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Abstract

We present the Potsdam natural language gen-
eration systems P1 and P2 of the GIVE-2.5
Challenge. The systems implement two dif-
ferent referring expression generation models
from Garoufi and Koller (2011) while behav-
ing identically in all other respects. In partic-
ular, P1 combines symbolic and corpus-based
methods for the generation of successful refer-
ring expressions, while P2 is based on a purely
symbolic model which serves as a qualified
baseline for comparison. We describe how the
systems operated in the challenge and discuss
the results, which indicate that P1 outperforms
P2 in terms of several measures of referring
expression success.

1 Introduction

The Challenge on Generating Instructions in Vir-
tual Environments (GIVE; Koller et al. (2010)) is
an evaluation effort for natural language generation
(NLG) systems, which focuses on real-time genera-
tion of situated language. In this shared task, the role
of the NLG system is to guide a human instruction
follower (IF) through a 3D virtual world with the
goal of completing a treasure-hunting task. As an
internet-based evaluation, GIVE has been success-
ful in attracting both a large number of volunteers
for the IF role and a high level of interest from the
research community.

In this paper, we report on our participation in
the third installment of GIVE (GIVE-2.5; Strieg-
nitz et al. (2011)). Although most of the work
on the generation of referring expressions (REs) to

date has focused either on logical properties of REs,
such as uniqueness and minimality, or on their de-
gree of similarity to human-produced expressions
(see Krahmer and van Deemter (To appear) for a
comprehensive survey), we believe that it would be
desirable to optimize a system directly for useful-
ness. We therefore approach the RE generation task
with a model that aims at computing the unique RE
which is fastest for the hearer to resolve (Garoufi
and Koller, 2011). The purpose of the Potsdam
NLG systems P1 and P2 at the challenge was to as-
sess with a task-based evaluation to what extent the
model actually manages to do so.

While we cannot present the RE generation mod-
ules in detail here (see Garoufi and Koller (2011)
for that), note that P1 implements the hybrid model
mSCRISP of Garoufi and Koller, which extends
the planning-based approach to sentence generation
(Koller and Stone, 2007) with a statistical model of
RE success. This model was learnt from a corpus of
human instruction giving sessions in the GIVE do-
main (Gargett et al., 2010), in which every RE was
annotated with a measure of how easy it has been
for the hearer to resolve. System P1 is therefore de-
signed to optimize the REs it generates for under-
standability. On the other hand, system P2 is an im-
plementation of the baseline model EqualCosts of
Garoufi and Koller. This is a purely symbolic model
that always computes a correct and unique RE, but
does so without any empirical guidance about ex-
pected understandability. System P2 behaves in the
exact same way as P1 in all respects, with the ex-
ception of the RE generation module. It therefore
serves as a qualified baseline against which we can
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compare the performance of the mSCRISP model.
Plan of the paper. We describe the two systems

P1 and P2 in Section 2. As the RE generation mod-
ules have been presented in full detail in Garoufi and
Koller (2011), we mostly focus on the other aspects
of the systems’ behavior here. We then comment on
the evaluation results in Section 3 and conclude in
Section 4.

2 The systems P1 and P2

The two systems operate on the same codebase, dif-
fering only in their RE generation modules. In par-
ticular, they follow identical strategies for determin-
ing their communicative goals, switching between
navigation and reference, as well as issuing warn-
ings and other feedback.

2.1 Determining the communicative goals
The GIVE framework provides an NLG system with
a plan of what the IF must do in order to com-
plete the task by picking up a trophy. This plan
is a symbolic sequence of mixed moves and ob-
ject manipulation actions such as move(reg1, reg2),
manipulate(b1, off, on, reg2), take–t1(reg3). Our
systems parse the plan in order to identify objects of
interest and determine the nature of the communica-
tive goals related to these: If a move action which
involves going through a doorway from one room to
another is encountered in the plan, then that door-
way is registered as a target with the corresponding
communicative goal that the IF should go through
it. If, on the other hand, a manipulate or take ac-
tion is encountered, then the patient of this action
is registered as a target (be it a button to push or a
trophy to take), while, accordingly, the manipulation
of that target becomes a communicative goal for the
systems to pursue.

2.2 Navigation and reference
Once the next target and the communicative goal
have been determined, the systems go on to check
whether a certain condition for reference is met; in
particular, whether the target is currently in the IF’s
field of view. This precondition reflects empirical
observations that human instruction givers typically
manipulate the non-linguistic context of scenes in
convenient ways (e.g. by making the referent vi-
sually salient) before referring to objects in these

Figure 1: Example of a navigation instruction aiming at
making the next target visible.

Figure 2: Example of a navigation instruction urging the
IF to go through a doorway that they already see.

scenes (Stoia et al., 2006; Schütte et al., 2010). If
the precondition is not fulfilled, then the systems
resort to low-level navigation instructions such as
“Turn left” or “Go straight” in order to change the
IF’s location to one that allows them to see the target
(Figure 1). Because doorways are also perceived as
targets, it is guaranteed that the next target is always
located in the same room as the IF. As a result, this
process usually involves no more than a few turns.

Once the target has become visible, the systems
switch to referring expression generation mode so
as to issue an instruction that describes the target and
satisfies the communicative goal. Note that although
the evaluation is concerned with REs to button tar-
gets only, we apply the same RE generation models
to the description of all objects, including doorways
and the trophy. Figure 2 shows an example of a nav-
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igation instruction that urges the IF to go through a
visible doorway, while Figure 3 presents an exam-
ple of an RE for a button target issued by system P1.
In this scene, system P2 would generate the differ-
ent RE “the right one to the right of the green but-
ton”. The systems issue all these kinds of instruc-
tions at regular intervals repeatedly, until they detect
that the IF has reacted. This is to make sure that the
IF knows at all times what they are expected to do.

2.3 Execution monitoring

In real-time instruction giving it is crucial for a sys-
tem to be able to monitor whether the IF actually ex-
ecutes the given instructions, assess how well they
progress on the task, and finally react to such ob-
servations with appropriate feedback. Our systems
issue three main types of such feedback:

• Positive feedback. The IF receives an affirma-
tion (e.g. “Good job!”, “Excellent!”) as soon
as they accommodate the given communica-
tive goal by executing the associated action.
These situations are important because apart
from moving the task forward they establish
that a system’s RE has been resolved by the IF
correctly.

• Negative feedback. Conversely, if the IF per-
forms a different action than the one expected,
e.g. by pushing the wrong button or going into
the wrong room, they are immediately told so
(Figure 4). This serves not only as feedback
for the IF but also as an opportunity for the sys-
tems to reevaluate the situation and make the
necessary computations for figuring out which
communicative goal should come next.

• Warnings. Finally, certain regions in the GIVE
worlds are equipped with alarms so that step-
ping on them would cause the IF to lose the
game. If the systems detect that the IF has
approached an activated alarm closely enough
that this outcome becomes likely, they inter-
rupt all their other functions and issue a brief
warning about the danger (e.g., “Beware of the
alarm on the floor!”).

Figure 3: Example of an expression referring to a button
target, as generated by P1.

2.4 Example instruction-giving session
Example (1) below presents a simplified excerpt
from an interaction between system P1 and an IF,
in which several of the instruction types listed above
can be found.

(1) P1: Turn left.
IF: (turns left until the target becomes visible)
P1: Push the yellow button.
IF: (starts moving towards the button)
P1: Push the button.
IF: (pushes the button)
P1: Good!
P1: Now turn right.
IF: (turns right until the target becomes visible)
P1: Go through the doorway.
IF: (goes through the doorway)
P1: Excellent!
P1: Turn right.
IF: (starts turning right)
P1: Go straight.
IF: (starts moving straight ahead)
P1: Don’t step on the alarm!
P1: Go straight.
IF: (continues moving ahead)
P1: Push the green one in front of you.

One meaningful detail is that, as lines 3–5 reveal, the
REs that the system generates for a given target may
change as the context of the scene changes. This par-
ticularly interesting aspect of the interaction follows
from the fact that the system generates its REs newly
for every new context, and thus decides newly which
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Figure 4: Example of execution monitoring and negative
feedback.

attributes to include in it and which not. Since the at-
tribute selection process of P1 relies on the context
features of the scene in a much more substantial way
than that of P2, which simply uses the visual con-
text in order to ensure that the RE is distinguishing
in the domain, this phenomenon is observed in P1
more frequently than in P2. Indeed, P1 may change
its decision of which attributes to include in an RE
not because, say, a potential distractor has come into
sight, but just because e.g. the IF has moved closer
to the target, or even because the system has already
attempted to refer to it in a particular way several
times before without success.

3 Results

Although none of the objective and subjective evalu-
ation measures of the challenge establish any signif-
icant differences between the two systems based on
the current snapshot of the results, P1 does achieve
better scores than P2 on most measures of RE suc-
cess.

3.1 RE success

Areas in which P1 outperforms P2 include the ob-
jective measures of task success, number of actions
executed by the IF (indicating incorrect resolution of
REs), and game duration. But also in terms of sub-
jective measures, as extracted by the IFs’ responses
to a post-task questionnaire, P1 scores higher than
P2 for the most part: It is perceived as generat-
ing better instructions overall (“Overall, the system
gave me good instructions”), better REs to buttons

(“I could easily identify the buttons the system de-
scribed to me”), and clearer, more trustworthy in-
structions (“I had to re-read instructions to under-
stand what I had to do”, “I felt I could trust the sys-
tem’s instructions”; see Striegnitz et al. (2011) for
details).

More importantly, we compared the systems with
respect to RE resolution success and successfulness,
which is the exact measure of RE understandability
that P1 was optimized for. This comparison does
establish a significant difference between the two,
indicating that P1 generates REs that are faster re-
solvable by the IFs after effects of RE rephrasing as
described in Subsection 2.4 have been factored out
(see Garoufi and Koller (2011) for details).

3.2 Error analysis

Finally, looking into possible causes of failure for
the systems’ REs, we find that the most appar-
ent problem involves generating expressions which,
though not semantically invalid, are of disputable
linguistic acceptability. Typical instances of such
REs are “the button to the left of the right button”,
“the button below the upper button” and variants of
these. These cases arise due to the fact that we did
not constraint the systems’ grammar so as to dis-
allow such constructions, while the systems often
chose attributes for which this particular type of re-
alization was possible.

It turns out that P2 was more prone to this type
of REs than P1, which at first glance seems like a
probable reason for the lower RE success rates of
the system. However, examining the portion of REs
of each system that did not fall into this category, we
found that P1 still generated significantly more suc-
cessful REs after factoring out the effects of rephras-
ing. It would be interesting for future work to com-
pare the systems’ REs in a more controlled way, so
that their attribute selection and realization aspects
can be evaluated in separation.

4 Conclusion

The systems P1 and P2 at the GIVE-2.5 Challenge
implemented a novel model of RE generation and a
qualified baseline from Garoufi and Koller (2011),
respectively. Participating in the challenge allowed
us to conduct a task-based evaluation of the model,
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collect data for both objective and subjective mea-
sures, and compare it against the baseline. The re-
sults indicate that the model outperforms the base-
line with respect to the measure of RE understand-
ability that it was optimized for.
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