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Abstract

We present a matrix encoding of context-
free grammars, motivated by hardware-level
efficiency considerations. We find effi-
ciency gains of 2.5–9× for exhaustive in-
ference and approximately 2× for pruned
inference, resulting in high-accuracy pars-
ing at over 20 sentences per second. Our
grammar encoding allows fine-grained par-
allelism during chart cell population; we
present a controlled study of several meth-
ods of parallel parsing, and find near-
optimal latency reductions as core-count in-
creases.

1 Introduction

Constituent parsers are important for a number of
information extraction subtasks — e.g., anaphora
and coreference resolution and semantic role la-
beling — and parsing time is often a bottleneck
for such applications (Bjrne et al., 2010; Banko,
1999). Most constituent parsers leverage the dy-
namic programming “chart” structure of the CYK
algorithm, even when performing approximate in-
ference. The inner loop of the CYK algorithm
computes an argmax for each constituent span
by intersecting the set of observed child cate-
gories spanning adjacent substrings with the set
of rule productions in the grammar. This ‘gram-
mar intersection’ operation is the most compu-
tationally intensive component of the algorithm.
Prior work has shown that the grammar encod-
ing can greatly affect parsing efficiency (c.f Klein
and Manning (2001), Moore (2004), Penn and
Munteanu (2003)); in this paper we present a ma-
trix encoding that can encode very large grammars
to maximize inference efficiency.

This matrix grammar encoding allows a refac-
toring of the CYK algorithm with two beneficial
properties: 1) the number of expensive grammar
intersection operations is reduced from O(n3) to

O(n2); and 2) since grammar intersection is re-
duced to a set of matrix operations, the resulting
algorithm is amenable to fine-grained paralleliza-
tion.

Most discussion of parallel parsing concentrates
on throughput, the aggregate number of sentences
parsed per second on a particular machine. In
this study, we are also interested in applications
for which response time is of interest (e.g., real-
time speech recognition and machine translation),
and thus consider latency, the time to parse a
single sentence, as a primary objective. Given
ideally efficient algorithms and hardware, there
would be no tradeoff between the two — that is,
we would be able to parallelize each sentence
across an arbitrary number of processor cores, re-
ducing latency and increasing throughput linearly
with core-count. Unfortunately, hardware con-
straints and Amdahl’s law ensure that we will
never achieve that ideal speedup; in practice, we
are likely to see some tradeoff. We will demon-
strate interesting patterns of the tradeoff between
throughput and latency with various paralleliza-
tion methods, allowing consumers to tailor parsing
strategies to particular application requirements.

Our grammar intersection method is amenable
to graphics processors (GPUs) and similar
massively-parallel architectures. In this work, we
perform our analysis on a multicore CPU system.
We demonstrate the utility of this approach using
a number of different grammars, including the la-
tent variable grammar used by the Berkeley parser
(Petrov et al., 2006). We show large speedups
compared to a traditional CYK implementation for
serial inference, parsing over 20 sentences per sec-
ond with the Berkeley grammar. Parallelizing this
algorithm reduces average latency to .026 seconds.

The remainder of this paper is organized as fol-
lows: we begin in Section 2 with background on
the CYK algorithm and various general and CYK-
specific parallelization considerations. In Sec-
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tion 3 we provide a detailed presentation of our
grammar encoding, data structures, and intersec-
tion method. In Section 4, we demonstrate their
effectiveness on a single core and present con-
trolled experiments comparing several paralleliza-
tion strategies.

2 Background

2.1 CYK

Algorithm 1 shows pseudocode of the widely used
CYK algorithm. Briefly, constituents spanning
longer substrings are built from shorter-span con-
stituents via a chart structure, as shown in Figure
1. Span-1 cells (the bottom row of the chart) are
initialized with all part-of-speech (POS) tags, and
with unary productions spanning a single word. At
higher span cells in the chart, such as the dark grey
cell in Figure 1, new constituents are built by com-
bining constituents spanning adjacent substrings,
guided by the productions in the grammar. With
a probabilistic context-free grammar (PCFG) the
maximum likelihood solution is found by storing,
in each cell in the chart, the highest probability
for each category in the non-terminal set V along
with a backpointer to where that solution came
from. Dynamic programming reduces this poten-
tially exponential search to O(n3) complexity.

2.2 Parallelism

Since smooth parallelization is one of the benefits
of the algorithm we will present in Section 3.2,
we begin with background on some of the barri-
ers to efficient parallelism. The overhead of par-
allelism takes many forms.1 The operating sys-
tem consumes processor cycles in thread schedul-
ing; coordination and synchronization of concur-
rent tasks can leave processors idle; and (more im-
portantly to memory-bound applications such as
parsing) context switching between threads often
requires flushing the CPU cache, resulting in more
memory contention and stalls.

Further, some multi-core architectures share L2
or L3 caches between CPU cores, and nearly all
share bandwidth to memory (the ‘front-side bus’,
or FSB). Parallel execution threads compete for
those resources, and may stall one another. Thus,
parallelism can introduce considerable hardware

1We are concerned primarily with parallelism within a
single machine. Cluster-level parallelism incurs network la-
tency, shared filesystem, and other forms of overhead that do
not concern us here.

overhead, even if OS- and task-level overhead are
minimal, but this impact can be minimized if con-
current threads share common data structures.

2.3 Low-Latency Parallel CYK
We observe that CYK parsing can be parallelized
in (at least) three distinct ways, each likely to have
different advantages and disadvantages vis-à-vis
the bottlenecks just discussed:

Sentence-level: The simplest way to parallelize
parsing is to parse sentences or documents inde-
pendently on separate cores. This approach is
well-understood, simple to implement, and quite
effective. Total throughput should scale roughly
linearly with the number of cores available, at least
until we reach the limits of memory bandwidth,
but latency is not improved — and may actually in-
crease.

Cell-level: In most forms of CYK iteration, we
populate each cell separately, leading to a straight-
forward form of cell-level parallelism. For exam-
ple, in bottom-up cell iteration order, we popu-
late one chart row fully before proceeding to the
next. The cells on each row are independent of
one another, so we can process all cells of a row in
parallel. Unfortunately, as we move higher in the
chart, there are fewer cells per row, and we must
leave CPU cores idle. The highest cells in the chart
are often the most densely populated (and require
the most processing), an inherent limitation of this
form of parallelism.2

Ninomiya et al. (1997) explored cell-level par-
allelization on a 256-processor machine. Their
method incurred an overhead of 6–10× vs. their
baseline serial algorithm (depending on sentence
length). That is, their parallel algorithm ran 6–
10 times slower on a single core than a simpler
serial implementation. So even if their approach
scaled ideally, many cores would be required to
match their serial baseline performance. In prac-
tice, their algorithm did not scale linearly and
required approximately 64 CPUs to equal their
baseline single-CPU performance, and the total
speedup observed on 256 CPUs was only 2–4×.

Grammar-level: Parallelization within a chart
cell is more difficult to implement, but may avoid
some of the weaknesses of the first two methods
described. If we can fully parallelize cell popu-
lation, we can make use of all available cores re-

2If optimizing for throughput, those idle threads could
be reassigned to subsequent sentences, but cache- and FSB-
contention is likely to further increase latency.
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Algorithm 1 CYK(w1 . . . wn, G = (V, T, S†, P, ρ)) PCFG G must be in CNF.
α represents the population of the current cell.

1: for t = 1 to n do . span = 1 (Words/POS tags)
2: for j = 1 to |V | do
3: αj(t, t)← P(Aj → wt)
4: for s = 2 to n do . All spans > 1 (rows in the chart)
5: for e = s to n do . All end-points (cells in a row)
6: b← e− s+ 1 . begin-point for cell
7: ∀i∈V | αi(b, e)← argmaxj,k,mP(Ai → AjAk)αj(b,m− 1)αk(m, e)

DT→ The 1

0,10,1

NN→ fish 1

1,2

NN→ market 2/3

VB→ market 1/3

VP→ VB 1/12

2,3

NN→ stands 1/2

VB→ stands 1/2

VP→ VB 1/8

3,4

RB→ last 2/3

VB→ last 1/3

VP→ VB 1/12

4,5

NP→ DT NN1
1/4

@VP→ NP 1/4

0,2

@NP→ NN NN2
2/3

NP→ NN NN2
1/9

@VP→ NP 1/9

1,3

@NP→ NN NN3
1/3

NP→ NN NN3
1/18

@VP→ NP 1/18

2,4

NP→ NN RB4
1/18

VP→ VB RB4
1/6

@VP→ NP 1/18

3,5

NP→ DT NP1 1/36

S→ NP VP2 1/48

@VP→ NP 1/36

TOP→ S 1/48
0,3

NP→ NN @NP2 1/18

S→ NP VP3 1/72

@VP→ NP 1/18

TOP→ S 1/72
1,4

VP→ VB @VP3 1/216

S→ NP VP4 1/216

TOP→ S 1/216

2,5

NP→ DT NP1 1/72

S→ NP VP3 1/288

@VP→ NP 1/72

TOP→ S 1/288
0,4

S→ NP VP3 1/54

TOP→ S 1/54

1,5

S→ NP VP3 1/216

TOP→ S 1/216

0,5

Figure 1: Example CYK chart, with target cell 0,4 highlighted in dark gray and the child cells involved in popu-
lating it highlighted in light gray.

gardless of the cell iteration order or the current
position in the chart.3 Because each thread is op-
erating on the same cell, their working sets may
align more closely than in other forms of paral-
lelism, reducing context-switch overhead. How-
ever, this method implies very fine-grained task di-
visions and close coordination between threads —
when we split a single grammar intersection oper-
ation across many threads, each task is quite small.
At this fine granularity, locking of shared data
structures is impractical, so we must divide tasks
such that they share immutable data (the grammar
and current cell population) but do not simultane-
ously mutate the same target data structures (e.g.,
individual threads may populate separate ranges
of non-terminals in the target cell, but must not
attempt to populate the same range). Even with
careful task division, the task management may
overwhelm the potential gains. Youngmin et al.
(2011) presented one approach to this problem; we
present another approach in Section 3.2.

3Of course, we can utilize sentence-level and cell-level
parallelism as well.

3 Methods
3.1 Matrix Grammar Encoding
Retrieval of valid grammar rules and their prob-
abilities is an essential component of context-free
parsing. High-accuracy grammars can exceed mil-
lions of productions, so efficient model access is
critical to parsing performance. Prior work on en-
coding the grammar as a finite state automaton
(Klein and Manning, 2001) and prefix compacted
tries (Moore, 2004) demonstrated that model en-
coding can lead to significant efficiency gains in
parsing.4 Motivated to address hardware bottle-
necks and constraints, we present a novel encod-
ing in matrix form.

Given a binarized probabilistic context-
free grammar (PCFG) defined as the tuple
(V, T, S†, P, ρ) where V is the set of non-
terminals, T is the set of terminals, S† is a special
start symbol, P is the set of grammar productions,
and ρ is a mapping of grammar productions to
probabilities, we subdivide P into binary rules,
Pb, and unary rules, Pu.

We encode Pb in matrix form, where the rows
of the matrix 1..|V | represent a production’s left-

4All grammar encodings discussed, including our own,
only alter efficiency; accuracy remains unchanged.
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hand-side non-terminal, and the columns repre-
sent a tuple of all possible right-hand-side non-
terminals (pairs in a binarized grammar). This
forms a matrix of |V | rows and |V |2 columns. Fig-
ure 2 shows a simple grammar represented in this
format.

In theory, this matrix could contain |V |3 en-
tries, but most grammars of interest are incred-
ibly sparse, populating only a very small frac-
tion of the possible matrix cells. For example,
the Berkeley latent-variable grammar defines 1134
non-terminals, so a fully populated binary rule ma-
trix would contain 1.49 billion rules, but the gram-
mar only populates 1.73 million. Thus, we choose
a ‘compressed sparse column’ sparse matrix repre-
sentation (Tewarson, 1973). This storage structure
is quite dense — we store the binary rules of the
Berkeley grammar in approximately 10.5 MB of
memory. Further, the rules are stored contiguously
in memory and in order of access, so the gram-
mar intersection operations should be very cache-
efficient.

3.2 Matrix-Vector Grammar Intersection

We now present a novel intersection method,
based on the grammar encoding from Section 3.1,
which decouples midpoint iteration from gram-
mar intersection, and can reduce the cell pop-
ulation cost considerably. We begin by point-
ing to Algorithm 1, the standard CYK algorithm.
The argmax on line 7 intersects the set of ob-
served child categories spanning adjacent sub-
strings (stored in chart cells) with the set of rule
productions found in the grammar. Algorithms
2 and 3 show two possible grammar intersection
methods, one which loops over productions in the
grammar (Alg. 2) and one which loops over left-
children prior to looking for grammar productions
(Alg. 3). Song et al. (2008) explored a num-
ber of such grammar intersection methods, and
found Algorithm 3 to be superior for right-factored
grammars. We now present a novel intersection
method based on the grammar encoding from Sec-
tion 3.1. The description in this section is infor-
mal, with midpoints omitted for clarity. In Sec-
tion 3.3, we will formalize the method as an appli-
cation of a lexicographic semiring.

We represent the population of each chart cell α
as a vector in R|V |. Each dimension of this vector
represents the (log) probability of a non-terminal

Algorithm 2 Grammar intersection via full gram-
mar loop (backpointer storage omitted). α(b, e)
represents the population of the cell spanning
words b to e.
α(b, e)← 0
for m = b+ 1 to e− 1 do

for Ai → AjAk ∈ P do
x← P(Ai→ AjAk)αj(b,m−1)αk(m, e)
if x > αi(b, e) then
αi(b, e)← x

Algorithm 3 Grammar intersection via left child
grammar loop
α(b, e)← 0
for m = b+ 1 to e− 1 do

for j ∈ α(b,m−1) do
for Ai → AjAk ∈ P do
x← P(Ai→ AjAk)αj(b,m−1)αk(m, e)

if x > αi(b, e) then
αi(b, e)← x

in that cell. To perform the argmax, we popu-
late a temporary vector c of |V |2 dimensions with
the cartesian product of all observed non-terminals
from the left and right child cells over all mid-
points. That is, each dimension of this vector rep-
resents an ordered pair of non-terminals from the
grammar, and its length (score) is the product of
the inside probabilities of the respective children.
For any child pairs which occur at multiple mid-
points, we record only the most probable.

For example, when populating the highlighted
cell (0,4) in Figure 1, the first midpoint (m=1)
adds (DT,NP), (DT,S), and (DT,@VP) to c;
the second midpoint (m=2) will add (NP,@NP),
(NP,@VP), (@VP,@NP), and so on. If we ob-
serve the same pair at multiple midpoints, we re-
tain only the maximum score.

Given a matrix-encoded grammar, G, and the
child-cell vector, c, we simply multiply G by c
to produce α, the population of the target cell.
In Viterbi search, we perform this operation in
the 〈T, T 〉 lexicographic semiring, thus comput-
ing the maximum probability instead of the sum
(described more fully in Section 3.3). Figure 2
demonstrates this Sparse-Matrix × Vector mul-
tiplication (SpMV). The SpMV is the only por-
tion of our algorithm which must access the gram-
mar. We perform that operation once per cell,
rather than once per midpoint, reducing the num-
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G
(DT,NP) (DT,NN) (NN,NN) · · ·

NP 1⁄4 1⁄4 -
S - 1⁄32 1⁄32

@VP - - -
@NP - - 1
· · · · · ·

×

c
Child Pair Prob
(DT,NP) 1⁄18

(DT,NN) 0
(NN,NN) 0
· · ·
(NP,VP) 1⁄72

(DT,S) 1⁄72

(NP,@NP) 1⁄12

(NP,NN) 1⁄72

· · · · · ·

=

α
Parent Prob
NP 1⁄72

S 1⁄288

@VP 1⁄72

@NP 0
· · ·

Figure 2: Example matrix-vector multiplication for cell 0,4 in Figure 1. The grammar G encodes binary rules as
a |V | × |V |2 matrix, with rows representing parents and columns representing child pairs. The vector c contains
non-terminal child pairs observed across all possible midpoints. The matrix-vector product of G× c produces the
target cell population, α. Factored categories are prefixed with ‘@’, and backpointers are omitted for clarity.

Algorithm 4 Grammar intersection via
Sparse Matrix × Vector Multiplication.
h(l, r) maps l, r ∈ V to an index of c

c← 0
for m = b+ 1 to e− 1 do

for j = 1 to |V | do
for k = 1 to |V | do
i← h(αj(b,m− 1), αk(m, e))
if αj(b,m− 1)αk(m, e) > ci then

ci ← αj(b,m− 1)αk(m, e)
α(b, e)← G · c

ber of expensive grammar operations from O(n3)
to O(n2).

We note the similarity to the formalisms of
Valiant (1975), which transforms parsing into
boolean matrix multiplication, and Lee (1997),
which inverts that transformation. However, the
similarity is only superficial; Valient’s algorithm
populates an upper-triangular matrix, the elements
of which are equivalent to CYK chart cells. Each
matrix element is a subset of V , the observed pop-
ulation of the analogous chart cell. The matrix is
populated by a transitive closure operation, which
takes the place of the CYK algorithm. Our matrix
operation, on the other hand, is concerned with the
population of individual chart cells, the operation
accomplished by Valient’s ∗ operator.

Decoupling the midpoint iteration from gram-
mar intersection is not contingent on our matrix-
vector encoding. The optimization in Graham et
al. (1980) also refactors the CYK algorithm to
result in O(n2) grammar intersection operations
by changing the dynamic programming to iterate
through right (or left) child cells and build new
(parent) categories in multiple chart cells at once.

Similarly, the grammar-loop intersection of Algo-
rithm 2 could be modified to first maximize over
all midpoints, then iterate over grammar produc-
tions as is done in Algorithm 4. However, nei-
ther variation lends itself to straightforward paral-
lelization, and the required synchronization would
severely impact parallel efficiency.

In contrast, the cartesian product and matrix-
vector operations of our SpMV method parallelize
easily across many cores. We subdivide V into
segments, one for each thread. Each thread iterates
over its own subset of V in the left child cell and
combines with all entries in the right child cell,
populating an entry in c for each observed child
pair. c is represented as independent segments safe
for lock-free mutation by independent threads (see
Section 3.4).

To perform the matrix-vector operation in paral-
lel, we retain the same segments of c, and segment
G similarly. Each thread t multiplies its segment
Gt · ct, producing a vector αt. We then merge the
αt vectors into the final α. Since |V | << |c|, this
final merge is quite efficient.

3.3 Lexicographic Semiring

We now present Algorithm 4 more formally as
an application of a lexicographic semiring (Golan,
1999). Roark et al. (2011) recently applied lexi-
cographic semirings to language-model encoding.
We will follow their notational conventions, and
refer the interested reader to their detailed discus-
sion.

A semiring is a ring, possibly lacking negation,
defining two operations ⊕ and ⊗ and their re-
spective identity elements 0̄ and 1̄ (Kuich and Sa-
lomaa, 1985). One common example in speech
and language applications is the tropical semiring
(R∪{∞},min,+,∞, 0). min is the⊕ operation,
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with identity ∞, and + is the ⊗, with identity 0.
This definition is often used for Viterbi search, us-
ing negative log probabilities as costs.

A lexicographic semiring is defined over tu-
ples of weights 〈W1,W2 . . .Wn〉, with the con-
dition that the tuples can be ordered first by W1,
then by W2, and so on (similar to lexicographic
string comparison, resulting in the name). We use
the 〈T, T 〉 semiring, defined as a pair of tropical
weights:

〈w1, w2〉 ⊕ 〈w3, w4〉 =


〈w1, w2〉

if w1 < w3 or
(w1 = w3 &
w2 < w4)

〈w3, w4〉 otherwise

〈w1, w2〉 ⊗ 〈w3, w4〉 = 〈w1 + w3, w2 + w4〉

In our application, W1 encodes the negative log
probability of a production in G or of an observed
non-terminal in the chart. W2 encodes the mid-
point of the maximum-probability analysis.5 To
perform grammar intersection using this semiring,
we encode the grammar matrix as described in
Section 3.2, and include 0 as W2 for each gram-
mar entry (since this weight is constant, it need
not be encoded in the grammar representation).

We populate a vector of tuples ci for each
possible midpoint of the cell, and c =
c1 ⊕ c2 ⊕ . . . cspan. ⊕ compares with min, so
the entries in c will be from the maximum prob-
ability midpoints and the first midpoint will ‘win’
in the case of a tie.

When we multiply G · c in the 〈T, T 〉 semiring,
we use the⊗multiplication operator on each indi-
vidual element, and the⊕ addition operator for the
sum. Since W2 is 0 for all entries in G, the mid-
points are simply carried over from c, and G · c
is the minimum-cost path to each observed non-
terminal.

SpMV optimizations have been explored exten-
sively in the high-performance computing litera-
ture (c.f., for example, Williams et al. (2009), Bell
and Garland (2009), Goumas et al. (2008)) Al-
though the matrix-vector operations in the 〈T, T 〉
semiring is quite distinct from SpMV in the real
semiring, we anticipate that some of those algo-
rithms will apply, and would be of particular inter-

5Since W2 represents a midpoint, we could alter the defi-
nition to specify that W2 ∈ N, but the standard tropical semir-
ing is adequate and slightly simpler.

est if parsing with grammars more densely popu-
lated than those we explore in this study.

3.4 Vector Data Structure

We have already discussed a memory- and cache-
efficient encoding of G. We must also represent
c efficiently. Although this data structure is not
a primary contribution of this work, we do note
that the choice of vector representation greatly im-
pacts overall parsing efficiency, so we will briefly
describe our choices.

We represent c with a perfect hash of the form
h(l, r) → [m], mapping left and right children to
a matrix column. Since a perfect hash function
ensures no collisions, this function is reversible
(h−1([m]) → (l, r)), allowing recovery of the left
and right children from their hashed representa-
tion. We construct |V | different hash functions,
mapping hi(r) → [mi]. We store the data struc-
tures for these functions adjacently in memory,
such that iterating over the entire range of c ac-
cesses memory in roughly linear order.6 Global
optimization of a perfect hash is an NP-complete
problem. Even though we only create the hash
once during initialization, we want to avoid ex-
ponential effort and instead use a displacement
heuristic (Tarjan and Yao, 1979) to pack the hash
efficiently, achieving 50-80% occupancy for most
grammars. We elected not to use a minimal perfect
hash, since the decrease in storage space comes at
the cost of increased memory access.

4 Evaluation

We compare exhaustive and pruned parsing effi-
ciency with several other competitive parsing im-
plementations. We performed all matrix-encoded
parsing and parallelization experiments using the
open-source BUBS parser (Bodenstab and Dun-
lop, 2011). The parser framework is grammar
agnostic, permitting experiments on grammars of
various sizes, and it implements both exhaustive
inference and ‘Adaptive Beam Pruning’, as de-
scribed in Bodenstab et al. (2011). For exhaustive
parsing, we use BUBS implementation of Algo-
rithms 2 and 3 and Mark Johnson’s highly opti-
mized C implementation, lncky (Johnson, 2006)
as baselines; for pruned inference, we compare
with the Charniak parser (Charniak, 2000), the

6On most modern CPUs, linear memory access patterns
allow aggressive and effective data pre-fetching into cache,
avoiding costly CPU stalls.
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Markov-0 Markov-2 Parent Berkeley SM6
Categories 100 3092 6971 1134
Binarized Rules 3859 13649 25229 1,725,570
F-score 60.7 71.9 77.5 89.3
BUBS Grammar loop (Algorithm 2) 0.16 1.92 23.4 29.9
BUBS Left-child loop (Algorithm 3) 0.13 0.50 0.8 63.0
Johnson (2006) 0.10 0.22 0.3 36.0
SpMV (this paper) 0.04 0.26 1.2 3.2

Table 1: Exhaustive Viterbi parse times (average seconds/sentence, lower is better) over WSJ Section 22 for
various grammars. All parsers produce the same maximum-likelihood parse trees.

Berkeley parser (Petrov et al., 2006), and with
the aforementioned ‘Adaptive Beam Search’ sys-
tem implemented in BUBS. The Charniak parser
is written in C and parses with a lexicalized gram-
mar. The BUBS and Berkeley parsers are imple-
mented in Java and parse with a latent-variable
grammar.7

A brief note about implementation choices is
appropriate here. Java has often been viewed
as notoriously slow, a perception well-established
when Java runtime environments were interpreted
rather than compiled. Recent advances in virtual
machine technology have largely eliminated the
differential between Java and statically-compiled
languages such as Fortran and C (c.f. Amedro
et al. (2010), Kotzmann et al. (2008), Paleczny et
al. (2001), Click et al. (2005), Click et al. (2007),
Wrthinger et al. (2007), and Tene et al. (2009)).

We performed all trials on a 12-core Linux ma-
chine (2 × Intel® Xeon X5650 CPUs). Each core
can execute 2 simultaneous threads, for a total
of 24 concurrent threads. For the parsers imple-
mented in Java, we used the Oracle 1.6.0 26 Vir-
tual Machine.

4.1 Exhaustive Serial Search

In Table 1, we present exhaustive search results
with four grammars, each induced from the Penn
Treebank Sections 2-21 (Marcus et al., 1999).
The Markov-order-0 and Markov-order-2 gram-
mars were markovized as described in Manning
and Schuetze (1999). The parent-annotated gram-
mar further splits the states of the Markov-order-2
grammar by annotating each non-terminal with its
parent category, as described in Johnson (1998).
This expands the vocabulary greatly, but the rule-

7By default, the Berkeley parser marginalizes over the
latent-variables in the grammar and retrieves the Max-Rule
parse tree; for fair comparison with our approach, we report
timings in its simpler Viterbi-search mode.

set somewhat less so. The Berkeley grammar
(Petrov et al., 2006) is a high-accuracy unlexical-
ized grammar, learned by iteratively splitting and
merging non-terminals. Its vocabulary is relatively
small (particularly in comparison with the parent-
annotated grammar), but the ruleset is quite large.
All grammars examined are right-factored, so we
evaluate Algorithm 3, per the trials in Song et al.
(2008).

Johnson’s C implementation outperforms the
default BUBS exhaustive implementations, pri-
marily (we believe) due to BUBS use of memory-
inefficient Java objects. Our matrix grammar en-
coding and SpMV grammar intersection algorithm
perform very well in comparison to both base-
line systems; for the Markov-order-2 and Parent-
annotated grammars, which have large vocabular-
ies and relatively small rulesets, our approach per-
forms similarly to Johnson’s C implementation.
For the grammars with large rulesets relative to
their vocabularies (Markov-order-0 and Berkeley),
our approach provides a dramatic speedup — over
9× vs. our fastest baseline using the Berkeley
grammar. Other experiments not reported here in-
dicate that the grammar representation accounts
for the majority of this speedup, with the grammar
intersection method accounting for an additional
improvement of approximately 35%. We antic-
ipate that potential users will primarily be inter-
ested in high-accuracy grammars, particularly for
non-exact inference, so we focus all other empiri-
cal trials on the Berkeley grammar.

4.2 Pruned Serial Search

Most state-of-the-art context-free parsers resort to
approximate inference techniques to decode ef-
ficiently. These methods include Coarse-to-Fine
(Petrov et al., 2006), A* (Klein and Manning,
2003; Pauls et al., 2010), best-first (Caraballo
and Charniak, 1998; Charniak, 2000), and beam
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F-score Sent/sec
Charniak (2000) 90.3 1.7
Berkeley (CTF Viterbi) 89.3 4.7
Adaptive Beam w/Alg. 3 89.0 10.2
Adaptive Beam w/Alg. 4 89.1 21.9

Table 2: Pruned parse times over WSJ Section 22 (av-
erage sentences/sec, higher is better).
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Figure 3: Comparison of F-score vs. speed over a
variety of pruning parameterizations for adaptive cell
pruning and for our algorithm.

search (Collins, 1999). These methods reduce
the search space greatly, allowing effective search
in reasonable time, although only A* guarantees
finding the globally optimal solution. We take as
our primary baseline, the ‘Adaptive Beam Search’
system implemented in BUBS. This technique
predicts the appropriate population of each cell in-
dividually, allowing heavier pruning in areas of the
chart in which the model predicts less ambiguity.
When the lexical context is sufficient to disam-
biguate constituent structure, it prunes entire cells,
and thus generalizes Roark and Hollingshead’s
linear-time chart constraint algorithm (2009). Our
grammar intersection method works well with
Adaptive Beam Search. Table 2 shows a speedup
of over 2× vs. the baseline implementation, and
an even greater advantage vs. other competitive
parsers. The Charniak and Adaptive Beam prun-
ing systems both have tunable parameters, control-
ling their accuracy vs. efficiency operating point.
Figure 3 shows empirical results over a range of
those tuning parameters for those two implemen-
tations and for our approach. For a given param-

eterization, the search space explored by our ap-
proach is identical to that explored by Bodenstab
et al., (modulo minor differences in unary pro-
cessing), so the efficiencies achieved are directly
comparable. We find consistently improved speed
across all pruning thresholds.

4.3 Exhaustive Parallel Search

We now move to evaluating parallelization meth-
ods. Our baseline parsers could be parallelized
at a sentence-level, and possibly at a cell-level,
but having already established dramatic gains vs.
those approaches for serial parsing, we will fo-
cus all these trials on our own SpMV algorithm —
thus, the sentence-level results reported serve as
a ‘baseline’ of sorts, albeit one already demon-
strated to be a dramatic improvement on stan-
dard baselines. We parallelize the SpMV imple-
mentation using the three parallelization strategies
discussed in Section 2.3., and compare through-
put and latency. To explore potential additive
effects, we include a system combining cell-
level and grammar-level parallelism, using several
grammar-level threads for each cell-level thread,
over the same range of total thread count. Note
that some serial processing is required for each
sentence (primarily initialization of the chart and
extraction of the final parse tree), but these opera-
tions consume only 1.5% of the total time.

Executed with a single thread, the cell-level and
grammar-level parallel implementations incur an
overhead of less than 1%, which compares very fa-
vorably with the 500–900% overhead in Ninomiya
et al. (1997). Figure 4 shows throughput and la-
tency of each parallelization approach as thread
count increases. All approaches show improved
throughput with increased thread-count. Cell-
level and grammar-level approaches begin to level
off around 12 threads, when all physical cores are
occupied; combining the two appears to benefit
further from Hyper-threading, achieving through-
put superior to sentence-level threading.

In Figure 4b, we see two interesting effects re-
garding latency: 1) We expected the sentence-
parallel approach to produce fairly constant la-
tency, but instead found that latency jumped con-
siderably after only 4 threads; 2) Row-level and
grammar-level approaches show large decreases in
latency as thread count is increased, and the com-
bination again shows additive gains — an overall
reduction in latency of approximately 9× and an
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Figure 4: Exhaustive SpMV search throughput and latency vs. thread-count.

improvement of nearly 40% vs. cell-level thread-
ing alone.

While an improvement of 9× is quite impres-
sive, we anticipate that further gains might be pos-
sible. We found that both cell-level and grammar-
level methods often leave numerous threads idle,
and CPU monitoring rarely shows all cores be-
ing occupied. Our observations lead us to believe
that much of the ‘lost’ processor time is going to
the task handling and inter-thread communication,
and we are optimistic that hardware threading will
extend the gains observed for these methods.

4.4 Pruned Parallel Search

Figure 5 presents similar trials for pruned parallel
search (once again, all trials use our grammar in-
tersection method). In this case, we find that the
cell-level and combined approaches perform quite
strongly — nearly optimally, in fact. In contrast
to the relatively small serial portions of exhaustive
search, pruned search requires some fairly expen-
sive serial operations. The adaptive cell pruning
initialization is quite costly, consuming over 35%
of the total time (c.f. Bodenstab et al., 2011). In
total, the serial steps account for approximately
45% of the time, so the observed 44% increase
in throughput and reduction in latency, although
much smaller than that of sentence-level thread-
ing, is nearly optimal. We anticipate that paral-
lelizing the pruning initialization should further
improve throughput and latency.

For grammar-level parallelism in Figure 5b,

however, we find a somewhat counterintuitive re-
sult: increasing the thread-count increases latency.
This is due to the characteristics of the grammar
and the severity of pruning during inference. The
Berkeley grammar has a small non-terminal set
(|V | = 1134), but a large ruleset (|Pb| = 1.7
million). When performing exhaustive search,
many cells are densely populated (average cell
population is 450 of 1134). When performing
pruned search, the cell populations are naturally
much sparser (at most 30 entries, and often fewer).
Thus, the grammar-level parallel tasks are much
smaller. Task management overhead grows in im-
portance as the task size shrinks, and quickly over-
whelms the potential gains of additional execution
threads. As already mentioned, hardware thread-
management is likely to ameliorate this problem.

5 Discussion and Future Work

We have presented a novel matrix grammar encod-
ing which has several beneficial properties. Ac-
cess to grammar rules encoded in this manner is
very cache-efficient, and it enables cell population
using a Sparse Matrix× Vector grammar intersec-
tion. As a well-understood matrix operation, this
reduction allows very fine-grained parallelism.

We demonstrated dramatic speedups on exhaus-
tive serial parsing, and a large benefit vs. strong
baselines in pruned inference. We found that
the efficiency of fine-grained parallel parsing is
limited by the thread management overhead, but
nevertheless found considerable improvements in
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Figure 5: Pruned search throughput and latency vs. thread-count.

throughput and latency, which may be of interest
to end-user applications and others with response-
time constraints.

This work is available in the open-source BUBS
parser for further research or practical application.
In future work, we plan to extend our approach
to more parallel architectures, including graphics
processing units. We also plan to parallelize the
adaptive beam width pruning, and we want to ex-
plore the SpMV optimizations discussed in Sec-
tion 3.3.
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