
Proceedings of the 13th European Workshop on Natural Language Generation (ENLG), pages 312–317,
Nancy, France, September 2011. c©2011 Association for Computational Linguistics

The Thumbs Up! Twente system for GIVE 2.5

Saskia Akkersdijk, Marin Langenbach, Frieder Loch, Mariët Theune
Human Media Interaction

University of Twente
P.O. Box 217, 7500 AE, Enschede, The Netherlands

{s.m.akkersdijk|m.langenbach|f.loch}@student.utwente.nl, m.theune@utwente.nl

Abstract

This paper describes the Thumbs Up! Twente
system, a natural language generation sys-
tem designed for the GIVE 2.5 Challenge.
The purpose of the system is to guide a user
through a virtual 3D environment by generat-
ing instructions in real-time. Our system fo-
cuses on motivating the user to keep him play-
ing the game and trying to find the trophy.

1 Introduction

This report describes a natural language generation
system called Thumbs Up! Twente (TU!T). It was
developed for the Generating Instructions in Vir-
tual Environments (GIVE) 2.5 Challenge,1 which
involves generating instructions that guide users to
press coloured buttons and walk around the differ-
ent rooms of a 3D-world. The goal is to find a tro-
phy, which is located in a safe that can be opened by
pressing a particular sequence of buttons.

Our system focuses on motivating the users
through feedback to keep them playing. Before ad-
dressing this, we first describe other important as-
pects such as planning and the generation of instruc-
tions and referring expressions. We end with a pre-
sentation and discussion of evaluation results.

2 Planning

The basis for instruction generation in GIVE is a
plan: a sequence of actions, created by a planner that
was provided by the GIVE organisation. Each room

1http://www.give-challenge.org/research

in the 3D-world is divided into regions, and the ini-
tial plan consists of separate move actions for each
region; see Figure 1 (left). TU!T aggregates these
separate steps to enable the generation of high-level
navigation instructions. This has several advantages
(Braunias et al., 2010; McCoy et al., 2010):

• The users are free to choose their own way to-
wards the instruction target, making the task
more interesting.

• Fewer instructions are needed, leaving the user
more time to read and understand the instruc-
tions, and (in the case of TU!T) leaving more
room for motivational feedback.

Steps between regions in the same room are ag-
gregated by TU!T as shown in Figure 1 (right). Dur-
ing aggregation it is checked whether the target re-
gion is still visible from the user’s position. If this is
not the case, plan steps are aggregated until the last
visible region (see Figure 2).

Figure 1: Aggregation of plan steps based on rooms.

3 Instruction Generation

When turning plan steps into verbal instructions, we
tried to keep the instructions short and simply struc-
tured, because overly long instructions turned out

312

Figure 2: Aggregation of plan steps based on visibility of
the target region.

to be a source of problems for systems from earlier
challenges. According to the GIVE 2 report (Koller
et al., 2010), the systems with the highest task suc-
cess rate were those that produced the shortest in-
structions. We do not vary the wording of the in-
structions, because this might increase the difficulty
in following and reading them quickly.

TU!T distinguishes three main instruction types
(besides the final instruction to take the trophy):

• Instructions to press a button consist of the
word Press followed by a reference to the target
button, as described in Section 4.1.

• Instructions to move to another room refer to
the door that the user needs to move through,
as described in Section 4.2. This is the kind of
situation shown in Figure 1.

• Instructions to move to a location in the cur-
rent room are given in the kind of situation
from Figure 2. They start with Move around
the corner, since in most (but not all) cases the
target region is, indeed, located around a cor-
ner. The direction in which the target region
is located is added to form instructions such as
Move around the corner to your left.

Note that TU!T also generates references to doors
and buttons that are not currently visible to the user.
If the target is behind the user, an instruction is
added on how the user should turn to see it, e.g.,
Press the blue button behind you. Turn around and
go left. If the instruction length does not exceed a
certain threshold, explicit information about the vis-
ibility of the target is included in the instruction.

At fixed intervals, and after each button press, the
system checks whether the user is still following the
plan. If so, the generation of the next instruction
is triggered. If the user has moved to the wrong

room, TU!T informs the user of this. The user is
given 6 seconds to move to the correct room with-
out new instructions. If after this ‘patience period’
(Schütte and Dethlefs, 2010) the user has not cor-
rected the mistake, a new plan is created starting
from the user’s current location. This is also done
after the user has pressed a wrong button.

TU!T incorporates a mechanism to generate a
new version of the current instruction when the user
moves closer to the target. This may be helpful
because at a shorter distance, referring expressions
tend to become more specific. If the user is still at
some distance the instruction may be fairly general,
for instance Press the blue button to your left allow-
ing the user to globally locate the button. When the
instruction is repeated at a shorter distance it will
generate a unique description, for instance Press the
left button in the middle row, making it possible to
successfully identify the target button. An updated
version of the current instruction is also generated
when the user presses “h” to call the Help function.

4 Referring Expression Generation

Referring expression generation (REG) in the GIVE
worlds mainly involves referring to buttons and
doors. We considered using the graph-based algo-
rithm for this (Krahmer et al., 2003), but it turned
out to be too slow for real-time, on-the-fly genera-
tion of expressions as required in GIVE. So we cre-
ated our own referring expression generator, incor-
porating lessons learned from the GIVE 2 systems.

4.1 Referring to Buttons

TU!T uses two different methods for referring to
buttons, SimpleREG and GridREG. Both methods
always include the button’s colour in the description,
even when not strictly necessary for identification.
This is done to prevent any possible confusion,
and because humans tend to mention redundant
properties as well (Dale and Reiter, 1995).

SimpleREG looks for landmarks around the
button. We never include more than one landmark,
otherwise the expressions might get too long and
potentially confusing (Schütte and Dethlefs, 2010).
Landmarks are selected by searching for the object
closest to the target object, but some candidates are

313

discarded. Open doors are never used, and buttons
are only used as landmarks if there cannot be any
confusion as to which button is meant. See Figure 3
for an example, where the lamp was chosen as the
best landmark. We also include information about
the button’s location relative to the user, to form
instructions such as Press the green button on your
right and to the right of the lamp.

Figure 3: Referring to a button using a landmark.

GridREG creates a grid from all buttons, and
counts them from left to right and from top to
bottom. If there are, for example, nine buttons
in a 3x3 grid the algorithm generates instructions
such as Press the blue button, it is the top left one.
If there is only one row of buttons, it generates
references such as Press the blue button, it is the
second one from the left. This approach is similar to
that of Braunias et al. (2010) for GIVE 2.

The criterion for using SimpleREG or GridREG is
the number of visible buttons with the same colour
as the target button. As the name suggests, Sim-
pleREG is used in relatively simple cases, when the
target button is visible and maximally one other but-
ton of the same colour. SimpleREG is also used if
the target button is not visible. In that case, TU!T
generates instructions such as Press the yellow but-
ton on your left. You cannot see it. If there is
a visible landmark, it is added to the description.
GridREG is used when one or more buttons are vis-
ible with the same colour as the target button.

If there is only one other visible button with the
same colour as the target button (as in Figure 3),
one of the two methods is randomly selected, be-
cause they are equally suitable. TU!T records which
method was used for the initial description, so that if
the user presses “h”, the other method can be used.
This way the Help function can really clarify the sit-
uation if the user is confused, instead of only repeat-
ing the exact same instruction.

4.2 Referring to Doors

Referring to doors in the world is relatively simple,
because their only distinguishing property is their lo-
cation. TU!T never uses landmarks in connection to
doors. If only the target door is visible, TU!T sim-
ply always says Move through the door. If the target
door is not visible, its position relative to the user
is mentioned, leading to instructions such as Move
through the door behind you. If more than one door
is visible, GridREG is used in a similar way as for
buttons. But for door references an extra feature was
added: TU!T searches for a hallway by looking at
the coordinates of all visible doors in the user’s cur-
rent room, and checking if they are aligned in two
rows. In this case the doors on each side are counted,
to create instructions such as Move through the sec-
ond door on your right.

We only include doors in the same room as the
target door in the context set. If more doors are vis-
ible through an open door, these are not taken into
account. This should be less confusing for the users,
who probably assume they need to use a door inside
the current room. We only consider open doors, be-
cause users never have to go through closed doors.

5 Motivation through Feedback

Keeping the user motivated is one of the main goals
of our system. A motivated user is less likely to give
up, which should reduce the number of canceled
games and increase the number of successful games.
Also, the overall experience of the user will be more
positive. The way we make our system motivating
is by giving two types of feedback.

Reflective feedback reports on the user’s
progress, triggered by a timer. The system randomly
chooses a fitting feedback sentence, based on the

314

number of remaining buttons to be pressed.2 Exam-
ples are You are in the second half of this game and
Almost there! The second type of reflective feedback
is positive feedback after a correct action, which
is known to enhance motivation (Harackiewicz,
1979; Vallerand and Reid, 1988). Examples are
sentences such as Well done! and Good job! Finally,
reflective feedback is given when a user enters the
wrong room, for example That’s not the correct way.

Anticipating feedback is feedback on what is
visible for the user, based on what we think the user
wants or needs to know. Confirmation that the user
is looking at the correct object can be really useful
and can make the user more confident. Telling the
user that he/she is looking at the wrong object pre-
vents wrong button presses, and makes navigation
through the world more efficient.

When giving anticipating feedback on visible but-
tons we distinguish five situations:

• Only the target button is visible: in this case
the system confirms that this is the correct but-
ton, for example by saying Yes, that one.

• Only buttons of the wrong colour are visi-
ble: in this case the system reminds the user
that he/she needs a button with another colour,
for example by saying No, not this button. It
should be blue (Figure 4A).

• Only wrong buttons, but of the correct
colour are visible: here, the system tells the
user that another button is needed, for example
by saying This is the wrong button (Figure 4B).

• The target button is visible, as well as one or
more other buttons, all of the wrong colour:
here, the system points out the target button, for
example by saying The blue one is the correct
button (Figure 4C).

• The target button is visible, as well as one
or more other buttons of the same colour:
in this case we give no feedback because it
might be confusing (Figure 4D). Also, as the
user comes closer, button visibility changes and
one of the other situations will apply.

2Unlike instruction messages, feedback messages have vari-
ants with different wording.

Figure 4: Four anticipating feedback situations.

For anticipating feedback on visible doors we dis-
tinguish three situations.

• Only the target door is visible: the system
gives feedback that it is the correct door, for
example by saying Yes, that doorway.

• Another door than the target is visible: the
system tells the user that this is not the correct
door, for example by saying This is the wrong
doorway.

• The target door and one or more other doors
are visible: in this case we give no feedback,
for the same reasons as with buttons.

In addition to feedback on buttons and doors,
TU!T also issues warnings when the user ap-
proaches an alarm tile. In GIVE 2, the lack of such
warnings was identified as a major source of prob-
lems by McCoy et al. (2010) and Roth et al. (2010).
To prevent irritation, TU!T keeps intervals of at least
six seconds between warnings.

6 MessageQueue

The message queue sorts the messages to be dis-
played in order of importance. For example, nav-
igational messages are always important, while
progress feedback is less important. It also keeps
track of how long a message should be displayed,
which depends on the length of the message. As

315

long as the queue is not empty, the first (most impor-
tant) message is taken from the queue and displayed
for the given duration.

It can be that while a message is displayed, a more
important message is created. Then the current mes-
sage is stopped and overwritten by the new message,
to ensure that the displayed message accurately re-
flects the current situation. For example, if the user
moves toward the target button while the system is
giving feedback on a wrong button that was in view,
the old feedback is replaced by a new message.

After each button press the message queue is emp-
tied, to prevent it from becoming too full with old
messages that may be no longer applicable.

7 Evaluation

GIVE 2.5 used three evaluation worlds, of which
World 1 was the simplest. In World 2, the buttons
were positioned in grids of different shapes, and
World 3 had a large space with many doors, pos-
ing a challenge for direction giving. Table 1 shows
the TU!T results for the three worlds, based on 22
games in World 1, 16 games in World 2 and 9 games
in World 3, played between 1 July - 22 August 2011
in the online GIVE evaluation experiment. The sub-
jective ratings indicate the level of agreement with
statements such as “The system’s instructions were
visible long enough for me to read them” and “The
system immediately offered help when I was in trou-
ble.” For readability, we reversed the polarity of rat-
ings for negative statements.

TU!T performed relatively well in World 1, but it
had problems with the button descriptions in World
2, and its performance in World 3 was bad over-
all. The evaluation participants did find the system
friendly and appreciated its feedback, in particular
in Worlds 1 and 2.

8 Discussion

The evaluation results point to various flaws in the
system. When referring to doors, TU!T naively
assumes that they are aligned on one or two axes
(walls). In a room with doors on three or more walls,
as in World 3, this leads to confusing expressions.
When the user approaches the doors the system’s
feedback will allow the user to find the correct one

Measure World 1 World 2 World 3
Successful games 68.2% 56.3% 22,2%
Lost games 13.6% 6.0% 44.4%
Cancelled games 18.2% 37.5% 33.3%

Q1: Overall quality 20.3 -6.0 -37.5
Q2: Directions 0.9 -31.9 -24.2
Q3: Button description 45.1 -17.9 19.9
Q4: Instruction clarity 9.4 -1.9 -3.4
Q5: Display duration 21.9 31.3 20.4
Q6: Instruction timing 10.4 3.4 -13.6
Q7: Help immediacy 18.6 -4.1 -27.8
Q8: Feedback 36.1 44.2 1.3
Q9: Friendliness 41.3 29.8 11.7
Q10: Trustworthiness 43.5 -2.4 -49.3

Table 1: Results for the GIVE 2.5 evaluation worlds.
Subjective ratings are on a scale of -100 to 100.

eventually, but this is far from efficient. Several eval-
uation participants commented that they reverted to
‘trial and error’ navigation when instructions were
unclear, relying on the feedback to find out whether
they were facing the right door or button.

Currently, TU!T generates non-unique descrip-
tions such as the blue button in front of you, which
are clarified automatically when the user approaches
the target. This first description bears the danger of
confusing the user (confirmed by participants’ com-
ments). Instead it would be better to first generate
a move instruction that guides the user to a posi-
tion from which a unique referring expression to the
target button can be generated. A similar approach
could be used for referring to doors.

As noted by Denis et al. (2010), instructions that
are relative to the user’s position (e.g., behind you)
can be problematic because users can move through
the world quite fast. We tried to make TU!T as fast
as possible, but it still suffers from this problem.
Sometimes the user moves around quickly and then
receives an outdated instruction. The user can press
Help for a new instruction, but this is an extra action
that could be rendered unnecessary by improving the
performance of our system.

The feedback mechanism incorporated in TU!T
proved to be successful: almost all participants com-
mented positively on this feature, in particular the
anticipating feedback. It is hard to verify whether
the feedback really had a motivational effect, but it
was clearly perceived as helpful.

316

References
Johannes Braunias, Uwe Boltz, Markus Dräger, Boris

Fersing, and Olga Nikitina. 2010. The GIVE-2 Chal-
lenge: Saarland NLG System. In Online Proceedings
of the GIVE-2 Challenge.

Robert Dale and Ehud Reiter. 1995. Computational
interpretations of the Gricean maxims in the gener-
ation of referring expressions. Cognitive Science,
19(2):233–263.

Alexandre Denis, Marilisa Amoia, Luciana Benotti,
Laura Perez-Beltrachini, Claire Gardent, and Tarik
Osswald. 2010. The GIVE-2 Nancy Generation Sys-
tems NA and NM. In Online Proceedings of the GIVE-
2 Challenge.

Judith M. Harackiewicz. 1979. The effects of reward
contingency and performance feedback on intrinsic
motivation. Journal of Personality and Social Psy-
chology, 37(8):1352–1363.

Alexander Koller, Kristina Striegnitz, Andrew Gargett,
Donna Byron, Justine Cassell, Robert Dale, Johanna
Moore, and Jon Oberlander. 2010. Report on the sec-
ond NLG challenge on Generating Instructions in Vir-
tual Environments (GIVE-2). In Proceedings of the
6th International Natural Language Generation Con-
ference (INLG 2010), pages 243–250.

Emiel Krahmer, Sebastiaan van Erk, and André Verleg.
2003. Graph-based generation of referring expres-
sions. Computational Linguistics, 29(1):53–72.

Dermot Hayes McCoy, Ielka van der Sluis, and Saturnino
Luz. 2010. The TCD system for GIVE-2. In Online
Proceedings of the GIVE-2 Challenge.

Michael Roth, Michael Haas, Eric Hildebrand, and Eleft-
herios Matios. 2010. The Heidelberg GIVE-2 System.
In Online Proceedings of the GIVE-2 Challenge.

Niels Schütte and Nina Dethlefs. 2010. The Dublin-
Bremen System for the GIVE-2 Challenge. In Online
Proceedings of the GIVE-2 Challenge.

Robert J. Vallerand and Greg Reid. 1988. On the rel-
ative effects of positive and negative verbal feedback
on males’ and females’ intrinsic motivation. Canadian
Journal of Behavioural Science/Revue Canadienne des
Sciences du Comportement, 20(3):239–250.

317

