
Proceedings of the 12th International Conference on Parsing Technologies, pages 129–139,
October 5-7, 2011, Dublin City University. c© 2011 Association for Computational Linguistics

Simple Semi-Supervised Learning for Prepositional Phrase Attachment

Gregory F. Coppola, Alexandra Birch, Tejaswini Deoskar and Mark Steedman
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK

g.f.coppola@sms.ed.ac.uk
{abmayne, tdeoskar, steedman}@inf.ed.ac.uk

Abstract

Prepositional phrase attachment is an im-
portant subproblem of parsing, performance
on which suffers from limited availability of
labelled data. We present a semi-supervised
approach. We show that a discriminative
lexical model trained from labelled data,
and a generative lexical model learned via
Expectation Maximization from unlabelled
data can be combined in a product model to
yield a PP-attachment model which is bet-
ter than either is alone, and which outper-
forms the modern parser of Petrov and Klein
(2007) by a significant margin. We show
that, when learning from unlabelled data, it
can be beneficial to model the generation of
modifiers of a head collectively, rather than
individually. Finally, we suggest that our
pair of models will be interesting to com-
bine using new techniques for discrimina-
tively constraining EM.

1 Introduction

Labelled data for NLP tasks will always be in
short supply. Thus, a statistical parser trained
with labelled data alone will always be troubled
by unseen events—primarily when parsing out-of-
domain data, or when faced with rare events from
in-domain data. Thus, a major focus of current
work is the use of cheap, abundant unlabelled data
to improve state-of-the-art parser performance.

We focus on an important sub-problem of
parsing—prepositional phrase attachment—and
demonstrate a successful semi-supervised learn-
ing strategy. We show that, using a mix of la-
belled and unlabelled data we can improve both
the in-domain and out-of-domain performance of
a prepositional phrase attachment classifier.

Prepositional phrase attachment, for us, is the
decision as to which heads a series of prepositional
phrases of the form [PP prep NP] modify, as in,

e.g.,

He ate a salad [PP with a fork] [PP of plastic]

Prepositional phrase attachment is an important
sub-problem of parsing in and of itself. Structural
heuristics perform poorly (cf., Collins and Brooks,
1995), and so lexical knowledge is crucial.

Moreover, the highly lexicalized nature of
prepositional phrase attachment makes it a kind of
microcosm of the general problem of learning de-
pendency structure, and so acts as a computation-
ally less-demanding testing ground on which to try
out learning techniques. We have endeavoured to
approach the problem with a strategy that might
be likely to generalize: a mix of generative and
discriminative lexical models, trained using tech-
niques that have worked for parsers.

The main contributions of this paper are:

• We compare the performance on the preposi-
tional phrase attachment task of natural lexi-
calized dependency parsing strategies, to the
popular semi-lexicalized model of Petrov and
Klein (2007), and show that a lexical is more
effective for this problem.

• We show that a discriminative lexical model
trained from labelled data and a generative
lexical model learned through Expectation
Maximization on unlabelled data can per-
form better in a product model than either
does alone, yielding a significant improve-
ment over our baseline reference, the parser
of Petrov and Klein (2007).

• We show that, in this case, when learning
from unlabelled data, a strategy of generat-
ing all modifiers of a head collectively works
better than generating them individually.

129

2 Prior Work

Work on the topic of prepositional phrase attach-
ment typically views the problem as a binary clas-
sification task. Given a 4-tuple,

〈verb, noun1, prep, noun2〉

the task is to decide whether the attachment of
the [PP prep NP] prepositional phrase character-
ized by 〈prep, noun2〉 is to verb or to noun1.

Human performance on this prepositional
phrase attachment task has been estimated by Rat-
naparkhi et al. (1994). They found that treebank-
ing experts given the 4-tuple binary decision task
choose the correct attachment 88.2% of the time.
And, when then given the full context for the same
examples, they choose the “correct” attachment
(i.e. the same attachment that is given by the Penn
Treebank) 93.2% of the time.

Approaches to training from labelled data
include rule-based (Brill and Resnik, 1994),
maximum-entropy (Ratnaparkhi et al., 1994), and
a generative “backed-off” model (Collins and
Brooks, 1995).

The state-of-the-art is an approach by Stetina
and Nagao (1997). They replace each noun and
verb by a WordNet sense using a custom word
sense disambiguation algorithm. Then, they train
a decision tree on labelled WSJ data. Their
method achieves essentially a human level of ac-
curacy on this task: 88.1%. Toutanova et al.
(2004) achieve a comparable result with a method
that integrates word-sense disambiguation into the
generative attachment model.

There is also a variety of work that makes use
of unlabelled data to learn prepositional phrase
attachment. An early example in this category
is Hindle and Rooth (1991). They estimate the
probability that a given preposition modifies a
given head using an iterative process with hetero-
geneous steps. Ratnaparkhi (1998) uses determin-
istic heuristics.

The state-of-the-art in this area is due to Pan-
tel and Lin (2000). They, use a homespun iterative
algorithm learning algorithm which bears a resem-
blance to EM, but it does not seem to learn a gen-
erative model. One interesting feature of this ap-
proach is that the attachment decision for a given
word is allowed to make use of the statistics col-
lected for similar words, which helps to the spar-
sity that occurs even in a large, unlabelled corpus.

Their performance on the binary classification task
is 84.5%.

We are aware of one case that has used a mix
of labelled and unlabelled data: Volk (2002) uses
a back-off strategy in which information from la-
belled data is used when conclusive, and informa-
tion from unlabelled data otherwise. Performance
on the same task on a NEGRA-based data set lags
behind the others, at 81.0%.

Finally, Atterer and Schütze (2007) argue that
an experimental setup that evaluates a prepo-
sitional phrase attachment with possible attach-
ments given by an “oracle,” rather than an actual
parser, may make the problem appear easier than
it really is. This is a good point. But, for the pur-
poses of comparing learning techniques, we feel
that the typical oracle task is better suited, as it
avoids introducing the noise of parser mistakes.

3 Background

3.1 The Prediction Task

We treat prepositional phrase attachment as a
structured prediction task, rather than as a binary
decision. The input to the prediction procedure
will be a (prepositional phrase) attachment prob-
lem, a string matching either the regular expres-
sion (1) or (2).

(1) verb baseNP (prep baseNP)∗

(2) baseNP (prep baseNP)∗

For example, some attachment problems are:

(3) sought man from Germany with expertise

(4) man from Germany with expertise

Though not indicated above, we assume that POS
tags are given as part of the problem, and need not
be predicted.

Our goal is to create a prediction procedure
which, given an attachment problem, x, will return
a derivation, d, which is a parse for x using the
following mini CFG grammar whose initial sym-
bol is ROOT:

(5) a. ROOT→ VP

b. ROOT→ NP

c. VP→ verbH NP PP∗

d. NP→ baseNPH PP∗

e. PP→ prepH NP

130

The head of each XP is indicated with a sub-
scripted H. All siblings to a head are called its
modifiers.

Given a full parse tree in the style of Marcus
et al. (1993), attachment problem-derivation pairs
were extracted using a TGrep-like functional pro-
gram, which is described in Appendix A.1

3.2 Scoring Performance

When evaluating a prediction procedure, we will
give it a series of attachment problems and ask for
the derivations. In most cases, the score we will
focus on is what we can call the binary decision
score, i.e., the percentage of the time in which the
first prepositional phrase following a verb–direct-
object pair is attached correctly. In this case, we
are reporting the same score as is typically re-
ported on this task, so as to avoid introducing a
new metric.

To be clear, then, when scoring, in this way,

[VP set [NP rate [PP on [NP refund]]] [PP at [NP 5 percent]]]]

we only ask where [PP on [NP refund]] attaches,
and ignore the attachment decision of [PP at [NP 5
percent]].

One might thus ask what the point of bother-
ing with the whole derivation is if we are typically
only intending to score a binary decision. Well,
our model in §5.2 makes each attachment decision
independently, and in this example from the WSJ
development test set, incorrectly attaches both on
refund and at 5 percent to the verb. In contrast,
our model of §5.3 attaches prepositional phrases
collectively, and rejects the derivation where on
refund and at 5 percent both modify set. Thus,
though we only score one decision in a derivation,
that decision can be influenced by others, and so
it does make a difference to work at the level of
derivations.

3.3 Data Sets

The traditional semi-supervised learning task in-
volves learning from two sets. The first is a set of
pairs, {(xi ,di)}, of data points along with their la-
bels. The second is a (typically much larger) set of
data points alone, {xj } (i.e. without labels). In our
case, the data points are attachment problems and
the labels, which are structured, are derivations.

1Our data sets extracted from the Penn Treebank will be
available on request to those with the relevant license(s) to
use Penn Treebank data.

Our experiment is interested in performance
across domains. Thus, we also distinguish be-
tween in-domain labelled data, some of which we
will allow ourselves to use to train model param-
eters, and out-of-domain labelled data, which we
will not use to train model parameters.2

Our source of labelled data is the Penn Treebank
(Marcus et al., 1993). We use sections 0-22 of the
WSJ portion of the Penn Treebank for training and
development and sections 23, 24 are left for final
evaluation. We variously use i) sections 2-21 as
labelled training data, with sections 0, 1, 22 as a
development test set, or ii) sections 0, 1, 5-22 as
labelled data with sections 2-4 as held-out set for
parameter tuning.

We split up the Brown portion of the treebank
similarly to Gildea (2001)—i.e. we split it into 10
sections such that the s’th sentence is assigned to
section s mod 10. We then use sections 0-2 de-
velopment test set, 4-6 for tuning, and sections 7-9
are left for final evaluation. Our divisions of the
Penn Treebank are chosen to resemble the canoni-
cal training-test split for parsing, but we use more
sections for testing, to obtain more reliable test
scores, as there are far fewer decisions to test on in
each section in our task, when compared to pars-
ing.

Our source of unlabelled data is the New York
Times portion of the GigaWord corpus (Graff et
al., 2005). These sentences are parsed automati-
cally using the generative semi-lexicalized parser
of Petrov and Klein (2007). We did some filter-
ing of these unlabelled sentences, removing sen-
tences with quotations (as quoted material can be
ungrammatical) and sentences over 40 words in
length (to increase the chance that each automatic
parse used was reasonable).

We use these automatically extracted parses
only to identify attachment problems (x), which
we will then treat as unlabelled. That is, while
there is possibly information in the derivations
(the d) that the parser is coming up with, we did
not use this.

In terms of size, our WSJ2-21 set has 29, 750
examples. The GigaWord set has 8, 038, 001 ex-
amples.

2However, we do appeal to the labels of a portion of the
out-of-domain Brown data once, in order to fix a single exper-
imental parameter, which is the number of iterations of EM
to run on the unlabelled data, cf. note 6.

131

3.4 Baseline

Much past work has tested on the 4-tuple, bi-
nary decision data set of Ratnaparkhi et al. (1994).
This data does not have all of the information re-
quired by our approach, and is based on a pre-
liminary version of the Penn Treebank (version
0.75), which is incomplete and difficult to work
with. Thus, we could not compare our work di-
rectly with past work.

In order to evaluate our performance, then, we
will compare our model against the performance
on prepositional phrase attachment of the Berke-
ley parser (Petrov and Klein, 2007), which is pop-
ular, readily available, and essentially state-of-art
among supervised parsing methods. And, as we
said, this is precisely the technology that we use
to process unlabelled data, so it makes sense that
our model should improve upon this in order to be
of any use.

So, we need to evaluate the prepositional phrase
attachment performance of the Berkeley parser.
What we do is parse the test sections of the Penn
Treebank using this parser (which is trained on
WSJ2-21). We run our functional program to ex-
tract problem-derivation pairs from the automatic
parse. Suppose we extract the pair (da ,xa) from
the automatic parse. We compare this to the gold
tree. If the gold tree contains the pair (dg ,xg),
and xa = xg , then we score da with respect to
dg . Otherwise, we do not score da .

This means the parser is not penalized for fail-
ing to identify attachment problems in the gold
parse. And, this should be a favourable compari-
son for the parser as it is evaluated on the examples
it knows most about, i.e. those for which it can
identify the location of an attachment problem.

We supply the parser with gold POS tags to
maximize the chance that it will find each attach-
ment problem. In this way, we were able to as-
sess the performance of the Berkeley parser on
3184
3475 = 91.6% of the test examples in the WSJ set,
and 3091

3509 = 88% in the Brown (both dev. test and
final test). Our models are tested on all examples.

An important parameter for the Berkeley parser
is the number of split-merge iterations done dur-
ing training (cf. Petrov and Klein, 2007). The
documentation suggests 6 is better for parsing the
WSJ, while 5 is better for parsing other English.
We tried both. The results are shown in Table 1.
We will use whichever parameterization did better

WSJ Brown
Parser Dev. Test Dev. Test

Berkeley 5 SM 85.3 83.0 82.4 81.1
Berkeley 6 SM 84.6 83.0 83.3 82.7

Table 1: Performance of the Berkeley parser on the
prepositional phrase attachment task. The best scores
on each data set will be our baseline.

on each data set as the baseline on that data set.3

3.5 Reduction of Open-Class Words

In all experiments, all nouns and verbs were re-
placed by more general forms. If applicable,
nouns were replaced by their NER label, either
person, place or organization, using the NER clas-
sifier of Finkel et al. (2005). All numeral strings
of two or four digits were replaced with a symbol
representing year, and all other numeral strings
were replaced with a symbol representing numeric
value.

A word not reduced in either of these ways was
replaced by its stem using the stemmer designed
by Minnen et al. (2001).4

Finally, this reduced form is paired with the cat-
egory of the word c ∈ {NOUN, VERB} to distin-
guish uses of words that can either be nouns or
verbs. We find that these reductions improve per-
formance slightly and also reduce the size of the
generative probability table.

4 A Discriminative Model from Labelled
Data

4.1 The Model

As noted, we have access to one set {(xi ,di)} of
labelled examples. We begin by discriminatively
training two conditional models on this set.

Our model uses two types of features: i) struc-
tural, and ii) lexical.

The structural features exploit two characteris-
tics of prepositional phrase attachment that are of-
ten noted in the literature. First, a prepositional
phrase headed by the preposition of almost always
attaches to the nearest available attachment site
to its left. So, one feature fires whenever this is

3The performance of this parser depends on a random
seed used to initialize the training parser. Our 6-iteration
grammar was downloaded from the authors’ web site. Our
5-iteration grammar is the one that resulted from our first run
of the training process.

4We use the Java reimplementation in the Stanford NLP
API, http://nlp.stanford.edu/software/index.shtml.

132

not the case. Second, prepositional phrases almost
never attach to pronouns. So, another feature fires
whenever some prepositional phrase attaches to a
pronoun.

The first model, denoted pD1 (d | x; θD1), uses
these and lexical features of the form

〈head,prep〉

Here, head is either a noun or a verb, and prep is
a preposition. The feature 〈head,prep〉 is active
in derivation d iff (a prepositional phrase headed
by) prep modifies head in d.

Our second model, pD2 (d | x; θD2), has all fea-
tures mentioned above, and also those of the form

〈head,prep,nouninside〉

Here, head and prep are as before, and
nouninside is the head of the noun phrase inside
the prepositional phrase headed by prep.

For example, in

[NP salad [PP with [NP dressing]]]

The active features are 〈salad, with〉 and
〈salad, with, dressing〉.

This latter type of feature represents straight-
forward specialization of the concept used by
higher-order dependencies for parsing, especially
Carreras (2007), to the problem of prepositional
phrases.

Our estimates of θD1 and θD2 are arrived at us-
ing structured perceptron training (Collins, 2002).
The models trained on all examples in our training
section (i.e. those of type NP and of type VP). We
pick the number of perceptron training iterations
for each model by maximizing performance on a
held-out set, using our parameter tuning split de-
scribed in §3.3. We only use feature instances that
have occurred at least twice in training.

If Φ(x,d) is a feature vector characterizing
(x,d), the perceptron algorithm will output a
parameter vector θDi , and the “score” assigned
to a pair (x,d) under this interpretation will be
θDi · Φ(x,d), with the predicted derivation being
the d with the highest score (in the case of any tie,
we always choose attachment to the verb).

As we have suggested, we are interested in a
conditional probability for d given x, rather than
just a linear “score”. This is for use in a future
section (i.e. §6). The natural way to achieve this is

WSJ Brown
Classifier Dev. Test Dev. Test

pD2 (2nd-order) 87.4 86.0 84.7 83.9
pD1 (1st-order) 86.2 86.0 84.7 83.0

Baseline 85.3 83.0 83.3 82.7

Table 2: Performance of the two discriminative classi-
fiers.

to interpret θDi as the parameters for a maximum
entropy model, i.e.

pDi(d | x; θDi) =
exp {θDi · Φ(x,d)}∑
d′ exp {θDi · Φ(x,d′)}

Fortunately, we will see that we never need actu-
ally compute the normalizing term in the denomi-
nator.

4.2 Results

The performance of this model both in- and out-
of-domain are shown in Table 2, along with the
performance of the baseline Berkeley parser.

The results should be of interest to those inter-
ested the use of lexical features for parsing. The
models that use lexical features outperform the
semi-lexical model of Petrov and Klein (2007).
Prepositional phrase attachment may be one area
where lexicalized models are especially important.

We also see that the use of second-order fea-
tures buys extra performance on some data sets,
but not on others. A look at the dev. sets show
that second-order features were active in 9 of the
first 60 decisions in the WSJ, but in 0 of the first
60 in Brown. We speculate that use of word senses
as features, taking after Stetina and Nagao (1997),
might result in better generality across domains,
but leave this to future work.

5 Two Generative Models Trained on
Unlabelled Data

5.1 Common Model Structure

We now want to make use of our unlabelled data,
{xj }. For this purpose, we turn to the Expectation
Maximization algorithm (Dempster et al., 1977).
Thus, we will estimate generative models of the
data, each of the form pG∗(x,d; θG).

Our discriminatively trained classifier made use
of both structural and lexical features. Our strat-
egy will be to use our unlabelled examples to esti-
mate just the lexical parameters.

133

It would seem impossible to expect that we
could learn the structural features, e.g., that prepo-
sitional phrases do not attach to pronouns from un-
labelled data. Nor do we need to do this, as this
constraint can be encoded with little effort. What
we do want to be able to estimate from unlabelled
data is the strength of lexical relationships in arbi-
trary domains, which we could not hope to encode
manually.

So, the question arises as to how to incorporate
our knowledge of the structural constraints into
the problem, and to constrain the EM process us-
ing these. Probably the most powerful and general
purpose way to do this would be to use one of the
new variants of EM that allows the specification of
expectations for feature counts, such as Ganchev
et al. (2010) or Druck and McCallum (2010). In
this case we could specify that, e.g., we expect the
average number of times we see a prepositional
phrase attach to a pronoun to be 0, and the mod-
ified EM process would be encouraged or forced
to converge to a solution that respects this expec-
tation. This strategy is very general, but also much
more expensive than ordinary EM, as each E-step
involves an expensive optimization problem.

Here, we get by with a simpler, and much more
computationally inexpensive strategy.

The structural constraints we have made use of
are very robust. In our WSJ sections 2 − 21, of-
headed PPs attach to the nearest non-pronoun to
their left in about 98.6% of cases. And, in 99.6%
of cases, pronouns have nothing attaching to them.

Thus, we are willing to take a deterministic
stance: we will assign 0 probability mass to
derivations that violate our structural constraints.
Let AD, intuitively the set of “admissible deriva-
tions,” be the set of derivations that have: i) no
attachment to a pronoun, unless there is no other
choice, and ii) every of-pp attaching to its nearest
available non-pronoun site, if it has one.

Let 1d∈AD be an indicator function, which is
equal to 1 if d ∈ AD, and 0 otherwise. Then, the
strategy is to let

pG∗(x,d) = pG∗(x,d | 1d∈AD) · 1d∈AD

and to estimate pG∗(x,d | 1d∈AD) from unla-
belled data. The result is easily seen to be a prob-
ability distribution in which all weight is given to
derivations in AD.

We will look at two model structures. In both
cases, the data trained on will include all examples

of type VP and NP from our GigaWord set. Ex-
amples with unambiguous attachment, such as [NP
place [PP at table]], are included, so that parame-
ters chosen must maximize likelihood over these
examples as well. Also note that, since the num-
ber of derivations is never unmanageable, when
summing over derivations, we do so exhaustively
rather than use some form of dynamic program-
ming such as, e.g., the inside-outside algorithm.

We will now look at two different ways to struc-
ture a model for pG∗(x,d | 1d∈AD).

5.2 Individual Dependent Generation

The first model uses the same lexical features as
our first-order discriminative model. We model
a derivation as a series of sub-events, which
will be draws from a pair of random variables,
(head,prep). Intuitively, this corresponds to
the event the phrase headed by head generates a
modifier headed by prep. Following the reason-
ing of Collins (1999, p. 46), we imagine that each
head’s final modifier is a special STOP symbol.

Thus, the derivation

(6) [VP ate [NP salad] [PP with [NPfork]]]

is modeled as the four events (eat, with), (eat,
STOP), (salad, STOP), (fork, STOP).

Then, the probability of a problem-derivation
pair, conditioned on 1d∈AD , is estimated as

pGInd
(x,d | 1d∈AD ; θGInd

) =∏
h∈heads(d)

∏
p∈deps(head)

pGInd
(prep | head; θGInd

)

Here heads(d) is the set of head of NP and V P
phrases in d, and deps(head) is the list of modi-
fiers of head in d, including the STOP symbol.

Even though our unlabelled training set was
large, there were still nouns and verbs seen
during test that were not seen during training.
Thus, we created a GENERIC head for each
category (one for VERB and one for NOUN).
Each time an event (head,prep) was counted,
we would also count (GENERICtype(head),prep),
where type(head) ∈ {VERB, NOUN}. Thus, the
generic head represents a kind of “average head.”
Then, if we needed the probability for some event
(head′,prep′) during test, and head′ had not
been seen during training, we would back off to
the event (GENERICtype(head′),prep′).

134

5.3 Collective Dependent Generation
The next strategy we try is to generate the collec-
tion of dependents for a head head as a whole.
In particular, we generate each head’s multi-set of
dependents.5

In this case, if a verb has a direct object, the
direct object is represented in the multi-set of the
verbs modifiers. But, rather than put the word it-
self, each direct object is represented by a special
symbol, DO.

So, in this model, (6) is modeled as three events,
(eat, {DO, with}), (salad, {}), and (fork, {}).

Then, if depsd(head) is the multi-set of mod-
ifiers of head in d, our estimate of the probabil-
ity of the problem-derivation pair, conditioned on
1d∈AD , is

pGCol
(x,d | 1d∈AD ; θGCol

) =∏
head∈heads(d)

pGCol
(depsd(head) | head; θGCol

)

Unseen heads are handled in the same manner as
in §5.2.

5.4 Initializing and Terminating the EM
Process

We consider two cases for initializing the EM pro-
cess. In one case, our initial guess at the posterior
distribution is the uniform distribution: all deriva-
tions for a given x that are in AD are considered
equally likely, with small random perturbations to
break any symmetry (we found there to be essen-
tially no difference from run to run).

In the second case, we make better use of our
labelled data, and begin with the conditional dis-
tribution given by pD1 , the model with only first-
order features, that we had estimated discrimina-
tively from labelled data, i.e.

pG∗(d|x,1d∈AD ; Ø) = pD1 (d|x; θD1)

Given that running EM to convergence can
overfit the training data, to the detriment of perfor-
mance (cf., Liang and Klein (2009)), we chose to
run EM for a fixed number of iterations, with the
number of iterations determined using a tuning test
set. We picked the number of iterations to maxi-
mize performance of the best performing model
(which turned out to be the collective dependent

5We also experimented with lists and sets, finding multi-
sets to work slightly better. To avoid losing the focus of this
discussion, we will only discuss multi-sets.

generation initialized with pD1) on a Brown tun-
ing set, sections 4-6.6 The optimal number of iter-
ations was found to be 4.

5.5 Results

The performance of these two model structures,
under the two kinds of initialization methods, is
shown in Table 3. Performance on the dev. test
sets is plotted versus the number of iterations of
the EM procedure. The fourth row is highlighted
as this was determined to be the optimal number
of iterations in the manner just described.

We see that the best performing method is that
which generates the (multi-set of the) modifiers
simultaneously, while initializing using the con-
ditional distribution estimated from labelled data.
It is also interesting to note that, models initial-
ized with pD1 get progressively better at parsing
Brown but worse at parsing WSJ. In fact, after 6
iterations, performance at parsing the WSJ is sim-
ilar for both models initialized with pD1 and those
initialized with the uniform distribution. This sug-
gests to us that the information that we have from
our valuable labelled data is being lost, and leads
us to think that it may be profitable to incorpo-
rate this information more forcefully, using tech-
niques for constraining EM with information, such
as those of Ganchev et al. (2010) and Druck and
McCallum (2010) already mentioned.

However, though the model may be “losing” in-
formation relevant to parsing the WSJ, the note-
worthy aspect is that it ends up being able to parse
the Brown data better than our discriminatively
trained parsers (both with accuracy of 84.7 on
Brown dev. test), and thus makes a contribution
to overall parsing accuracy.

Note that we show the performance of the vari-
ous models on the development test set only here.
We report results on a held-out set in the next sec-
tion.

6In this case, we are using the labels from our out-of-
domain data during training. We feel that this is legitimate
because these are only used to tune a single experimental pa-
rameter, the number of EM iterations. Tuning a single pa-
rameter requires only a small number of examples, that does
not necessarily grow with the number of lexical parameters
being estimated. It is the fact that we can learn lexical model
parameters from unlabelled data that will ultimately save us
from having to label the entire web.

135

Initialized with pD1 (d | x; θD1) Initialized to uniform distr.
Independent Collective Independent Collective

EM Its. WSJ Brown WSJ Brown WSJ Brown WSJ Brown
1 85.7 83.9 86.3 85.8 82.0 83.4 81.6 84.5
2 84.2 84.9 84.9 85.7 82.4 84.4 82.7 85.2
3 83.3 84.5 84.7 86.0 82.8 84.6 82.5 85.1
4 83.0 84.6 83.8 86.3 82.9 84.6 82.5 85.4
5 82.9 84.6 83.5 86.0 82.9 84.7 82.6 85.7
6 82.8 84.6 82.8 86.0 82.9 84.7 82.4 85.8

Table 3: Performance of the two generative models. Variables are: i) the model learned, independent vs. collective
modifier generation (§5.2, 5.3), ii) the intial guess at a conditional distribution for hidden variables (§5.4), and iii)
the number of iterations of EM. Score is the binary decision score (cf. §3.2).

6 A Combination of Models

6.1 The Combination

We now have two models of prepositional phrase
attachment. One is estimated from labelled data,
and one from unlabelled data. Each performs well
in isolation. But, we find that the combination of
the two in a logarithmic opinion pool framework
works better than either does alone.

With roots in Bordley (1982), a logarithmic
opinion pool, as defined in Smith et al. (2005), has
the form

plop(d|x) =
1

Zlop

∏
α

pα(d|x)wa

In related work, Hinton (1999) describes a prod-
uct of experts, i.e. multiple models trained to work
together, so that an unweighted product, will be
sensible. Petrov (2010) has success with the un-
weighted product of the scores of several similar
parsing models. Smith et al. (2005) adjust weights
by maximizing the likelihood of a labelled dataset.

Here, we weight the component models so as to
maximize performance on a held out set. Where i
is either 1 or 2, let

plop,i(d | x; θDi , θGCol
) =

1

Zi
· pDi(d | x; θDi)

k i · pGCol
(d | x; θGCol

)1−k i

for some ki ∈ [0, 1]. That i can be 1 or 2 signifies
that we will create two combinations, one for pD1

and one for pD2 . The Zi are normalizing factors.
The conditional distribution pGCol

(d | x; θGCol
) is

obtained from the joint, in theory, by normalizing.
In practice, we never actually need to compute any

normalizing factors.7

To estimate ki , we first train θD1
′ and θD2

′

on our WSJ tuning training sections (0, 1, 5-22).
We then use θD1

′ to estimate θGCol
′. Finally, we

choose the value for ki that maximizes the per-
formance of the model that combines θDi

′ with
θGCol

′ on our WSJ sections 2-4, with a simple
search over values [0, .01, · · · , .99, 1]. The opti-
mal values for the ki were k1 = .70 and k2 = .71.

6.2 Results

Table 4 compares our two combined models
against our individuals models, and our Berkeley
parser baseline. We see that the combined models
outperform their component models on all tasks.
That is, the LOP1st-order model that combines pD1

and pGCol
outperforms both pD1 and pGCol

. And,
the LOP2nd-order model that combines pD2 and
pGCol

outperforms both pD2 and pGCol
. This all

adds up to a significant improvement over the per-
formance of the Berkeley parser. And, we see that
when parsing the out-of-domain Brown data, the
first-order model performs as well or slightly bet-
ter than the second-order model.

Recall that we have used a new data set. In
terms of past work on the Ratnaparkhi et al. (1994)
data set, recall that the state-of-the-art using la-
belled data alone is Stetina and Nagao (1997), with

7To see this, note that

argmax
d

(
f(d)

Z1

)
a ·

(
g(d)

Z2

)
b

Z3

=argmax
d

1

Z1
aZ2

bZ3
f(d)ag(d)b

=argmax
d

f(d)ag(d)b

136

88.1% accuracy, and with unlabelled data alone
is Pantel and Lin (2000), with 84.5% accuracy.
Our results compare favourably to these, though,
of course, the comparison is indirect.8

Furthermore, both of these other author’s mod-
els make use of semantic resources such as Word-
Net and similar words lists to combat the spar-
sity of combinations that occurs even in large un-
labelled samples. The limited utility of second-
order features based on only the stems of the
nouninside suggests to us that features based on
some more general semantic concept might gen-
eralize to other domains better. What is interest-
ing in this regard is the strength of our first-order
model, LOP1st-order, which achieves performance
approaching or passing the previous work without
looking at nouninside. This suggests to us that col-
lective dependent generation is a useful technique,
which can presumably be combined with the se-
mantic resources of the authors just mentioned to
make an even better model.

Returning to the results, while the performance
on the out-of-domain Brown corpus looks very
comparable to that on the WSJ for both our system
and the Berkeley parser, it actually seems that the
Brown corpus is somewhat “easier”, in the sense
that it contains more examples that can be settled
on the basis of our two fairly reliable structural
heuristics.9 Table 5 shows the performance on ex-
amples in which the structural heuristics do not
apply. Here, we see that performance on the out-
of-domain Brown corpus lags significantly behind
performance on the WSJ.

Those interested in the automatic grammar dis-
covery technique of the Berkeley parser will note
the significant drop in performance of that parser
on this subset of the data which implies that
this parser had done essentially perfectly in cases
where our structural heuristics did apply, meaning
it must have learned equivalent heuristics to those
that we encoded by hand, which is noteworthy.

Finally, though we have so far reported only the
binary decision score (cf. §3.2) for each deriva-
tion, Table 6 shows a more general score: the
percentage of correct attachments in any example

8While both the Ratnaparkhi et al. (1994) test set and our
WSJ test set are from the essentially the same material, they
are not exactly the same examples, as the Treebank has un-
dergone reordering.

9On WSJ sections 0, 1, 22-24, structural features fire in
33.8% of examples, while on Brown sections 0-2, 7-9 struc-
tural features fire in 46.0% of examples.

WSJ Brown
Model Dev. Test Dev. Test

pGCol
(4 EM its.) 83.8 81.6 86.3 85.4

LOP2nd-order 88.9 86.9 86.4 86.2
pD2 (2nd-order) 87.4 86.0 84.7 83.9

LOP1st-order 87.5 86.6 86.6 86.2
pD1 (1st-order) 86.2 86.0 84.7 83.0

Baseline 85.3 83.0 83.3 82.7

Table 4: Performance of the combined model. Score is
the binary decision score (cf. §3.2).

WSJ Brown
Model Dev. Test Dev. Test

LOP2nd-order 84.1 80.3 76.0 76.2
LOP1st-order 82.3 79.8 76.1 76.3

Baseline 78.7 74.4 70.0 69.0

Table 5: Performance of the combined model on exam-
ples that cannot be settled by our two structural con-
straints. I.e., examples where i) the preposition is not
of, and ii) the direct object is not a pronoun. Score is
the binary decision score (cf. §3.2)

(whether headed by noun or verb) in which more
than one attachment was possible. Here, we see
that the general problem is, as one would expect,
harder than the binary decision problem.

6.3 Analysis: What does Unlabelled Data
Change?

At this point, we ask what difference the unla-
belled data makes. To answer this question, we
consider the nature of the disagreements between
the pD1 itself, and the LOP1st-order model that
mixes pD1 with pGCol

.
In Table 7, the Count column shows the num-

ber of agreements and disagreements on the de-
velopment test sets. One possible outcome would
have been few disagreements between models and
that each of these would be won by the combined
model. In fact, a significant number of disagree-

WSJ Brown
Model Dev. Test Dev. Test

LOP2nd-order 85.8 84.8 83.7 84.0
LOP1st-order 84.5 84.2 83.4 83.9

Baseline 82.6 80.1 81.2 82.2

Table 6: Performance of the combined model. Score
is the percentage of prepositional phrases attached cor-
rectly in all cases in which more than one attachment
was possible.

137

WSJ Dev. Brown Dev.
Model
correct Count

pD1

neutral Count
pD1

neutral
Both 1748 134 1396 227

LOP1st-order 117 29 105 26
pD1 87 9 72 12

Neither 176 37 161 49

Table 7: Analysis of the agreements and disagreements
between the first-order discriminative classifier, pD1

,
and the combined model, LOP1st-order. The second row
describes examples where LOP1st-order was correct but
pD1 was wrong, and the third row describes the con-
verse situation. The Count column gives the number
of examples in each category. The pD1

neutral col-
umn gives the number of examples in each category
in which no features in the pD1

model were active (the
strategy is to pick attachment to verb in this case).

ments go each way, but the large majority are won
by the combined model.

The pD1 neutral category counts the number of
times that none of pD1 ’s features fire. These are
the examples in which pD1 has no opinion what-
soever, and so the combined model should have
an advantage, if the unlabelled data is contribut-
ing useful information. We see that this is indeed
the case. When no features fire for pD1 , the strat-
egy, as noted, is to choose attachment to the verb,
which should still lead to a large number of cor-
rect responses. Thus, it makes sense that some
disagreements are won by pD1 , even when none
of its features fire.

7 Conclusion and Future Work

We have shown that supervised techniques based
on lexical dependency parsing outperform the
semi-lexicalized strategy of Petrov and Klein
(2007).

We have demonstrated that a properly chosen
pair of models, one trained discriminatively from
labelled data, and one trained generatively from
unlabelled data, can be combined in a product
model to yield a model better than either is alone.

We have shown that, when learning from unla-
belled data, it may be preferable to generate de-
pendents collectively.

Finally, we have introduced a pair of models
which we think will be interesting to combine us-
ing the new methods for constraining EM, e.g., a
la Ganchev et al. (2010) or Druck and McCallum
(2010).

Acknowledgements

We thank Ioannis Konstas, Micha Elsner, and the
reviewers for helpful suggestions. This work was
supported by the Scottish Informatics and Com-
puter Science Alliance and the ERC Advanced
Fellowship 249520 GRAMPLUS.

References

Michaela Atterer and Hinrich Schütze. 2007.
Prepositional phrase attachment without ora-
cles. Computational Linguistics, 33(4):469–
476.

R. F. Bordley. 1982. A multiplicative formula for
aggregating probability assessments. Manage-
ment Science, 28:1137–1148.

Eric Brill and Philip Resnik. 1994. A rule-based
approach to prepositional phrase attachment
disambiguation. In COLING, pages 1198–
1204.

Xavier Carreras. 2007. Experiments with a
higher-order projective dependency parser. In
Proceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL 2007, pages 957–961.

Michael Collins and James Brooks. 1995. Prepo-
sitional phrase attachment through a backed-off
model. CoRR.

Michael Collins. 1999. Head-Driven Statistical
Models for Natural Language Parsing. Ph.D.
thesis, University of Pennsylvania.

Michael Collins. 2002. Discriminative train-
ing methods for hidden Markov models: theory
and experiments with perceptron algorithms. In
EMNLP, pages 1–8, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

A. P. Dempster, N. M. Laird, and D. B. Rubin.
1977. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal
Statistical Society, B, 39.

Gregory Druck and Andrew McCallum. 2010.
High-performance semi-supervised learning us-
ing discriminatively constrained generative
models. In ICML, pages 319–326.

138

Jenny Rose Finkel, Trond Grenager, and Christo-
pher D. Manning. 2005. Incorporating non-
local information into information extraction
systems by Gibbs sampling. In ACL.

Kuzman Ganchev, João Graça, Jennifer Gillenwa-
ter, and Ben Taskar. 2010. Posterior regulariza-
tion for structured latent variable models. Jour-
nal of Machine Learning Research, 11:2001–
2049.

Daniel Gildea. 2001. Corpus variation and parser
performance. In Lillian Lee and Donna Har-
man, editors, Proceedings of the 2001 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’01, pages 167–
202, Stroudsburg. Association for Computa-
tional Linguistics.

David Graff, Junbo Kong, Ke Chen, and Kazuaki
Maeda. 2005. English Gigaword Second Edi-
tion. Linguistic Data Consortium: Philadel-
phia.

Donald Hindle and Mats Rooth. 1991. Structural
ambiguity and lexical relations. In ACL’91,
pages 229–236.

Geoffrey Hinton. 1999. Product of experts. In
ICANN.

Percy Liang and Dan Klein. 2009. Online em for
unsupervised models. In HLT-NAACL, pages
611–619.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Build-
ing a large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19(2):313–330.

Guido Minnen, John Carroll, and Darren Pearce.
2001. Applied morphological processing of en-
glish. Nat. Lang. Eng., 7:207–223, September.

Patrick Pantel and Dekang Lin. 2000. An un-
supervised approach to prepositional phrase at-
tachment using contextually similar words. In
ACL.

Slav Petrov and Dan Klein. 2007. Improved infer-
ence for unlexicalized parsing. In HLT-NAACL,
pages 404–411.

Slav Petrov. 2010. Products of random latent vari-
able grammars. In HLT-NAACL, pages 19–27.

Adwait Ratnaparkhi, Jeffrey C. Reynar, and Salim
Roukos. 1994. A maximum entropy model for
prepositional phrase attachment. In HLT.

Adwait Ratnaparkhi. 1998. Statistical models for
unsupervised prepositional phrase attachement.
In COLING-ACL, pages 1079–1085.

Andrew Smith, Trevor Cohn, and Miles Osborne.
2005. Logarithmic opinion pools for condi-
tional random fields. In ACL.

J. Stetina and M. Nagao. 1997. Corpus based pp
attachment ambiguity resolution with a seman-
tic dictionary. In Natural Language Processing
Pacific Rim Symposium.

Kristina Toutanova, Christopher D. Manning, and
Andrew Y. Ng. 2004. Learning random walk
models for inducing word dependency distribu-
tions. In ICML.

Martin Volk. 2002. Combining unsupervised and
supervised methods for pp attachment disam-
biguation. In Proceedings of the 19th interna-
tional conference on Computational linguistics
- Volume 1, COLING ’02, pages 1–7, Strouds-
burg, PA, USA. Association for Computational
Linguistics.

Appendix A: Extracting Examples from
Gold Trees

In this section, we describe the functional program
used to extract examples from gold trees.

A base noun phrase is phrase labelled NP,
which does not dominate any other phrases. A
base noun phrase is identified with its head-word.
Head words are found using the Java reimplemen-
tation of Collins (1999) head-finder in the Stanford
NLP API.

Noun phrase examples extracted are those that
match

[S . . . [NP1 BaseNPH (prep baseNP)i
∗ . . .] . . .]

NP1 must be immediately dominated by an S,
baseNPH must be the left-most descendant of NP1,
and all (prep baseNP)i substrings must be domi-
nated by NP1 as well.

Verb phrase examples are those that match

[VP1
verbH (PRT) (ADVP) (baseNP) (prep baseNP)i

+ . . .]

VP1 can occur in any environment. If there is a
particle (PRT), this is appended to the verb. The
adverbial phrase (ADVP) is ignored.

139

