
Proceedings of the 13th European Workshop on Natural Language Generation (ENLG), pages 236–238,
Nancy, France, September 2011. c©2011 Association for Computational Linguistics

The OSU System for Surface Realization at Generation Challenges 2011

Rajakrishnan Rajkumar and Dominic Espinosa and Michael White
Department of Linguistics, The Ohio State University
{raja,espinosa,mwhite}@ling.osu.edu

Abstract

This report documents our efforts to develop
a Generation Challenges 2011 surface realiza-
tion system by converting the shared task deep
inputs to ones compatible with OpenCCG. Al-
though difficulties in conversion led us to em-
ploy machine learning for relation mapping
and to introduce several robustness measures
into OpenCCG’s grammar-based chart real-
izer, the percentage of grammatically com-
plete realizations still remained well below re-
sults using native OpenCCG inputs on the de-
velopment set, with a corresponding drop in
output quality. We discuss known conversion
issues and possible ways to improve perfor-
mance on shared task inputs.

1 Introduction

Our Generation Challenges 2011 shared task sys-
tem represents an initial attempt to develop a sur-
face realizer for shared task inputs that takes ad-
vantage of prior work on broad coverage realiza-
tion with OpenCCG (White, 2006; Espinosa et al.,
2008; Rajkumar et al., 2009; White and Rajkumar,
2009; Rajkumar and White, 2010). OpenCCG is
a parsing/generation library for Combinatory Cat-
egorial Grammar (Steedman, 2000). CCG is a
unification-based categorial grammar formalism de-
fined almost entirely in terms of lexical entries
that encode sub-categorization as well as syntac-
tic features. OpenCCG implements a grammar-
based chart realization algorithm in the tradition of
Kay’s (1996) approach to bidirectional processing
with unification grammars. The chart realizer takes

as input logical forms represented internally using
Hybrid Logic Dependency Semantics (HLDS), a
dependency-based approach to representing linguis-
tic meaning (Baldridge and Kruijff, 2002). To illus-
trate the input to OpenCCG, consider the semantic
dependency graph in Figure 1. In the graph, each
node has a lexical predication (e.g. make.03) and a
set of semantic features (e.g. 〈NUM〉sg); nodes are
connected via dependency relations (e.g. 〈ARG0〉).
Such graphs are broadly similar to the “deep” shared
task inputs. Note, however, that they are quite dif-
ferent from the shallow input trees, where many of
the expected dependencies from coordination, con-
trol and relatization are missing. For example, in the
figure, both dependents of make.03 would be miss-
ing in the shallow tree, which involve control and
relativization (with a null relativizer). As it would be
difficult to hallucinate such dependencies, we have
only attempted the deep task.

Grammar-based chart realization in the tradition
of Kay is capable of attaining high precision, but
achieving broad coverage is a challenge, as is robust-
ness to any deviations in the expected input. Previ-
ous work on chart realization has primarily used in-
puts derived from gold standard parses, and indeed,
native OpenCCG inputs have been obtained from
gold standard derivations in the CCGbank (Hock-
enmaier and Steedman, 2007). Given the available
time, our strategy was to make minor adjustments
to OpenCCG’s extracted grammars while devoting
the bulk of our effort to converting the shared task
inputs to be as similar as possible to the native in-
puts. Difficulties in conversion led us to employ ma-
chine learning for relation mapping and to introduce

236



aa1

he
h3

he
h2

<Det>

<Arg0>
<Arg1>

<TENSE>pres

<NUM>sg

<Arg0>

w1
want.01

m1

<Arg1>

<GenRel>

<Arg1>

<TENSE>pres

p1point

h1
have.03

make.03

<Arg0>

s[b]\np/np

np/n

np

n

s[dcl]\np/np

s[dcl]\np/(s[to]\np)

np

Figure 1: Semantic dependency graph from the CCGbank
for He has a point he wants to make [. . . ], along with
gold-standard supertags (category labels)

several robustness measures into OpenCCG’s real-
ization algorithm. Nevertheless, the percentage of
grammatically complete realizations still remained
well below results using native OpenCCG inputs on
the development set, with a corresponding drop in
output quality.

2 Conversion

In previous work, when extracting HLDS quasi–
logical form graphs from the CCGbank, we removed
semantically empty function words such as com-
plementizers, infinitival-to, expletive subjects, and
case-marking prepositions. For improved consis-
tency with shared task inputs, we have instead left
expletive subjects and all prepositions (but not com-
plementizers and relativizers) in the native depen-
dency graphs. Even so, the logical forms our system
expects differed from the shared task inputs in many
ways, the most notable being the structure of con-
junctions, possessives and relative clauses, so man-
ual conversion rules were written to handle these
cases. In addition, named entities and hyphenated
words were collapsed to form atomic logical form
predicates, and for simplicity quotes were ignored.
The conversion was effected by a Java converter
augmented by XSL transforms. Table 1 provides
frequencies of converted elements. Finally, to derive

Construction Frequency
Collapsed NEs 703
Collapsed hyphenations 303
Conjunctions 691
Possessives 214
Relative clauses 90
Punct nodes excised 1672

Table 1: Conversion statistics for 1034 development sec-
tion shared task graphs

possible word forms for unseen lemmas, morphg
(Minnen et al., 2001) was used with heuristically de-
rived POS tags.

3 Relation Tagger

Since the shared task graphs used relations between
nodes which were often not easily mappable to na-
tive OpenCCG relations, we trained a maxent classi-
fier to tag the most likely relation, as well as an aux-
iliary maxent classifier to POS tag the graph nodes,
much like hypertagging (Espinosa et al., 2008).
Training data for the classifier was extracted by com-
paring each relation between two nodes in the input
shared task graph with the corresponding relation in
the HLDS logical form. In case a labeled relation
did not exist in the HLDS graph, a NoRel relation
label was assigned. On the development data, we
obtained accuracies of 90% for the POS tagger and
90.5% for the relation classifier. A substantial por-
tion of the errors were related to the NoRel outcome.
Of the 5154 NoRel cases in the dev sect, 444 were
miscategorized as Mod, 344 as Arg1, 212 as Arg0,
and 107 as Det. The other major error was that the
Mod relation was often erroneously misclassified as
NoRel.

4 Realization Results and Discussion

In spite of the graph structure and relation label
changes described above, it still proved necessary to
make several adjustments to both OpenCCG as well
as the converted graphs. OpenCCG’s strict relation
checking had to be relaxed to permit divergences be-
tween the relations supplied by a lexical item and
the ones in the input graph. In cases where no com-
plete realization could be found, we also employed a
novel approach to assembling fragments using MT-
inspired glue rules (White, 2011), which enable a
more exhaustive search of possible fragment com-

237



System Shared Task Native
BLEU 5-best Coverage BLEU 5-best Coverage

OSU.1 (all) 0.4346 0.2483 95% 0.7838 0.5177 95%
OSU.2 (complete) 0.6564 0.3874 19% 0.8341 0.5413 76%

Table 2: Development set scores for all realizations (OSU.1) and grammatically complete realizations only (OSU.2)
for the shared task inputs and using native inputs

binations and allow for n-best outputs. Addition-
ally, we added optionality operators into the con-
verted shared task graphs, in order to allow certain
features or relations to be used as required by the
grammar’s constraints. The most notable cases were
an optional 〈DET〉nil feature for nodes that could be
expressed by bare nouns, and making certain rela-
tions optional, especially those derived from Nom-
bank that yielded multiple parents for the child node.

For the experiments reported below, as in previ-
ous work, we used a lexico-grammar extracted from
Sections 02–21 of our enhanced CCGbank with a
similar model training procedure. Development set
results appear in Table 2. Single-best and weighted
5-best BLEU scores, along with coverage percent-
ages, are given for both the converted shared task in-
puts as well as native OpenCCG inputs, for compari-
son. The OSU.1 system includes outputs for all sen-
tences, assembling fragments if no grammatically
complete realizations are found; the OSU.2 system
only includes outputs for complete realizations.1 As
the table shows, the percentage of grammatically
complete realizations for the converted shared task
inputs is well below the percentage using native in-
puts, with a corresponding drop in BLEU scores.
Debugging efforts suggest that the remaining re-
lation mismatches and other structural divergences
are preventing complete realizations from being de-
rived most of the time. The relative absence of
punctuation-related features may also be an issue.

In future work, we plan to explore using machine
learning more comprehensively to convert the in-
puts, beyond just relation tagging. We also plan to
explore whether grammars can be induced that are
more directly compatible with shared task inputs.

1Native coverage is less than 100% because of failures to
derive a complete LF from the CCGbank; shared task coverage
could have been 100% but the system was only run on the same
inputs as in the native case.

Acknowledgements

This work was supported in part by NSF grant IIS-
0812297 and by an allocation of computing time
from the Ohio Supercomputer Center.

References
Jason Baldridge and Geert-Jan Kruijff. 2002. Coupling

CCG and Hybrid Logic Dependency Semantics. In
Proc. ACL-02.

Dominic Espinosa, Michael White, and Dennis Mehay.
2008. Hypertagging: Supertagging for surface real-
ization with CCG. In Proc. ACL-08: HLT.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Dependency
Structures Extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355–396.

Martin Kay. 1996. Chart generation. In Proceedings
of the 34th annual meeting on Association for Compu-
tational Linguistics, pages 200–204, Morristown, NJ,
USA. Association for Computational Linguistics.

G. Minnen, J. Carroll, and D. Pearce. 2001. Applied
morphological processing of English. Natural Lan-
guage Engineering, 7(3):207–223.

Rajakrishnan Rajkumar and Michael White. 2010. De-
signing agreement features for realization ranking. In
Proc. Coling 2010: Posters.

Rajakrishnan Rajkumar, Michael White, and Dominic
Espinosa. 2009. Exploiting named entity classes in
CCG surface realization. In Proc. NAACL HLT 2009
Short Papers.

Mark Steedman. 2000. The syntactic process. MIT
Press, Cambridge, MA, USA.

Michael White and Rajakrishnan Rajkumar. 2009. Per-
ceptron reranking for CCG realization. In Proc. of
EMNLP-09.

Michael White. 2006. Efficient Realization of Coordi-
nate Structures in Combinatory Categorial Grammar.
Research on Language and Computation, 4(1):39–75.

Michael White. 2011. Glue rules for robust chart real-
ization. In Proc. of ENLG-11. To appear.

238


