includes
character with circumflex, it is assumed to be two
vowels meaning long sound (e.g., “kyôdai” is ex-
panded as kyoudai: brother ). Characters not used
in the Hepburn system are assumed to be another
character which has similar sound in English if
possible. For example, ca, ci, cu, ce ,co are treated
as ka, shi, ku, se, ko respectively.

Most kanas correspond to a pair of a conso-
nant and a vowel. Although most pairs of Roman
characters are converted into kana unambiguously,

8We set the maximum distance between input and candi-
date as 1, because it achieved the best accuracy in preliminary
experiment.

9http://www.chokkan.org/software/
simstring/

10http://www-speech.sri.com/projects/
srilm/

11Witten-Bell smoothing works well compared to Kneser-
Ney when data is very sparse.

Table 2: Examples of successfully corrected word
misspelled kana correct kana
shuutmatsu しゅう tまつ shuumatsu しゅうまつ
do-yoobi どよおび doyoubi どようび
packu ぱ cく pakku ぱっく

some pairs have several possibilities. One of them
is a pair of n and following characters. For exam-
ple, we can read Japanese word kinyuu as “きん
ゆう/kin-yuu: finance” and “きにゅう/kinyuu: en-
try.” The reason why it occurs is that n can be a
syllable alone. Solving this kind of ambiguity is
out of scope of this paper; and we hope it is not a
problem in practice, because after manual correc-
tion we can translate kana back to Roman charac-
ters unambiguously.

6 Experiments

We have evaluated our approach in converting Ro-
man characters into kana after spelling error cor-
rection of sentences.

6.1 Evaluation Metrics

We evaluate the accuracy of word error correc-
tion. We also evaluate error correction perfor-
mance with recall and precision. Recall and Preci-
sion are defined as follows:

Recall = Nt/Nw, P recision = Nt/Ne

where Nt, Nw and Ne denote the number of words
corrected from wrong word to right word by the
system, the number of words that contain errors,
and the number of words edited by the system.

6.2 Experimental Settings

For comparison, we use Anthy 790012 as a base-
line, which is one of the de facto standard open
source IMs. It does not use either language identi-
fication or approximate word matching. Note that
Anthy is not particularly tailored for spelling er-
ror correction. To compare with another system
which has error correction function, we experi-
mented with Google CGI API for Japanese In-
put13. Since it does not have Romaji-kana conver-
sion module, the experiment was conducted using

12http://anthy.sourceforge.jp/
13http://www.google.com/intl/ja/ime/

cgiapi.html
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Table 3: Examples of uncorrected word
misspelled kana correct
renshou れんしょう renshuu
musugashi むすがし muzukashii
noryoukushiken のりょうくしけん nouryokushiken

Table 4: Performance of error correction
method Acc P R
Anthy (baseline) 74.5 66.7 69.7
Anthy w/ Google API 77.8 69.8 72.9
Proposed w/o word match 84.5 76.6 77.3
Proposed w/ word match 85.0 78.1 78.6

Romaji-kana conversion by Anthy and error cor-
rection by Google API. We also compare our sys-
tem with and without approximate word matching.

6.3 Data Set
We collected 500 sentences written in Roman
characters from Lang-8. Although some of
them have been already revised, we manually re-
annotated gold standard answers to enhance the
consistency of quality. While making the test set,
we corrected only spellings even if they contain
other type of error because our main purpose is
correcting spelling errors.14

6.4 Experimental Results
Table 4 shows the spelling correction accuracy.
The word accuracy of the proposed system is
85.0% which is about 10 points higher than An-
thy’s 74.5%. The accuracy of our method with-
out approximate word matching is 84.5%, show-
ing that language identification is the crucial com-
ponent of our method.15 Examples of successfully
corrected word are shown in Table 2. Underlined
words are erroneous words and words underlined
with wavy line are foreign words. Spelling correc-
tion with approximate matching can improve pre-
cision without degrading recall. However, the low
performance of the baseline system shows diffi-
culty of this task.

7 Discussion

Examples of uncorrected words are shown in Ta-
ble 3. The top three largest ones are matching with
valid word (40%), too large edit distance between
original word and correct word (24%), and com-
pound words (14%).

Matching with valid word: Matching with
valid word occurs when the input matches a word

14There are 3,274 words in the test data and 32 characters
in a sentence on average.

15The number of foreign words in the test data is 137 and
124 words of them were correctly identified.

Table 5: Error types and system performance (per-
centage)

error type number corrected
Typo 31 (13.1) 7 (22.6)
Due to L1 phonetics 62 (26.3) 4 (6.5)
Due to L1 writing 28 (11.9) 2 (7.1)
Confusing vowels 88 (37.3) 7 (8.0)
Others 27 (11.4) 0.0 (0.0)
Total 236 20 (8.5)

in the dictionary. For example, if a learner incor-
rectly writes renshou instead of renshuu, it is not
corrected because it is found in Japanese dictio-
nary. This type of error cannot be corrected with-
out context information so a word based language
model is worth trying.

Too large edit distance: A word whose edit dis-
tance from the input is larger than the threshold is
not selected as a candidate. For example, if the
learner writes muzukashii as musugashi, the edit
distance between words is 3 which is lower than
our threshold (=1). We can vary threshold but set-
ting larger threshold introduces dissimilar words
into the candidate list. Table 5 shows error types
with their percentage against all erroneous words
and system accuracy (where L1 means learners na-
tive language). Learners tend to confuse vowels
and write erroneous word such as domou instead
of doumo. Setting lower cost to edit operations
of vowels than those of consonants may fix these
kind of phonetic errors. A Japanese IM which lets
us input kana and kanji by typing only consonants
(Tanaka-Ishii et al., 2001) can be seen as a special
case where the cost of edit operations of vowels is
set to zero.

Compound words: Our system is effective
when our dictionary and the learners’ sentence use
the same granularity of tokenization. For exam-
ple, “nouryokushiken: capacity test” can be treated
as two words, “nouryoku: capacity” and “shiken:
test.” In fact, IPADic does not have an entry for
“nouryoku shiken.” Therefore, the single word
“nouryokushiken” does not hit when matching. To
solve this problem, word segmentation techniques
may be effective.
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Abstract 

In this paper we describe our approach to 

building a French text input system, in 

which no explicit typing of accents is re-

quired. This makes typing of French 

available to a wider range of keyboards 

and to occasional writers of the language. 

Our method is built on the noisy-channel 

model, and achieves 99.8% character-

level accuracy on the test data consisting 

of formal and casual writing styles. This 

system is part of a larger project of mak-

ing text input easier for multiple lan-

guages, including those that have 

traditionally been the target of input 

methods (such as Chinese and Japanese) 

as well as phonetically based non-Roman 

script languages (such as Greek, Russian, 

and Indic languages). A demo of this sys-

tem including these languages will be 

shown at the workshop.  

1 Introduction 

Research on input methods has so far been lim-

ited to those languages in which an input method 

editor (IME) is an absolute necessity, such as 

Chinese and Japanese, that are written with a 

very large number of characters. However, with 

the recent availability of text prediction in typing 

web search queries and text on mobile devices, it 

has become obvious that text input methods are a 

very useful tool for many languages beyond the 

traditional IME languages (e.g., McKenzie and 

Tanaka-Ishii, 2007). Phonetic text input has also 

become widely popular in inputting non-Roman 

script languages in the last few years.  

In this paper we deal with a problem of text 

input for a language that has never been a target 

of traditional IME: French. French uses the Ro-

man alphabet with a few additions: accented 

vowels (éàèùâêîôûëïü), the consonant ‘ç’, and 

the ligatures ‘œ’ and ‘æ’ Inputting these charac-

ters requires a special arrangement such as in-

stalling an international keyboard, using ALT 

codes (which uses the ALT key and a three or 

four digit code),
1
 cutting and pasting from an 

existing text or inserting a symbol from a table. 

This makes French typing especially difficult for 

those who do not input French on a regular basis. 

Automatic prediction of accents should make 

typing faster for native speakers as well, as ac-

cented characters account for 3.64 % of French 

text (computed based on our training data, to be 

mentioned in Section 4.1).
2
 Therefore, our goal is 

to correctly predict accents in French text within 

an IME scenario: users simply type characters 

without accents, and the accented characters are 

restored automatically.  

We implemented our French input system 

based on the noisy-channel approach, which is 

commonly used for transliteration. Our channel 

model is trained using finite state transducers; 

our motivation for this choice will be discussed 

in Section 2. For language models, we use both 

character- and word-based n-gram models, in 

order to handle both contextual disambiguation 

of the words in the lexicon (e.g., a 'has' vs. à 'to'; 

mais 'but' vs. maïs 'corn') as well as accent pre-

diction in out-of-vocabulary (OOV) words. We 

use a beam search decoder to find the best candi-

date. The models and the decoder are described 

in Section 3. We present our experimental results 

on the task of French accent prediction in Section 

4, and show that our best model achieves 99.8% 

character-level accuracy on two test sets of dif-

ferent styles.  

                                                           
1 On ALT codes, see 

http://french.about.com/od/writing/ss/typeaccents_7.htm.  
2 Rodriguez and Diaz (2007) report that in Spanish, almost 

half (46%) of the spelling errors (errors as the users type) 

are accent-related, one third of which is never corrected by 

the user.  

43



2 Text Input as Finite State Transducer  

Our IME system is built on many existing NLP 

technologies. In this section, we describe a meth-

od to build an IME as a finite state transducer 

chain using the OpenFST toolkit (Allauzen  et al., 

2007).  

Finite state transducers have been used in 

transliteration for over a decade (e.g., Knight and 

Graehl, 1998), since they are efficient, trainable, 

and capture the necessary phenomena using a 

relatively easy-to-understand mechanism. They 

are a useful tool in the construction of IMEs as 

well. As mentioned above, for many languages 

and scripts the IME problem consists primarily 

of transliteration. In this case, a possibly 

weighted transducer can transform the keyboard 

script to the target script. Composing this with a 

target language model represented as a weighted 

acceptor will lead to more appropriate results.  

Another important advantage of finite state 

machines is that they can represent a number of 

other, non-transliterating operations: physical 

typing errors (hitting neighboring keys by mis-

take), phonetic errors, and character twiddles can 

be represented as single transducers, and can be 

cascaded together to form a single machine that 

corrects spelling as it transliterates. Prediction 

can be represented by adding another machine to 

the cascade: a simple machine that generates any 

number of characters with a given weight. A sin-

gle state machine where the initial state is a final 

state will suffice: for every character in the out-

put script, there is an arc with an epsilon input 

and that character as output. 

Once we have such a cascade, we can use the 

expectation semiring (Eisner, 2002) to train 

weights given parallel data. As usage of the IME 

increases, actual input/output pairs gathered from 

users can act as training data. 

In a small device or a cloud service, runtime 

decoding with a complex FST chain may be too 

computationally expensive. However, we can 

cache some of the likely user inputs to decrease 

runtime computation. Likely inputs can be identi-

fied by projecting a set of common words in the 

target language backwards through the FST cas-

cade offline.  Say we have an IME transducer 

cascade of the following form: I = misspell ∘ 
phonetic ∘ lm. Given a set of very likely target 

words, such as the top K words according to uni-

gram counts in a representative corpus, we can 

pack them into a simple finite state acceptor. 

Composing this acceptor with the inverse of the 

IME machine, I
-1

, will produce a finite state ma-

chine encoding all the ways to input these words, 

including spelling errors, predictions, and any 

other operations are included in the IME cascade. 

For each of these likely inputs, we can compute 

its possible IME outputs offline and store the n-

best outputs in a dictionary to avoid runtime FST 

complexity. Since high-frequency words tend to 

make up the majority of tokens, this can signifi-

cantly reduce the expected runtime and therefore 

latency of the service. Additionally this allows us 

to use a complex FST chain for only certain 

common words, and fall back to a simpler FST at 

runtime for less common words. 

For the French input system described in the 

following sections, only the basic transliteration 

operations are included. We now turn to the de-

tails of our model and implementation in the next 

section.  

3 Building a French IME 

3.1 Overall model structure 

The French input system is based on a generali-

zation of the noisy-channel model. In the stand-

ard noisy-channel approach, the likelihood of a 

target French text with accented characters t is 

estimated by P(t|s)   P(s|t) P(t), where s is the 

source, unaccented sequence. The channel model 

P(s|t) may be represented by a finite state trans-

ducer that converts characters, character se-

quences, or words from their unaccented and 

potentially misspelled forms into correctly 

spelled and accented French strings. Language 

models may take many forms; we use n-gram 

models over characters and words. 

In the original noisy-channel model, only two 

equally weighted feature functions are used: the 

log probabilities from a channel model and a 

language model. We generalize this model to 

incorporate multiple feature functions, each with 

a linear weight. Currently the model has a small 

set of features. Word and character n-gram lan-

guage models estimate the fluency of the output. 

For the channel model, we compute a set of like-

ly word-based replacements offline using finite 

state transducers. We also allow character by 

character replacements, where each unaccented 

character may be replaced by itself or any ac-

cented variant, and characters not seen on the 

training set are deterministically transduced to 

themselves. These character replacements are 

currently assigned a uniform cost of –20. In the 

future we plan to gather parallel input and output 
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data, which will be useful in training a parame-

terized character replacement model. 

3.2 Training 

OpenFST is used to build our list of word-based 

replacements offline. A finite state transducer is 

used to represent the mapping from a phonetic 

symbol in Roman script to its orthographic sym-

bol in the target language. For languages with 

different scripts, such as Greek, this would con-

tain mappings between scripts (e.g., r   ρ); in 

French, the characters may acquire accents dur-

ing this step (e.g., e   é) or remain unchanged 

(e.g., e   e). This character level transducer is 

composed with a word-level unigram language 

model (also represented as an FST). We shall 

refer to this composition as the transliteration 

transducer T. To find likely inputs in their unac-

cented Roman character form, we project T to its 

input domain.  

For each likely input sequence, we build an 

FST to represent the input word and compose it 

with T. The output of the composition lists all 

possible potentially accented forms in the target 

language. We thus generate a lexicon of likely 

inputs in their unaccented form and their possible 

accented outputs in the target language. This al-

lows us to leverage the power of an FST ap-

proach without incurring the computational cost 

during runtime. 

3.3 Decoder 

We use a beam search decoder to find the single 

best result according to the channel model, char-

acter n-gram language model, and replacement 

count features. For each prefix of the input string, 

we maintain the b best replacement candidates as 

scored by the weighted combination of models. 

We recombine hypotheses that cover the same 

set of input words and are indistinguishable to 

the character n-gram model because they share 

the same last n–1 characters
3
. 

 For presenting results to the user, the efficient 

algorithm of Soong and Huang (1991) quickly 

gathers the n-best outputs. We also use this n-

best list for integrating the word n-gram model. 

Incorporating this model directly into search re-

quires us to score partial candidates, a somewhat 

complicated process since the candidates may 

only cover prefixes of words. Therefore, we re-

rank the top outputs from the system including 

all other features to integrate the word n-gram 
                                                           
3 In practice, we recombine more aggressively following the 

ideas in Li and Khudanpur (2008). 

model. Although this integration might encounter 

a certain amount of search error, we find that this 

is seldom a problem, and the approach is both 

efficient and easy to implement.  

4 Experiments and Results 

In this section we describe the experiments we 

ran to evaluate the quality of French accent resto-

ration, which serves as the basis for the French 

text input method. The input to the task is French 

text without any accent, simulating the scenario 

where a user types unaccented French. The out-

put is fully accented French text. We then evalu-

ate this output against correctly accented 

reference French text.  

4.1 Data  

For building a lexicon and training both language 

models, we used a collection of French corpora 

consisting of 840,938,412 sentences. This collec-

tion varies in style and formality, including text 

from news, parliamentary proceedings and web 

scraped documents. The lexicon built from this 

training corpus consists of 2,715,698 unique 

words.  

As mentioned above, our method of training a 

channel model does not require any paired train-

ing data. However, we still need input/output 

sentence pairs for evaluating our system. For 

French, the creation of such paired data is easy: 

we just removed the accents from the target text 

corpus. Our test corpus consists of two sets of 

sentences that are disjoint from the training data: 

a 3,027 sentence set of news corpus from the 

WMT 2009 test data (WMT2009)
4
 and a 5,000-

sentence set from the logs of request to a ma-

chine transliteration service (MTlog). The OOV-

rate of these sets against the training data is 

0.44 % at the token level.  

4.2 Evaluation Metric 

We measured our results using character error 

rate (CER), which is based on the longest com-

mon subsequence match in characters between 

the reference and the best system output. This is 

a standard metric used in evaluating IME sys-

tems (e.g., Mori et al., 1998; Gao et al., 2002a,b). 

Let NREF be the number of characters in a refer-

ence sentence, NSYS be the character length of a 

system output, and NLCS be the length of the 

longest common subsequence between them. 

Then the character-level recall is defined as 

                                                           
4 http://www.statmt.org/wmt09/ 
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NLCS/NREF, and the precision as NLCS/NSYS. CER 

based on recall (CER-R) and on precision (CER-

P) are then defined as 1 – recall and 1 – precision, 

respectively. In transliteration scenarios where 

the character lengths of the system output and the 

reference may differ (e.g., a target character cor-

responds to multiple source characters), CER-R 

and CER-P will be different. In the case of 

French, however, the reference and the system 

output are the same length in most cases (the on-

ly exceptions are the sentences that include the 

ligatures ‘œ’ and ‘æ’). Therefore, we report the 

results using only CER-R in the next section.  

4.3 Results 

Table 1 show the results of French accent resto-

ration in CER-R in two test sets, WMT2009 and 

MTLog, for various beam sizes (b=3, 10 and 30). 

Each row of the table refers to the different mod-

els we built and tested, with different combina-

tions of the channel model, character-based and 

word-based language models. The first row (E1) 

is the baseline model which only uses the chan-

nel model. The rows E2, E4 and E6 are the sys-

tems that use the channel model and a character 

language model of various orders. The rows E3, 

E5 and E7 are the models that additionally use 

the word trigram model for rescoring the 50-best 

results of E2, E4 and E6, respectively.  

From the table, we can observe that the use of 

a higher-order character n-gram model contrib-

utes to better accuracy consistently. Additionally, 

the word trigram model provides improvement 

over the character language model of any order. 

For instance, the underlined word in the follow-

ing sentence is wrongly predicted as des by E6, 

but is correctly predicted by E7:  

Il est beaucoup plus important que les con-

gressmans se mettent d'accord, dès cette 

semaine, qu'ils soutiennent ce plan et qu'ils le 

consacrerons le plus tôt possible. 

Regarding beam size, it is clear from the table 

that a width of 10 is sufficient, as further widen-

ing does not attain any additional improvements. 

In addition, the beams as narrow as 3 produce 

quite competitive results. This is good news as 

speed is very important for an IME application. 

With a beam size of 3, it takes approximately 0.6 

to 2.8 milliseconds per character depending on 

the complexity of the model used; this increases 

to 6.2 milliseconds per character with a beam 

size of 10.  

As shown in the table, CER-R is as low as 

0.22% in both test sets. This is equivalent to a 

character level accuracy in excess of 99.8%, 

which means that there is only one mistake in 

every 500 characters. We have also manually 

analyzed a sample of the remaining errors of our 

best model (E7) on the WMT2009 test data, and 

found that some (~30%) of the errors are due to 

ambiguous lexical entries (e.g., Shanghai and 

Shanghaï are both in the lexicon) and voluntary 

accentuation of capital letters (e.g., Etats-Unis 

and États-Unis are both acceptable). The remain-

ing errors were mostly attributed to failures in 

contextually disambiguating the words in the 

lexicon (e.g., des/dès; a/à).   

5 Conclusion 

We have presented our system that performs 

French accent prediction. It achieves an accuracy 

of around 99.8% at the character level, which 

should be of great help in French input assistance, 

especially for non-native writers. Although ac-

cent prediction accuracy alone is not sufficient 

for a complete IME, it serves as a foundation for 

a realistic text input system.  
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Abstract

We propose a novel phrase extraction sy-
stem to generate a phrase dictionary for
predictive input methods from a large cor-
pus. This system extracts phrasesafter
counting n-grams so that it can be easily
maintained, tuned, and re-executed inde-
pendently. We developed a rule-based fil-
ter based on part-of-speech (POS) patterns
to extract Japanese phrases. Our expe-
riment shows usefulness of our system,
which achieved a precision of 0.90 and a
recall of 0.81, outperforming the N-gram
baseline by a large margin.

1 Introduction

Predictive input methods for personal computers
or mobile devices have been quite popular (Mac-
Kenzie and Tanaka-Ishii, 2007). They suggest op-
tions of entire words or phrases to select when a
user inputs first few characters or words.

Recently, the growth of the Web has increa-
sed the availability of large corpora for natural
language processing. Large corpora are effective
in generating dictionaries, since they include fre-
quently used words and phrases.

One of the possible simple ways to enlarge a
dictionary is the n-gram approach. N-gram is a
word sequence of length n. The N-gram approach
consists of the following steps: count n-gram se-
quences in the corpus and show the most frequent
n-grams for user input. This approach enables the
dictionary to cover most of the useful options.

However, such a naive n-gram approach has
three major problems:

Trade-offs between lengths and frequencies
Longer n-grams always have lower frequencies
than shorter n-grams. For predictive input met-
hods, longer options are favorable because they re-
duce user keystrokes much more.

Halfway options N-gram contains partial porti-
ons of eligible phrases. For example, the trigram
of “you very much” has high frequency, which
may be a subsequence of “Thank you very much”.
These options distract users.

Enormous memory consumption N-grams are
also too large for client-side input methods. Pre-
dictive dictionaries are preferable to fit into me-
mory for rapid access. Since input methods always
remain in memory, it should save memory for ot-
her applications.

To cope with these problems, phrase-based ap-
proaches are considered. These approaches use
phrase extraction to reduce unnecessary n-grams.
A phraserepresents a semantic or syntactic unit of
a word sequence in texts. For predictive input met-
hods, phrases should be rather comprehensive; we
want to extract various phrases which users possi-
bly input, containing noun phrases, verbal phrases,
proper noun, idioms, and so on.

There are two types of approaches to extract
phrases from a large corpus: pre-processing and
post-processing approaches.

In a pre-processing approach, phrase extraction
is applied to a corpus before counting. This setting
is similar to a chunking task (Sang and Buchholz,
2000), extracting non-overlapping chunks from a
corpus. In this approach, each time we try a new
algorithm, re-execution of counting is required to
construct a phrase dictionary. This is too painful
and expensive.

For these reasons, we adopted a post-processing
approach. In a post-processing approach, phra-
ses are picked out from n-grams after counting.
In addition to counting, cutting off n-grams with
low frequencies significantly reduce data size of
n-grams. Therefore, we can develop and run the
phrase extraction algorithm in a local machine,
using commonly-available script languages. Ad-
ditionally, once we count frequencies of n-grams,
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we need no more counting frequencies again to ge-
nerate a dictionary after changing of the algorithm.

In this paper, we focus on the Japanese language
to utilize grammatical knowledge. Since the Japa-
nese language has many characters than physical
keys, Japanese people normally use input methods
called Kana Kanji conversion, therefore predictive
input methods are easily brought in.

The rest of this paper is organized as follows:
section 2 introduces related work in similar tasks.
Section 3 describes an algorithm that we develo-
ped. Section 4 explains experiments and evalua-
tions of our algorithm. Section 5 summarizes the
whole paper and future work.

2 Related Work

There are many researches about predictive input
methods since early days (Masui, 1999; Ichimura
et al., 2000). They used manually constructed
dictionaries, which is expensive to maintain and
cannot be extended to large scale sufficiently. Ko-
matsu et al. (2005) as well as Unno and Tsuboi
(2011) used small corpora to generate options of
prediction, but their coverage is limited.

Okuno and Hagiwara (2009) used Google n-
gram for prediction, but n-gram approaches have
problems described in the previous section. Goo-
gle Japanese IME (Kudo et al., 2011) adopt a
pre-processing approach to extract phrases from a
huge Web corpus. However, the pre-processing
approaches need large computational resources
and hard to tune iteratively.

Manning and Scḧutze (1999) and Wan Yin Li
(2006) described POS patterns for phrase ex-
traction, but they are limited to noun phrases for
two or three words. Su et al. (1994) applied deci-
sion tree for compound extraction, but their super-
vised learning approach needs training datasets.

3 Phrase Extraction as Post-Processing

Figure 1 shows the data flow of our system and an
example. In this section, we describe each compo-
nent of the data flow. Note that the earlier proces-
ses are executed in distributed environment, i.e.,
MapReduce. The later processes are implemented
as local scripts.

3.1 Morphological Analysis

We used internal morphological analyzer to split
Japanese texts into words and add morphological

MapReduce

Rule-based Filter

N-gram Counting

Morphological Analysis

Corpus Example

Barack 600

Barack Obama 500

Barack Obama is 100

Barack 600

Barack Obama is ..

Local

Frequency Recalculation

Rule-based Filter

Dictionary

Barack 600

Barack Obama 500

Barack 100

Barack Obama 500

Figure 1: Data flow

Word Read POS Form Type

言う いう 動詞 基本形 自立語

say iu verb normal content

Table 1: Morphological information

information shown in Table 1. POS and form (con-
jugation) tags are used for later rule-based filte-
ring. We might use reading information in pre-
diction time for Kana Kanji conversion.

3.2 N-gram Counting

We used MapReduce (Dean and Ghemawat, 2004)
to count word n-grams. In the MapReduce frame-
work, distributed file system stores a large corpus,
and Mapper extracts n-grams in each machine.
Then the system aggregates data into same n-gram
groups, and Reducer calculates n-gram frequen-
cies. Reducer also cuts off n-grams which have
lower frequencies than a predefined threshold.

3.3 Rule-based Filtering

We developed a rule-based filtering based on POS
patterns as regular expressions described in Table
2. The patterns are developed from preliminary
investigation. There are two types of rules: valid
and invalid rules. First, our filter leaves n-grams
which match at least one valid rule and filters out
others. Then it filters out n-grams which match at
least one invalid rule and leaves others.

Table 3 shows the n-grams which match each
rule. Valid rules are designed to leave n-grams
which are interpreted as a Japanese segmentations
orbunsetsu, consisting of at least one content word
followed by function words. This is based on an
assumption that users input units of segments one

49



Rule Group Validity N value Pattern Description

1 Type Valid >2 ˆC+F+$ Constitute segment (文節)
2 Type Valid [1,3] ˆC{1,3}$ Contain only contents (自立語)
3 POS Invalid All ˆSuffix Start with suffix (接尾辞)
4 POS Invalid All Prefix$ End with prefix (接頭辞)
5 POS Invalid [2,3] Adverb$ End with adverb (副詞)
6 Form Invalid >2 Continuative$ End with continuative form (連用形)
7 Form Invalid >2 Imperfect$ End with imperfect form (未然形)
8 Form Invalid [2,3] Hypothetical$ End with hypothetical form (仮定形)

Table 2: POS rules. In rule 1 and 2, C means a content word and F means a function word.

Rule Japanese English translation

1(V) 食べました I have eaten
2(V) 株式会社 stock company
3(I) 的なイメージ image like
4(I) 明日のプチ tomorrow’s petit
5(I) この話はまた this talk is later
6(I) 行ってきまし have gone to
7(I) わかりませ can’t understand
8(I) 考えなけれ have to think

Table 3: Examples (V:Valid, I:Invalid)

by one, and a prediction should display its options
on boundaries of segments.

While valid rules roughly filter out n-grams
which get across a border of segmentations, inva-
lid rules filter out unnecessary n-grams in a rather
fine-grained way. Invalid rules use POS tags to
exclude n-grams whose leftmost word is a post-
position particle, n-grams whose rightmost word
is a prefix word, and so on. These rules are tuned
for high precision, rather than high recall.

3.4 Frequency Recalculation

Although most of unnecessary n-grams are filte-
red out by the rule-based filter, there are still some
problems like halfway n-grams which have larger
frequencies than longer eligible phrases. This pro-
blem is caused by duplicated count. For example,
words in a 2-gram phrase may be double counted;
words in a 3-gram phrase may be triple counted1.

To handle this problem, we propose an algo-
rithm to recalculate frequencies of n-grams. Fi-
gure 2 describes our recalculation algorithm. Our
algorithm starts from the longest n-grams and pro-
cesses shorter n-grams one by one. All subsequen-

1Pre-processing approaches do not cause this problem.

Recalculate(ngram, freq):
for n = N_MAX to 1

for each p in ngram[n]
for each s in subsequence(p)

if s is in ngram
freq[s] -= freq[p]

return freq

Figure 2: Frequency Recalculation Algorithm

ces of n-grams are extracted and their frequencies
are reduced by the frequencies of the entire n-
grams. Finally, we get phrases and their frequen-
cies with almost no duplicated counting.

For example, a 3-gram “機動 戦士 ガンダ

ム” (MOBILE SUIT GUNDAM) has a lower fre-
quency than “機動戦士” (MOBILE SUIT), which
is rarely used by itself. In this case, our frequency
recalculation works well and the former frequency
surpasses the later one.

4 Experiment

4.1 Methods and Metrics

In order to evaluate our system, we used human
judgments for samples from n-gram as below:

1. Some samples are randomly extracted from
original n-grams before filtering.

2. The samples are classified into necessary or
not by human judgments.

3. Precision and recall are calculated by compa-
ring manually annotated samples and extrac-
ted phrases.

Assuming n-gram contains all necessary phra-
ses and approximating all n-grams by small sam-
ples, we obtain our metrics as below:
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Precision=
number of valid samples in dictionary

number of samples in dictionary

Recall=
number of valid samples in dictionary

number of valid samples

F-measure=
2

1/Precision+ 1/Recall

4.2 Dataset and Judgment

We used a Japanese blog corpus whose size is
about 300GB, containing 70G words. Since blogs
are written by ordinary people, we expect them to
fit typical use cases.

We counted n-grams from the corpus with 20
machines of a Hadoop MapReduce cluster. The
counting took 17 hours. We set n from 1 to 5
and cut-off threshold to 1,000. Resulted n-gram
has about 6M unique n-grams and size of 700MB
in plain text. Then we applied our rule-based fil-
ter extracting 1.2M different phrases and size of
100MB in plain text. The filtering took only 5 mi-
nutes in a local machine.

We conducted sampling from original n-grams
in two ways: token-based and type-based. Token-
based sampling means that samples are extrac-
ted from n-gram according to their probabilities
or relative frequencies. Type-based sampling uni-
formly extracts entries from n-gram.

After sampling, 5 people judged the same 200
n-grams into necessary phrase or not by hand, for
each token-based and type-based sampling. In
addition to the definition ofphrasedescribed in
section 1, we assumed typical Japanese blog wri-
ter as target user for clarification.

4.3 Result and Error Analysis

Table 4 shows our average evaluation results for
both phrases extracted by our system and n-grams
as baseline. N-gram as baseline has recall of 1.0
because of the assumption, but a low precision of
0.41 for the reasons described in section 1.

We found our rules achieve a high precision of
0.90 and a recall of 0.81 for token-based sampling,
but a lower recall for type-based sampling. This
is because tuning of our rules is based on mostly
frequent n-grams.

Error analysis shows three types of errors:

Judgment inconsistency Human judgment dis-
agrees in some ambiguous cases such as “このこ

と” (this thing). This is mainly caused by different

Dictionary Phrase N-gram

Sampling Token Type Token Type

Precision 0.90 0.85 0.41 0.37
Recall 0.81 0.51 1.00 1.00

F-measure 0.85 0.63 0.58 0.53

Table 4: Evaluation Result

rigor of annotators, namely, some annotator is too
rigid and another is too loose. Average judgment
disagreement rate between all pairs of annotators
was 7.1% about token-based sampling.

Morphological analysis error Errors of word
segmentation or POS tagging cause problems. For
example, “ありがトン” (informal “thank you”) is
split into “ありがトン” (ant is ton) and removed
erroneously.

Lack of features for additional rules There are
no features such as POS tags which we can use for
additional rules. For example, a necessary phrase
“マリナーズ の イチロー” (Ichiro in Mariners)
has the same POS tags as an unnecessary phrase “
衣装のサンタ” (Santa Claus in costume).

The effect of frequency recalculation was un-
clear for the small samples. However, we investi-
gated 2-gram pattern of family and first name and
discovered that about 50% of top 100 frequent per-
sonal names are predicted correctly, defeating 1-
gram candidates in terms of frequency.

A simulation shows that our system enables
users to save 24% of keystrokes in terms of kana
input. We assumed that the system offers 10 most
frequent words when users input their first 3 cha-
racters for sampled 100 words in the dictionary.

5 Conclusion

We proposed a phrase extraction system for pre-
dictive input methods, extracting necessary phra-
ses from a large corpus. Our system adopts a post-
processing approach, which enables us to easily
customize our rules and filters.

Our future work is to incorporate statistical me-
trics such as pointwise mutual information in a n-
gram and entropy of adjacent words.
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Abstract 

This work proposes a novel metric, Maximally 
Amortized Cost (MAC), for cost evaluations of 
error correction of predictive Chinese input 
methods (IMs). With a series of real-time sim-
ulation, user correction behaviors are analyzed 
by estimating generalized backward compati-
bility of adaptive Chinese IMs. Comparisons 
between three IMs by using MAC with differ-
ent context lengths report empirical factors of 
context length for improving predictive IMs. 
The error-tolerance level—Futile Effort, Ben-
eficial Effort and Utility—of adaptive IMs is 
also proposed and analyzed. 

1 Introduction 

Most ideograph-based Asian languages consist 
of thousands of characters, making it impractical 
to create keyboards along the same style as al-
phabetic languages. In response, most modern 
systems come with built-in tools called input 
methods (IMs) for transforming multiple key-
strokes into single ideographs. IMs are often cat-
egorized into “radical-based” or “phonetic-
based” methods. With radical-based IMs, users 
construct characters by typing the composing 
radicals or strokes. Alternatively, phonetic-based 
IMs rely on phonetic transcriptions of ideo-
graphs, where users create characters by typing 
in the approximate spellings of their syllables. In 
the case of homographs or homophones, users 
are given a choice, and the proper character is 
selected and entered. 

Besides desktop environments in Asian lan-
guages, IMs are also essential in any language 
for ambiguous keyboards that have more than 
one character or letter assigned to each key, re-
sulting in some uncertainty about the intended 
symbol when a key is pressed. Ambiguous key-
boards gain attentions because of mobile compu-
ting, which has limited space. Also, such key-
boards expand the communication possibilities 

for users with physical disabilities who have in-
sufficient motor facility to operate a full-size 
keyboard. Two methods enable ambiguous key-
boards to access a large set of characters, and 
these differ depending on who performs the dis-
ambiguation. First, there is the multi-tap method 
or non-predictive method, in which the user dis-
ambiguates using multiple keystrokes to unique-
ly indicate a character. In the case of a full-size 
keyboard, additional keystrokes such as those 
applied through the CapsLock key are a kind of 
multi-tap entry. The second approach uses a pre-
dictive method, in which the system disambigu-
ates and presents a list of ordered candidates 
from which the user chooses. For example, pre-
dictive IMs on the 12-key ITU-T keypad of mo-
bile phones such as T9 and LetterWise have been 
studied with human-computer interaction (HCI) 
metrics that measure text entry performance in 
terms of speed and accuracy, in order to quantita-
tively analyze user experiences of different IMs 
(MacKenzie et al., 2001; Silfverberg et al., 
2000). All of these studies, however, focus on 
alphabetic languages, and mostly English; thus 
far, HCI research on IM in other languages has 
been underdeveloped. 

While various types of IM can be used with a 
keyboard, this work specifically examines the 
context of predictive phonetic-based methods for 
Chinese. Predictive phonetic-based IM not only 
facilitates word prediction and word or phrase 
completion, but also disambiguates homophones 
of syllables into characters. To date, most natural 
language processing (NLP) research on Chinese 
IMs has focused on these predictive phonetic-
based approaches. Many researchers have ap-
plied n-gram language modeling (LM) and hid-
den Markov models to IMs, such as Chen et al. 
(2000), Gao et al. (2002), Wang et al. (2004), 
and Wu et al. (2003); Maximum entropy (Li et 
al., 2007) and conditional random fields (Xiao et 
al., 2009) have also been employed. While the 
studies above have made important contribu-
tions, they also assume fixed rules or stationary 
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probabilities. Developers of IMs, however, are 
expected to pay more attention to the increasing 
needs on personalization1 and new word supple-
ments via search engine logs 2  or social net-
works3. Only a handful of research papers to our 
knowledge explore adaptive language modeling 
of IM for Asian languages. Tanaka-Ishii et al. 
(2003) have examined corpus for vocabulary ac-
quisition for Japanese in terms of reused words 
and unused words; Suzuki and Gao (2005) have 
proposed an error ratio corresponding to the 
number of newly introduced errors per each im-
provement after new training text was supplied. 
These two studies reflect a common expectation 
of IM users—backward compatibility—which 
means a word prediction that was previously cor-
rect should remain correct with new words rec-
ognized simultaneously. 

This work intends to expand the approach to-
wards backward compatibility using novel eval-
uation methods for Chinese predictive phonetic-
based IM, by comparing text entry performance 
before and after user corrections of predictive 
IM-generated errors. Once an error is left uncor-
rected, it becomes noise to an IM with the ability 
to adapt. In addition, user corrections could be 
more complicated in predictive Chinese IMs than 
Japanese ones. When the user modifies some 
character, its surrounding characters often 
change automatically, because unlike Japanese, 
Chinese syntax does not have clear cues and or-
ders of subject-verb-object typology. Thus, pre-
dictive Chinese IMs must rearrange the whole 
entered text to construct more likely context ac-
cording to certain user modifications. After this 
kind of continuous automatic adjustment, user 
feedback is often too vague to interpret into exact 
word boundaries for adaptation, in terms of vo-
cabulary acquisitions. It is considerably closer to 
daily usage of IM and more difficult than most 
previous works of adaptive IMs that acquire new 
information from correct and manually segment-
ed transcriptions. This work suggests that a ro-
bust predictive Chinese IM should tolerate noisy 
user feedback during adaptation, in addition to 
the backward compatibility mentioned earlier. 

To improve understanding of these situations, 
this work reviews existing performance evalua-
tion metrics related to IMs, and then proposes 
extensions of these metrics for predictive and 

                                                
1 Google Pinyin’s privacy terms (in Chinese), 
http://www.google.com/intl/zh-CN/ime/pinyin/privacy.html 
2 Sougo Cell dictionary, http://pinyin.sogou.com/dict/ 
3 Social IME, http://www.social-ime.com/ 

adaptive Chinese IMs, especially in cases of gen-
eralized backward compatibility and error-
tolerance level for cost and influence. This work 
also develops a platform that is fully capable of 
simulating user-IM interaction, so as to collect 
data for quantitative comparison of various uses 
or different IMs. The proposed evaluation met-
rics and simulation results provide helps for fur-
ther NLP investigation of predictive phonetic-
based IM on error-tolerant adaptation and con-
duct pilot tests to report empirical factors before 
engaging in labor-intensive corpus annotations 
and human-participated HCI research. 

2 Properties of Chinese Predictive IM 
with Adaptation Ability 

2.1 Online Implicit User Feedback 

Recent Chinese predictive IM products provide 
several ways for users to leave feedback on vo-
cabulary acquisition. These methods practice in 
two different perspectives: online vs. offline and 
explicit vs. implicit. Online feedback indicates 
that an IM collects unknown words or re-ranks 
known words based on the user’s current actions, 
while offline feedback means an IM extracts 
similar information via user-provided content or 
logs. When the user indicates their preferences 
directly, an IM receives explicit feedback; oth-
erwise it must interpret user-IM interactions for 
implicit feedback. While offline and explicit 
feedback can be modeled as reinforcement learn-
ing or through the research of Tanaka-Ishii et al. 
(2003) or Suzuki and Gao (2005), our goal is to 
explore the relatively unfamiliar territory of im-
plicitly online user feedback. 

2.1.1 IM Adaptation Procedure 

First, extending the definition from Tanaka-Ishii 
et al., (2003) any predictive IM with adaption 
abilities lets the user enter text continuously in 
five stages: 

1. The user enters an ambiguous source 
keystroke string. 

2. The IM retrieves candidate chunks cor-
responding to the source string from its 
built-in database and the user’s profile. 

3. The IM sorts these candidate chunks and 
composes most likely chunks to a target 
string, according to a particular evalua-
tion function. 
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4. The user modifies the target string by 
choosing candidate chunks in case the 
IM’s prediction is not entirely correct. 

5. The IM adapts the user’s modifications 
with context as implicit online feedback 
for user profiling. 

One may argue that user’s modifications can 
be accumulated as logs for lazy evaluation as 
offline feedback. According to some Chinese IM 
product’s customer service reports (personal 
communication), however, users expect their 
modifications to be adapted as soon as possible 
to avoid repeat modifications for the same error 
cases. This expectation motivates this work to 
investigate real-time solutions of online feed-
back. 

2.1.2 User Adaptation Habit 

One intuitive and ideal solution of online feed-
back involves applying early evaluations of 
Move-to-Front (Bentley et al., 1986) and Predic-
tion by Partial Match (Bell et al., 1990) tech-
niques on modified chunks with context. In our 
experience, however, users may also adapt to an 
IM’s performance and develop habits to correct 
just one chunk and then submit the target string 
immediately, which leaves fewer contexts for an 
IM to analyze. To overcome this situation, some 
IMs analyze unmodified target strings for more 
information, which can be misleading if the user 
has left some incorrect chunks. Eventually users 
will face a dilemma: typing more chunks to feed 
an IM for better adaptive predictions but encoun-
tering more errors. Hence this work studies prop-
erties of IM regarding the trade-off between cost 
and benefit of error correction. 

2.2 Error Correction Evaluation Metrics 

In order to understand the role of Amortized Cost 
that will be defined later in this section, it is first 
useful to examine previous research on error cor-
rection by describing well-known evaluation 
metrics for text entry and considering their short-
comings. To avoid confusion, all metrics use the 
notations formerly introduced by Soukoreff and 
MacKenzie (2003) as follows: 

 Presented text (P) is text that participants 
were required to enter by the experiment, 
and |P| is the length of P; 

 Transcribed text (T) is the final text en-
tered by the participant, and |T| is the 
length of T; 

 Input stream (IS) is the text that contains 
all keystrokes performed while entering 
P and |IS| is the length of IS; 

 Correct (C): the number of correct char-
acters in T; 

 Incorrect Not Fixed (INF): the number of 
unnoticed errors in T; 

 Incorrect Fixed (IF): keystrokes are 
those in IS that are not editing keys (F), 
and which do not appear in T; 

 Fixes (F): are keystrokes in IS, which are 
edit functions, modifier keys, or naviga-
tion keys. 

2.2.1 MSD 

Evaluating the accuracy of text entry involves 
more than simply comparing strings. Consider 
the following example: 

P: the quick brown fox 
T: the quixck brwn fox 

The notion of minimum string distance (MSD), 
which is the minimum number of primitives—
insertions, deletions, or substitutions—needed to 
transfer one string to another, is introduced to 
deal with such a situation (Soukoreff et al., 2001). 
In this case, P and T’s MSD is 2. The idea of 
MSD error rate is to find the smallest number of 
operations to transform T to match P, and then to 
calculate the ratio of that number to the larger of 
|P| and |T|. The MSD error rate is defined as 

%,100),(
×=

AS
TPMSDteMSDErrorRa  

where AS  is the mean length of the alignment 
strings. MSD can only provide information about 
the remaining T, because errors corrected by the 
editing process can no longer be observed. 

2.2.2 KSPC 

In contrast to MSD, it is possible to observe cor-
rected errors by logging all keystrokes as IS. 
From IS, a new metric, key-strokes per character 
(KSPC), is defined by MacKenzie (2001) simply 
as |IS| / |T|. KSPC sketches the effort required to 
correct errors without considering uncorrected 
errors. A large number of errors that only require 
low correction effort and a few errors requiring 
high correction effort may result in the same 
KSPC value. Although the keystrokes that send 
errors and keystrokes that correct errors are dif-
ferent, they are not differentiated by KSPC. 
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2.2.3 Unified Error Metrics  

After observing the shortcomings of the MSD 
error rate and the KSPC value, Soukoreff et al. 
(2003) proposed a unified error metric that logs 
IS in the same way as KSPC and then classifies 
the keystrokes to analyze T. The MSD is only 
concerned with INF, while KSPC only reports 
the sum of IF and F. The Total Error Rate is a 
unified method, which recognizes all keystrokes 
of INF and IF and measures the ratio of the total 
number of incorrect and corrected characters as 

%100×
++

+
=

IFINFC
IFINFRateTotalError

. 
The MSD error rate and KSPC statistic can be 

defined in terms of the keystroke taxonomy as 

%;100×
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For example, once a user corrected the error 

“brwn” of T to form “the quixck brown 
fox” as T’, TotalErrorRate(T’), MSDError-
Rate(T’), and KSPC(T’) will be (2/18)%, 
(1/17)%, and 19/17, respectively. 

2.3 Evaluation of Predictive IM 

Predictive Chinese IMs consist of a display buff-
er for composition as a target string waiting for 
editing, and lists of candidate chunks for every 
potential editing position. These characteristics, 
which come from the complexity of languages 
that do not have delimiters (e.g. spaces) in their 
writing systems, such as Chinese and Japanese, 
are not captured by the metrics discussed above, 
because those metrics were originally designed 
for short text entry with alphabetic languages on 
handheld devices. It is therefore necessary to 
consider an alternative approach to overcome the 
shortcomings of existing metrics. In doing so, 
this work first examines long buffer variables 
and multiple candidate lists by reviewing Fitts’ 
law and Hick’s law before using them to create 
an improved evaluation metric. 

2.3.1 Fitts’ law 

Fitts’ law is a function of the distance to the final 
target and its size, and is used to predict the time 
required to move rapidly from a starting position 
to a final target area. Mathematically, Fitts’ law 
can be formulated in several ways. One refined 
form, proposed by Soukoreff et al. (2003) is 

),1/(log2 ++= wdbat  

where the average time t is taken to complete 
the movement, and a and b are empirical con-
stants that can be determined by fitting a straight 
line to measured data. The distance d is from the 
starting point to the center of the target. The 
width w is of the target measured along the axis 
of motion. The term log2(d/w + 1) represents the 
index of difficulty (ID) of the given task. Since a 
text entry task usually shifts the cursor by key-
strokes rather than mouse movements, ID may 
link to the number of keystrokes directly. 

2.3.2 Hick’s law 

When correcting typing errors, both the time tak-
en by moving cursor and the time for candidate 
selection should be considered. Here, Hick’s law, 

)1(log2 ++= nbat , 
describes the time, t, it takes users to make a 

decision as a function of the equal possible n 
choices they have, where a and b are empirical 
constants. The law hints some baseline points, 
but the realistic candidate selection time still 
needs to be measured via subject experiments. 
As far as we know, Hick’s law has not been 
widely adapted to candidate selection for typing 
error correction of text entry tasks. 

2.3.3 Maximally Amortized Cost 

In previous work of Arif et al. (2009), text entry 
experiments are conducted with one of three er-
ror correction conditions, including None, Rec-
ommended and Forced. The participants are not 
allowed to correct any error in the None condi-
tion. On the other extreme, participants are 
forced to correct every error to keep T error free 
in the Forced condition. Lastly, participants are 
recommended to correct errors as they identify 
them in the Recommended condition. During the 
None condition, typists sometimes instinctively 
tried to correct their errors before they remem-
bered that they could not. Such a failed error cor-
rection attempt takes a bit of time, as participants 
need to mentally recover and resume the original 
task. Again, during the Recommended condition 
participants tended to correct their errors almost 
the moment they made them (i.e. character level 
error correction), making this condition similar 
to the Forced condition. 

In the end, Arif et al. did not find any relation-
ship between the typists’ entry speed and their 
instinctive attempt to correct errors. Therefore, 
the None and Forced conditions are not consid-
ered hereafter. Furthermore, this work argues 
that a more realistic condition of error correction 
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lies in the spectrum of motivations behind Rec-
ommended conditions. For the purpose of effi-
ciency, a user may not correct most errors that 
occur during mobile phone texting or Internet 
chatting, but the same user is likely to try to 
make every word as effective as possible in sit-
uations of formal writing. When a predictive IM 
is involved, the user tends to find a compromise 
between efficiency and effectiveness according 
to the certain IM’s performance, as mentioned in 
subsection 2.1.2 of users’ habit, for example. In 
fact, technical news articles in China have even 
devised a conventional performance evaluation 
metric called “accuracy rate of the first suggested 
chunk4 (首選詞正確率)”. This has not been adopt-
ed in academic papers, since it lacks clear defini-
tions for chunk and reference corpus. If the pre-
dictive IM adapts user behavior while the user 
adapts IM behavior simultaneously, feedback in-
between could be very complicated. To model 
this phenomenon, situations are categorized, as 
shown in Table 1, and an information theoretic 
point of view is applied to define the Amortized 
Cost (AC) of text entry as follows: 

C
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where the basic measurement of the four cate-

gories is character. Some might argue that the 
metric F should be counted on keystrokes. How-
ever, each function/control keystroke F can suc-
cessfully map to a virtual character unit as an 
information term. As long as the numerators and 
denominators are measured in the same unit, the 
definition is satisfied. Although Table 1 shows 
three situations, only situation S0 is easy for au-
tomated simulation because it is unconcerned 
about methods of corrections. 

In alphabetic text entry, if assuming the same 
amount of errors occurred and the user applied 
the same correction skill in different situations, 
one could design a keystroke logger to record all 
editing processes and find the boundary of AC: 

                                                
4 ZOL reports (in Chinese), 

http://soft.zol.com.cn/103/1033537.html 
http://soft.zol.com.cn/132/1320458.html 

C
F

C
IF

C
F

C
IF

C
FIFINFAC

C
INF

ACACAC
IFINF

IFINFIFINF
IFINFersrectCharatNumOfIncor

allallalliii
i

all

all

allallii

+=+≤
++

=≤⇔

≤≤

=⇒

+=+=

+=

00

10

0

00

,

 

Unfortunately, unlike alphabetic text entry, it 
is insufficient to map the metric F to as the same 
measurement of the keystroke or character one 
by one for Chinese IMs, as with other metrics. 
For example, a backspace keystroke can be used 
to either erase a Chinese character or a phonetic 
character, and thus runs into trouble when evalu-
ating its cost. For this reason, this work defines 
the metrics average correction penalty (p), aver-
age correction reward (r) and then another AC of 
modification (ACm) instead of the original term 
Fall / C as 
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where ID is calculated by the distance moving 
to the furthest wrong word needing correction; tH 
describes the time for selecting candidates meas-
ured by Hick’s law; tF represents the time for 
moving a cursor through ID based on Fitt’s law. 
From these variables, a Maximally Amortized 
Cost (MAC) is proposed as follows: 

.)max(000
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Here, MAC can be viewed as a metric to esti-
mate user experiences of Chinese predictive IMs 
using automated simulation, which will be 
demonstrated in the next section. 

2.4 Generalized Backward Compatibility 

Tanaka-Ishii et al. (2003) argue that the major 
drawback to predictive IM is related to diction-
ary use; a user cannot enter vocabulary not regis-
tered in the dictionary. They presume that miss-
ing vocabulary should exist within the user's text, 
depending on the user’s context. In order to ana-
lyze how vocabulary is reused when a user edits 
text, they investigate how the reused word rate 
changed according to the offset of a text, by 
marking the text at the offset of 0.5 KB and 
counting the reused word rate in the 1 KB win-
dow. Their results suggest that context is provid-
ed by 70% to 80% of the vocabulary and the sto-
ry evolves through the rest. From this observa-
tion, they suspect that typical users reuse 70% to 
80% of their vocabulary only after an offset win-
dow of several KB. Based on this previous work, 
simulations where text is typed repeatedly should 

Situation Fixed characters INF IF F 
S0 none INF0 0 0 
Si some INFi IFi Fi 
Sall all 0 IFall Fall 
Table 1. Three situations of errors correction 
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be representative enough for adaptation of Chi-
nese predictive IMs. 

Suzuki and Gao (2005) present comparative 
experiment results on four techniques of adaptive 
LM for IMs. Their evaluation of four techniques 
is unique in that they go beyond simply compar-
ing those techniques in terms of character error 
rate (CER); they measure the distance between 
background and adaptation domains by using a 
metric of distributional similarity, and attempt to 
correlate it with the CER of each adaptation 
method. They also propose a novel metric for 
measuring the side effects of adapted models 
using the notion of backward compatibility. The 
error ratio (ER) is introduced for estimating side 
effects, which is defined as |EA| / |EB|, where |EA| 
is the number of errors found only in the newly 
adapted model, and |EB| the number of errors cor-
rected by the new model. Intuitively, ER captures 
the cost of improvement of certain adaptation 
method, corresponding to the number of newly 
introduced errors per each improvement. 

Arif et al. have observed that error correction 
involves both human-specific elements and sys-
tem-specific elements; for example, the time to 
verify a correction, and the key sequence re-
quired for replacing a wrong character, respec-
tively. On one hand, users usually immediately 
verify what they have typed and correct errors 
right away, i.e. character-level correction. On the 
other hand, users also chunk their input and veri-
fy the result only after typing a few characters or 
even the whole word as word-level correction. 
This observation is quite similar to common us-
ages of predictive Chinese IMs. As determined 
by analysis of human error correction behavior, 
however, the predominant strategy for alphabet 
text entry is to use the backspace key for both 
character-level and word-level corrections. This 
situation is different from predictive Chinese IMs, 
in that users tend to move to particular positions 
and then correct Chinese chunks (i.e. de facto 
words from the user’s perception) by substitution. 

This work expands the concept of backward 
compatibility to indicate a considerably more 
general and continuous scenario: previous cor-
rections must not only remain correct after adap-
tation, but also new manual corrections made 
during adaptation should come into effect as 
soon as possible and remain correct as long as 
possible. For generalized backward compatibility 
(GBC) of adaptive Chinese IMs, a diagram from 
Arif et al. (2010) is modified to introduce new 
factors that represent intentional user skip error 
correction as Figure 1. 

Unlike Arif et al., who focused on how errors 
from non-predictive text entry systems (ρs

error) 
affect user experiences, this work is interested in 
how human correction behaviors (ρh

correction) in-
fluence accuracy of adaptively predictive IMs. 
The γ values stand for components of ρ at certain 
decision point. For instance, γi,h

error represents the 
chance of human error occurred during the pro-
cess of input. In order to test and demonstrate the 
ability of proposed evaluation methodology, this 
work conducts a simulation of three IM products. 

3 Simulation 

Three products of adaptively predictive IMs, 
named IM-A, IM-B, and IM-C, are used in the 
simulation. The presented text P consists of 
4,000 sentences, containing 39,469 words re-
trieved from the Academia Sinica Balanced Cor-
pus (ASBC) (Chen et al., 1996). Two independ-
ent variables are simulated: context length in 
terms of character and ρh

correction. 
The context length k is for different strategies 

of word-level correction. Since there is not yet a 
consensus on the Chinese word-hood debate, the 
number of words is calculated by characters as 
context length k in this work. It is interesting to 
observe how IMs are influenced by these differ-
ent strategies. The simulation is designed so that 
if |T| is shorter than k, errors occurring in T will 
not change. Otherwise, the simulation will chop 
the first k characters of T to form a substring, 
denoted as T’, and then process T’ in the same 
way. For example, in a simulation with context 
length 3, “ab” remains intact, while “abcdefgh” 
is processed separately in three substrings “abc”, 
“def”, and finally “gh.” 

The factor ρh
correction simulates human correc-

tion behavior. Here, errors are classified into two 
types: IM prediction error (ρs

error) and human 
typing error (ρh

error). The simulation simplifies 

Figure 1. Activity diagram of user correction 
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the sum of ρs
error  and ρh

error as the ratio of cor-
rected errors. 

To simulate the actual typing process, the pre-
sented text P is converted into related keystrokes. 
Common transcription methods of Chinese char-
acters are Bopomofo (also known as Zhuyin) and 
Pinyin. This simulation uses Bopomofo. There 
are many keyboard layouts for Bopomofo, such 
as Daqian (大千), Eten (倚天) or Hsu’s (許氏). 
This work applies Daqian. Each Chinese charac-
ter of P is transcribed into Bopomofo syllables 
and then transformed into Daqian keystrokes. 

For MAC, estimating the time spent on candi-
date selection (tH) and cursor movement (tF) to 
the error needing correction is complicated. 
Many situations can occur during candidate se-
lection, such as resorting to numeric keys to 
make a choice or seeking the correct word ap-
pearing on the next page of the candidate list, 
etc. Time also varies from person to person de-
pending on how familiar they are with the IM. 
Clearly, it is impossible to quantify these two 
factors without having real-time user inquiries. 
This simulation assumes that the average time 
taken to choose a proper candidate is the same 
for every correction. Notably, the method of es-
timating tF on a QWERTY keyboard is different 
from that of estimating tF on a mobile keypad, 
because only thumbs are usually used in the lat-
ter case. In spite of this difference, it is observed 
that Chinese IM users rarely approach cursor 
movement with direct pointing devices such as a 
mouse. Thus, the value of tF is simplified to the 
distance in terms of the character to which the 
cursor has to be moved. 

The steps of the simulation consists of using 
different ρh

correction to type all data of P, and then 
typing the same data again without correcting 
any error, so as to record and compare the char-
acter accuracy rate (CAR) after adaptation. For 
calculating CAR, T generated via particular IM is 
recorded and checked with P. For calculating 
MAC, the number of C and INF are counted 
while typing. During the simulation, the adaptive 
features of the IMs are enabled. Before the simu-
lation, the adapted user profile of each IM is 
cleaned to ensure that the IM’s CAR is unbiased. 

3.1 Result 

Figure 2 displays the comparison of MAC be-
tween the three IMs. For IM-A, IM-B, and IM-C 
between context lengths 1 and 4, their MACs rap-
idly decline. IM-A’s MAC continues to decrease 
slightly after context length 4 and the curve of 
the trend became relatively flat after context 

length 8; IM-B’s MAC slowly increases during 
context 4 to context length 11 but there is an ab-
errant peaks at context length 12; IM-C’s MAC 
generally draws a curve similar to IM-B’s. 

Figure 2 shows ρh
correction effects at context 

length 6 that is in the middle of relatively stable 
curves with low MAC for IM-A, IM-B, and IM-C, 
according to previous results. Instead of using 
ER, it is found sufficient to compare CARs be-
fore and after adaptations in order to analyze the 
GBC of IM-A, IM-B, and IM-C. While the more 
corrections the user made the better adaptation 
IM-A performs, IM-B and IM-C show lower 
GBC when the user corrects more than 50% of 
errors. 

4 Discussion 

4.1 Empirical Factors of Context Length 

According to Figure 2, the balanced choice of 
context length for IM-B and IM-C, in terms of 
MAC managing the trade-off between correction 
costs and context-provided benefits, is around 6 
characters. This result suggests that it is possible 
to improve IM-B or IM-C by maintaining the 
size of a chunk for prediction and adaptation to 6 
characters to save users’ precious time in cursor 

 
Figure 2. Comparison of MAC  

 
Figure 3. GBC at Context Length 6 
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movement and candidate selection, without sig-
nificantly decreasing accuracy. In the situation of 
IM-A, however, the ideal window size can ex-
pand to 8-13 characters, since the tail of its curve 
is smoother than IM-B and IM-C. Such differ-
ence is conjecturally related to their respective 
prediction and adaptation algorithms. 

4.2 Error-Tolerance Level 

The simulation result of Figure 3 show that at a 
context length of six characters, IM-A represents 
genuine GBC when the user corrects more than 
50% of errors, but IM-B and IM-C encounter 
confusions when the user actively provides feed-
back. Since GBC involves user expectations of 
how fast a manually corrected chunk is adapted 
and how long it is sustained, this work provides a 
deeper analysis by defining three aspects of the 
error-tolerance level (ETL) as follows: 

Futile Effort (Ef): how many times a missing 
vocabulary in terms of chunk is typed by the user 
but still cannot be adapted by the IM; 

Beneficial Effort (Eb): how many times a 
missing vocabulary in terms of chunk is correct-
ed by the user before it is adapted by the IM; 

Utility (U): how many times an adapted chunk 
is used before it is “forgotten” (because of the 
IM’s limitation of memory space and/or adapta-
tion algorithm, in general cases). 

Table 2 and Table 3 show the corresponding 
maximums/averages of these three aspects for 
IM-A and IM-B, respectively, where chunks are 
sampled by character bi-grams and tri-grams au-

tomatically, so as to bypass the issue of Chinese 
word segmentation standards. The ETLs of IM-C 
are omitted in the interest of brevity and clarity, 
since IM-C’s curves of MAC and GBC are 
similar to IM-B’s. 

For counts of manually corrected chunks that 
are never adapted as Ef, both IM-A and IM-B 
show that when the user puts more effort into 
correction, systems encounter more trouble with 
disambiguation. Statistics on reused counts of 
chunks U provide a different angle to CAR com-
parison of adaptation on GBC. IM-A holds 
adapted chunks better when the user has partially 
corrects input errors. Although IM-B seems to be 
relatively stable, it is unable to sustain its accura-
cy as long as IM-A. For quick responses and 
short-term memory of recently adapted chunks 
that are interpreted from Eb, IM-A and IM-B 
both get confused when the user corrects more 
frequently, and IM-A struggles harder than IM-B 
on the top-1 chunk. More specifically, for exam-
ple, IM-A encounters frequent problems with 
Chinese homophones, where “his,” “her” and 
“it” are all pronounced in the same disyllable, 
while IM-B seems to avoid any problems with 
this situation. Notably, IM-A’s CAR series of 
GBC has correlation coefficients 0.49, 0.92, and 
0.66 to Ef

avg, Eb
avg, and Uavg, respectively, while 

IM-B’s has -0.78, -0.62, and -0.51. 

5 Conclusions 

This work proposes a novel metric for text entry 
evaluation of adaptively predictive Chinese IMs. 
The modification process of predictive Chinese 
IMs is quite different from that of alphabetic text 
entry (e.g. in English). Therefore, combining the 
time taken by cursor movements and candidate 
selections, and the Amortized Cost of infor-
mation theory, the proposed metric, called the 
Maximally Amortized Cost (MAC), estimates the 
error correction cost of predictive Chinese IMs.  
A series of real-time simulation is then conduct-
ed, which approximates user correction behav-
iors for evaluation of generalized backward 
compatibility of adaptive Chinese IMs. Compari-
sons between three IMs using MAC with differ-
ent context lengths report the appropriate context 
length as empirical factors for simulation and a 
possible direction to improve predictive Chinese 
IMs. This work has also suggested three aspects 
of error-tolerance level—Futile Effort, Benefi-
cial Effort, and Utility—that could be useful for 
further investigation such as building reference 
corpus for shared tasks of IMs. 

ρh
correction Ef

max Ef
avg Eb

max Eb
avg Umax Uavg 

10% 0 0.00 1 0.00 30 5.73 
20% 2 2.00 1 1.00 22 8.30 
30% 0 0.00 1 1.00 31 13.00 
40% 4 2.40 3 1.45 51 12.05 
50% 3 2.20 2 1.20 111 23.25 
60% 2 2.00 6 2.50 57 20.85 
70% 2 2.00 8 2.60 56 22.55 
80% 5 2.35 9 3.00 35 18.75 
90% 5 2.40 10 2.90 33 18.00 
100% 5 2.25 18 3.55 29 16.50 

Table 2. Error-tolerance level of IM-A 

ρh
correction Ef

max Ef
avg Eb

max Eb
avg Umax Uavg 

10% 0 0.00 1 1.00 33 8.00 
20% 0 0.00 1 1.00 10 2.75 
30% 2 0.00 2 1.05 33 9.95 
40% 0 0.00 2 1.05 37 13.80 
50% 2 2.00 2 1.20 31 10.45 
60% 2 2.00 2 1.20 19 14.45 
70% 3 2.13 4 1.70 28 11.65 
80% 2 2.00 4 2.20 21 10.15 
90% 5 2.45 3 2.25 24 12.10 
100% 3 2.25 4 2.55 25 13.45 

Table 3. Error-tolerance level of IM-B 
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