Parsing of Partially Bracketed Structures for Parse Selegbn

Mark-Jan Nederhof Ricardo Sanchez-%ez
School of Computer Science Instituto Tecnolbgico de Informatica
University of St Andrews Universidad Politeécnica de Valencia
St Andrews, United Kingdom Valencia, Spain
Abstract phrase is asserted by the annotator, it is implic-

itly assumed that all phrases in the latest proposed
tence that is partially annotated with infor- parse that are wholly contained in the preceding
mation about where phrases start and end prefix are correct. This means that these struc-
The application domain is interactive parse tures in a left-hand portion of the parse tree can

We consider the problem of parsing a sen-

selection with probabilistic grammars. It no longer change in future iterations.

is explained that the main obstacle is spu- Another degree of freedom in the design of in-
rious ambiguity. The proposed solution is teractive parse selection is the exact information
first described in terms of appropriately con- that the human annotator provides about occur-

strained synchronous grammars, and thenin o5 of phrases. The most obvious choice would
terms of a computational model for parsing.

Experiments show the feasibility for a prac- be a triple cgnsisting of the beginning, the end, ar_ld
tical grammar. the syntactic category (‘noun phrase’, ‘preposi-
tional phrase’, etc.). If desired, the category could
be omitted or underspecified. This approach has
been implemented for example by Sanchez-Saez

In interactive parse selection, the objective is toet al- (2009; 2010).
obtain correct parses of sentences in a corpus, by The main motivation for interactive parse selec-
means of an iterative process, alternately drawtion is that it saves the human annotator manual
ing upon a language model and human linguistidabour, by automatic prediction of at least parts of
judgement. In a first step, the most likely parse igParses that very often are correct. With the crite-
computed on the basis of the model. This parséion of minimizing human effort, it not clear how-
is displayed to the human annotator, who looksever that the optimal design of interactive parse
for possible errors and enters corrections. EacRelection is of the kind outlined above, with a
correction takes the form of an occurrence of estrictly left-to-right strategy, and with specifica-
phrase that the parse should contain. The modéion of both the beginning and the end for each
is then consulted anew, to recompute the mostorrected phrase. One objection against the left-
likely parse, but now under the constraint that allto-right strategy is that errors may be temporarily
occurrences of phrases entered previously by theverlooked. Typical implementations may allow
linguist must be included. This process is re-backtracking to deal with this situation, but back-
peated until no more errors remain. Applicationstracking entails that work needs to be redone.
can be found in creation of treebanks (Marcus et One objection against having to specify the be-
al., 1993) and computer-assisted translation (Barginning as well as the end of a corrected phrase
rachina et al., 2009). is firstly that this requires more mouse clicks or
Apart from the exact language model used inkeyboard strokes than if, say, only the correct be-
the process, there are various ways to implemerginning of a phrase were specified. Furthermore,
interactive parse selection. One obvious approacfor long and complex sentences, it may be tedious
is to demand that errors are corrected strictly fronto determine both phrase boundaries.
left to right. That is, where the occurrence of a For these reasons we explore a less rigid alter-

1 Introduction

231

Proceedings of the 12th International Conference on Parsing Technologies, pages 231-240,
October 5-7, 2011, Dublin City University. (© 2011 Association for Computational Linguistics

native, namely to allow the human annotator totion 4. A sketch of a proof that spurious ambiguity
specify only the beginning of a phrase, or only theis avoided as claimed is the subject of Section 5.
end of a phrase. This is formalized in the remain-The actual parsing process, which is based on Ear-
der of this paper as an unmatched open bracket, dey’s algorithm, is presented in Section 6.
an unmatched close bracket. Such a bracket may Section 7 discusses an implementation. The
be labelled with a category or not. Parse selecpracticality of our approach is demonstrated by
tion is not constrained to be unidirectional, and aiexperiments measuring running time. In addition,
each iteration, brackets can be placed at arbitrargome possible optimizations are proposed. We end
positions in the input sentence, and thereupon theur paper with conclusions, in Section 8.
most likely parse is (re-)computed that is consis- The issue of avoiding spurious ambiguity was
tent with the provided brackets so far. considered before by (Wieling et al., 2005). Our
In our notation, the unmatched brackets ardreatment differs in that the solution is at the same

written as square brackets. We refer to them afime more precise, in terms of synchronous CFGs
‘unmatched’ because the user need not Specifg,ather than grammar transformations, and more
both the beginning and end of a phrase. HoweveBUccinct, using simpler constraints on allowable
usersmay specify both the beginning of a phrase Structures. Also novel is our parsing algorithm,

and the end of the same phrase, by a square opdch is versed towards practical application. Ear-

Next to unmatched brackets, we also aIIowthat b)_/ Pereira and Schabes (1992), has involved
matching brackets only.

matched brackets in the input, which in our no-

tation are written as round brackets. These musy |nformal lllustration

always occur in pairs of one open bracket and one

close bracket, specified together by the user. UnLet us consider the following example context-

like square brackets, pairs of round brackets mudtee grammar:

be properly nested. As square bra_tckets, round NP — Adj NP|N

brackets may be labelled by categories or may be Adj — big|angry

unlabelled. Sentences enriched with matched and N - do

unmatched brackets will be call@artially brack- g

etedstrings. (The vertical bar separates alternative right-hand
As we will informally illustrate in the follow- sides for the same left-hand side nonterminal sym-

ing section, parsing of partially bracketed stringsbol.)

by context-free grammars causes particular prob- The language of all fully bracketed strings is

lems. The main issue is spurious ambiguity, bygenerated by the following grammar:

which one input string may be parsed in different

ways all corrgspondir?g to>(/)ne apnd the same parse NP, = (w A,d] NP e | (ne N Ine

tree by the input grammar. Where the language Adj = (aq big Jagi | (agj angry Jag

model is used to compute the most likely parse, N = (vdog)y

performance may suffer from having one compu- \we can make such bracketed strings less precise

tation computed in more than one way. A morepy:

serious consequence is that computation of inside

probabilities is hindered by subparses being rep- 1. omitting labels of categories at brackets,

resented more than once. Alsebest parsing al- and/or

gorithms no longer work correctly without further 2. replacing a matching pair of round brackets

[EANSMmENLS: by a pair of square brackets, of which zero,
The main contribution of this article is to offer one or both may then be omitted.

a solution to avoiding all spurious ambiguity. Our

theoretical framework is that of order-preservingFor example, we can ‘fuzzify’ a fully bracketed

synchronous context-free grammars, to be sumstring:

marized in Section 3. With this machinery, map- .

pings between unbracketed, bracketed and par- (e (agj big Jagj (np (agj ANSTY Jag

tially bracketed strings will be presented in Sec- (np (n dog) Ine Ine e @)

232

by a partially bracketed string: 3 Preliminaries

big angry (dog) Inp (2) Inorder to formalize the main problem and its so-
o o o lution, we turn to a restricted type of synchronous
Note there is little point in omitting the label of . qiext-free grammar (SCFG), in notation similar
one round bracket from a pair of matching brack-q that in Satta and Peserico (2005). A SCEG
ets without also omitting it from the other bracket yqfines a relation between a source language gen-
in the pair. This is because the one omitted label 4iaq by a context-free gramm@r and a target
could be reconstructed from the remaining Iabe'language generated by a context-free gramaar

by casual inspection of the _string. ~In the general case, each ‘synchronous’ rulgin
The language of all partially bracketed strings 55 the form A — a, B — f3), whereA — ais a

can thus be naively specified by a context-freeru|e inG, andB — Jis a rule inG,. The number

grammar where next to a rule of the form: of nonterminal symbols ia must equal that ir.
Each such synchronous ruld — o, B — ()

is also associated with a bijection from the nonter-

we also have a rule of the form: minal occurrences i to the nonterminal occur-

rences in3. By this bijection, one may express a

A—(aa)a

A= (o) reordering of constituents between source and tar-
and nine rules of the form: get structures. In this paper, we will consider a
A 0 ") restricted type of SCFG without such reordering,
-y oy or put differently, the bijection implicitly maps the

i-th nonterminal occurrence imto thei-th nonter-
minal occurrence . We will call this restriction
OP-SCFG ¢rder-preservingSCFG).

wherey) is one off , [, or the empty string, and
y(") is one of]a,], Ore.

However, with the resulting grammar, the par-)
tially bracketed string in (2) can be parsed in five L€tY be an OP-SCFG as above, with the
different ways, four of which are illustrated in Fig- Start symbol oG, and5; tgeBstart symbol of,.
ure 1. The trees in (a) and (b) differ in the place-We first define relationgg(#) petween pairs of
ment of]p to the right of a right-most path in the !anguages, for a nonterminal i, and B a non-
parse tree with more than one node labelN®| terminal inG,, to be the smallest relations such
in fact, there are three different nodes to whigh ~ that:
can be attached. The trees in (c) and (d) differ from
those in (a) and (b) in the placement of the pair of
unlabelled round brackets on either side of a path (A = woAywy - W1 AW,
in the parse tree involving only unit rules (that is, B — vgB1v1 -+ U—1 Bvm) (3)
rules with right-hand sides of length one).

Because the original grammar was unambigu- 2. existence foil < i < m of stringsz; andy;
ous, the existence of five different parse trees gych that; Tg(AivBi) "
for the partially bracketed string should be seen
as spurious ambiguity, given the task of findingtogether imply that:
parses of big angry dog’ that are consistent with (A.B)
the collection of brackets inserted into that string. Wo%1W1 " - TmwWm g oy1vL - YmUm
As We.W'” explain in more detail "'."te.r |n_th|s grtl— The transductiorfg generated by is now defined
cle, this problem of spurious ambiguity is avoided (S1,52)
by demanding that brackets occur as high as po§9 be7g :
sible. In the example, this means that the round F?r B)each 4-tuple _(x’A’B’y) such that
brackets are placed aroundl™ as in (c) or (d) % 75" y we can build at least one derivation
rather than arounddobg’ as in (a) or (b). Fur- tree that shows in reverse hong(A’B) y was
ther, Jnp is attached to the highest possible nodeobtained. More precisely, such derivation trees
labelled NP as in (d) rather than (c). Thus, our can be inductively defined as follows. Let there be
parser would return only the tree in (d). It is nota synchronous rule as in (3), and let eaghwith
difficult to see there is always a unique way ofl < i < m, be a derivation tree associated with
placing brackets as high as possible. a 4-tuple(x;, A;, B;, y;) such that; TéA“Bi) Ui

1. existence of a synchronous rule

233

NP NP NP NP
\

Adj NP Adj NP Inp Adj NP Adj NP Inp
| | |
big/ \ big/ blg/ \ big/
Adj NP e Adj NP ' Ine Ad NP
\ \ \
angry N angry N angry (/N\) angry (/N\)
PR AR \ \
(dog) (dog) dog dog
(a) (b) (©) (d)

Figure 1: Four parses of the same patrtially bracketed string

Then a derivation tree can be constructed forthe 4- {]a,],¢}.
tuple (z, A, B,y), wherex = woxiwi « -+ Ty Wy,
andy = voy1v1 - - - YmUm, DY a root node labelled
by the above synchronous rule, and its (ordered
children are the roots af.

Similar to the notion of ambiguity in CFGs,
we say that a paifz, y) is ambiguous for a fixed
SCFG if more than one derivation tree can be as
sociated with the 4-tuplér, S1, S2,y). We say the
SCFG is ambiguous if there is at least one ambigu-
ous pair(z,y). For an example of these concepts,.
see the following section.

In this paper, we will assume there are no ep-
silon rules, i.e., rules with empty right-hand sides.

The problem with spurious ambiguity that was the

ubject of discussion in Section 2 can now be ex-
Zressed in formal terms, as ambiguity of SCFG
Graive- Concretely, one and the same fully brack-
eted string can be mapped to one and the same par-
taIIy bracketed string in different ways. This is
particularly relevant if the transduction is used in
reverse, mapping a given partially bracketed string
to fully bracketed strings, or in other words, build-
ing parse trees according to the input grammar.
As explained in the introduction, the problems this
causes include increased running time, and failure
‘of probabilistic models and-best algorithms.

4 Bracketed and Partially Bracketed To illustrate this, let us revisit the example from
Strings Figure 1, which corresponds to the following in-
The parsing problem for a CFG can be de putioutput par
scribed in terms of a transduction from unbrack- (NP (adi P18 Jagi (vp (agj angry Jag

eted strings to fully bracketed strings, by means of (np (N dog)N Inp IneIne -
the OP-SCF@J},ucke: that has one synchronous big angry (dog) Inp) (4)
rule:

With G,.we, there are five different derivation
trees through which this pair can be obtained. For
for each ruleA — a/in G. The stringsy such that example, the tree in Figure 1 (d), which we regard
v 7g,,.... ¥ €ach describe one parsexddiccording as the preferred one, corresponds to application of
to the input CFGJ. the following rules:

A naive transduption to fuzzify fully bracketed (NP — (np AdjNP)yp, NP — AdjNP]wp),
strings can be defined in terms of a SCEG,ve ; . ;
of which the synchronous rules are, for each rule = (ag big)agi, Adj — big) ,

NP—> (e Adj NP)yp , NP — AdjNP) |

(A
A — « in the input grammar: (
(Adj — (Adj angry)Ad] , Adj — angry),
(
(

(A= a,A—(aa)a)

o (A= (aa)aA—(aa)a), NP — (yoN)np, NP— (N)),
e (A= (aa)nA—(a)), N— (ydog)n, N— dog)

o (A— (na)a A — yW ay), forall nine As solution we propose a refined SCEG,..,,.
combinations ofy® € {[a,[,c} andy(™ € It specifies the same transduction Gg,,., but

234

now without ambiguity. Intuitively, we ensure that 5 Correctness
any brackets in a partially bracketed string are at-:

. . T
tached as high as possible. Because there can beis%ﬁ:

most one way of doing this that corresponds to . i . . .
Y g P fuzzy 1S UNAMbiguous. The first proof is tedious,

fully bracketed string, the implication is that there L I L . .
L but the intuition is simple: if we are given a deriva-
can be at most one derivation tree for each combi-

nation of a source string and a target string. tion tree associated with 4-tuple, Sf S,y) where
x 1g, ... y, for a fully bracketed string: and par-

The SCFGGy,.., conceptually keeps records tially bracketed stringy, then we can systemat-
of where brackets are attached by replacing nonically change this derivation tree, to preserve
terminalsA in all possible ways by nonterminals @ndy but move brackets to be attached as high as
A(s®, 5(), where the values®) ands(") are ei- Possible in the parse tree gf With this attach-
ther ¢ or a bracket. If such a value is a bracket,ment of brackets, we can straightforwardly map
that means that this bracket was attached to thiis derivation tree into a derivation tree associ-
nearest descendant to which it could be attachedted with(z, ST, ST, y) wherex g, y, ensuring
in the left-most (fors®) or right-most (fors(”)) thatthe constraint in (8) is satisfied. Conversely, if
path downwards in the parse tree. The definition of Zg,..., ¥ then clearlyz 7g, ... y.
Guz-y disallow situations where this bracket could ~ The unambiguity ofjy,.., can be argued as fol-
be moved to the current node, because that woulws. First, if Gr,.., were ambiguous, then there
imply that the bracket is not attached as high agvould be a pai(A, B) of nonterminals and a pair

possible. Note that there is a finite number of(z,y) of strings, with the length ofry minimal
choices fors®) ands("), so that the rules are still @hd AB minimal according to some fixed lexico-

within context-free power. graphical ordering, such that two or more differ-
ent derivation trees can be associated with 4-tuple
The synchronous rules .., are specified in ;. A, B, y) wherez Tg(AvB) y. Because of the
Table 1. As expressed by (5) and (6), the roundninimality of y and A B. the two derivation trees
brackets from the source language can be replaceflust differ in the synchronous rule at the root,
with unlabelled or square brackets. If in the targetegch of which must be of the form in (5). The
language there is an open round bracket, either lagemainder of the proof consists of a large number
belled or unlabelled, then the close bracket muspf case distinctions, and in each the task is to show

0 properties oGy,,., are of interest. The first
hat7g,,.., equalsig,,,,., and the second is that

be of the same form, and vice versa. a contradiction, by violation of (8). For example,
As is clear from (7), only nonterminals are ex_supposg st.arts with[and Ege two synchronous
. : rules differ in that one hag'") = [and the sec-
tended with two arguments. Terminals Ihare) .
ond hasy'” = e. Then in the second case, the

copied unchanged from source language to target
language. The first line of (8) says that if the cur-
rent rule is a unit rule, and if a pair of round brack-
ets were attached to a node further down, possiblg Parsing

along more occurrences of unit rules, then there _ o _ .
must be a reason why these brackets cannot be df this section we simplify the discussion by look-

tached to the current node, and the only reason cdR9 Only at the context-free rules in the right parts
be that other bracketg!) # ¢ or y*) # ¢ are al- of the synchronous rules defined in Table 1. These
ready attached to the current node. The secont!€s generate the right projection Gj,,..,. We -
and third lines similarly exclude situations whereWill discuss a recognition algorithm on the basis

a square bracket was placed further down, while ipf these rules, with the tacit assumption that this
could be attached to the current node. can be extended to a parsing algorithm, to obtain

fully bracketed strings as output, for a given par-
The information about brackets attached to thdially bracketed strings as input.
current node, or brackets from further down if no Naively, one could use any parsing algorithm
brackets are attached to the current node, is passéatbtantiated to the set of rules in the right parts
on bottom-up, as expressed by (9). For technicabf (5). For example, one could use the classical
reasons, we need to augment the grammar with Barley algorithm (Earley, 1970; Stolcke, 1995).
new start symbol, as shown in (10). This manipulates items of the forffd — « e

must be generated by a rule further down in the
derivation tree, which would violate (8).

235

For given CFGG, with set/N of nonterminals, set of terminals, and start symbél € N, the SCFG
Gruzzy has one synchronous rule:

(A= X1 X AYs67) =y Vi Yy (5)
for each ruled — X, --- X, in G, for each choice of the pair:
",y ") € {((a)a) ()} U{la[€} x {Iaslse} (6)
and for each choice of pairs:
(s.5) € {(e)e) | BENYU{(()}U{ls | BeNYU{Le}) x ({le| B € N}U{l.e})

for eachi (1 <7 < m) such thatX; € N, and(sgl), szm) = (e,) for eachi such thatX; € ¥, and:

z’z

0] (T) v
Y, — Xi(s;) !f XieN)
X; if X, eX

under the following constraints:

—1A(S§ ,sm)e{((A,)A) (N} = @O #e vyl £e) A
(s =[av s —[) Dten 8
(s =1aVvsh) =1) — Més

and:
((y(ll)7y(”) if (y,y) € {((a)a), ()}
(s, st) if m :1Ay<> =y =c A, s5)) € {((s.)8) | B € N\ {A}}
(s, 5" otherwise, where:
o o yO i yO e {[a[}
(so)r80") = sO =3 W ity = nsl) e {[g| Be N\ {4A}})
€ otherwise

(
sl ity =ensl) e{lg| BeN\{A}}
€ otherwise

y™ if y™ e {]a1}
)

Gruzzy further has one synchronous rule:
(st — 5, st — 5O sMy) (10)
for each choice of the pair:

(sV,57)) € {((8,)8) | BE N}U{((N}U({ls| B € N}U{l,e}) x ({Is| B € N}U{],e})
whereS' is a new symbol.

Table 1: The SCF@..., constructed out of CFG.

236

3),i, j], which means that of arulé — agfrom [(A(s{,s{") — o e @), [s\", 5,4, 4], with
the grammar, the first part has been processed o/’ = y(); a; y("), are anything other than then
and was found to generate the substiifng, ---a; they are uniquely determined byandj. It is for
of a fixed input stringzy - - - ay. this reason that the number of possible labelled
The problem is that there is a very large num-and unlabelled brackets does not contribute an ex-
ber of rules as in the right parts of (5). This num-tra factor to the time complexity.
ber is in fact exponential in the length of the The recognition algorithm can also be straight-
largest rule from the original grammegr Casual forwardly extended to compute the most likely
inspection of the constraints on the rules in Table Jparse or the inside probability, similarly to how
reveals however that only the Valuesgé?, 3(()T), this is done by Jelinek et al. (1992). Note that un-
y®, Sgl), sﬁ,ﬁ), y(") are ever used in the current rule. ampl'gU|ty is gssentlal in the latter case. The prob-
0 . abilities manipulated by the parser would then be
The values of;" for 1 < ¢« < m and the values of . .
(T) o _ based on the probabilities of rules from the orig-
for 1 < i < m can be safely ignored. inal grammar, similarly to how this is normally
We therefore let the parser manipulate items ofjone in probabilistic parsing algorithms based
the form[(A(s,) — o’ 03, s\, 51,4, 4] on Earley’s algorithm (Stolcke, 1995; Nederhof,
whered/ 3’ = y() a;y™ andA — aisarule in - 2003).
G. Each such item can be seen as an abbreviation
of an item for the Earley algorithm for the right 7 Experiments
parts in (5), leaving out fields that are not useful.
The values ok, s, y©, s s ™) are ini-
tially the empty string, and are gradually filled in
as these values become known.
The recognition algorithm is presented as de-
duction system in Table 2. Step (11) is the in
tialization step of Earley’s algorithm and Step (12).

We have implemented the construction from Ta-
ble 1 and the parsing algorithm from Table 2. Our
aim was to assess the feasibility in practical terms.
The latter algorithm was based on an implemen-
tatlon of the standard Earley algorithm, which we
"used as a base line. The implementation language

is C++ and the experiments were performed on a
straightforwardly corresponds to the predlctorIa tob computer with a 2.66 GHz Intel Core 2 Duo
step. Steps (14), (15) and (17) correspond to the ptop P

processor.
scanner step of Earley’s algorithm. In the side

condition of (17), the constraints on the allowable First, a context-free grammar was extracted
. (1) ")) from sections 2-21 of the Penn Treebank, with No-
combinations Ofy , Sm’,» Y\ are checked,

0)) Transform and NoEmpties as in (Klein and Man-
ands;’ ands,’ are determlned on the basis of thehing 2001), and unary rules were collapsed. This
other values. grammar has 84613 rules, 372 nonterminals and
The steps (13) and (16) have no direct equiv44389 terminals (words). With this grammar, we
alent in Earley’s original algorithm. They are parsed the (unbracketed) sentences from section
motivated by the intention to give uniform treat- 23 that had length 10 or less. Of these, 92 sen-
ment to context-free rules with and without brack-tences were outside the language generated by the
ets. Step (18) straightforwardly corresponds to thggrammar and were discarded. Parsing of the re-
completer step of Earley’s algorithm, given the ab-maining 178 sentences using the standard Earley
breviated form of our items, as explained abovea|gorithm took 8m27s in total.
Acceptance is expressed by step (19). Next, we tried to construct a context-free gram-
Deduction systems like this have a com-mar that generates partially bracketed sentences
mon algorithmic interpretation; see for examplewithout spurious ambiguity, as the right-projection
McAllester (2002). The time complexity of our of the construction in Table 1. Predictably, this
algorithm isO(n? - |G|?), where|G]| is the size of was found to be infeasible for any but very small
the input grammar. This can be brought down assubsets of our input grammar, because of the expo-
usual toO(n? - |G|) using techniques from Gra- nential behaviour in the length of right-hand sides.
ham et al. (1980), which bring the complexity in Lastly, the extended Earley algorithm from Ta-
line with the best known practical parsing algo-ple 2 was applied on the same 178 sentences, but
rithms for context-free grammars. Note that if thenow in partially bracketed form. We started with

values ofs’, s, 5@, sV %) @) in anitem the fully bracketed sentences, as they appear in

237

Initiali oy
nietee [(SG.2) =) 2.6, 0,0] {(5—a)eg

Predict [[<A(575) _>y(Oé.B,B> [51 78%]7@]1] {(

[[<B(€’€> _>.7’77>>[575],2,’L]] B_>’y> =Y

No open [(A(g,e) — @;03), [e,€],4,1]
[(A(e,e) — ;00;), [e, €], i, 1]

Open [[<A(€7 E) — 0y >7 [57 E]a /i7 Z]] {) — iy € {(A, (’ [A, [}
[(A(e,e) — yD;0a3), [, €], i,i + 1]
Scan [[(A(€>€> _>y(l);a.a5;>v[Sgl)vsg;)]aivj]] {CL:CL‘+1
[(A(e,e) — yDsaae 5;), s, s, 0,5 + 1] ’
No close [(Ale,e) — yD; o), [s\, s5)), 4, 4 the constraint in (8) withy") = ¢
(A 587) =y), [, 550)0.5] (55, ,”) defined by (9)

") — 4
0. o). [sV M1 4 i Yy =aji1 € Ha) a1}
Close (ngEf)’ e) ~yiae) [sy El) (]T’)Z’j]] the constraint in (8)
[(Alsy’s507) = ¥ asy@e), [s17,sm]i 5 + 11 | (40, 507 defined by (9)
[(Ale,) =y 0 BS;), [51 ,Sm] i, 5] 40— t(()l) ifa=¢
Complete [(B(tP,) = 20;y;20e), [tﬁ”, AR I s\ otherwise
[(Ale.e) — yD;aB o 6). [ul) ul)ik] | o) _ [) ifp=c
" sﬁ,? otherwise
Accept [S(sP, 557) = g ys ey, [0, 550],0,m]

accept

Table 2: Recognition of partially bracketed strings.

238

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

D time yses at an open bracket of which all but one is dis-

0.0 25m33s carded upon finding the matching close bracket.
0.2 68m08s The main objective was to investigate to which
0.4 51mO7s extent parsing of partially bracketed structures is
0.6 34m36s possible, under the constraint that no spurious am-
0.8 21m02s biguity should arise. Our experiments show that
1.0 11m48s the running time is of the same order of magnitude

Table 3: CPU time for recognition of sentences ofas parsing of unbracketed strings using the stan-

length< 10 from section 23 of the Penn Treebank, for dard Earley algorithm. Furthgr re_flnements can be
a varying probability. expected to reduce the running time.

For example, we found a straightforward op-

. timization that is realized by letting parts of the
the treebank, and then randomly omitted a Varyunack from condition (8) happen as soon as pos-

ing percentage of brackets and category labels. sible, rather than delaying them until completion
This process of ‘fuzzifying’ a fully bracketed of an item in (16) or (17). In concrete terms, the
sentence proceeds in stages, with one potentigompatibility of an open bracket!) and the value
st_ep turning a bracket pafi)a in'to [ada 1T o sgl) coming from the first member in the right-
this step does not happen, there is another potef g side can be checked as soon as that first mem-
tial step turning(a)a into (). For each labelled o s known. This and other optimizations lead to
square bracket individually, a step may remove the, e inyolved formulation however, and for pre-

label, which is then optionally followed by a step gontational reasons we abstain from further discus-
removing the bracket altogether. The process is;

Sion.
parameterized with a valyg which expresses the

probability that a step of fuzzifying does not hap- Further no_te that the general id(_eas _that led to
pen. Hencep = 0 means that all annotation is Table 2 starting from the construction in Table 1

removed ang — 1 means that all brackets and €@n @s easily be used to derive other parsing al-
labels are kept. gorithms for partially bracketed strings, using any

The results are given in Table 3. The first row ofOther parsing strategy such as the bottom-up Ear-

the table corresponds to the sentences in unannl)qy algorithm (Sikkel, 1997) and left-cormner pars-
tated form. The running time is higher than the'n9 (Rosenkrantz and Stearns, 1970).

baseline of the standard Earley algorithm. This
was to be expected, as there are some extra stepsdn
Table 2, introduced for handling of brackets, an
these steps are performed even if the input con-
tains no brackets at all. Nonetheless, the running his paper has introduced a sound and elegant the-
time is of the same order of magnitude. oretical framework for processing partially brack-

In the next few rows of the table we see that thefted strings. That is, an input string may contain
running time increases further. Again, this is to be2ny combination of matched or unmatched and la-
expected, as the presence of brackets induces miielled or unlabelled brackets.

tiple instances of parsing items where there would Qur theory, which uses synchronous CFGs, led
be only one in the unbracketed case. When closgs to a procedure based on Earley’s algorithm. Its
to 100 % of the brackets are maintained, the runeffectiveness was shown in experiments using a
ning time again decreases. This is because thgractical grammar. Despite having implemented
brackets reduce ambiguity. few optimizations, we found that the time mea-

One may object that the parsing of fully brack- surements show promising results, and consider-
eted sentences should take close to 0 seconds, akle speed-ups may be expected by further refine-
those sentences are already parsed. However, vmeent of the implementation. Use for the purpose
have not introduced any further optimizations toof interactive parse selection therefore seems fea-
the Earley algorithm apart from those presented irsible. Further work will be needed to determine to
Table 2, and the predictive nature of the algorithmwhich extent linguists benefit from being able to
leads to many steps creating different partial analspecify partially bracketed structures.

Conclusions

239

Acknowledgements F. Pereira and Y. Schabes. 1992. Inside-
outside reestimation from partially bracketed
corpora. In30th Annual Meeting of the As-
sociation for Computational Linguistics, Pro-
ceedings of the Conferencgages 128-135,
Newark, Delaware, USA, June—July.

This work is partially supported by the Span-
ish MICINN under the MIPRCV Consolider
Ingenio 2010 (CSD2007-00018), MITTRAL
(TIN2009-14633-C03-01), and Prometeo
(PROMETEO/2009/014) research projects,

and the FPU fellowship AP2006-01363. D.J. Rosenkrantz and R.E. Stearns. 1970. Prop-
erties of deterministic top-down grammais-

formation and Contrql17:226—256.
References

S. Barrachina, O. Bender, F. Casacubertal,?' Sénchez-Sée;, JA. Sénghez, aqd J.M. Benedi.
2009. Interactive predictive parsing. Rro-

J. Civera, E. Cubel, S. Khadivi, A. Lagarda,] .
H. Ney, J. Tomas, E. Vidal, and J.-M. Vi- ceedings of the 11th International Conference

on Parsing Technologiepages 222-225, Paris,

lar. 2009. Statistical approaches to computer-
PP P France, October.

assisted translatiorComputational Linguistics
35(1):3-28. R. Sanchez-Saez, J.A. Sanchez, and J.M. Benedi.

J. Earley. 1970. An efficient context-free pars- 2010. Confidence measures for error dis-
ing algorithm. Communications of the AGM Cfimination in an interactive predictive parsing
13(2):94-102, February. framework. InThe 23rd International Confer-

ence on Computational Linguistics, Posters Vol-
S.L. Graham, M.A. Harrison, and W.L. Ruzzo. ume pages 1220-1228, Beijing, China, August.
1980. An improved context-free recognizer.

ACM Transactions on Programming Languages®- Satta and E. Peserico. 2005. Some com-
and System2:415-462. putational complexity results for synchronous

_ context-free grammars. Ihluman Language
F. Jelinek, J.D. Lafferty, and R.L. Mercer. 1992. Technology Conference and Conference on Em-

Basic methods of probabilistic context free pirical Methods in Natural Language Process-
grammars. InP. Laface and R. De Mori, editors, ing, pages 803-810.

Speech Recognition and Understanding — Re- _ _
cent Advances’ Trends and App“ca‘“ppages K. Sikkel. 1997. ParSIng Schemata Spl’lnger-
345-360. Springer-Verlag. Verlag.

D. Klein and C.D. Manning. 2001. Parsing with A. Stolcke. 1995. An efficient probabilistic
treebank grammars: Empirical bounds, theo- context-free parsing algorithm that computes
retical models, and the structure of the Penn prefix probabilities.Computational Linguistics
treebank. In39th Annual Meeting and 10th 21(2):167-201.

Cor?fe'rence of the European C.hapt.er. of the ASM. Wieling, M.-J. Nederhof, and G. Van Noord.
sociation for Computational Linguistics, Pro-

ceedings of the Conferenc@ages 338-345, 2005. P"?"S'“g _partl_all_y bracketed nput. In
Computational Linguistics in the Netherlands
Toulouse, France, July.

pages 1-16.
M.P. Marcus, B. Santoriniij, and M.A.
Marcinkiewicz. 1993. Building a large anno-
tated corpus of English: The Penn treebank.
Computational Linguistics19(2):313—-330.

D. McAllester. 2002. On the complexity anal-
ysis of static analyses.Journal of the ACM
49(4):512-537.

M.-J. Nederhof. 2003. Weighted deductive pars-
ing and Knuth’s algorithmComputational Lin-
guistics 29(1):135-143.

240

