
Proceedings of Workshop on Language Resources, Technology and Services in the Sharing Paradigm, pages 32–40,
Chiang Mai, Thailand, November 12, 2011.

Interoperability and technology for a language resources factory

Marc Poch

UPF / Barcelona, Spain

marc.pochriera@upf.edu

Núria Bel

UPF / Barcelona, Spain

nuria.bel@upf.edu

Abstract

This document describes some of the technol-

ogical aspects of a project devoted to the crea-

tion of a factory for language resources. The

project’s objectives are explained, as well as

the idea to create a distributed infrastructure of

web services. This document focuses on two

main topics of the factory: (1) the technologi-

cal approaches chosen to develop the factory,

i.e. software, protocols, servers, etc. (2) and

Interoperability as the main challenge is to

permit different NLP tools work together in

the factory. This document explains why

XCES and GrAF are chosen as the main for-

mats used for the linguistic data exchange.

1 A factory for language resources

1.1 Introduction

A strategic challenge for today's globalised

economy is to overcome language barriers

through technological means. In particular, Ma-

chine Translation (MT) systems are expected to

have a significant impact on the management of

multilingualism. This project addresses the most

critical aspect of MT: the so-called language-

resource bottleneck. Although MT technologies

may consist of language independent engines,

they depend on the availability of language-

dependent knowledge for their real-life imple-

mentation, i.e., they require Language Resources.

In order to supply MT for every pair of languag-

es, every domain, and every text genre, appro-

priate language resources covering all of these

aspects must be found, processed and supplied to

MT developers. At present, this is mostly done

by hand.

The objective of the project is to build a facto-

ry of Language Resources that automates the

stages involved in the acquisition, production,

updating and maintenance of language resources

required by MT systems, and by other applica-

tions based on Language Technologies, and

within the time required. This automation will

cut down cost, time and human effort significant-

ly. These reductions of costs and time are the

only way to guarantee the continuous supply of

Language Resources that Machine Translation

and other Language Technologies will be de-

manding in the multilingual world.

1.2 Web services and workflows

The idea behind the factory is to help users to

create complex chains of components which ac-

complish concrete tasks, i.e. “crawl the web and

align text” or “extract text from PDF files and

get the Part of Speech (PoS) tagging”. These

complex chains are called workflows.

Every component is in charge of a concrete

task, i.e. “tokenization”, “pdf to text conversion”,

“PoS tagging”, etc. and will be deployed as a

web service.

Web services (sometimes called application

services) are services (usually including some

combination of programming and data, but may

possibly include human interaction as well) made

available from a web server for users or other

connected programs.

The technology behind web services is based

on different protocols, servers and programming

languages. It’s continuously growing and evolv-

ing due to its massive use. This growth and im-

mense amount of users has “forced” the technol-

ogy to be open and very interoperable.

Before web services, every researcher or la-

boratory needed installation and maintenance of

the tools. Now, with web services, only the ser-

vice provider needs to have deep knowledge of

the software installation and maintenance, allow-

ing many users to benefit from this work. Re-

searchers can focus on their tasks on a high level

without the effort to work with the tools, they

only need a web service client or workflow edi-

tor to call different services and get the results.

32

1.3 Technologies state of the art

Before the first development began in our

project, an analysis of existing technologies was

conducted. Some technologies were tested and

studied to verify their features, ease-of use, in-

stallation and maintenance issues. The idea was

to find the tools, protocols, programming lan-

guages, etc. which could provide more features

with user-friendly interfaces at a low cost while

also considering ease of installation, mainten-

ance, computer science knowledge required and

the learning curve involved working with such

tools.

Finally a concrete option from the Bioinfor-

matics field was chosen to be used and adapted

to work with NLP because of its numerous ad-

vantages.

2 Bioinformatics: myGrid approach

The myGrid
1

 team, led by Professor Carole

Goble
2
 of the School of Computer Science at the

University of Manchester
3

 UK, is a research

group focusing on e-Science. The team is formed

with different institutions and people from dif-

ferent disciplines together in an international en-

vironment.

The myGrid team works to develop a suite of

tools designed to help scientists with the creation

of e-laboratories and have been used in domains

as diverse as systems biology, social science,

music, astronomy, multimedia and chemistry.

These tools have been adopted by a large number

of institutions.

The most relevant tools developed by the my-

Grid team are explained in the following sec-

tions.

2.1 Web Services (Soaplab)

MyGrid makes use of Soaplab (and its new ver-

sion Soaplab2) to deploy already existing com-

mand line tools as web services. Soaplab is a free

software package under an Apache License, Ver-

sion 2.0 based on metadata.

A web service provider can deploy a com-

mand line tool as a web service using Soaplab

without any software programming. Soaplab on-

ly requires a metadata file used to describe the

inputs, outputs, and parameters of the tool.

1
 http://www.mygrid.org.uk/

2
 http://www.mygrid.org.uk/about-us/people/core-

mygrid-team/carole-goble/
3
 http://www.manchester.ac.uk/

2.2 Workflow editor (Taverna)

Taverna
4
 is an open source application that al-

lows the user to create high-level workflows that

integrate different resources into a single analy-

sis. Such analyses can be seen in the bioinfor-

matics field as simulation experiments which can

be reproduced, tuned and easily shared with oth-

er researchers.

An advantage of using workflows is that the

researcher doesn’t need to have background

knowledge of the technical aspects involved in

the experiment. The researcher creates the

workflow based on “functionalities” (every web

service provides a function) instead of dealing

with tools, software, etc.

2.3 The Registry (Biocatalogue)

BioCatalogue
5
 is a registry of curated biological

Web Services where users, researchers and cura-

tors can register, annotate and monitor Web Ser-

vices.

BioCatalogue is used as a single registration

point for web service providers and is used by

researchers to annotate and search services. The

objective is to join the entire community together

to obtain high quality services, annotations,

monitoring data, etc.

BioCatalogue features service filtering by tags

on services, operations, inputs, and outputs, as

well as by providers, submitters, and locations. It

supports annotation of services by tags, user

comments and text description. These annota-

tions can take the form of free text, tags, terms

from selected ontology and example values.

Users can perform all of these tasks in a spe-

cially designed user-friendly web 2.0 interface.

2.4 Sharing experiments (myExperiment)

MyExperiment is a social network where re-

searchers and professionals can share their work-

flows. Moreover, they can share complete ex-

periments: a workflow, input data, parameters,

comments, etc. Users can find, share and anno-

tate workflows and files in a virtual environment

especially designed to share expertise and avoid

reinvention. MyExperiment also allows users to

create closed groups to work on specific topics

while publishing their work on a save environ-

ment.

4
 http://www.taverna.org.uk

5
 http://www.biocatalogue.org

33

3 Using myGrid tools to work NLP

MyGrid tools have been adopted by many

projects, researchers, etc. and have been used in

very different domains with success. Our project

aims to use and adapt these bioinformatics’ tools

to work with NLP. These tools have been chosen

among others because of their successful histo-

ries, flexibility, and ease of use (from the point

of view of the web service provider, user and

researcher).

The project is in the second phase of its facto-

ry development. In the first phase, several NLP

tools were deployed as web services and a Bioca-

talogue instance was prepared to be used as the

Registry. When the users were able to find and

test the web services it was time to combine

them to create complex workflows. Some guide-

lines have been developed to assist users on the

best way to design workflows for the project.

For the second phase of the project, workflows

are developed in a more robust way and they can

handle larger amounts of data using some special

techniques from Soaplab and Taverna. It was

then deemed necessary to share workflows. To

this aim, a myExperiment instance has been dep-

loyed and is being used to present the workflows

designed inside the project, as well as its im-

provements or newer versions.

In the second phase of the project larger expe-

riments are being used challenging the tools and

protocol robustness to long lasting tasks and

large data files. Some tools have been modified

to better suit these tasks, for example: Soaplab,

which had a technical problem regarding a con-

crete scenario of web service technology. The

following sections are devoted to describe this

adaptation of the Bioinformatics tools to the NLP

tasks.

3.1 Creating NLP web services with Soap-

lab

There are many existing tools for NLP; most

of them are command line applications and

scripts. Some of them require good computer

skills to be installed and maintained. The idea

behind web services is to offer these tools to us-

ers who will then be able to use them without

dealing with installation issues, maintenance, etc.

However, the service provider will have to

deal with installation and maintenance of the

tools while also needing the necessary computer

skills to deploy web services: server installation

and configuration, programming language know-

ledge to develop the web service, etc.

Typical web service technologies (SOAP) re-

quire some Java programming and other good

programming skills to deploy a web service in a

production environment: multiple users, syn-

chronous and asynchronous calls, provenance

data handling, error handling, etc. The aim of

Soaplab
6
 is to easily deploy command line appli-

cations as a web service. Soaplab can be used

without programming skills; it requires only

server installation and maintenance (Apache

Tomcat for example) and Soaplab configuration

know-how.

Since interoperability is a crucial issue for the

project, the first adaptation of Soaplab was basi-

cally to develop some concrete rules which must

be followed by all partners. A common interface

was designed for most of the tools (it will be ex-

plained later) to guarantee that all web services

share the same naming convention and same

kind of parameters (URL or a stream of charac-

ters).

3.2 Improving Soaplab for large data

Soaplab has proven to be a very useful tool, not

only to easily deploy command line tools as a

web service but to handle large data too. When

client software makes a request to a web service,

Soaplab or any other one, waits for its response.

All clients have a timeout to stop waiting in case

there’s an error. This timeout can be a problem

for long lasting workflows, which can be avoided

with polling
7
 techniques.

All of the polling techniques are already pro-

grammed in Soaplab and can be easily used from

Taverna (with the “Soaplab plug-in”). However,

a problem was found during the first tests with

large files. When output data files were bigger

than 2 MB soaplab web services failed to give

their response to Taverna. This only happened

when using the plug-in so it could be avoided by

calling web services without it. However, most

of our workflows were designed to be used with

the plug-in because of its advantages: smaller

workflows to do the same tasks and polling pa-

rameters are easily tuned.

Therefore, it was decided to realize a deeper

study of the problem. All of the Soaplab outputs

were configured to be sent inside the message

between the client and the web service in two

ways: as a stream of characters and a URL. This

6
 http://soaplab.sourceforge.net/soaplab2

7
 Iterative method used to make continuous re-

quests to a server to check whether a task has finished

avoiding timeouts.

34

was causing messages to be too big. To avoid

this, Soaplab source code has been modified to

add a size limit parameter to only use URLs (and

not the character stream) as outputs when the

data size is bigger than this limit. This solution

has proven to be useful and it has increased net-

work use efficiency because a lot less data is be-

ing transmitted.

3.3 The Registry

BioCatalogue is a Ruby on Rails web application

and it's free under the BSD License
8
. An instance

of BioCatalogue has been installed on a server to

be used as the Registry for the project and it has

been modified and adapted to suit NLP require-

ments: The web interface has been changed to

include color changes, logos, etc. For example,

the BioCatalogue instance is tailored to the bio-

informatics field with “service categories” such

as “Genomics” or “Biostatistics” which are used

to classify web services. In the PANACEA regi-

stry “service categories” have been changed to

NLP relevant categories including “Morphosyn-

tactic Tagging” or “Tokenization”.

3.4 Taverna

Taverna is the workflow editor and manager in

myGrid environment. It hasn’t been adapted or

modified to be used in our project. However, it

has been tested in numerous situations to guaran-

tee ease of use and interoperability between our

web services.

There are many different ways to chain com-

ponents in Taverna and many parameters to be

set. Users can connect Soaplab web services us-

ing character streams or URL and there are sev-

eral parameters used for “polling” which should

be taken into account. When dealing with large

data it’s important to design workflows with

some correctly set error handling parameters and

with some parallelization option to increase total

workflow throughput. As a result of these tests,

some guidelines and tutorials have been devel-

oped to assist workflow designers. For instance,

it is recommended to use URLs to transfer data

between components.

3.5 MyExperiment

The MyExpermient instance has recently been

deployed and it is still under testing. Thus, no

major changes or adaptations have been done.

However, it is proving to be very useful and it is

8

 Terms of use:

http://beta.biocatalogue.org/termsofuse

fulfilling the project expectation for a portal de-

signed to share workflows.

4 Interoperability

This new architecture based on web services in-

troduced a new paradigm in NLP tools: users

don’t need to install and perform the mainten-

ance of the tools. As soon as the first web servic-

es were ready to be used and were easily discov-

ered using the Registry, users wanted to try them.

The web interfaces facilitate the first contact

with new tools and help users get used to them.

The next step was soon required by users:

chain web services to create complex workflows.

Interoperability became a fundamental necessity

for the factory. Workflows cannot be made if the

designer doesn’t know how to connect inputs and

outputs or the tools don’t “understand” each oth-

er.

This interoperability need was foreseen on the

design phase of the project. There are two levels

of interoperability that need to be addressed in a

factory based on web services: (1) the data being

transferred between components must follow a

concrete format. Tools must be able to process

this format which is being transferred across the

factory. This data object was called Travelling

Object (TO) because of the distributed nature of

the factory (web services are deployed in differ-

ent locations across Europe). (2) The other aspect

is the parameters of the web services. All web

services must use the same naming convention

for parameters, not only to help developers but

for automatic processes to check compatibility,

etc. However, some technical aspects of these

parameters also needed to be established. For

example if the parameter is optional or mandato-

ry. To this aim, it was decided to create a Com-

mon Interface (CI) for all web services deployed

to work in the factory.

4.1 Common Interface

Tools are very different depending on the func-

tionality they try to fulfill and so are their para-

meters. A general web service CI has been de-

signed for different functionalities like PoS tag-

ging, tokenization, lemmatization, alignment,

etc. The idea is to have a common parameters

definition for all web services providing a specif-

ic functionality i.e. two different PoS taggers will

be deployed as web services using the same

mandatory parameters.

On the other hand, tools have particular and

very concrete idiosyncrasies, even when they are

35

used for the same functionality. The use of a CI

should not make the tool lose some of its particu-

lar parameters. To this aim, the designed CI es-

tablishes that all particular parameters of a tool

must be configured as optional parameters.

The final idea is that all web services, for a

given functionality, use the same mandatory pa-

rameters so they can be easily replaced. For ex-

ample, all “Pos Tagging” web services must have

two mandatory parameters: “input” and “lan-

guage”. The CI is even more concrete, “lan-

guage” parameter must use ISO-639 and “input”

parameter must have two options two send data:

as a character stream or URL.

All of these specifications and designs are pre-

sented in a XML schema and online documenta-

tion for easy access to all the information. Web

service providers can use the XML schema to

deploy their web services even if they don’t use

Soaplab and all of them will be CI compliant.

4.2 Travelling Object

Two web services can be chained making use of

the CI. Output parameters of the first component

can be easily connected to the second component

inputs following the CI naming convention and

data type (stream or URL). However, this is not

enough. To guarantee interoperability web ser-

vices must be able to work with the received data

format.

There have been relevant proposals made by

the Language Resources (LR) community to

reach a consensus about a format to represent

annotated corpora. The Linguistic Annotation

Framework (LAF) (Ide and Romary, 2004) is an

ISO standard proposal which can be used as the

starting point for a standard data model in the

project. After LAF, standardization efforts have

been focused on concrete annotation types and

they are at different stages of development: for

morphosyntactic annotations there is the Mor-

phosyntactic Annotation Framework (MAF)

(Clément and Villemonte de la Clergerie, 2005),

for syntactic annotations the Syntactic Annota-

tion Framework (SynAF) (Declerck, 2006) and

for semantic annotations the Semantic Annota-

tion Framework (SemAF) (Lee et al. 2007).

However it has been observed that these propos-

als have not been widely used. Other relevant

projects have adapted some of these proposals to

its concrete needs. KYOTO project (ICT-

211423) needed particular aspects found on

LAF, MAF and SynAF which are really difficult

to combine. Thus, a new annotation framework

was designed to be compatible with LAF and

with some benefits from MAF and SynAF. The

KYOTO Annotation Framework (KAF) (Agirre

et al. 2009) is a layered stand-off format for con-

crete annotations. Another project which was

facing a similar situation was D-SPIN (Heid,

2008). The approach was much more practical

and a new XML format was proposed and de-

signed from scratch which is compatible with

LAF as well.

All these options, even those concrete adapta-

tions from other projects, required considerable

resources before they could be implemented on

the factory. As it was mentioned before, for the

first phase of the project only PoS tagging anno-

tations were needed as well as the bilingual data

processing capabilities. Nevertheless, the intero-

perability requirement of the factory made it

mandatory to find a common format for the data

representation soon. Thus, for the first phase of

development, it was agreed upon to find an al-

ready existing format to be used as the TO,

which represented the minimum change or con-

version process from the in-house formats used

by our tools. More complex representations and

stand-off annotation were left for the next phase

of the factory development.

Most of the deployed tools were using the

usual vertical in-line formats with no header or

metadata at all. The Corpus Encoding Standard

for XML (XCES
9
) was chosen to be the first ver-

sion of the Travelling Object (TO1) because of

its simplicity and fulfillment of the aforemen-

tioned requirements.

4.2.1 Travelling Object 1: XCES

Although most of the deployed tools don’t use an

XML format, it was considered to be the best

option due to its numerous advantages, such as

XML schemas, transformations, complex path

queries, etc.

XCES is the XML version of CES (Ide et al.,

2000) which is a part of EAGLES guidelines for

corpus representation to work in natural language

processing applications. XCES documents used

in the factory make use of the “header” and the

“text” tags proposed. Thanks to the header, TO1

can store metadata to annotate the origin of the

document, its title, the date, some key words, the

language and some annotations to keep track of

the web services which have processed the doc-

ument. The “text” part of the XML contains the

data itself. Depending of the level of data annota-

9
 www.xces.org

36

tion, this part has different versions. The basic

and PoS versions are presented here.

The basic representation follows the idea that

text is basically divided in paragraphs. Thus, a

“p” tag is used for every paragraph on the source

data. This representation is very straightforward

considering that most of the data being used in

the project is crawled from the web and cleaned

afterwards.

For the first phase of the project, only annota-

tions up to PoS tagging were considered so there

was no need for stand-off annotations. Since the

idea was to make the easiest move from the in-

house formats of the tools to the TO1 tags “s” for

sentences and “t” for tokens were used. Informa-

tion of the “word”, “tag” and “lemma” is stored

in the attributes of the token tag.

There are several tools deployed as web ser-

vices, which are used to process bilingual corpo-

ra. CesAlign is a concrete XCES file which has

been used to create the links between two differ-

ent XCES documents. It can be used to align

documents, paragraphs, sentences, tokens, etc.

Thus sentence and word aligners can use it to

represent their respective results using the TO1

format.

 At the end of the first phase of the project

converters had been deployed as web services to

transform in-house formats to the TO1 and

backward. Those converters were used to build

workflows for sentence and word alignment, PoS

tagging annotation and other complex functional-

ities working with crawled data or plain text.

4.2.2 Travelling Object 2: GrAF

For the second version of the factory the idea is

to include more complex annotations according

to the new web services. “Chunking” and “de-

pendency parsing” annotations for example make

the TO1 deprecated for these concrete tasks. The

idea was to find an already existing standard

format representation. This format needed to use

stand-off annotation and be as flexible as possi-

ble due to the multiple in-house formats used by

the tools.

As mentioned before, there is still an open dis-

cussion in the community about how to represent

annotated corpora. The idea was to find a stan-

dard format compatible with already existing

ISO standards which was flexible enough to be

used to encode various in-house formats like a

data container.

The Graph Annotation Format (Ide and Su-

dermam, 2007) is the XML serialization of LAF

(ISO 24612, 2009). GrAF can be used as a con-

tainer for different annotation types with variable

complexity. Its flexibility makes it suitable for

most tools already deployed on the factory and

the more complex annotations that will be dep-

loyed soon. This is due to the fact that GrAF

specifies how to make annotations but not which

are their names or content. It is focused on the

syntactic consistency of annotations rather than

their semantic consistency. There are other stan-

dardization efforts focused on providing sets of

data categories and their definitions to finally

obtain the desired semantic consistency but this

is not the aim of GrAF. This means that a certain

level of annotation can be encoded or extracted

from GrAF documents regardless the annotations

content. However, it must be taken into account,

that this doesn’t signify the annotations are com-

parable.

One clear advantage of using GrAF container

capabilities is that there no need to make any

modification or adaptation to the format. Other

projects and format proposals required schema

adaptation and some modifications from the orig-

inal while our project is going to use GrAF as it

is: with no modifications at all. Another advan-

tage of using GrAF is that cesAlign still can be

used for bilingual corpora. Thus, all tools devel-

oped to work with cesAlign documents need no

updates and will be used together with GrAF for

bilingual workflows.

The project is now under the second phase of-

development and the necessary converters to

work with GrAF are being developed. Some

GrAF examples have been created to be used as

models using some in-house format example data

of some of the already deployed web services.

These examples have been developed with PoS

tagging, dependency parsing and other annota-

tion types. To illustrate how GrAF can be used as

a pivot format, capable to contain different anno-

tations and tool idiosyncrasies, three GrAF ex-

amples can be found in the Appendix. The same

sentence has been processed by three PoS tag-

ging web services already deployed (Berkeley

tagger does not contain Spanish capabilities; thus

the sentence was entered in English) and the re-

spective outputs are represented in GrAF.

5 Conclusion

This document presents the tools which are being

used to create a factory for LR integrating NLP

tools to work together. Some modifications and

improvements to these tools are explained and a

global vision of the whole infrastructure is pre-

37

sented. One of the main challenges for a factory

with these characteristics is interoperability; oth-

er relevant problems were also presented. To

make it possible to chain components, a Com-

mon Interface is presented and data formats were

studied. For the first stage of the platform XCES

format was chosen as a low-cost approach which

perfectly fulfilled the requirements for data ex-

change. For the second stage the stand-off and

more complex annotations are needed and GrAF

was chosen to be used as a pivot format.

Taverna, Biocatalogue, Soaplab, etc. have

proven to be very useful and user-friendly tools

for the first phase of factory development. Now

the requirements of the project are higher and

large data processing capabilities are a challenge

for these technologies and developers. We expect

to continue learning more about these tools,

which can still provide more features and elicit

more satisfactory results

On the other hand, we are in the middle of the

GrAF adoption. We expect it to be a very useful

and flexible data format for the factory. The

standard will be used with no adaptation or mod-

ification at all, in order to facilitate interoperabil-

ity with other projects using GrAF. We expect to

have complex workflows using GrAF soon.

Deploying new web services is easy and has

low cost thanks to the used tools. This is a big

advantage to facilitate interoperability between

this factory and other relevant projects like the

Heart of Gold, U-Compare and the Language

Grid. If data converters are developed, they

could easily be integrated in the factory to work

together with these other projects. Deploying

data converters as web services can push cooper-

ation forward.

Acknowledgments

This research has been funded by the PANACEA

project (EU-7FP-ITC-248064).

References

Eneko Agirre, Xabier Artola, Arantza Diaz de Ilarra-

za, German Rigau, Aitor Soroa, and Wauter Bos-

ma. 2009. KAF: Kyoto Annotation Framework.

Technical Report TR 1-2009, Dept. Computer

Science and Artificial Intelligence, University of

the Basque Country.

K. Belhajjame, C. Goble, F. Tanoh, J. Bhagat, K.

Wolstencroft, R. Stevens, E. Nzuobontane, H.

McWilliam, T. Laurent, and R. Lopez. 2008. "Bio-

Catalogue: A Curated Web Service Registry for the

Life Science Community," in Microsoft eScience

conference.

Lionel Clément and Eric Villemonte de la Clergerie.

2005. Maf: a morphosyntactic annotation frame-

work. In Proceedings of the 2nd Language &

Technology Conference, page 90–94, April 2005.

Thierry Declerck.2006. Synaf: Towards a standard

for syntactic annotation. Proceedings of the Fifth

Conference on International Language Resources

and Evaluation, pages 229-233. European Lan-

guage Resources Association (ELRA). May 2006.

D. De Roure, C. Goble, and R. Stevens 2008. "The

Design and Realisation of the myExperiment Vir-

tual Research Environment for Social Sharing of

Workflows," Future Generation Computer Sys-

tems, vol. 25, pp. 561-567.

D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M.

Pocock, P. Li, and T. Oinn. 2006. "Taverna: a tool

for building and running workflows of services."

Nucleic Acids Research, vol. 34, iss. Web Server

issue, pp. 729-732.

U. Heid, H. Schmid, K. Eckart and E. Hinrichs.

(2008). A Corpus Representation Format for Lin-

guistic Web Services: The D-SPIN Text Corpus

Format and its Relationship with ISO Standards.

In: Proceedings of the 6th International Conference

on Language Resources and Evaluation (LREC

2008). ELRA, Marrakech.

Nancy Ide, Patrice Bonhomme, Laurent Romary.

2000. “XCES: An XML-based encoding standard

for linguistic corpora”. In Proceedings of the

Second International Language Resources and

Evaluation Conference. Paris: European Language

Resources Association (2000).

Nancy Ide, Harry Bunt. 2010. Anatomy of Annotation

Schemes: Mapping to GrAF. Proceedings of the

Fourth Linguistic Annotation Workshop, ACL

2010, pages 247-255.

Nancy Ide, Lauren Romary.2004. “International

Standard for a Linguistic Annotation Framework”.

Journal of Nataural Language Engineering, 10:3-4,

211-225.

Nancy Ide, Keith Surderman. 2007. “GrAF: A Graph-

based Format for Linguistic Annotations”. In Pro-

ceedings of the Linguistic Annotation Workshop

(June 2007), pp. 1-8.

K. Lee, J. Pustejovsky, H. Bunt, B. Boguraev, and N.

Ide. 2007. Language resource management - Se-

mantic annotation framework (SemAF) - Part 1

:Time and events. International Organization for

Standardization, Geneva, Switzerland, 2007.

T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J.

Ferris, K. Glover, C. Goble, A. Goderis, D. Hull,

D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger,

R. Stevens, A. Wipat, and C. Wroe. 2006. "Taver-

38

na: lessons in creating a workflow environment for

the life sciences," Concurrency and Computation:

Practice and Experience, vol. 18, iss. 10, pp. 1067-

1100.

M. Senger, P. Riceand T. Oinn. 2003. "Soaplab - a

unified Sesame door to analysis tools (2003)" In

UK e-Science All Hands Meeting.

Appendix A. Freeling output GrAF

<graph xmlns="http://www.xces.org/ns/GrAF/1.0/">

 <header> ... </header>

 <!-- la casa está en llamas -->

 <node xml:id="freeling-n1">

 <link targets="seg-r1"/></node>

 <fs>

 <f name="word" value="la"/>

 <f name="lemma" value="el"/>

 <f name="postag" value="DA0FS0"/>

 <f name="probability" value="0.972146"/>

 </fs>

 <node xml:id="freeling-n2">

 <link targets="seg-r2"/></node>

 <fs>

 <f name="word" value="casa"/>

 <f name="lemma" value="casa"/>

 <f name="postag" value="NCFS000"/>

 <f name="probability" value="0.971264"/>

 </fs>

 <node xml:id="freeling-n3">

 <link targets="seg-r3"/></node>

 <fs>

 <f name="word" value="está"/>

 <f name="lemma" value="estar"/>

 <f name="postag" value="VAIP3S0"/>

 <f name="probability" value="0.996032"/>

 </fs>

 <node xml:id="freeling-n4">

 <link targets="seg-r4"/></node>

 <fs>

 <f name="word" value="en"/>

 <f name="lemma" value="en"/>

 <f name="postag" value="SPS00"/>

 <f name="probability" value="1"/>

 </fs>

 <node xml:id="freeling-n5">

 <link targets="seg-r5"/></node>

 <fs>

 <f name="word" value="llamas"/>

 <f name="lemma" value="llama"/>

 <f name="postag" value="NCFP000"/>

 <f name="probability" value="0.875"/>

 </fs>

</graph>

Appendix A. Tree Tagger output GrAF

<graph xmlns="http://www.xces.org/ns/GrAF/1.0/">

 <header> ... </header>

 <!-- La casa está en llamas -->

 <node xml:id="freeling-n1">

 <link targets="seg-r1"/></node>

 <fs>

 <f name="word" value="la"/>

 <f name="lemma" value="el"/>

 <f name="postag" value="AFS"/>

 </fs>

 <node xml:id="freeling-n2">

 <link targets="seg-r2"/></node>

 <fs>

 <f name="word" value="casa"/>

 <f name="lemma" value="casa"/>

 <f name="postag" value="N5-FS"/>

 </fs>

 <node xml:id="freeling-n3">

 <link targets="seg-r3"/></node>

 <fs>

 <f name="word" value="está"/>

 <f name="lemma" value="estar"/>

 <f name="postag" value="VDR3S-"/>

 </fs>

 <node xml:id="freeling-n4">

 <link targets="seg-r4"/></node>

 <fs>

 <f name="word" value="en"/>

 <f name="lemma" value="en"/>

 <f name="postag" value="P"/>

 </fs>

 <node xml:id="freeling-n5">

 <link targets="seg-r5"/></node>

 <fs>

 <f name="word" value="llamas"/>

 <f name="lemma" value="llama"/>

 <f name="postag" value="N5-FP"/>

 </fs>

</graph>

Appendix A. Berkeley Tagger output

GrAF

<graph xmlns="http://www.xces.org/ns/GrAF/1.0/">

 <header> ... </header>

39

 <!-- the house is on fire -->

 <node xml:id="freeling-n1">

 <link targets="seg-r1"/></node>

 <fs>

 <f name="word" value="the"/>

 <f name="postag" value="DT"/>

 </fs>

 <node xml:id="freeling-n2">

 <link targets="seg-r2"/></node>

 <fs>

 <f name="word" value="house"/>

 <f name="postag" value="NN"/>

 </fs>

 <node xml:id="freeling-n3">

 <link targets="seg-r3"/></node>

 <fs>

 <f name="word" value="is"/>

 <f name="postag" value="VBZ"/>

 </fs>

 <node xml:id="freeling-n4">

 <link targets="seg-r4"/></node>

 <fs>

 <f name="word" value="on"/>

 <f name="postag" value="IN"/>

 </fs>

 <node xml:id="freeling-n5">

 <link targets="seg-r5"/></node>

 <fs>

 <f name="word" value="fire"/>

 <f name="postag" value="NN. "/>

 </fs>

</graph>

40

