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Abstract

The problem of finding the most proba-
ble string for a distribution generated by a
weighted finite automaton or a probabilistic
grammar is related to a number of important
questions: computing the distance between
two distributions or finding the best transla-
tion (the most probable one) given a prob-
abilistic finite state transducer. The prob-
lem is undecidable with general weights and
is N'P-hard if the automaton is probabilis-
tic. We give a pseudo-polynomial algorithm
which computes the most probable string in
time polynomial in the inverse of the proba-
bility of the most probable string itself, both
for probabilistic finite automata and proba-
bilistic context-free grammars. We also give
a randomised algorithm solving the same
problem.

Introduction

ua. es

context-free grammars. Goodman (1998) showed
that, in the case of Mms, the problem of finding
whether the most most probable string of a given
lengthn is at leasp is N’P-Complete. Moreover,

he points that his technique cannot be applied to
show theNP-completeness of the problem when
n is not prespecified because the most probable
string can be exponentially long. Casacuberta
and de la Higuera (2000) proved the problem to
be A"P-hard, using techniques developed for lin-
guistic decoding (Casacuberta and de la Higuera,
1999): their result holds for probabilistic finite
state automata and for probabilistic transducers
even when these are acyclic: in the transducer case
the related (and possibly more important) ques-
tion is that of finding the most probable transla-
tion. The problem was also addressed with mo-
tivations in bioinformatics by Lyngsg and Peder-
sen (2002). Their technique relies on reductions
from maximal cliques. As an important corol-
lary of their hardness results they prove that the

When using probabilistic machines to define dis-L1 and L« distances between distributions repre-
tributions over sets of strings, the usual and bestented by HimMs are also hard to compute: indeed
studied problems are those of parsing and of findbeing able to compute such distances would en-
ing the most probable explanation of a givenable to find (as a side product) the most probable
string (the most probable parse). These problem&tring. This result was then applied on probabilis-
when dealing with probabilistic (generating) finite tic finite automata in (Cortes et al., 2006; Cortes et
state automata, hidden Markov Models\Ms) or ~ @l., 2007) and thé, distance, for each oddwas
probabilistic context-free grammars depend on th@roved to be intractable.
ambiguity of the machine: indeed, if there can be An essential consequence of these results is that
different parses for the same string, then the probfinding the most probable translation given some
ability of the string is obtained by summing over probabilistic (non deterministic) finite state trans-
the different parses. ducer is also at least as hard. It can be shown
A more difficult problem we study here is that (Casacuberta and de la Higuera, 1999; Vidal et al.,
of finding the most probable string; this string is 2005) that solving this problem consists in finding
also known as theonsensustring. the most probable string inside the set of all ac-
The problem of finding the most probable stringceptable translations, and this set is structured as a
was first addressed in the computational |inguisprobabilisticfinite automaton. Therefore, the most
tics community by Sima’an (1996): he proved theprobable translation problem is al86P-hard.
problem to be\/P-hard if we consider tree gram-  On the other hand, in the framework of multi-
mars, and as a corollary he gave the same result f@licity automata or oacceptingprobabilistic finite
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automata (also called Rabin automata), the probtribution over X*. The probability of a string
lem of the existence of a string whose weight isz € >* under the distributiorD is denoted as
above (or under) a specific threshold is known toPrp(x) and must verify <. Prp(z) = 1.
be undecidable (Blondel and Canterini, 2003). In If the distribution is modelled by some syntactic
the case where the weight of each individual edgenachineM, the probability ofr according to the
is between 0 and 1, the score can be interpreted ggobability distribution defined by is denoted
a probability. The differences reside in the fact thatPr 4 (x). The distribution modelled by a machine
in multiplicity automata the sum of the probabili- M will be denoted byD 4, and simplified taD if
ties of all strings does not need to be bounded; thithe context is not ambiguous.
is also the case for Rabin automata, as each prob- If L is alanguage (thus a set of strings, included
ability corresponds to the probability for a givenin ¥*), andD a distribution ove’™*, Prp(L) =
string to belong to the language. Y wer Pro(z).

In this paper we attempt to better understand .
the status of the problem and provide algorithms2-2 ~Probabilistic Finite Automata
which find a string of probability higher than a The probabilistic finite automata (R) (Paz,
given threshold in time polynomial in the inverse 1971) are generative devices:

of this threshold. These algorithms give us pragpefinition 1. A Probabilistic Finite Automaton

matic answers to the consensus string problem ggra) is a tupleA = (£,Q, S, F,d), where:
itis possible to use the probabilistic machine to de-

fine a threshold and to use our algorithms to find, - ¥ is the alphabet;
in this way, the most probable string. B

We will first (Section 2) give the different defi- -@={a. ..
nitions concerning automata theory, distributions . g . ¢ — R* N[0, 1] (initial probabilities);
over strings and complexity theory. In Section
3 we show that we can compute the most prob- - F': Q@ — R* N[0, 1] (final probabilities);
able string in time polynomial in the inverse of _ 4o
the probability of this most probable string but in =~ ~ 0 Q x (2 U ) x @ e R" s a

. . transition function; the function is complete:
the bounded caseé.,e. when we are looking for 5 " — 0 can be interoreted o
a string of length smaller than some given bound. (q’a.’.q) = Jea , € Interpre e" as no
: transition fromg to ¢’ labelled witha”.

In Section 4 we show how we can compute such
bounds. In Section 5 the algorithms are experi- 5, d and F are functions such that:
mentally compared and we conclude in Section 6.

,q|Q‘} is a finite set ofstates

L . S(q) =1, 1
2 Definitions and Notations qez;;) @ )
2.1 Languages and Distributions andVq € Q,
Let [n] denote the sefl,...,n} for eachn € N. ,
An alphabetX. is a finite non-empty set of sym- F(q) + Z (g a,q) =1 (2)
bols calledletters A string w over ¥ is a fi- a€XUA}, ¢'€Q

nite sequencev = aj ...a, Of letters. Let|w| _

denote the length ofo. In this case we have L&t = € X% ll4(z) is the set of all
lw| = |a1...an] = n. The empty stringis paths accepting:: a path is a sequence =
denoted by\. When decomposing a string into %1412 - - Tngi, Wherez = wy-- -, z; €
substrings, we will writew = w ...w, where > Y {A}, andVj < n,3Jp; # 0 such that

Vi € [n] w; € O*. 5(qij71,xj, qi].) = p;. The probability of the path
Letters will be indicated bya,b,c,..., and TS

strings byu, v, . . ., z. S(ai) - ] pi- Flan)
We denote by:* the set of all strings, by" j€ln]

the set of those of length, by <" (respectively And the probability of the string: is obtained

¥=n, ¥.21) the set of those of length less than by summing over all the paths i 4(x). Note

(respectively at mosi, at leastn). that this may result in an infinite sum because of
A probabilistic languageD is a probability dis-  A-transitions (and more problematicallycycles.
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An effective computation can be done by means of
the Forward (or Backward) algorithm (Vidal et al., ~
2005). 3" Prae) =" SMMiLM;F
TEX* =0
= SM;(I — Mx) 'M3F =1

where I is the identity matrix andMy =
Zaez M,. Note that as a consequence of that,
(I — My) is a non singular matrix.

2.3 Hidden Markov Models

Hidden Markov models (Mms) (Rabiner, 1989;
Jelinek, 1998) are finite state machines defined by
Alternatively, a FA (with n states) is given (1) a finite set of states, (2) a probabilistic transi-
when the following matrices are known: tion function, (3) a distribution over initial states,

and (4) an output function.

An HMM generates a string by visiting (in a
hidden way) states and outputting values when in
those states. Typical problems include finding the
most probable path corresponding to a particular
output (usually solved by the Viterbi algorithm).
Here the question of finding the most probable

e F € R™! represents the probabilities of Output has been addressed by Lyngsg and Peder-

ending in each statd[i]=F(g;). sen (2002). In this paper the authors prove that the
hardness of this problem implies that it is also hard

Given a stringz = a;---a; we compute tocompute certain distances between two distribu-
Pry(z) as: tions given by Hims.

Note that to obtain a distribution ovét* and
|| not each™” the authors introduce a unique final
Pra(z) = SH [MiM,,] M{F (3) state in which, once reached, the machine halts.
i=1 An alternative often used is to introduce a special
symbol ¢) and to only consider the strings termi-
nating withg: the distribution is then ovexr* f.
Equivalence results betweenmMitis and BA

M;=> M{=(I-M,)" can be found in (Vidal et al., 2005).
i=0

Figure 1: Graphical representation of eAP

e S € R represents the probabilities of
starting at each stat&]i|=5(¢;);

e M = {M, € R""|a € X U{\}} repre-
sents the transition probabilitiedd,[i, j] =
5(q27a7q])1

where

, _ 2.4 Probabilistic Context-free Grammars
Then, equations 1 and 2 can be written as:

Definition 2. A probabilistic context-free gram-
S1=1 (4) mar (R°FG) G is a quintuple< X,V R, P, N >
where ¥ is a finite alphabet (of terminal sym-
Z Mcl+F=1 ) bols), V is a finite alphabet (of variables or non-
€A} terminals), R € V x (X U V)* is a finite set
of production rules, andV (€ V) is the axiom.

wherel € R is such thav’ 1[i] = 1. P: R — R is the probability function.

Note that
A PCFGis used to generate strings by rewriting

Pr(X) = SM,F € [0,1] (6) iteratively the non terminals in the string, start-

ing from the axiom. A string may be obtained

This implies thaiVI§ should be a non singular by different derivations. In this case the problem

matrix. is called ambiguity. Parsing with adRG is usu-
Moreover, in order foPr 4 to define a distribu- ally done by adapting the Earley or the&x€ algo-
tion probability over:* it is required that: rithms.
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Particularly appealing is a very efficient exten-
sion of the Early algorithm due to Stolcke (1995)
that can compute:

1,0.5

¢ the probability of a given string: generated
by a RCFG G,

¢ the single most probable parse far

e the probability thatr occurs as a prefix of Figure 4: Corresponding normalize@#for the trans-
some string generated Iy, which we denote lations ofab. The most probable strind.{1) has prob-
by Prg(x ¥*). ability 0.54.

2.5 Probabilistic Transducers

There can be different definitions of probabilistic - @ is a finite set ofstates these will be la-
transducers. We use the one from (Vidal et al., belledqy,. . .,qq;

2005): - S :Q — R*TNJ0,1] (initial probabilities);

b ::00,0.2

- F: Q — R™ n|[0,1] (halting probabilities);

- Fe@x(BU{A}) xT*xQ@Q x Rt isthe set
of transitions;

S, 6 and F' are functions such that:

Figure 2: Transducer. )06 Z S(q) =1,
q€eQ

andvq € Q,

Flg+ >, »p:(gewd,p)eE=1
ac€XU{A}, ¢€Q

Letx € ¥* andy € I'*. LetIly(z,y) be the
set of all paths acceptingr,y): a path is a se-
quencer = Gio (71, Y1), (T2,92) - - - (Tns Yn)Gin
wherer = x1---x, andy = y; - - - yp, With Vj €
[n], z; € LU{A} andy; € I'*, andVj € [n], Ip;,
such that(q;; ., x;,yj,q:,,pi;) € E. The proba-
bility of the path is

Figure 3: Corresponding non normalizegAPfor the

translations ofab. Each state indicates which input A - .

prefix has been read. Between the brackets, on ths tran- Staio) H Pij Flgi.)

sitions, the input symbol justifying the transition. jetrd

And the probability of the translation pafr, y)

Probabilistic finite-state transduce(®PrsT) are  is obtained by summing over all the paths in

similar to FrA, but in this case two different alpha- 7 (z,y).

bets (source. and targefl’) are involved. Each ~ Note that the probability ofy given x (the

transition in a RST has attached a symbol from probability ofy as a translation of, denoted as

the source alphabet (0r) and a string (possible Prr(y|x))is %.

empty string) of symbols from the target alphabet. Probabilistic finite state transducers are used as

PFsTs can be viewed as graphs, as for example imodels for the thestochastic translation problem

Figure 3. of a source senteneec ¥* that can be defined as

Definition 3 (Probabilistic transducer)A proba- the search for a target stringthat:

bilistic finite statetransducel(PFsT) is a 6-tuple

(Q,%,T, S, E, F) such that; argmax Pr(y | ) = argmax Pr(y, x).
? ) ) ) 9 . ,y y
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The problem of finding this optimal translation bits to solve a problem. Kolves a decision prob-
is proved to be av’P-hard by Casacuberta and delem with one-sided erraif given any valuej and
la Higuera (2000). any instance, the algorithm:

An approximate solution to the stochastic trans-
lation can be computed in polynomial time by us-
ing an algorithm similar to the Viterbi algorithm
for pI’ObabiIiStiC finite-state automata (Casacu- e makes an error in at moéttases when work-
berta, 1995; Pig and Casacuberta, 2001). ing on a positive instance.

The stochastic translation problem is compu-
tationally tractable in particular cases. If the!fsuch an algorithm exists, the problem is said to
PFST7 is non-ambiguous in the translation senseP@long to the clas®P. It should be noticed that
(Vz € ¥* there are not two target sentencesdY running such a randomized algorithitimes
y,y' € T*,y # v/, such thatPr(z,y) > 0 and _the error dec.reases.exponentially \_Mizl:hif a pos-
Prr(z,y') > 0), the translation problem is poly- itive answer is obtained, then the instance had to
nomial. If the ST 7 is simply non-ambiguous be positive, and the probability of not obtaining a
(Vz € ¥* there are not two different paths that positive answer (for a positive instance)rirtries
deal with (z,y) and with probability different to is less thar™. A randomized algorithm which
zero), the translation problem is also polynomia|.50|Ve a decision problem in the conditions above
In both cases, the computation can be carried odg called aMonte Carlo algorithm
using an adequate version of the Viterbi algorithm When a decision problem depends on an in-
(Vidal et al., 2005). stance containing integer numbers, the fair (and

Alternative types of PSTs have been intro- logical) encoding is in base 2. If the problem ad-

duced and applied with success in different areadits & Polynomial algorithm whenever the integers
of machine translation. In (Mohri, 1997; Mohri &€ encoded in base 1, the problem (and the algo-

et al., 2000)weighted finite-state transducease "thm) are said to beseudo-polynomial
studied.

e makes no error on a negative instance of a
problem (it always answers no);

2.7 About Sampling

One advantage of usingrFR or similar devices is
that they can be effectively used to develop ran-
domised algorithms. But when generating ran-
We only give here some basic definitions and redom strings, the fact that the length of these is un-
sults from complexity theory. Alecision prob- pounded is an issue. Therefore the termination of
lemis one whose answer teue or false. A deci-  the algorithm might only be trugith probability
sion problem igdlecidableif there is an algorithm  1: this means that the probability of an infinite run,
which, given any specific instance, computes coreven if it cannot be discarded, is of null measure.

2.6 Complexity Classes and Decision
Problems

rectly the answer and halts. It immdecidableif In the work of Ben-David et al. (1992) which
not. A decision problem is i if there is a poly-  extends Levin's original definitions from (Levin,
nomial time algorithm that solves it. 1986), a distribution ovef0,1}* is considered

A decision problem igV"P-completefitis both  samplableif it is generated by a randomized al-
NP-hard and in the clas8/P: in this case a gorithm that runs in time polynomial in the length
polynomial time non-deterministic algorithm ex- of its output.
ists that always solves this problem. Alterna- We will require a stronger condition to be met.
tively, a problem is in\/P if there exists goly- We want a distribution represented by some ma-
nomial certificatefor it. A polynomial certificate chine M to be sampable in a bounded waig,
for an instancel is a short (polynomial length) we require that there is a randomized algorithm
string which when associated to instardicean be  which, when given a bound, will either return
checked in polynomial time to confirm that the in- any stringw in = with probability Pr(w) or
stance is indeed positive. A problemASP-hard  returnfail with probability Pr((3>?). Further-
if it is at least as hard as the satisfiability problemmore, the algorithm should run in time polynomial
(SaT), or either of the otheAN/P-complete prob- inb.
lems (Garey and Johnson, 1979). As we also need parsing to take place in polyno-

A randomized algorithm makes use of randommial time, we will say that a machingt is stronly
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sampabléf 3 Solving BMPS

In this section we attempt to solve the bounded

case. We first solve it in a randomised way, then

propose an algorithm that will work each time

the prefix probabilities can be computed. This is

e one can sampl®, in a bounded way. the case for PA and for probabilistic context free
grammars.

e One can parse an input stringby M and
return Pr () in time polynomial in|x|;

2.8 The Probl
8 The Problem 3.1 Solving by Sampling

The question is to find the most probable string inLet us consider a class sfrongly sampablema-
a probabilistic language. An alternative name tOxpines.

this string is theconsensustring. Then BuPs, for this class, belongs B P:
Name: Consensus string (€ Theorem 1. If a machineM is strongly sampable,
Instance: A probabilistic machineV BmpPs can be solved by a Monte Carlo algorithm.

Question: Find in X* a string x such that

Vy e S* Pra(z) > Pru(y). Proof. The idea is that any stringwhose proba-

bility is at leastp, should appear (with high proba-
With the above problem we associate the fol-bility, at leastl —d) in a sufficiently large randomly
lowing decision problem: drawn sample (of size:), and have a relative fre-
quencyL of at least.
Algorithm 1 therefore draws this large enough
sample in a bounded way and then checks if any
of the more frequent strings (relative frequenjl;y

Name: Most probable string (M9
Instance: A probabilistic machineM, ap > 0
Question: Is there inX* a stringx such that

? .
Pru(z) 2 p° of at least?) has real probability at leagt
For example, if we consider therR from Fig- We use multiplicative Chernov bounds to com-
ure 1, the most probable stringds pute the probability that an arbitrary string whose

Note thaip is typically encoded as a fraction and probabilit); is at leasp has relative frequency;
that the complexity of our algorithms is to depend©f at least;:
on the size of the encodings, hencdc(g‘}o. f

The problem Mps is known to beANP-hard Pr(% < g) < 2¢7P/8
(Casacuberta and de la Higuera, 2000). In their
proof the reduction is from & and uses only SO for a value off < 2e~™#/% it is sufficient
acyclic FrA. There is a problem with Ms there  to draw a sample of sizer > 21n % in order to
is no bound, in general, over the length of thebe certain (with errof) that in a sample of size:
most probable string. Indeed, even for regular lan@ny probable string is in the sample with relative

guages, this string can be very long. In Section 4.4requency.L of at least.
such a construction is presented. We then only have to parse each string in the

sample which has relative frequency at leggb
e sure (within errod) thats is in the sample.

If there is no string with probability at leagt
the algorithm will returrfalse O

Of interest, therefore, is to study the case wher
the longest string can be bounded, with a boun
given as a separate argument to the problem:

Name: Bounded most probable string k<)

Instance: A probabilistic machine\, ap > 0, The complexity of the algorithm depends on

that of bounded sampling and of parsing. One can

an intege . S
Question: Is there inX<’ a stringz such that check that in the case offR, the generation is in
Pra(z) > »? O(b-log |X|) and the parsing (of a string of length

at mosth) is in O(b - |Q|?).

In complexity theory, numbers are to be en- _ o
coded in base 2. In BPs, it is necessary, for the 3-2 A Direct Computation in the Case of PFA
problem not to be trivially unsolvable, to consider When the machine is a probabilistic finite automa-
a unary encoding df, as strings of length up tb  ton, we can do a bit better by making use of simple
will have to be built. properties concerning probabilistic languages.
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Data: a machineM,p >0,b>0
Result w € ¥=° such thatPr v((w) > p,
falseif there is no suchw
begin
Map f;
m= In 5
repeat m times
w = bounded_sanpl e(M,b);
f [w]++;

—

oreachw: f[w] > & do
if Pra(w) > pthen
L return w;

Data: aPFA: A= (3,S,M,F),p >0,
b>0
Result w € ¥=° such thatPr 4(u) > p,
falseif there is no suchw
begin
QueueQ;
px = SF;
if py > pthen
L return py;

push( Q, (A, F));
while notenpty( Q) do

(w, V) =pop (Q);

~t fal foreach a € ¥ do
L return false V' = VM,:

Algorithm 1: Solving BvPs in the general if V'F > pthen

case L return V'F;
if Jw| <bandV'1 > pthen
| push( Q, (wa, V));

| return false
Algorithm 2: Solving Bvps for automata

We are given @ > 0 and a A A. Then we
have the following properties:

Property 1. Vu € X%, Pra(uX*) > Pry(u).

Property 2. For eachn > 0 there are at mosg—
stringsu in X" such thatPr 4 (u ¥*) > p.

Both proofs are straightforward and hold not e Complexity of (randomized) Algorithm 1 for
only for PFA but for all distributions. Notice that PFaisin (’)(% In 2-log |%|) to build the sam-
a stronger version of Property 2 is Property 3: ple andO(%f’ -1Q|?) to check the% most fre-
Property 3. If X is a set of strings such that (1) quent strings.

Vu € X, Pra(uX*) > pand (2) no string inX
is a prefix of another different string iX, then
| X] < ,%- Therefore,for the randomized algorithm to be

Analysis and complexity of Algorithm 2. The faster, the alphabet has to be very large. Experi-
idea of the algorithm is as follows. For each lengthments (see Section 5) show that this is rarely the
n compute the set of viable prefixes of length case.
and keep those Whose probablllty is at leasthe 3.4 Generalising to Other Machines
process goes on until either there are no more vi-
able prefixes or a valid string has been found. wa&Vhat is really important in Algorithm 2 is that the
use the fact thaPr 4 (ua ©*) and Pr 4(u) can be  different Pr(uX*) can be computed. If this is
computed fromPr4(u ¥*) provided we memo- @ case, the algorithm can be generalized and will
rize the value in each state (by a standard dynamigork with other types of machines. This is the
programming technique). Property 2 ensures thatase for context-free grammars (Stolcke, 1995).
at every moment at mogtvalid prefixes are open. ~ For classes which are strongly sampable, we

If all arithmetic operations are in constant time, Propose the more general Algorithm 3.

the complexity of the algorithm is i@(%).

« Complexity of Algorithm 2 is in0 (1=

4 More about the Bounds

3.3 Sampling Vs Exact Computing The question we now have to answer is: how do

BmPs can be solved with a randomized algorithmwe choose the bound? We are given some machine
(and with error at most) or by the direct Algo- M and a numbep > 0. We are looking for a
rithm 2. If we compare costs, and assuming thavalue n,, which is the smallest integer such that
bounded sampling a string can be done in timePr (z) > p = |z| < n,p. If we can compute
linear inb, and that all arithmetic operations take this bound we can run one of the algorithms from
constant time we have: the previous section.
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Data: a machineM, p > 0,b > 0 by A can be computed as:
Result w € ¥=° such thatPr v((w) > p,

falseif there is no suchw p=> iPra(
begin =0

QueueQ; N L

Pw = Pra(N); = ZZSMAME \F

if p, > pthen i=0 )

| return py; = SM;My (I — My) *M}F

push(' Q, A); Moreover, taking into account that:

while notenpt y( Q) do
w =pop (Q); — 2 N 2 A A
foreach a € ¥ do ;Z Pra(3') = ZOZ SMIMyM,F

if Pray(wa) > pthen

— * -3 *
| return Prp(wa); = SMiMsz (! + Mz)(I - Ms)"M3F

if |w| <band Pry(waX) > p The variance can be computed as:
then .
B L push( Q, wa) ; o2 — Z(Z _ M)2P7,A<Zi)
| return false i:oo
Algorithm 3: Solving BvPs for general ma- — Zzﬂpm(gi) —u?
chines i=0

= SM;Msx (I + My)(I — M) °M;}F
* — * 12
4.1 Computing Analytically 7, — [SM;Msx (I — My) *M;F]

If given the machine\ we can compute the mean  Then, both values are finite sin¢é — My) is
w and the variance of the length of strings in non singular.

D, We can use Chebychev’s inequality: ) ) )
4.3 Computingn, s via Sampling

1 In certain cases we cannot draw an analytically ob-
Pra([[z] = p| > ko) < 52 tained value for the mean and the variance. We
have to resort to sampling in order to compute an
We now choosé = — and rewrite: estimation ofr,,. o
A sufficiently large sample is built and used by
- Lemma 1 to obtain our result. In that case we have
Pra(|z| > p+ \/13) <p the following:
e If the instance is negative, it is anyhow im-
This means that, if we are looking for strings with possible to find a string with high enough
a probability bigger tham, it is not necessary to probability, so the answer will always be
consider strings longer than+ %. false
In other words, we can set= [+ 7] and run e If the instance is positive, the bound returned
an algorithm from Section 3 which solves/Bs. by the sampling will be good in all but a small
fraction (less than) of cases. When the sam-
4.2 Computing Analytically n,, for PFA pling has gone correctly, then the algorithm

when it halts has checked all the strings up to
lengthn. And the total weight of the remain-
ing strings is less than

We consider the special case where the probabilis-
tic machine is a PA A. We are interested in
computing the mean and the variance of the string
length. It can be noted that the fact theaRs de- The general goal of this section is to com-
terministic or not is not a problem. pute, given a strogly sampable maching ca-
The mean string length of the strings generategbable of generating strings following distribution
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D and a positive value, an integern, s such  (and of particular interest are the prime numbers).
that Prp, , (¥"4) < p. If we do this by sampling Here, Pr(a*¥) = (1 — ).

we will of course have the result depend also on
the valued covering the case where the sampling
process went abnormally wrong.

Lemma 1. LetD be a distribution ovel:*. Then
if we draw, following distributiorD, a sampleS
of size at Ieast}; In £, given anyp > 0 and any
& > 0, the following holds with probability at least
1-6: the probability of sampling a string longer
than any string seen if is less thamp.

Alternatively, if we writeng = max{|y| : Figure 5: Automaton fota®)*.
y € S}, then, with probability at least — ¢,
Prp(|z| > ng) < p. We now extend this construction by building
for a set of prime number$ i, ¥9,..., ¥.}

Proof. Denote bym, the smallest integer such the automaton for eacly; and adding an initial
that the probability for a randomly drawn string to state. When parsing a non empty string, a sub-
be longer thann,, is less tharp: Prp(X~™r) <  automaton will only add to the mass of probabili-
p. ties if the string is of length multiple of;. This

We need now to compute a large enough sampl@FA can be constructed as proposed in Figure 6,
to be sure (with a possible error of at mépthat  and hasl + >":=7 ¢; states.

max{|y| : y € S} > my. ForPrp(|z] > m,p) < The probability of strlngg with k = H 1p1
p to hold, a sufficient condition is that we take a g Ez : 1 ~(1 — ) - Zz 21— )%
sample large enough to be nearly suie. with First consider a string of length less thiarThis

probability at least —¢) to have at least one string string is not accepted by at least one of the sub-
as long asm,. On the contrary, the probability 5 tomata so it's probability is at mos#
of having all ) strlngs inS of length less than  op the other hand we prove now that for a good
m,, is at most(1 — p)¥. Using the fact thatl — value ofy, Pr(a¥) > y2=L

k . . 1 1 . ! z
p) >_6'|mpl|es thatk > < In 5, it follows that it We simplify by noticing that sincgf—_ 1<k
is sufficient, once we have chosgrto taken,, s > ko i !
5 In 5 to have a correct value, o (@=y% >{1-9)"

SoPr(a*) > Iy i1 — F = ~(1 =)k,
Note that in the above, all we ask is that we

are able to sample. This is indeed the case p 21
with HmM, Pra and (well defined) probablistic 1=7)">
context-free grammars, provided these are not ex- Jz—1
pansive. Lemma 1 therefore holds for any of such I—vy> —
machines.
k Z — ].
, y<1l-
4.4 The Most Probable String Can Be of z
Exponential Length no shorter string can have higher probability.

If the most probable string can be very long, how5 Experiments

long might it be? We show now an automaton for

which the most probable string is of exponentialWe report here some experiments in which we

length with the size of the automaton. The con-compared both algorithms over probabilistic au-

struction is based on (de la Higuera, 1997). Letomata.

us use a valug > 0 whose exact value we will  In order to have languages where the most prob-

compute later. able string is not very short, we generated a set of
We first note (Figure 5) how to build an automa- random automata with a linear topology, only one

ton that only gives non null probabilities to strings initial state and one final state, and where tran-

whose length are multiples gffor any value of)  sitions were added leading from each state to all

34



3. If furthermore we can analytically compute
the mean and variance of the distribution,
there is an exact algorithm for ®&.  This
means that the problem is decidable forra P
or HvmMs.

4. In the case of PA the mean and the variance
are polynomially computable, somécan be
solved in time polynomial in the size of the
PFAand in.

5. In the case of Px, we can use practical algo-
rithms:

(a) randomly draw a sampl& of n strings
following distributionD 4;

(b) letp = max{p(u) : v € S} andb =

Figure 6: An automaton whose smallest ‘interesting max{|u| : u € S};

string’ is of exponential length.

(c) run Algorithm 2 using andb.

Practically, the crucial problem may besCA
previous states labelled by all the symbols of theconsensus string can be found by either sampling
vocabulary. to obtain a lower bound to the probability of the

The probabilities on the edges and the final statenost probable string and solving™d, or by some
were set assigning to them randomly (uniformly)form of binary search.
distributed numbers in the range, 1] and then Further experiments are needed to see in what

normalizing. cases the sampling algorithm works better, and
also to check its robustness with more complex
Voc size  Sampling (s) Exact (s) models (like probabilistic context-free grammars).
2 0.34 0.00 Finally, in Section 4.4 we showed that the length
4 13.26 0.00 of the most probable string could be exponential,
6 13.80 0.01 but it is unclear if a higher bound to the length can
8 31.85 0.02 be obtained.
10 169.21 0.09
12 156.58 0.10 Acknowledgement
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Table 1: Execution time of Algorithm 1 (sampling) and
Algorithm 2 (exact) for 4 state automata

We have proved the following:

1. There exists a #A whose most probable
string is not of polynomial length.

2. If we can sample and parse (strongly sam-

pable distribution), then we have a ran-
domised algorithm which solves i
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