
Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 1–8,
Chiang Mai, Thailand, November 8, 2011.

Hybrid Inflectional Stemmer and Rule-based Derivational Stemmer

for Gujarati

 Kartik Suba Dipti Jiandani

Department of Computer Engineering

Dharmsinh Desai University

suba.kartik@gmail.com

jiandani.dipti@gmail.com

Pushpak Bhattacharyya

Department of Computer Science and

Engineering

Indian Institute of Technology Bombay

pb@cse.iitb.ac.in

Abstract

In this paper we present two stemmers for

Gujarati- a lightweight inflectional

stemmer based on a hybrid approach and a

heavyweight derivational stemmer based

on a rule-based approach. Besides using a

module for unsupervised learning of

stems and suffixes for lightweight

stemming, we have also included a

module performing POS (Part Of Speech)

based stemming and a module using a set

of substitution rules, in order to improve
the quality of these stems and suffixes.

The inclusion of these modules boosted

the accuracy of the inflectional stemmer

by 9.6% and 12.7% respectively, helping

us achieve an accuracy of 90.7%. The

maximum index compression obtained for

the inflectional stemmer is about 95%. On

the other hand, the derivational stemmer is

completely rule-based, for which, we

attained an accuracy of 70.7% with the

help of suffix-stripping, substitution and

orthographic rules. Both these systems
were developed to be useful in

applications such as Information

Retrieval, corpus compression, dictionary

search and as pre-processing modules in

other NLP problems such as WSD.

1. Introduction

Stemming is a process of conflating related

words to a common stem by chopping off the

inflectional and derivational endings.
Stemming plays a vital role in Information

Retrieval systems by reducing the index size

and increasing the recall by retrieving results
that contain any of the possible forms of a

word present in the query (Harman, 1991).

This is especially true in case of a

morphologically rich language like Gujarati.

The aim is to ensure that all the related

words map to common stem, wherein, the

stem may or may not be a meaningful word in
the vocabulary of the language.

Current state of the art approaches to

stemming can be classified into three

categories, viz., rule-based, unsupervised and
hybrid (Smirnov, 2008). In case of inflectional

stemmer, building a completely rule-based

system is non-trivial for a language like
Gujarati. On the other hand, adopting a purely

unsupervised approach, such as take-all-splits

discussed in section 4, may fail to take
advantage of some language phenomena, such

as, the suffixes in a language like Gujarati, are

separable based on their parts of speech. For

example, the suffix ી (-ī) should be stripped

off for verbs (as in case of કર karī ‘did’), but

not for nouns (as in case of ઈભાનદાર īmāndārī
‘honesty’). Such characteristics can be easily
represented in the form of substitution rules.

So, we follow a hybrid approach for the

inflectional stemmer taking advantage of both

rule-based and unsupervised phenomena.
However, in case of derivational

stemming, words that are derived, either by

adding affixes to the stems or by performing
changes at the morpheme boundary, are

reduced to their stem forms. To accomplish

this task of derivational stemming, we have

adopted a completely rule-based approach.
The remainder of this paper is organized

as follows. We describe the related work in

section 2. Next, section 3 explains the
morphological structure of Gujarati. We

describe our approach to inflectional stemmer

in section 4 and to derivational stemmer in
section 5. Experiments and results are

presented in section 6. Section 7 concludes the

paper, pointing also to future work.

1

2. Background and Related Work

The earliest English stemmer was developed

by Julie Beth Lovins (1968). The Porter

stemming algorithm (Martin Porter, 1980),
which was published later, is perhaps the most

widely used algorithm for stemming in case of

English language. Both of these stemmers are
rule-based and are best suited for less

inflectional languages like English.

A lot of work has been done in the field of
unsupervised learning of morphology.

Goldsmith (2001) proposed an unsupervised

approach for learning the morphology of a

language based on the Minimum Description
Length (MDL) framework which focuses on

representing the data in as compact manner as

possible.
Not much work has been reported for

stemming for Indian languages compared to

English and other European languages. The

earliest work reported by Ramanathan and Rao
(2003) used a hand crafted suffix list and

performed longest match stripping for building

a Hindi stemmer. Majumder et al. (2007)
developed YASS: Yet Another Suffix Stripper

which uses a clustering-based approach based

on string distance measures and requires no
linguistic knowledge. Pandey and Siddiqui

(2008) proposed an unsupervised stemming

algorithm for Hindi based on Goldsmith's

(2001) approach.
Work has also been done for Gujarati.

Inspired by Goldsmith (2001), a lightweight

statistical stemmer was built for Gujarati
(Patel et al., 2010) which gave an accuracy of

68%. But no work was done so far in the area

of derivational stemming for Gujarati.

3. Gujarati Morphology

The Gujarati phoneme set consists of eight
vowels and twenty-four consonants. Gujarati

is rich in its morphology, which means,

grammatical information is encoded by the
way of affixation rather than independent free-

standing morphemes.

The Gujarati nouns inflect for number

(singular, plural), gender (masculine,
feminine, neuter), and declension class

(absolute, oblique). The absolute form of a

noun is its default or uninflected form. This
form is used as the object of the verb, typically

when inanimate as well as in measure or

temporal construction. There are seven oblique

forms in Gujarati corresponding more or less

to the case forms- nominative, dative,
instrumental, ablative, genitive, locative and

vocative. All cases, except for the vocative,

are distinguished by means of postpositions.

The Gujarati adjectives are of two types –
declinable and indeclinable. The declinable

adjectives have the termination -ũ (ી ી) in

neuter absolute. The masculine absolute of

these adjectives ends in -o (ી) and the

feminine absolute in -ī (ી). For example, the

adjective સાર sārũ ‘good’ takes the form સાર

sārũ, સાર sāro and સાર sārī when used for a

neuter, masculine and feminine object
respectively. These adjectives agree with the

noun they qualify in gender, number and case.

Adjectives that do not end in -ũ in neuter
absolute singular are classified as indeclinable

and remain unaltered when affixed to a noun.

The Gujarati verbs are inflected based on a

combination of gender, number, person,
aspect, tense and mood. There are several

postpositions in Gujarati which get bound to

the nouns or verbs which they postposition.

For example, -nũ (ન : genitive marker), -mā̃

(ભા : in), -e (ી : ergative marker), etc. These

postpositions get agglutinated to nouns or

verbs and do not merely follow them. For

example, the phrase ‘in water’ is expressed in

Gujarati as a single word ઩ાણ ભા pāṇīmā̃,

wherein, ભા mā̃ is agglutinated to the noun

઩ાણ pāṇī.

We created four lists of Gujarati suffixes
which contain postpositions and inflectional

suffixes respectively for nouns, verbs,

adjectives and adverbs for use in our approach
for the inflectional stemmer. Similar lists have

been used for the derivational stemmer, in the

form of orthographic, suffix-stripping and

substitution rules.

4. Our Approach for Inflectional

Stemmer

We have been inspired by Goldsmith (2001).

Goldsmith’s approach was based on
unsupervised learning of stems and suffixes,

and he proposed a take-all-splits method.

Besides this, we have incorporated two more
modules, one performing POS-based

stemming and the other doing suffix-stripping

based on linguistic rules. During the training
phase of our approach, the Gujarati words

2

extracted from EMILLE corpus
1
 are used in

order to learn the probable stems and suffixes.
This information is used in order to stem any

unseen data. We describe the approach in

detail below.

4.1 Training phase

As mentioned earlier, the input to the training
phase is a list of Gujarati words. During this

phase, the aim is to obtain optimal split

position for each word in the corpus. The
optimal split position for each word is

obtained by systematic traversal of various

modules.
In the first module, a check is performed

to see if the input word is already in its stem

form. This is accomplished by using a list of

stems. Besides being used in training the
stemmer, this list of stems is also updated with

the new stems learnt correctly at the end of

training phase. For the first time that the
stemmer is trained, this list is empty. If the

word exists in the above mentioned list, the

optimal split position will be at the end of the

word with suffix as NULL.
In the second module, POS-based

stemming is performed. As Gujarati does not

have a POS tagger, there had to be some
method to determine the POS of a word. Since

we had the files which shall be used in the

development of the Gujarati WordNet and
since they also contained POS information, we

created a set of files (hereafter referred to as

POS-based files), each containing words of a

specific POS. We used these files to decide the
POS of the word. Also, as mentioned in

section 3, we made files (hereafter referred to

as suffix files), each containing suffix list for a
specific POS. Thus POS-based stemming i.e.,

stripping of the corresponding suffixes is

performed if the word is found in any of the
POS-based files.

In the third module, linguistic rules are

applied in order to determine the optimal split

position. Each such rule is expressed as a pair
of precedent and antecedent, both of which are

regular expressions. If any part of the word

matches any of the precedents, that part is
replaced by the corresponding antecedent and

the split position is returned as the length of

the new word.

1 http://www.lancs.ac.uk/fass/projects/corpus/emille/

If all the previous module checks fail, as a

final resort, take-all-splits of the word is
performed (see Figure 1) considering all cuts

of the word of length L into stem + suffix, i.e.,

w1,i + wi+1,L, where 1 ≤ i < L. The ranking

function that can be used to decide the optimal
split position can be derived from Eqn 1.

Figure 1. All possible word segmentations for

the word ઩ાણ ભા pāṇīmā̃ ‘in_water’ which has

઩ાણ pāṇī ‘water’ as its stem and ભા mā̃ ‘in’ as

its suffix

The function used for finding the optimal

split position must reflect the probability of a
particular split since the probability of any

split is determined by frequencies of the stem

and suffix generated by that split. Hence,

probability of a split can be given by Eqn 1
below.

P(Spliti) = P(stem = w1,i) * P(suffix = wi+1,L)
(Eqn 1)

i: split position (varies from 1 to L)

L: length of the word

Taking log on both sides of Eqn 1 and

ignoring the constant terms, we get,

log(P(Spliti))

= log(freq(stem)) + log(freq(suffix))

(Eqn 2)

The frequency of shorter stems and

suffixes is very high when compared to the

slightly longer ones. Thus, Eqn 3 is obtained
from Eqn 2 by introducing the multipliers i

(length of stem) and L-i (length of suffix) in

the function in order to compensate for this
disparity.

f(i) = i * log(freq(stem))
+ (L-i) * log(freq(suffix))

(Eqn 3)

Finally, a split position which maximizes

the ranking function given by Eqn 3 is chosen
as the optimal split position. Once the optimal

split of any word is obtained, the frequencies

of the stem and the suffix generated by that

{stem1+suffix1, stem2+suffix2, …, stemL+suffixL}

઩ાણ ભા ={઩ + ીાણ ભા , ઩ા + ણ ભા , ઩ાણ + ી ભા , ઩ાણ

+ ભા , ઩ાણ ભ + ીાી , ઩ાણ ભા + ી , ઩ાણ ભા + NULL}

3

split are updated. The word list is then iterated

and the optimal split position is recomputed
until the optimal split positions of all the

words do not change any more. The training

phase was observed to take four iterations

typically. At the end of the training phase, a
list of stems and suffixes along with their

frequencies is obtained. A list of signatures

(see Figure 2) is also obtained, where a
signature is a data-structure that provides a

mapping between the stem and the suffixes

with which that stem appears in the corpus.
This list of signatures provides a compact

representation of the corpus and can be used in

case of a need to retrieve the original corpus.

Signature 1:

 𝑝𝑡𝑟(છ કર)
𝑝𝑡𝑟 ી

𝑝𝑡𝑟(ીા)

Signature 2:

𝑝𝑡𝑟 બારત

𝑝𝑡𝑟 ફરપ

𝑝𝑡𝑟 NULL

𝑝𝑡𝑟 ભા

Signature 3:

 𝑝𝑡𝑟(ખા)
𝑝𝑡𝑟 NULL

𝑝𝑡𝑟 વ

Figure 2. A sample signature-list for the words

- છ કર chokro ‘boy’, છ કરા chokrā ‘boys’,

બારત bhārat ‘India’, બારતભા bhāratmā̃

‘in_India’, ફરપ baraf ‘ice’, ફરપભા barafmā̃

‘in_ice’, ખા khā ‘eat’, ખાવ khāvũ ‘to_eat’

Based on the approach discussed above,

an overview of the training algorithm is shown

in Figure 3 below.

Step 1. Check if the word is already in its stem

form, if yes, return it as it is, else
proceed to Step 2.

Step 2. Check if the word is in any POS-based

file, if yes, perform POS-based

stemming and return, else proceed to
Step 3.

Step 3. Check if a match occurs with any of the

linguistic rules, if yes, apply the rule
and return, else proceed to Step 4.

Step 4. Perform take-all-splits on the word and

obtain the optimal split position based
on Eqn 3.

Step 5. Perform Step 4 through several

iterations until optimal split position of

all the words remain unchanged.

Figure 3. Overview of training algorithm

4.2 Stemming of any unknown word

For the stemming of any unknown word, a

similar set of steps is followed as in the

training phase, with the only change in the
take-all-splits module, wherein, for any given

word, the function given by Eqn 3 is evaluated

for each possible split using the frequencies of

the stems and the suffixes learnt during the
training phase.

Consider that the words કરવ karvũ ‘to_do’,

કર ન karīne ‘after_doing’ and કર શ karīsh

‘will_do’ existed in the training set, then the

frequency of the stem કર kar ‘do’ will be high.

Now if the unknown word કરવાથ karvāthī

‘by_doing’ appears in the test set, it will be

stemmed as કર + વાથ due to the frequencies

learnt during training. In contrast to this, if the

training set contained the words ઩ાણ ભા

pāṇīmā̃ ‘in_water’ and ઘરભા gharmā̃

‘in_house’, the unknown word ટ ઩ ભા ṭopīmā̃
‘in_hat’ will be split as ટ ઩ + ભા , due to the

high frequency of the suffix ભા mā̃ ‘in’ learnt

during training.

5. Our Approach for Derivational

Stemmer

Derivation is a process of combining a word
stem with grammatical morphemes usually

resulting in a word of different class, not

necessarily different POS. Derivational
morphology deals with derivation of the words

either by affixation (For e.g., જવાફદાર
javābdārī ‘responsibility’ derived from

જવાફદાર javābdār ‘responsible’) or by

performing changes at the morpheme

boundary (For e.g., ધાર્મભક dhārmik ‘religious’

derived from ધભમ dhārm ‘religion’).

The task of derivational stemming is that

of reducing the derived word to its derivational

stem form. The approach for derivational
stemming is inspired from the chapter on

morphology by Jurafsky and Martin (2009).

Their approach consisted of the following
components. However, only two of them were

useful in our case.

1. Lexicon: It is a list of stems and suffixes

together with some basic information

such as POS. The importance of a lexicon

is to determine whether the resultant stem
is correct or not. But, as there is no

4

lexicon for Gujarati, the validation of the

stem form cannot be accomplished.
2. Morph-tactics: It is a model that explains

morpheme ordering i.e., it explains which

class of morphemes can follow which

other class of morphemes.

E.g.: ફાર ભા થ bārīmā̃thī ‘from_window’

indicates that થ thī can follow ભા mā̃ but
the other way round is not possible.

In order to model morph-tactics, Finite
State Automata (FSA) accepting different

transitions within words are usually used.

3. Orthographic or spelling rules: These are

the rules used to handle changes in the
words at the morpheme boundary.

E.g.: ખવડાવવ khavḍāvvũ ‘to_make_eat’

has its stem as ખા khā ‘eat’, but there is

no direct way to reflect this transition. So
there is a need of spelling or orthographic

rule for such words. Example of such a

rule is: વડાવ → ીા. The way it is
applicable in the system is discussed after

the algorithm. We have 73 such hand-

crafted rules.

The algorithm steps are shown in Figure 4.

Step 1. Check if any of the orthographic
rules match, if yes, apply the rule and

proceed, else proceed to step 2.

Step 2. Check if any substitution rule is
matched, if yes, apply the rule and

proceed, else proceed to step 3.

Step 3. Check if any suffix-stripping rule is

matched, if yes, apply the rule and
proceed, else proceed to step 4.

Step 4. Check if the resultant word gets

accepted by any FSA, if yes, return
the word as the stem, else return the

word obtained from the previous

module as the stem.

Figure 4. Derivational stemming algorithm

For example, the word ખવડાવવ khavḍāvvũ

‘to_make_eat’ is to be stemmed. In the first

step, an orthographic rule matches, which

specifies that, if ડાવ appears between વ and વ ,

વડાવ vḍāv should be replaced by ીા ā, resulting

into the intermediate form ખાવ khāvũ ‘to_eat’.

Next, step 2 is not applicable. In step 3, the

suffix વ vũ is a valid suffix for verbs; hence it

is stripped off; resulting into ખા khā ‘eat’,

which gets accepted by the FSA for verbs in

the final step. Thus, ખા khā ‘eat’ is returned as

the derivational stem of ખવડાવવ khavḍāvvũ

‘to_make_eat’.

6. Experiments and Results

We performed various experiments to evaluate

the performance of both the inflectional and
derivational stemmer using EMILLE Corpus

for Gujarati. We extracted around ten million

words from the corpus. We obtained 8,525,649

words after filtering out the wrongly spelt
words. In order to create the test set, each time

we randomly extracted thousand words from

the corpus.

6.1 Performance of the inflectional stemmer

The performance of the inflectional

stemmer is evaluated based on three factors.

The first factor is the accuracy based on the

gold standard data, where the gold standard
data contains the ideal stems of all the words

in the test set manually tagged by us. Accuracy

is defined as the percentage of words stemmed
correctly. The second factor is the Index

Compression Factor (Fox and Frakes, 2003)

that shows the extent to which a collection of
words is reduced by stemming. ICF is defined

as the ratio of difference in number of unique

words and number of unique stems to the

number of unique words. Finally, the third
factor is mean number of words per signature

(MWc) (Fox and Frakes, 2003) that indicates

the strength of the stemmer. MWc is defined as
the ratio of the number of unique words to the

number of unique stems.

The experiments were aimed at studying

the impact of three heuristics: (i) fixing the
minimum permissible stem size, (ii) provide

unequal weightage to the stem and suffix and

(iii) introduce a threshold as a restriction on
the minimum number of stems and suffixes to

qualify as a signature, known as the stem filter

threshold and the suffix filter threshold
respectively.

Various experiments were done to study

the impact of different combination of these

heuristics. This impact is studied in terms of
comparison of various factors as discussed

above. The results of such experiments are

described in the following subsections.

5

Varying Minimum Stem Size:

Minimum stem size was varied from 1 to 7

and its impact was observed on performance

of the lightweight stemmer. The results of this
experiment are shown in Table 1.

Min Stem

Size

Accuracy

(%) ICF MWc

1 90.7 0.53 2.11

2 89.9 0.53 2.11

3 84.8 0.52 2.00

4 74.2 0.49 1.90

5 63.5 0.47 1.92

6 52.1 0.49 1.96

7 44.6 0.55 2.22

Table 1. Effect of minimum stem size on

performance of the inflectional stemmer

It can be observed that maximum accuracy

of 90.7% is obtained by neglecting the

restriction on the minimum stem size and the
average index compression is 52% which is

considerable as far as IR application is

concerned.
The results also show that the performance

degrades if a restriction is placed on the

minimum stem size. The reason may be that

when the minimum stem size is increased lots
of genuine, but small stems are neglected,

leading to a decline in accuracy.

Providing unequal weightage to stem

and suffix along-with minimum stem size:

Initially an equal weightage was provided

to stem and suffix in Eqn 3 which is
responsible for determining the optimal split

position of any word. Then Eqn 4 was

obtained from Eqn 3 by introducing a

parameter ‘α’ in order to provide unequal
weightage to stem and suffix and its effect was

observed on performance of the lightweight

stemmer.
We used Eqn 4 and varied α along-with

varying the minimum stem size. The results

are shown in Table 2.

f(i) = α* i * log(freq(stem)) + (1 - α) * (L-i) *

log(freq(suffix))

(Eqn 4)

Min Stem

Size α
Accuracy

(%) ICF MWc

1

0.3 90.0 0.51 2.04

0.5 90.7 0.53 2.11

0.7 87.0 0.51 2.04

2

0.3 89.2 0.51 2.08

0.5 89.9 0.53 2.11

0.7 86.6 0.51 2.04

3

0.3 84.7 0.51 2.05

0.5 84.8 0.52 2.00

0.7 82.9 0.50 2.03

4

0.3 74.0 0.49 1.96

0.5 74.2 0.49 1.90

0.7 73.2 0.48 1.95

5

0.3 63.2 0.46 1.88

0.5 63.5 0.47 1.92

0.7 62.5 0.47 1.90

Table 2. Effect of α along with min. stem size
on performance of the inflectional stemmer

It can be observed that the maximum

accuracy of 90.7% is obtained by neglecting

the restriction on the minimum stem size and
providing equal weightage to stem and suffix

by keeping α = 0.5. Even for this combination

of heuristics, the average index compression of
52% is obtained.

Introducing restriction on the number

of stems and suffixes to qualify as a

signature:

A restriction was placed on the minimum

number of stems and the minimum number of

suffixes needed in a signature. These numbers
are called stem filter threshold and suffix filter

threshold respectively.

We varied all the parameters, viz.,
minimum stem size, α, stem filter threshold

and suffix filter threshold. There were two

important observations that will be stated

below. The results of this experiment are
shown in Table 3 below.

The results show how this combination of

heuristics improves the quality of stems and
suffixes, as well it brings big boost in the

Index Compression Factor.

6

Min

Stem

Size

α Thres-

hold

Accu-

racy

(%)

ICF MWc

1

0.3

0 90.0 0.51 2.0

1 85.8 0.88 9.0

2 87.1 0.95 20.3

1

0.5

0 90.7 0.52 2.1

1 88.3 0.89 9.9

2 87.7 0.95 22.4

1

0.7

0 87.0 0.51 2.0

1 84.9 0.95 22.2

2 84.8 0.95 22.2

2

0.3

0 89.2 0.51 2.1

1 85.1 0.88 9.0

2 86.5 0.95 20.3

2

0.5

0 89.9 0.52 2.0

1 87.6 0.89 9.9

2 86.7 0.95 22.4

2

0.7

0 86.6 0.51 2.0

1 87.6 0.94 19.2

2 84.1 0.95 22.2

Table 3. Effect of varying all three parameters,
viz., min. stem size, α and filter threshold on

performance of the inflectional stemmer

It can be observed that the maximum

accuracy of 90.7% is obtained by neglecting
the restriction on the minimum stem size,

providing equal weightage to stem and suffix

by keeping α = 0.5 and ignoring the restriction
on the minimum number of stems and suffixes

to form a signature.

Another important observation in this

experiment was that by restricting the filter
threshold to two, we obtain the highest index

compression of 95% with a slight decrease in

accuracy. This is an excellent result for
applications like corpus compression.

6.2 Performance of the derivational

stemmer

The performance of the derivational
stemmer was evaluated by direct comparison

of the stems generated by the system with the

ideal stems present in the gold standard data

which gave an accuracy of 70.7%.

7. Conclusions and Future Work

We developed two systems for Gujarati

language, one performing inflectional

stemming and the other performing

derivational stemming.
The inflectional stemmer has an average

accuracy of about 90.7% which is considerable

as far as IR is concerned. Boost in accuracy
due to POS based stemming was 9.6% and due

to inclusion of the language characteristics it

was further boosted by 12.7%. Heuristic with

filter threshold set to 2 gives highest index
compression of 95% which is extremely good

for applications like compression of data.

The derivational stemmer has an average
accuracy of 70.7% which can act as a good

baseline and can be useful in tasks such as

dictionary search or data compression.
The systems possess potential to be used

as pre-processing modules for NLP problems

other than IR, such as Word Sense

Disambiguation, similarity measure, etc.
The limitations of inflectional stemmer

can be easily overcome if modules like Named

Entity Recognizer are integrated with the
system.

In order to elevate the accuracy of the

derivational stemmer, the list of substitution,
orthographic or suffix-stripping rules can be

improved further if needed.

References

Amaresh K. Pandey and Tanveer J. Siddiqui. 2008.

An unsupervised Hindi stemmer with heuristic

improvements. Proceedings of the Second

Workshop on Analytics for Noisy

Unstructured Text Data, 303:99-105.

Ananthakrishnan Ramanathan and Durgesh D. Rao.

2003. A Lightweight Stemmer for Hindi.

Workshop on Computational Linguistics for
South-Asian Languages, EACL.

Christopher J. Fox and William B. Frakes. 2003.

Strength and Similarity of Affix Removal

Stemming Algorithms. Special Interest Group
on Information Retrieval Forum, 37(1):26-30.

Daniel Jurafsky and James H. Martin. 2009.

Speech and Language Processing: An
Introduction to Natural Language

Processing, Speech Recognition, and

Computational Linguistics. 2nd edition.

Prentice-Hall, Englewood Cliffs, NJ.

7

Donna Harman. 1991. How effective is suffixing?

Journal of the American Society for

Information Science, 42(1):7-15.

Ilia Smirnov. 2008. Overview of Stemming

Algorithms. Mechanical Translation.

John A. Goldsmith. 2001. Unsupervised learning of

the morphology of a natural language.

Computational Linguistics, 27(2):153-198.

Julie B. Lovins. 1968. Development of a stemming

algorithm. Mechanical Translation and

Computational Linguistics, 11:22-31.

Martin F. Porter. 1980. An algorithm for suffix

stripping. Program, 14(3):130-137.

Prasenjit Majumder, Mandar Mitra, Swapan K.

Parui, Gobinda Kole, Pabitra Mitra, and

Kalyankumar Datta. 2007. YASS: Yet another

suffix stripper. Association for Computing

Machinery Transactions on Information

Systems, 25(4):18-38.

Pratikkumar Patel, Kashyap Popat and Pushpak

Bhattacharyya. 2010. Hybrid Stemmer for

Gujarati. Proceedings of the 1
st
 Workshop on

South and Southeast Asian Natural
Languages Processing (WSSANLP), the 23

rd

International Conference on Computational

Linguistics (COLING), Beijing, 51-55.

William St. Clair Tisdall. 1892. A simplified

grammar of the Gujarati language: together

with A short reading book and vocabulary.

D. B. Taraporevala Sons & Company, Bombay

8

