
Proceedings of the 12th International Conference on Parsing Technologies, pages 104–116,
October 5-7, 2011, Dublin City University. c© 2011 Association for Computational Linguistics

PLCFRS Parsing of English Discontinuous Constituents

Kilian Evang

Humanities Computing

University of Groningen

k.evang@rug.nl

Laura Kallmeyer

Institut für Sprache und Information

University of Düsseldorf

kallmeyer@phil.uni-duesseldorf.de

Abstract

This paper proposes a direct parsing of

non-local dependencies in English. To this

end, we use probabilistic linear context-free

rewriting systems for data-driven parsing,

following recent work on parsing German.

In order to do so, we first perform a transfor-

mation of the Penn Treebank annotation of

non-local dependencies into an annotation

using crossing branches. The resulting tree-

bank can be used for PLCFRS-based pars-

ing. Our evaluation shows that, compared

to PCFG parsing with the same techniques,

PLCFRS parsing yields slightly better re-

sults. In particular when evaluating only the

parsing results concerning long-distance de-

pendencies, the PLCFRS approach with dis-

continuous constituents is able to recognize

about 88% of the dependencies of type *T*

and *T*-PRN encoded in the Penn Tree-

bank. Even the evaluation results concern-

ing local dependencies, which can in prin-

ciple be captured by a PCFG-based model,

are better with our PLCFRS model. This

demonstrates that by discarding information

on non-local dependencies the PCFG model

loses important information on syntactic de-

pendencies in general.

1 Introduction

Discontinuous constituents as exemplified in (1)

are more frequent than generally assumed, even

in languages such as English that display a rather

rigid word order. In (1), the NP areas of the fac-

tory where the crocidolite was used is separated

into two non-adjacent parts. (1) is an example

from the Penn Treebank (PTB). More generally,

all constructions where head-argument or head-

modifier dependencies are non-local, such as wh-

movement, can be seen as instances of discontin-

uous constituency. Such instances appear in about

20% of the sentences in the PTB. They constitute

a particular challenge for parsing.

(1) Areas of the factory were particularly dusty

where the crocidolite was used.

In the past, data-driven parsing has largely been

dominated by Probabilistic Context-Free Gram-

mar (PCFG). This is partly due to the annotation

formats of treebanks such as the Penn Treebank

(PTB) (Marcus et al., 1994), which are used as a

data source for grammar extraction. Their anno-

tation generally relies on the use of trees without

crossing branches, augmented with a mechanism

that accounts for non-local dependencies. In the

PTB, e.g., labeling conventions and trace nodes

are used which establish additional implicit edges

in the tree beyond the overt phrase structure.

However, given the expressivity restrictions of

PCFG, work on data-driven parsing has mostly ex-

cluded non-local dependencies. When using tree-

banks with PTB-like annotation, labeling conven-

tions and trace nodes are often discarded.

Some work has however been done towards in-

corporating non-local information into data-driven

parsing. One general way to do this is (non-

projective) dependency parsing where parsers are

not grammar-based and the notion of constituents

or phrases is not employed, see e.g. McDonald

et al. (2005) or Nivre (2009). Within the do-

main of grammar-based constituent parsing, we

can distinguish three approaches (Nivre, 2006):

1. Non-local information can be reconstructed in

a post-processing step after PCFG parsing (John-

son, 2002; Levy and Manning, 2004; Jijkoun and

de Rijke, 2004; Campbell, 2004; Gabbard et al.,

2006). 2. Non-local information can be incorpo-

104

CFG:

A

γ

LCFRS: •

A

• •
γ1 γ2 γ3

Figure 1: Different domains of locality

rated into the PCFG model (Collins, 1999) or into

complex labels (Dienes and Dubey, 2003; Hock-

enmaier, 2003; Cahill et al., 2004). 3. A formal-

ism can be used which accommodates the direct

encoding of non-local information (Plaehn, 2004;

Maier and Kallmeyer, 2010; Kallmeyer and Maier,

2010). This paper pursues the third approach.

Our work is based on recent research in using

Linear Context-Free Rewriting Systems (LCFRS)

(Vijay-Shanker et al., 1987) for data driven pars-

ing. LCFRSs extend CFGs such that non-

terminals can span tuples of possibly non-adjacent

strings (see Fig. 1). This enables them to describe

discontinuous constituents and non-projective de-

pendencies (Kuhlmann and Satta, 2009; Maier

and Lichte, 2009). Furthermore, they are able to

capture synchronous derivations, something that

is empirically attested in treebanks (Kallmeyer

et al., 2009). In order to parse German, a

language where discontinuities are particularly

frequent, Kallmeyer and Maier (2010); Maier

and Kallmeyer (2010) use probabilistic LCFRSs

(PLCFRSs). As a data source, they use the Ger-

man NEGRA and TIGER treebanks that anno-

tate discontinuous constituents by using crossing

branches.

We adapt this approach for German to English,

using the PTB. For this, we first need to transform

the trace-based annotation of discontinuous con-

stituents into an annotation with crossing branches

which requires a careful treatment of the different

types of traces that occur in the PTB. Then we ex-

tract a PLCFRS from the resulting treebank and

we use the PLCFRS parser from Kallmeyer and

Maier for our parsing experiments.

The paper is structured as follows. Section

2 introduces PLCFRS and the parsing algorithm.

The next section explains the transformation of

the PTB into an annotation format where non-

local dependencies are annotated with crossing

branches. Section 4 describes further transforma-

tions we apply to the resulting treebanks, in par-

ticular binarization and category splitting. Finally,

section 5 reports the results or our parsing exper-

iments with a detailed evaluation of the way the

different types of long-distance dependencies are

captured. Section 6 concludes.

2 PLCFRS Parsing

2.1 PLCFRS

LCFRSs are an extension of CFG where the

non-terminals can span not only single strings

but, instead, tuples of strings (see Fig. 1). An

LCFRS (Vijay-Shanker et al., 1987) is a tuple

〈N,T, V, P, S〉 where

a) N is a finite set of non-terminals with a func-

tion dim: N → N; dim(A) is called the fan-

out of A and determines the dimension of the

tuples in the yield of A;

b) T and V are disjoint finite sets of terminals and

variables;

c) S ∈ N is the start symbol with dim(S) = 1;

d) P is a finite set of rules

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)
dim(A1)

)

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

for m ≥ 0 where A,A1, . . . , Am ∈ N , X
(i)
j ∈

V for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) and

αi ∈ (T ∪ V)∗ for 1 ≤ i ≤ dim(A). For all
r ∈ P , it holds that every variable X occurring

in r occurs exactly once in the left-hand side

(LHS) and exactly once in the right-hand side

(RHS).

A rewriting rule describes how the yield of

the LHS non-terminal can be computed from

the yields of the RHS non-terminals. The rules

A(ab, cd) → ε and A(aXb, cY d) → A(X,Y) for
instance specify that 1. 〈ab, cd〉 is in the yield of A

and 2. one can compute a new tuple in the yield of

A from an already existing one by wrapping a and

b around the first component and c and d around

the second.

For every A ∈ N in a LCFRS G, we define the

yield of A, yield(A) as follows:

a) For every A(~α) → ε, ~α ∈ yield(A);

b) For every rule

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)
dim(A1)

)

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

and all ~τi ∈ yield(Ai) for 1 ≤ i ≤ m,

〈f(α1), . . . , f(αdim(A))〉 ∈ yield(A) where f

is defined as follows: (i) f(t) = t for all t ∈ T ,

(ii) f(X
(i)
j) = ~τi(j) for all 1 ≤ i ≤ m, 1 ≤

j ≤ dim(Ai) and (iii) f(xy) = f(x)f(y) for

105

all x, y ∈ (T ∪V)+. f is the composition func-

tion of the rule.

c) Nothing else is in yield(A).

The language is then {w | 〈w〉 ∈ yield(S)}.

The fan-out of an LCFRSG is the maximal fan-

out of all non-terminals in G. An LCFRS with a

fan-out of n is called an n-LCFRS. Furthermore,

the RHS length of a rewriting rules r ∈ P is called

the rank of r and the maximal rank of all rules

in P is called the rank of G. We call a LCFRS

monotone if for every r ∈ P and every RHS non-

terminal A in r and each pair X1, X2 of arguments

of A in the RHS of r, X1 precedes X2 in the RHS

iff X1 precedes X2 in the LHS.

A probabilistic LCFRS (PLCFRS) (Kato et

al., 2006) is a tuple 〈N,T, V, P, S, p〉 such that

〈N,T, V, P, S〉 is a LCFRS and p : P →
[0..1] a function such that for all A ∈ N :

Σ
A(~x)→~Φ∈P

p(A(~x) → ~Φ) = 1.

2.2 CYK Parsing

We use the parser from Kallmeyer and Maier

(2010); Maier (2010), Maier and Kallmeyer

(2010) which is a probabilistic version of the CYK

parser from Seki et al. (1991), applying techniques

of weighted deductive parsing (Nederhof, 2003).

LCFRSs can be binarized (Gómez-Rodrı́guez et

al., 2009) and ε-components in the LHS of rules

can be removed (Boullier, 1998). We can therefore

assume that all rules are of rank 2 (in section 4.1,

we explain our binarization technique) and do not

contain ε components in their LHSs. Furthermore,

we assume POS tagging to be done before parsing.

POS tags are non-terminals of fan-out 1. The rules
are then either of the form A(a) → ε with A a

POS tag and a ∈ T or of the form A(~α) → B(~x)
or A(~α) → B(~x)C(~y) where ~α ∈ (V +)dim(A),

i.e., only the rules for POS tags contain terminals

in their LHSs.

For every w ∈ T ∗, we call every pair 〈l, r〉 with
0 ≤ l ≤ r ≤ |w| a range in w. The concatenation

of two ranges ρ1 = 〈l1, r1〉, ρ2 = 〈l2, r2〉 is de-
fined as follows: if r1 = l2, then ρ1 ·ρ2 = 〈l1, r2〉;
otherwise ρ1 · ρ2 is undefined.

For a given rule p : A(α1, . . . , αdim(A)) →
B(X1, . . . ,Xdim(B))C(Y1, . . . ,Xdim(C))we now
extend the composition function f to ranges, given

an input w: for all vectors of ranges ~ρB and ~ρC

of dimensions dim(B) and dim(C) respectively,
fr(~ρB , ~ρC) = 〈g(α1), . . . , g(αdim(A))〉 is defined
as follows: g(Xi) = ~ρB(i) for all 1 ≤ i ≤

Scan:
0 : [A, 〈〈i, i + 1〉〉]

A POS tag of wi+1

Unary:
in : [B, ~ρ]

in + |log(p)| : [A, ~ρ]
p : A(~α) → B(~α) ∈ P

Binary:
inB : [B, ~ρB], inC : [C, ~ρC]

inB + inC + log(p) : [A, ~ρA]
where p : A(~ρA) → B(~ρB)C(~ρC) is an instantiated

rule.

Goal: [S, 〈〈0, n〉〉]

Figure 2: Weighted CYK deduction system

add SCAN results to A
while A 6= ∅
remove best item x : I from A
add x : I to C
if I goal item

then stop and output true

else

for all y : I ′ deduced from x : I and items in C:
if there is no z with z : I ′ ∈ C ∪ A
then add y : I ′ to A
else if z : I ′ ∈ A for some z

then update weight of I ′ in A to max (y, z)

Figure 3: Weighted deductive parsing

dim(B), g(Yi) = ~ρC(i) for all 1 ≤ i ≤ dim(C)
and g(xy) = g(x) · g(y) for all x, y ∈ V +.

p : A(fr(~ρB , ~ρC)) → B(~ρB)C(~ρC) is then called

an instantiated rule.1

For a given input w, our items have the form

[A, ~ρ] where A ∈ N , ~ρ a vector of ranges with

|~ρ| = dim(A). ~ρ characterizes the span of A.

We specify the set of weighted parse items via the

deduction rules in Fig. 2. The parser performs

a weighted deductive parsing (Nederhof, 2003),

based on this deduction system. It uses a chart

C and an agenda A, both initially empty, and pro-

ceeds as in Fig. 3.

3 Treebank Transformation

The PTB annotation guidelines (Bies et al., 1995,

Section 1.1) specify a set of rules that determine

where arguments and adjuncts are attached with

respect to their head words. For example, subjects

are attached at clause level, most other arguments

and adjuncts of verbs are attached at VP level, and

phrases modifying nouns such as PPs and relative

clauses are adjoined at NP level. Knowing these

1This corresponds to the instantiated clauses in simple

Range Concatenation Grammars (Boullier, 1998; Boullier,

2000).

106

rules, head-argument and head-adjunct dependen-

cies can be read off the trees easily, e.g. for se-

mantic interpretation.

Non-local head-argument and head-adjunct de-

pendencies constitute exceptions to these rules.

Following the rules would lead to discontinuous

constituents with crossing branches, containing

the head and the argument or adjunct, but not

containing some intervening tokens. Examples of

non-locally dependent arguments and adjuncts in-

clude wh-moved phrases, fronted phrases, extra-

posed modifiers, it-extraposition, and right-node-

raised phrases (Fig. 4a-d). Such phrases are at-

tached at locations in the tree that avoid disconti-

nuity, thus the heads on which they depend can-

not easily be determined from the tree structure

alone. The PTB instead uses the null elements

T, *ICH*, *EXP* and *RNR* to mark the posi-

tion where the phrases would be attached accord-

ing to the general rules and indices in node labels

to indicate which null element stands for which

phrase (shown by arcs in the tree diagrams). Null

elements are embedded in “placeholder phrases”

of the same category (but without WH prefixes) as

the non-locally dependent phrase. This represen-

tation of non-local dependencies is not suitable for

PCFG parsing since null elements pose a serious

combinatorial problem and PCFG has no mech-

anism for dealing with indexed category labels.

Null elements and indices are therefore usually re-

moved before training PCFG parsers, resulting in

parse trees that do not contain information on non-

local dependencies.

We use the approach proposed and tested on the

German treebanks NEGRA and TIGER in Maier

and Kallmeyer (2010): permit discontinuous con-

stituents, attach non-locally dependent arguments

and adjuncts according to the general rules, result-

ing in a uniform representation for local and non-

local dependencies, and use PLCFRS for parsing.

While NEGRA and TIGER already use such a uni-

form representation, training and testing data for

English can be obtained by removing placeholder

phrases with *T*, *ICH*, *EXP* and *RNR* null

elements from their locations in the PTB trees and

reattaching the coindexed phrases to those loca-

tions, removing indices from node labels (Fig. 5).

Other types of null elements are used to indi-

cate control and other relations with no immedi-

ate bearing on non-local head-adjunct and head-

argument dependencies. We remove these from

trees with gap-degree

type instances trees 0 1 2

T 18759 15452 7292 7924 236

T-PRN 843 843 0 71 772

ICH 1268 1240 7 1200 33

EXP 658 651 1 630 20

RNR 210 208 131 67 10

any reattachment 21738 17187 7397 8996 794

no reattachment n/a 32021 32021 0 0

total n/a 49208 39418 8996 794

Table 1: Reattachment types and gap-degrees of result-

ing trees

the treebank along with corresponding indices.

Two types of cases require special treatment.

First, some arguments and adjuncts are shared be-

tween two or more heads, marked by two or more

null elements with the same index (Fig. 4(d)).

Since a phrase cannot be attached to more than

one location in a tree even with crossing branches,

the phrase must either remain in place, where no

relation to any head can be immediately read off

the tree, or be attached according to the general

rules with respect to only one of the heads, leav-

ing the others with no trace of the argument or ad-

junct. For now, we decided to put consistency in

the way arguments and adjuncts are attached first

and always attach phrases with multiple heads as

depending on the head which is closest (Fig. 5(d)).

The other special case concerns phrases, typically

quotations, that surround the matrix phrase con-

taining the head on which they depend. In the

PTB annotation, the matrix phrase is embedded

into such arguments under a node labeled PRN for

parenthesis (Fig. 4(e)). To avoid cycles after the

transformation, such matrix phrases are detached

from within the argument and reattached to the

node where the argument was originally attached,

if any (Fig. 5(e)).

Table 1 gives an overview of the tendency of

each type of null element2 to introduce gaps when

so transformed as indicated by gap-degree (Holan

et al., 1998; Maier and Lichte, 2009), i.e. the max-

imal number of gaps in any constituent of the re-

sulting trees. Most typically, one gap is introduced

since there is a single phrase non-adjacent to the

rest of the phrase to which it is attached. No gap at

all is introduced by the reattachment of most wh-

moved subjects and *EXP*-type phrases in object

position. Gap degrees of 2 are almost exclusively

accounted for by surrounding phrases where the

2Those instances of *T* reattachments where the depen-

dent element is a surrounding phrase are given separately as

T-PRN.

107

(a) Wh-movement (b) Fronting (c) Modifier extraposition

(d) Right-node raising (e) Surrounding argument

Figure 4: Annotation of non-local head-argument and head-adjunct dependencies in the PTB

(a) Wh-movement (b) Fronting (c) Modifier extraposition

(d) Right-node raising (e) Surrounding argument

Figure 5: Transformed versions of the trees in Fig. 4

108

VP of the surrounded matrix clause is typically in-

terrupted by two commas and the subject of the

matrix clause. On the whole, about 20% of the

trees in the transformed PTB contain discontinu-

ities – less than the c. 30% reported by Maier and

Lichte (2009) for the German treebanks NEGRA

and TIGER, but still a considerable percentage.

An LCFRS is extracted from the transformed

treebank using the algorithm of Maier and

Søgaard (2008), simplified using the fact that

leaves do not have siblings and their parents are

labeled with POS tags: every leaf is represented

as a variable. Every internal node n is represented

as a term Ai(X11 . . . X1j1 , . . . ,Xi1 . . . Xiji)
where X11, . . . ,X1j1 , . . . ,Xi1 . . . Xij1 represent

the leaves dominated by n in order, there is an

argument boundary between two variables iff the

corresponding leaves are non-adjacent, A is the

label of n and i is the number of arguments, used

to obtain a unique non-terminal Ai with fan-out

i. A rule α → β1 . . . βm is extracted for each

internal node n such that α is the term represent-

ing n and β1, . . . , βm are the terms representing

its children, conventionally ordered by leftmost

dominated terminal. For parents of leaves, m is

0, and the single variable in α is replaced with

the terminal labeling the corresponding leaf. For

other nodes, every sequence of variables that

occurs as a right-hand side argument is replaced

with a single new variable on both sides. Fig. 6

shows an example. Rules are equivalent if equal

up to renaming variables. The resulting LCFRS

rules are ε-free and they are monotone. The latter

means that the order of the arguments of a RHS

element is the same as the order of these variables

in the LHS. Both properties facilitate parsing.

The number of occurrences of the rules are

counted and the probabilities of RHSs conditioned

on LHSs are then calculated using MLE. In this

way, a PLCFRS is obtained. This is a very sim-

ple probability model, much like a vanilla PCFG.

In the following section, we discuss techniques we

used to refine the probability model.

4 Grammar Annotation

4.1 Binarization

Similarly to the transformation of a CFG into

Chomsky Normal Form (CNF), we binarize the

LCFRS extracted from the treebank. The result

is an LCFRS of rank 2. A binarization tech-

nique that results in horizontal Markovization of

Non-binary tree:

SBARQ

SQ

VP

WHNP NP

WP MD PRP VB .
What should I do ?

Extracted LCFRS rules:

SBARQ1(XY) → SQ1(X).1(Y)
SQ1(XY ZU) → VP2(X,U)MD1(Y)NP1(Z)

VP1(X,Y) → WHNP1(X)VB1(Y)
WHNP1(X) → WP1(X)

NP1(X) → PRP1(X)
WP1(What) → ε

MD1(should) → ε

PRP1(I) → ε

VB1(do) → ε

.1(?) → ε

Figure 6: LCFRS extraction from trees

the grammar is proposed and successfully used

for parsing NEGRA and TIGER in Kallmeyer and

Maier (2010). However, our experiments have

shown that the beneficial effect of this horizon-

tal Markovization technique does not carry over to

parsing the PTB, presumably because compared to

the two German treebanks, the PTB has a more

hierarchical annotation scheme, extracted gram-

mars have rules with shorter RHSs to begin with

and can thus profit less from additional factoriza-

tion; the adverse effect of wrong independence as-

sumptions predominates. We thus use a determin-

istic binarization technique that does not change

the probability model. Specifically, we introduce a

unique new non-terminal for each right-hand side

longer than 2 and split the rule into two rules, us-

ing this new intermediate non-terminal. This is

repeated until all right-hand sides are of length

2. The transformation algorithm is inspired by

Gómez-Rodrı́guez et al. (2009) and it is also spec-

ified in Kallmeyer (2010). Fig. 7 shows an exam-

ple.

SBARQ1(XY) → SQ1(X).1(Y)
SQ1(XY Z) → VP1(X,Z)C1(Y)

C1(XY) → MD1(X)NP1(Y)
VP1(X,Y) → WHNP1(X)VB1(Y)
WHNP1(X) → WP1(X)

NP1(X) → PRP1(X)

Figure 7: Binarized grammar equivalent to the gram-

mar in Figure 6, not showing terminal rules.

109

Note however that the fan-out of the LCFRS can

increase because of the binarization.

4.2 Category Splits

Category splitting, i.e. relabeling certain nodes in

the training data depending on context, has been

used to improve the performance of PCFG pars-

ing (Klein and Manning, 2003) and also PLCFRS

parsing (Kallmeyer and Maier, 2010). Our exper-

iments have shown that a combination of three

splits for the PTB annotation improved perfor-

mance considerably: S nodes are relabeled to

SWH if a wh-element is extracted from the sen-

tence. In order to make this split more effec-

tive, SBAR nodes that have only one child after

transformation to the discontinuous format are re-

moved. VP nodes are relabeled to VPHINF if their

head is labeled VB, to VPHTO if their head is la-

beled TO and to VPHPART if their head is labeled

VBN or VBG. S nodes rooting infinitival clauses

(head child labeled VPHINF or VPHTO) are rela-

beled to SINF.

5 Evaluation

We use the Wall Street Journal sections 1-22 of the

Penn Treebank (version 2.0) as training data and

sections 23-24 as test data. Due to time constraints

and the complexity of PLCFRS parsing, sentences

with more than 25 tokens (not counting null ele-

ments) are excluded, resulting in 25801 training

sentences and 2233 test sentences. After a small

number of corrections to the annotation, concern-

ing chiefly wrong indices and missing PRN nodes,

we create discontinuous versions of the training

and test set by carrying out the reattachment op-

erations described in Section 3 while also keep-

ing context-free versions. All four sets are then

preprocessed by removing all (remaining) indices,

null elements and empty constituents. We call the

resulting context-free training and test set Tr and

Te , and the resulting discontinuous training and

test set Tr ′ and Te
′.

5.1 EVALB-Style Evaluation

Since the structure in Te
′ encodes local as well

as non-local dependencies, it serves as our pri-

mary gold standard. In a first step, we use

the standard EVALB metric, generalized to trees

with discontinuous constituents as in Maier and

Kallmeyer (2010), to measure how much of the

structure in the gold standard is captured by differ-

ent parsers. We compare Maier and Kallmeyer’s

parser trained on Tr
′ (resulting in a 3-PLCFRS)

with three parsers that do not produce discon-

tinuous structures: the Berkeley parser (Petrov

et al., 2006; Petrov and Klein, 2007) trained on

Tr using our manual category splits but no au-

tomatic splitting/merging/smoothing, the Berke-

ley parser trained on Tr using its default setting

of six iterations of split/merge/smooth, and Maier

and Kallmeyer’s parser with a grammar extracted

from Tr (a 1-PLCFRS, i.e. a PCFG). The upper

half of Table 2 shows the results. For comparison,

we also evaluated the three context-free parsers on

the untransformed context-free test set Te. These

figures are given in the lower half of the table. For

Maier and Kallmeyer’s parser, the number of rules

in the grammar before and after binarizing is also

given, as well as the number of items created dur-

ing parsing as an indicator of parsing complexity.

Across these experiments, the most crucial

factor for parsing accuracy seems to be split-

ting/merging/smoothing. As the comparison be-

tween the two parsing experiments with the Berke-

ley parser shows, this technique is key to achieving

its state-of-the-art results. We plan to transfer this

technique to discontinuous constituent parsing in

future work. For now, we must compare discontin-

uous to context-free constituent parsing on a level

below the state of the art. Comparison between

the two experiments with Maier and Kallmeyer’s

parser shows that it works with about the same

accuracy when trained and tested on discontinu-

ous data as when trained and tested on context-

free data, although parsing complexity is consid-

erably higher in the discontinuous experiment as

evidenced by the number of items produced. Note

that scores would presumably be lower if sen-

tences with more than 25 tokens were included.

Even when trained on the context-free data,

both parsers get most of the structure in Te
′

right since only a relatively small fraction of con-

stituents is discontinuous. However, for those

test sentences that do contain discontinuous con-

stituents (Te ′D), context-free parsers fare much

worse than for sentences that do not (Te ′C). For

Maier and Kallmeyer’s parser trained on Tr
′ they

seem to be only slightly harder to parse. Although

its scores for Te ′D with discontinuous parsing are

lower than for TeD with context-free parsing, the

former may be considered a better parse result

than the latter since the Te
′

D gold standard con-

110

Parser Berkeley Maier&Kallmeyer

Training set Tr Tr Tr Tr
′

Split/merge 6 it. man. man. man.

Test set

Te
′

LP 87.29 72.86 78.13 80.36

LR 86.89 67.88 74.60 77.61

LF1 87.09 70.28 76.33 78.96

UP 90.40 77.70 82.59 83.74

UR 89.98 72.39 78.86 80.00

UF1 90.19 74.95 80.68 82.29

Te
′

C

LP 89.43 74.55 79.97 80.66

LR 89.37 69.75 76.57 77.81

LF1 89.40 72.07 78.23 79.21

UP 91.85 78.63 83.91 83.95

UR 91.78 73.57 80.34 80.99

UF1 91.82 76.02 82.09 82.44

Te
′

D

LP 77.06 64.76 69.42 78.90

LR 75.31 59.14 65.44 76.61

LF1 76.17 61.82 67.37 77.74

UP 83.48 73.23 76.31 82.77

UR 81.58 66.88 71.93 80.37

UF1 82.52 69.91 74.06 81.55

Te

LP 89.82 74.88 80.37

-

LR 89.64 69.94 76.94

LF1 89.73 72.32 78.61

UP 91.89 78.80 83.91

UR 91.70 73.60 80.33

UF1 91.80 76.11 82.08

TeC

LP 89.90 74.94 80.36

-

LR 89.85 70.12 76.95

LF1 89.88 72.45 78.62

UP 91.90 78.63 83.92

UR 91.84 73.57 80.36

UF1 91.87 76.02 82.10

TeD

LP 89.43 74.58 80.40

-

LR 88.64 69.08 76.87

LF1 89.03 71.73 78.60

UP 91.86 79.61 83.85

UR 91.05 73.74 80.16

UF1 91.46 76.56 81.96

Rules 8892 9761

Bin. rules 27809 29218

Items 580M 1056M

Table 2: EVALB-style evaluation of parsing experi-

ments (scores in %). Tr and Te are the context-free

training and test sets, Tr ′ and Te
′ the discontinuous

transformed versions. The D and C subscripts indi-

cate the subsets of the test sets containing the sentences

that actually have (D) resp. do not have (C) one or

more discontinuities inTe ′. ForMaier and Kallmeyer’s

parser, the number of rules in the unbinarized and bi-

narized grammar as well as the number of parse items

produced is given.

Parser Maier&Kallmeyer

Training set Tr
′′

Split/merge man.

Test set

Te
′′

LP 80.71

LR 77.85

LF1 79.26

UP 84.07

UR 81.09

UF1 82.55

Te
′′

C

LP 80.82

LR 77.90

LF1 79.33

UP 84.12

UR 81.07

UF1 82.57

Te
′′

D

LP 78.87

LR 76.38

LF1 77.60

UP 82.49

UR 79.88

UF1 81.16

Rules 9653

Bin. rules 29096

Items 852M

Table 3: Results of a second discontinuous parsing

experiment where *ICH* and *EXP* transformations

have been omitted in the transformation

tains information on non-local dependencies while

TeD does not.

5.2 Dependency Evaluation

In order to assess to what degree this is the case,

we perform a dependency evaluation (Lin, 1995),

first used for evaluating discontinuous constituent

parser output in Maier (2010). This method re-

quires a conversion of constituent trees to sets of

word-word dependencies. We use Lin’s depen-

dency conversion method, where each phrase is

represented by its lexical head. To determine the

head of each phrase, we use the head-finding al-

gorithm of Collins (1999), ordering the children

of each node by leftmost dominated terminal.

Under this standard dependency conversion

method, the transformation described in Section 3

introduces new word-word (head-argument/head-

adjunct) dependencies that are relevant to seman-

tic interpretation. Word-word dependencies lost in

the transformation are not normally relevant since

they result from attachment of phrases outside of

the domains of their heads. We therefore choose

Te
′ as the gold standard against which to eval-

uate both context-free and discontinuous parsing

results. Table 4 shows that discontinuous parsing

as compared to context-free parsing boosts the un-

labeled attachment score (i.e. recall on word-word

dependencies) slightly for local dependencies and

considerably for non-local dependencies. The lat-

111

Figure 8: Failure to recognize the discontinuous NP

phone calls from nervous shareholders

Figure 9: Correct parse of a deeply embedded moved

wh-phrase

ter are broken down by type as in Section 3.

Dependency evaluation also allows a di-

rect comparison with state-of-the-art dependency

parsers. In Table 4 we give results for MST-

Parser (McDonald and Pereira, 2006) trained on

two dependency versions of Tr ′, converted from

constituents to dependencies once without depen-

dency labels and once with dependency labels us-

ing the method of Hall and Nivre (2008). It can

be seen that MSTParser recognizes a fair percent-

age of even the difficult *ICH* and *EXP* type

dependencies (cf. Section 5.3) and that it has a

considerably better overall score. We expect that

this gap can be bridged by optimizing Maier and

Kallmeyer’s parser with techniques successfully

used for context-free constituent parsing as out-

lined above, but this remains to be proven experi-

mentally.

5.3 A Closer Look at the Parses

Further inspection of the parse trees produced in

the discontinuous experiment confirms that Maier

and Kallmeyer’s parser trained on Tr
′ correctly

analyzes the majority of the *T* and *T*-PRN

type discontinuities3 : wh-movement (108 of 129),

fronted quotations (129 of 142) and surrounding

arguments (22 of 31). Fronting apart from quo-

tations (0 of 6) and right-node raising (3 of 4)

seems too rare to allow for a meaningful assess-

ment. *ICH* and *EXP* type discontinuities are

almost never correctly parsed (2 of 30 resp. 2 of

14).

The latter suffer from massive attachment am-

biguity – attaching the right part of a discon-

tinuous constituent of this type locally as illus-

trated in Fig. 8 almost always leads to higher-

scoring parses in the current model. Augmenting

it with lexical information as is common in mod-

ern PCFG-based parsers could help to better re-

solve these and other attachment ambiguities. In

the present model, including discontinuous anno-

tation of *ICH* and *EXP* type dependencies

adds no value to the parser output and is even detri-

mental since grammar rules typically found with

them like NP(X,Y) →NP(X)SINF(Y) are used

by the parser in many falsely detected discontinu-

ities. We therefore conducted another experiment

with Maier and Kallmeyer’s parser using the train-

ing and test sets Tr ′′ and Te
′′. These are like Tr ′

and Te
′ except that *ICH* and *EXP* type de-

pendencies were not included in the transforma-

tion. This makes EVALB scores for the continu-

ous test trees rise slightly and parsing time drop

considerably due to the smaller number of discon-

tinuous rules (Table 3). However, a higher unla-

beled attachment score is not achieved by this (cf.

Table 4).

T type discontinuities are well recognized

presumably due to their strong correlations with

patterns like a wh-word followed by a sentence,

a sentence followed by another, a sentence inter-

rupted by another, and characteristic punctuation

in the case of fronted and discontinuous quota-

tions. Even correctly recognizing deeply embed-

ded attachment of wh-moved phrases as illustrated

in Fig. 9 poses no major problem. One of the prob-

lems that do exist is the many possible ways that a

sentence can be split into two parts as a surround-

ing quotation, resulting in many required S rules of

fan-out 2 and in sparse data. This problem could

3This excludes most cases of subject wh-movement which

accounts for some of the *T* type dependencies but does not

induce discontinuities.

112

gold Maier&Kallmeyer MSTParser

Tr Tr
′

Tr
′′

Tr
′

Tr
′

unlabeled Hall&Nivre

T 436 134 386 380 374 379

T-PRN 32 8 26 26 25 26

ICH 31 3 5 4 10 9

EXP 18 0 1 0 8 9

RNR 4 2 3 3 3 3

other 35918 29785 30252 30241 32452 32457

total 36439 29932 30673 30654 32872 32883

82.14% 84.18% 84.12% 90.21% 90.24%

Table 4: Unlabeled attachment scores in dependency evaluation on the dependency-convertedTe ′

be tackled by factoring rules into an expansion

part (what RHS categories) and a separation part

(where the gap is), similar to the factorization pro-

posed in Levy (2005, Section 4.8). Note also that

there is nothing in the present model to prevent

LCFRS rules associated with different construc-

tions, such as wh-movement and fronting, from re-

combining, producing nonsensical parses in a few

cases. Finally, it should be noted that attaching

commas surrounding parentheses inside surround-

ing quotations rather than to the PRN node could

reduce the fan-out of the grammar from 3 to 2,

benefiting parsing efficiency.

6 Conclusion and Future Work

This paper pursues an approach of direct pars-

ing of discontinuous constituents. We have ap-

plied data-driven PLCFRS parsing to English. To

this end, we have first transformed the trace-based

Penn Treebank annotation format into a format

with crossing branches and explicit discontinu-

ous constituents. The latter can then be used for

PLCFRS parsing.

Our evaluation has shown that, compared to

PCFG parsing with the same techniques, PLCFRS

parsing yields slightly better results. In particu-

lar when evaluating only the parsing results con-

cerning long-distance dependencies, the PLCFRS

approach with discontinuous constituents is able

to recognize about 88% of the dependencies of

type *T* and *T*-PRN. Even the results concern-

ing local dependencies, which can in principle be

captured by a CFG-based model, are better with

the PLCFRS model. This demonstrates that by

discarding information on non-local dependencies

the PCFG model loses important information on

syntactic dependencies in general.

Our results show that data-driven PLCFRS

parsing is a promising and feasible strategy not

only for so-called free word order languages such

as German but also for English where we obtain

competitive parsing results.

However, our experiments also reveal some

shortcomings of the chosen probabilistic model.

A general problem is that some decisions, for in-

stance on PP-attachments, cannot be taken solely

based on the syntactic information we have used.

This problem occurs independent from the choice

of PLCFRS. A careful integration of more lexical

information can help to overcome this problem. A

shortcoming that is specific to LCFRS is the as-

sumption that the expansions of the same category

with different fan-outs (for instance a continuous

VP and a discontinuous VP) are independent from

each other. This bears two problems. Firstly, since

categories of higher fan-out are rather rare, we

have a sparse data problem. Secondly, the inde-

pendence assumption is probably wrong. In order

to tackle this problem, we plan to develop mod-

els that factor rules into an expansion part and a

separating part that introduces gaps. We leave this

issue for future work.

Acknowledgments

We would like to thank Wolfgang Maier for fruit-

ful discussions and help with implementation, and

the anonymous reviewers for their valuable sug-

gestions on improving the paper.

References

Ann Bies, Mark Ferguson, Karen Katz, and Robert

MacIntyre. 1995. Bracketing Guidelines for

Treebank II Style Penn Treebank Project. Uni-

versity of Pennsylvania.

Pierre Boullier. 1998. A Proposal for a Natu-

113

ral Language Processing Syntactic Backbone.

Technical Report 3342, INRIA.

Pierre Boullier. 2000. Range Concatenation

Grammars. In Proceedings of the Sixth In-

ternational Workshop on Parsing Technologies

(IWPT2000), pages 53–64, Trento, Italy, Febru-

ary.

Aoife Cahill, Michael Burke, Ruth O’Donovan,

Josef Van Genabith, and Andy Way. 2004.

Long-distance dependency resolution in auto-

matically acquired wide-coverage PCFG-based

LFG approximations. In Proceedings of the

42nd Meeting of the Association for Compu-

tational Linguistics (ACL’04), Main Volume,

pages 319–326, Barcelona, Spain, July.

Richard Campbell. 2004. Using linguistic princi-

ples to recover empty categories. In Proceed-

ings of the 42nd Meeting of the Association for

Computational Linguistics (ACL’04), Main Vol-

ume, pages 645–652, Barcelona, Spain, July.

Michael Collins. 1999. Head-Driven Statistical

Models for Natural Language Parsing. Ph.D.

thesis, University of Pennsylvania.

Pétr Dienes and Amit Dubey. 2003. Deep syntac-

tic processing by combining shallow methods.

In Proceedings of the 41st Annual Meeting of

the Association for Computational Linguistics,

pages 431–438, Sapporo, Japan, July. Associa-

tion for Computational Linguistics.

Ryan Gabbard, Seth Kulick, and Mitchell Marcus.

2006. Fully parsing the Penn Treebank. In Pro-

ceedings of the Human Language Technology

Conference of the NAACL, Main Conference,

pages 184–191, New York City, USA, June. As-

sociation for Computational Linguistics.

Carlos Gómez-Rodrı́guez, Marco Kuhlmann,

Giorgio Satta, and David Weir. 2009. Optimal

reduction of rule length in linear context-free

rewriting systems. In Proceedings of the North

American Chapter of the Association for Com-

putational Linguistics - Human Language Tech-

nologies Conference (NAACL’09:HLT), pages

539–547, Boulder, Colorado.

Johan Hall and Joakim Nivre. 2008. Parsing

discontinuous phrase structure with grammati-

cal functions. In Proceedings of the 6th Inter-

national Conference on Natural Language Pro-

cessing (GoTAL), pages 169–180.

Julia Hockenmaier. 2003. Data and models for

statistical parsing with Combinatory Categorial

Grammar. Ph.D. thesis, School of Informatics,

University of Edinburgh.

Tom Holan, Vladislav Kubo, Karel Oliva, and

Martin Pltek. 1998. Two useful measures

of word order complexity. In Workshop on

Processing of Dependency-Based Grammars,

pages 21–29, Montreal, Canada.

Valentin Jijkoun and Maarten de Rijke. 2004. En-

riching the output of a parser using memory-

based learning. In Proceedings of the 42nd

Meeting of the Association for Computational

Linguistics (ACL’04), Main Volume, pages 311–

318, Barcelona, Spain, July.

Mark Johnson. 2002. A simple pattern-matching

algorithm for recovering empty nodes and their

antecedents. In Proceedings of 40th An-

nual Meeting of the Association for Compu-

tational Linguistics, pages 136–143, Philadel-

phia, Pennsylvania, USA, July. Association for

Computational Linguistics.

Laura Kallmeyer and Wolfgang Maier. 2010.

Data-driven parsing with probabilistic Linear

Context-Free Rewriting Systems. In Pro-

ceedings of the 23rd International Conference

on Computational Linguistics (COLING 2010),

Beijing, China.

Laura Kallmeyer, Wolfgang Maier, and Giorgio

Satta. 2009. Synchronous rewriting in tree-

banks. In Proceedings of IWPT 2009.

Laura Kallmeyer. 2010. Parsing Beyond Context-

Free Grammars. Springer, Berlin. Textbook.

Yuki Kato, Hiroyuki Seki, and Tadao Kasami.

2006. Stochastic multiple context-free gram-

mar for RNA pseudoknot modeling. In Pro-

ceedings of The Eighth International Workshop

on Tree Adjoining Grammar and Related For-

malisms (TAG+8), pages 57–64, Sydney, Aus-

tralia, July.

Dan Klein and Christopher D. Manning. 2003.

Accurate unlexicalized parsing. In Proceedings

of the 41st Annual Meeting of the Association

for Computational Linguistics, pages 423–430,

114

Sapporo, Japan, July. Association for Computa-

tional Linguistics.

Marco Kuhlmann and Giorgio Satta. 2009. Tree-

bank grammar techniques for non-projective

dependency parsing. In Proceedings of EACL.

Roger Levy and Christopher Manning. 2004.

Deep dependencies from context-free statistical

parsers: Correcting the surface dependency ap-

proximation. In Proceedings of the 42nd Meet-

ing of the Association for Computational Lin-

guistics (ACL’04), Main Volume, pages 327–

334, Barcelona, Spain, July.

Roger Levy. 2005. Probabilistic models of word

order and syntactic discontinuity. Ph.D. thesis,

Stanford University.

Dekang Lin. 1995. A dependency-based method

for evaluating broad-coverage parsers. In Pro-

ceedings of the Fourteenth International Joint

Conference on Artificial Intelligence (IJCAI

1995), Montreal, Quebec, Canada.

Wolfgang Maier and Laura Kallmeyer. 2010. Dis-

continuity and non-projectivity: Using mildly

context-sensitive formalisms for data-driven

parsing. In Proceedings of the Tenth Inter-

national Workshop on Tree Adjoining Gram-

mars and Related Formalisms (TAG+10), New

Haven.

Wolfgang Maier and Timm Lichte. 2009. Charac-

terizing discontinuity in constituent treebanks.

In Proceedings of Formal Grammar 2009, Bor-

deaux, France, July. To appear in Lecture Notes

in Computer Science, Springer.

Wolfgang Maier and Anders Søgaard. 2008.

Treebanks and mild context-sensitivity. In

Philippe de Groote, editor, Proceedings of the

13th Conference on Formal Grammar (FG-

2008), pages 61–76, Hamburg, Germany. CSLI

Publications.

Wolfgang Maier. 2010. Direct parsing of discon-

tinuous constituents in German. In Proceedings

of the NAACLHLT 2010 First Workshop on Sta-

tistical Parsing of Morphologically-Rich Lan-

guages, pages 58–66, Los Angeles, CA, USA,

June. Association for Computational Linguis-

tics.

Mitchell Marcus, Grace Kim, Mary Ann

Marcinkiewicz, Robert MacIntyre, Ann Bies,

Mark Ferguson, Karen Katz, and Britta Schas-

berger. 1994. The penn treebank: annotating

predicate argument structure. In HLT ’94: Pro-

ceedings of the workshop on Human Language

Technology, pages 114–119, Morristown,

NJ, USA. Association for Computational

Linguistics.

RyanMcDonald and Fernando Pereira. 2006. On-

line learning of approximate dependency pars-

ing algorithms. In 11th Conference of the Euro-

pean Chapter of the Association for Computa-

tional Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov,

and Jan Hajic. 2005. Non-projective depen-

dency parsing using spanning tree algorithms.

In Proceedings of Human Language Technol-

ogy Conference and Conference on Empiri-

cal Methods in Natural Language Processing,

pages 523–530, Vancouver, British Columbia,

Canada, October. Association for Computa-

tional Linguistics.

Mark-Jan Nederhof. 2003. Weighted Deductive

Parsing and Knuth’s Algorithm. Computational

Linguistics, 29(1):135–143.

Joakim Nivre. 2006. Constraints on non-

projective dependency parsing. In 11th Con-

ference of the European Chapter of the Associ-

ation for Computational Linguistics, pages 73–

80, Trento, Italy. Association for Computational

Linguistics.

Joakim Nivre. 2009. Non-projective dependency

parsing in expected linear time. In Proceed-

ings of the Joint Conference of the 47th An-

nual Meeting of the ACL and the 4th Interna-

tional Joint Conference on Natural Language

Processing of the AFNLP, pages 351–359, Sun-

tec, Singapore, August. Association for Com-

putational Linguistics.

Slav Petrov and Dan Klein. 2007. Improved in-

ference for unlexicalized parsing. In Human

Language Technologies 2007: The Conference

of the North American Chapter of the Associ-

ation for Computational Linguistics; Proceed-

ings of the Main Conference, pages 404–411,

Rochester, New York, April. Association for

Computational Linguistics.

115

Slav Petrov, Leon Barrett, Romain Thibaux, and

Dan Klein. 2006. Learning accurate, com-

pact, and interpretable tree annotation. In Pro-

ceedings of the 21st International Conference

on Computational Linguistics and 44th Annual

Meeting of the Association for Computational

Linguistics, pages 433–440, Sydney, Australia,

July. Association for Computational Linguis-

tics.

Oliver Plaehn. 2004. Computing the most prob-

able parse for a discontinuous phrase-structure

grammar. In New developments in parsing tech-

nology. Kluwer.

Hiroyuki Seki, Takahashi Matsumura, Mamoru

Fujii, and Tadao Kasami. 1991. On multiple

context-free grammars. Theoretical Computer

Science, 88(2):191–229.

K. Vijay-Shanker, David J. Weir, and Aravind K.

Joshi. 1987. Characterizing structural de-

scriptions produced by various grammatical for-

malisms. In Proceedings of ACL, Stanford.

116

