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Abstract

Language generators in situated domains face
a number of content selection, utterance plan-
ning and surface realisation decisions, which
can be strictly interdependent. We there-
fore propose to optimise these processes in
a joint fashion using Hierarchical Reinforce-
ment Learning. To this end, we induce a re-
ward function for content selection and utter-
ance planning from data using the PARADISE
framework, and suggest a novel method for
inducing a reward function for surface reali-
sation from corpora. It is based on genera-
tion spaces represented as Bayesian Networks.
Results in terms of task success and human-
likeness suggest that our unified approach per-
forms better than a baseline optimised in iso-
lation or a greedy or random baseline. It re-
ceives human ratings close to human authors.

1 Introduction

Natural Language Generation (NLG) systems that
work in situated domains and need to generate ut-
terances during an interaction are faced with a num-
ber of challenges. They need to adapt their deci-
sions to a continuously changing interaction history
and spatial context as well as to the user’s proper-
ties, such as their individual information needs and
verbal or nonverbal responses to each generated ut-
terance. Decisions involve the tasks of content se-
lection, utterance planning and surface realisation,
which can be in many ways related and interdepen-
dent. For the former two tasks, e.g., there is a trade-
off between how much information to include in an
utterance (to increase task success), and how much a

user can actually comprehend online. With regard to
surface realisation, decisions are often made accord-
ing to a language model of the domain (Langkilde
and Knight, 1998; Bangalore and Rambow, 2000;
Oh and Rudnicky, 2000; White, 2004; Belz, 2008).
However, there are other linguistic phenomena, such
as alignment (Pickering and Garrod, 2004), consis-
tency (Halliday and Hasan, 1976), and variation,
which influence people’s assessment of discourse
(Levelt and Kelter, 1982) and generated output (Belz
and Reiter, 2006; Foster and Oberlander, 2006). We
therefore argue that it is important to optimise con-
tent selection, utterance planning and surface real-
isation in a unified fashion, and we suggest to use
Hierarchical Reinforcement Learning (HRL) with
Bayesian networks to achieve this. Reinforcement
learning (RL) is an attractive framework for opti-
mising NLG systems, where situations are mapped
to actions by maximising a long term reward sig-
nal (Rieser et al., 2010; Janarthanam and Lemon,
2010). HRL has the additional advantage of scal-
ing to large search spaces (Dethlefs and Cuayáhuitl,
2010). Since an HRL agent will ultimately learn the
behaviour it is rewarded for, the reward function is
arguably the agent’s most crucial component. Previ-
ous work has therefore suggested to learn a reward
function from human data as in the PARADISE
framework (Walker et al., 1997). We will use this
framework to induce a reward function for content
selection and utterance planning. However, since
PARADISE relies heavily on task success metrics, it
is not ideally suited for surface realisation, which de-
pends more on linguistic phenomena like frequency,
consistency and variation. Linguistic and psycho-
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logical studies (cited above) show that such phenom-
ena are worth modelling in an NLG system. The
contribution of this paper is therefore to induce a re-
ward function from human data, specifically suited
for surface generation. We obtain Bayesian Net-
works (BNs) (Jensen, 1996) from a human corpus
and use them to inform the agent’s learning process.
We compare their performance against a greedy and
a random baseline. In addition, we suggest to opti-
mise content selection, utterance planning and sur-
face realisation decisions in a joint, rather than iso-
lated, fashion in order to correspond to their inter-
related nature. Results in terms of task success and
human-likeness show that our combined approach
performs better than baselines that were optimised
in isolation or act on behalf of the language model
alone. Since generation spaces in our approach can
be obtained for any domain for which corpus data
is available, it generalises to different domains with
limited effort and reduced development time.

2 Related Work

Related approaches using graphical models for NLG
include Barzilay and Lee (2002) and Mairesse et
al. (2010). Barzilay and Lee use multiple sequence
alignment to obtain lattices of surface form variants
for a semantic concept. Mairesse et al. use Dynamic
Bayesian networks and learn surface form variants
from semantically aligned data. Both approaches
demonstrated that graphical models can yield good
results for surface realisation.

Related work has also shown the benefits of treat-
ing interrelated decisions jointly. Lemon (2010)
suggests to use RL to jointly optimise dialogue man-
agement and language generation for information
presentation, where the system needs to learn when
presentation is most advantageous. Cuayáhuitl and
Dethlefs (2011b) use HRL for the joint optimisation
of spatial behaviours and dialogue behaviours in an
agent that learns to give route instructions by taking
the user’s individual prior knowledge into account.
Angeli et al. (2010) treat content selection and sur-
face realisation in a joint fashion using a log-linear
classifier, which allows each decision to depend on
all decisions made previously. These recent investi-
gations show that jointly optimised policies outper-
form policies optimised in isolation.

3 The Generation Domain

We address the generation of navigation instructions
in a virtual 3D world in the GIVE scenario (Koller et
al., 2010). In this task, two people engage in a ‘trea-
sure hunt’, where one participant instructs the other
in navigating through the world, pressing a sequence
of buttons and completing the task by obtaining a
trophy. The GIVE-2 corpus (Gargett et al., 2010)
provides 63 English and 45 German transcripts of
such dialogues. We complemented the English di-
alogues with a set of semantic annotations, please
see Sec. 5.1 for the knowledge base of the learning
agent, which corresponds to the annotation scheme.

A key feature of the situated approach to gener-
ation we are addressing is a tight coupling of sys-
tem and user behaviour as is also standard in dia-
logue management.1 It allows the system to con-
stantly monitor the user’s behaviour and change its
strategy as soon as the user shows signs of confu-
sion. Since the user needs to process system utter-
ances online, we face a tradeoff between generating
few utterances (preferred by users) and generating
utterances which are easy to comprehend online (in-
creasing task success). Figure 1 contrasts the dy-
namics of two possible NLG system architectures,
a traditional pipeline and the joint architecture sug-
gested here. In the traditional model, an interaction
always starts with information about the user, the di-
alogue history and the spatial setting being sent to
the content selection(CS) component. Here, the
system chooses whether to use a high-level (e.g, ‘go
to the next room’ ) or a low-level navigation strategy
(e.g., ‘go straight, turn left’). High-level instructions
are forms of contracted low-level instructions. CS
also determines a level of detail for an instruction
based on the number of present objects, lengths of
instructions and confusion of the user. A first se-
mantic form2 is constructed here and passed on to
utterance planning (UP). Here, the system decides
whether to use temporal markers, conjunctions, a
marked or unmarked theme as well as a mode of
presentation (all together or one by one). It then

1In fact, some content selection decisions we treat as part of
NLG here concerning the user or next system utterance may be
shared with a dialogue manager in a complete dialogue system.

2Semantic forms contain an instruction type (‘destination’,
‘direction’, ‘orientation’, ‘path’ or ‘straight’), a direction of
navigation, and salient landmarks along the path of navigation.
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Figure 1: Left: traditional pipeline architecture of an NLGsystem for CS, UP and SR. Right: an architecture for joint
decision making among these tasks. Information passed between components is given in cursive fonts.

consultssurface realisation(SR) for a final realisa-
tion. The SR component addresses the one-to-many
relationship between a semantic form and its possi-
ble realisations. It optimises the tradeoff between
alignment and consistency (Pickering and Garrod,
2004; Halliday and Hasan, 1976) on the one hand,
and variation (to improve text quality and readabil-
ity) on the other (Belz and Reiter, 2006; Foster and
Oberlander, 2006). The SR component produces a
string of words and presents it to the user whose re-
action is observed. The utterance is then either re-
paired (if the user hesitates or performs an undesired
action) or the next one is generated. Note that CS,
UP and SR are closely related in this setting. For
successful CS, we may wish to be as detailed as pos-
sible in an utterance. On the other hand, redundant
detail may confuse the user and make it difficult to
process utterances online. In UP, we may want to
generate as few utterances as possible and thus ag-
gregate them. However, if instructions are too many,
a one by one presentation may ease comprehension.
In SR, a short utterance is often most likely accord-
ing to a language model, but it may not be ideal
when the user needs more detail. In the joint archi-
tecture, there is thus no sequential order on decision
making. Instead, one best utterance is generated by
considering all variables jointly across subtasks.

4 HRL with Bayesian Networks for NLG

4.1 Hierarchical Reinforcement Learning

The concept oflanguage generation as an optimi-
sation problemis as follows: given a set of genera-

tion states, a set of actions, and an objective reward
function, an optimal generation strategy maximises
the objective function by choosing the actions lead-
ing to the highest reward for every reached state.
Such states describe the system’s knowledge about
the generation task (e.g. CS, UP, SR). The action set
describes the system’s capabilities (e.g.‘use high
level navigation strategy’, ‘use imperative mood’,
etc.). The reward function assigns a numeric value
for each action taken. In this way, language genera-
tion can be seen as a finite sequence of states, actions
and rewards{s0, a0, r1, s1, a1, ..., rt−1, st}, where
the goal is to induce an optimal strategy. To do that
we use HRL in order to optimise a hierarchy of gen-
eration policies rather than a single policy. We de-
note the hierarchy of RL agents asM i

j , where the in-
dexesi andj only identify a model in a unique way,
they do not specify the execution sequence of sub-
tasks because that is learnt. Each agent of the hier-
archy is defined as a Semi-Markov Decision Process
(SMDP) consisting of a 4-tuple< Si

j, A
i
j , T

i
j , R

i
j >.

Si
j is a set of states,Ai

j is a set of actions, andT i
j is a

probabilistic state transition function that determines
the next states′ from the current states and the per-
formed actiona. Ri

j(s
′, τ |s, a) is a reward function

that specifies the reward that an agent receives for
taking an actiona in states lastingτ time steps (Di-
etterich, 1999). Since actions in SMDPs may take a
variable number of time steps to complete, the ran-
dom variableτ represents this number of time steps.
Actions can be either primitive or composite. The
former yield single rewards, the latter correspond to
SMDPs and yield cumulative rewards. The goal of
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Figure 2: Hierarchy of learning agents (left). The top threelayers are responsible for decisions of content selection
(CS) and utterance planning (UP), and use HRL. The shaded agents in the bottom use HRL with a Bayesian Network-
based reward function and joint optimisation of CS and surface realisation (SR). The BNs represent generation spaces
for SR. An example BN, representing the generation space of ‘destination’ instructions, is shown on the right.

each SMDP is to find an optimal policyπ∗ that max-
imises the reward for each visited state, according
to π∗ij(s) = arg maxa∈A Q∗ij(s, a), whereQi

j(s, a)
specifies the expected cumulative reward for execut-
ing actiona in states and then followingπ∗. For
learning NLG policies, we use HSMQ-Learning, see
(Cuayáhuitl, 2009), p. 92.

4.2 Bayesian Networks for Surface Realisation

We can represent a surface realiser as a BN which
models the dynamics between a set of semantic con-
cepts and their surface realisations. A BN models
a joint probability distribution over a set of random
variables and their dependencies based on a directed
acyclic graph, where each node represents a vari-
ableYj with parentspa(Yj) (Jensen, 1996). Due to
the Markov condition, each variable depends only
on its parents, resulting in a unique joint probabil-
ity distribution p(Y ) = Πp(Yj |pa(Yj)), where ev-
ery variable is associated with a conditional prob-
ability distribution p(Yj|pa(Yj)). We use random
variables to represent semantic concepts and their
values as corresponding surface forms. A random
variable with the semantics ‘destination process’ e.g.
can have different values ‘go’, ‘walk’, ‘elided sur-
face form’ (empty) etc. The BNs were constructed
manually so as to capture two main dependencies.
First, the random variable ‘information need’ should
influence the inclusion of all optional semantic con-
stituents (on the right of Figure 2, e.g., ‘destination
direction’) and the process of the utterance (‘desti-

nation verb’). Second, a sequence of dependencies
spans from the verb to the end of the utterance. In
Figure 2, this is from the verb over the preposition to
the relatum. The first dependency is based on the in-
tuition that whenever the user’s information need is
high, optional semantic information is more likely to
be included than when the information need is low.3

Also, we assume that high frequency verb forms are
preferable in cases of a high information need. The
second dependency is based on the hypothesis that
the value of one constituent can be estimated based
on the previous constituent. In the future, we may
compare different configurations and designs as well
as effects of word order. Since BNs allow for prob-
abilistic reasoning, that is the calculation of poste-
rior probabilities given a set of query variable-value
pairs, we can perform reasoning over surface forms.
Given the word sequence represented by linguistic
variablesY0...Yn (lexical and syntactic information),
and context and situation-based variablesY0...Ym,
we can compute the posterior probability of a ran-
dom variableYj. We use efficient implementations
of the variable elimination and junction tree algo-
rithms (Cozman, 2000) for probabilistic reasoning.
Initial prior and conditional probability tables were
estimated from the GIVE corpus using Maximum
Likelihood Estimation.

3This is key to the joint treatment of CS and SR: if an utter-
ance is not ideally informative in terms of content, it will receive
bad rewards, even if good SR choices have been made (and vice
versa).
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5 Experimental Setting

5.1 Hierarchy of Agents: State and Action Sets

Figure 2 shows a (hand-crafted) hierarchy of learn-
ing agents for navigating and acting in a situated en-
vironment. Each agent represents an individual gen-
eration task. The models shown in the bottom of
the figure represent the BNsB3

0 ...B3
4 that inform SR

decisions. The state representation contains all situ-
ational and linguistic knowledge the agent requires
for optimal decision making. The following are the
state and action sets of the agents in Figure 2 (see
the corresponding feature structures). ModelM0

0

is the root agent, it decides whether to generate the
next instruction, repair a previous utterance (M1

0 ),
or confirm the user’s behaviour. ModelM1

1 is re-
sponsible for navigation instruction generation.4 It
has information about the situational context (e.g.,
visible objects, route length), the status of the ut-
terance, and the user. It chooses a navigation level,
and an utterance plan.5 State variable names can
be reused in later agents. The value ‘filled’ means
that a decision has been made, ‘unfilled’ means it
is still open. ModelM2

0 performs UP. It makes de-
cisions concerning aggregation, info structure, tem-
poral markers and utterance presentation. Decisions
are based on the user’s information need, and the
number of instructions, and do not exclude each
other. ModelM2

1 generates low level instructions
(direction, orientation, ‘straight’) based on the user’s
information need and waiting behaviour. ModelM2

2

generates high-level instructions (destination, path).
Model M3

0 is responsible for orientation instruc-
tions. It chooses surface forms for semantic con-
stituents based on the user’s information need and
behaviour. State variables correspond to semantic
concepts, their values to realisation variants. Sim-
ilarly, model M3

1 generates ‘straight’, and model
M3

2 direction instructions. They represent low-level
navigation. ModelM3

3 generates path, and model
M3

4 destination instructions. They realise high-level
navigation. The hierarchical agent has|S × A| =∑

i,j |Si
j | × |Ai

j | = 2.5 million state-action pairs.

4Models M0
0 and M1

0 are omitted, since we focus on the
right branch of the hierarchy in this paper, i.e. fromM1

1 down.
5Bold-face (composite) actions pass control between agents.

Each time an agent is called, it takes between7 and10 (com-
posite or primitive) actions, the exact number varies per agent.
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5.2 A Reward Function for CS and UP

According to the PARADISE framework (Walker et
al., 2000), the performance of a system can be mod-
elled as a weighted function of task success and dia-
logue cost measures (e.g., number of turns, interac-
tion time). We argue that PARADISE is also use-
ful to assess the performance of an NLG system.
To identify the strongest predictors of user satisfac-
tion (US) in situated dialogue/NLG systems, we per-
formed an analysis of subjective and objective di-
alogue metrics based on PARADISE. In a human
evaluation study in a real setting (Dethlefs et al.,
2010), 26 participants were asked to interact with
a route-giving dialogue system and follow the sys-
tem’s instructions. Subsequently, participants pro-
vided subjective ratings of the system’s performance
to indicate their US. The study revealed that users
prefer short interactions at maximal task success.
We also found that task success metrics that penalise
the degree of task difficulty correlate higher with
US than binary (success/failure) metrics.6 We there-
fore define graded task success (GTS) by assigning
a value of1 for finding the target location (FTL)
without problems,2/3 for FTL with small problems
and0 for FTL with severe problems. The value with
small problems was assigned for short confusions of
the user, the value for severe problems was assigned
if the user got lost at least once. More specifically, in
order to identify the relative contribution that differ-
ent factors have on the variance found in US scores,
we performed a standard multiple regression analy-
sis on the data. First results showed that ‘user turns’
(UT ) and ‘graded task success‘ (GTS) (which are
negatively correlated) were the only predictors. In
a second multiple regression analysis involving only
these metrics we obtained the performance function
Performance = 0.38N (GTS) − 0.87N (UT ),
where0.38 is a weight on the normalised value of
GTS and0.87 is a weight on the normalised value
of UT . This result is significant atp < 0.01 and ac-
counts for62% of the variation found in US. Using
this reward function (and−1 for each other action),
the agent is rewarded for short interactions (few user
turns) at maximal (graded) task success. User turns
correspond to the behaviour with which a user reacts

6Graded metrics show a high correlation with user satisfac-
tion, binary metrics only show a moderate correlation.

to an utterance. If the user reacts positively (carries
out the instructions), task success is rated with1; if
they hesitate, it is2/3 and if they get lost (carry out
a wrong instruction), it is0. In this way the agent
receives the highest rewards for the shortest possi-
ble utterance followed by a positive user reaction.
This reward function is used by all CS and UP agents
M0

0 . . . M2
2 . Rewards are assigned after each system

instruction presented to the user and the user’s reac-
tion. This reward is propagated back to all agents
that contributed to the sequence of decisions leading
to the instruction.

5.3 A Reward Function for Surface Realisation

Due to its unique function in an RL framework,
we suggest to induce a reward function for SR
from human data. To this end, we use BNs to
provide feedback to an agent learning to optimise
SR decisions. Whenever the agent has generated
a word sequence (and reaches a goal state), it re-
ceivesP (w0...wn) as a reward. This corresponds
to

∑
P (Yj = vx|pa(Yj) = vy), the sum of pos-

terior probabilities given the chosen valuesvx and
vy of random variables and their dependencies. It
receives a reward of+1 for maintaining an equal
distribution of alignment and variation. In this way,
the agent learns to balance the most likely surface
forms against the benefits of variation and nonlin-
guistic context. 7 The agent receives a reward of
−1 for any other action (to encourage efficiency).
AgentsM3

0...4 use this reward function.

6 Experiments and Results

6.1 The Simulated Environment

The simulated environment has two parts: simulat-
ing the spatial context of an utterance and simulat-
ing the user’s reaction to it. The first part was de-
signed using unigrams modeling features of the con-
text 8 and the user.9 This lead to23 thousand dif-

7The distribution of alignment and variation is measured by
dividing the number of surface variants used before by the total
number of variants used. The agent is then rewarded for keeping
the resulting number around0.5, i.e. for a middle way between
alignment and variation (Dethlefs and Cuayáhuitl, 2010).

8previous system act, route length, route status
(known/unknown), objects within vision, objects within
dialogue history, number of instructions, alignment(proportion)

9previous user reaction, user position, user wait-
ing(true/false), user type(explorative/hesitant/medium)
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Figure 3: Performance of navigation instruction genera-
tion policies, jointly optimised and in isolation. See ex-
planation in Section 6.2 and sample dialogue in Table 2.

Compared Instructions F-Measure KL-Divergence

Real1 - Real2 0.58 1.77
Real - ‘HRL with BNs’ 0.38 2.83
Real - ‘HRL with greedy’ 0.49 4.34
Real - ‘HRL with random’ 0.0 10.06

Table 1: Evaluation of generation behaviours with
Precision-Recall and KL-divergence.

ferent configurations which we estimated from the
GIVE corpus to ensure the system is trained under
multiple circumstances. Since the corpus contains
three different worlds, we estimated the training en-
vironment from worlds 1 and 2, and the test envi-
ronment from world 3. We addressed the simula-
tion of user reactions with a Naive Bayes Classifier.
It is passed a set of features describing the current
context and user and a set of semantic features de-
scribing the generated utterance.10 Based on this,
the classifier returns the most likely user reaction of
performdesiredaction, performundesiredaction, wait
and requesthelp. It reached82% of accuracy in a
10-fold cross validation. Simulating user reactions
helps to assess the quality of instructions and pro-
vides feedback to the agent’s learning process.

6.2 Comparison of Learnt Policies

We have made two main claims in this paper: (1)
that CS, UP and SR decisions should all be learnt in
a joint fashion to achieve optimal performance, and

10navigation level(high / low), repair(yes / no), instruction
type(destination / direction / orientation / path / straight), aggre-
gation(yes / no), info structure(marked / unmarked), presenta-
tion(joint / incremental), temporal markers(yes / no)

(2) that BNs can prove beneficial for learning SR
variants. To address the first claim, Figure 3 shows
the performance (in terms of average rewards)11 of
our agent with (a) isolated optimisation of CS, UP
and SR, (b) joint optimisation of CS and SR, (c)
joint optimisation of CS and UP, (d) joint optimi-
sation of SR and UP and (e) joint optimisation of
all subtasks. All policies were trained12 for 150
thousand episodes, where one episode corresponds
to one generated utterance. We can see that learn-
ing a joint policy for all three subtasks achieves the
best performance. In terms ofcontent selection, the
agent learns to prefer high level navigation strate-
gies, which allow more efficient instruction giving,
and switch to low level whenever the user gets con-
fused. Regardingutterance planning, the agent
prefers incremental displays for three or more in-
structions, and joint presentations otherwise. For
surface realisation, the agent learns to choose a
(short) most likely surface form when the user has a
low information need, but include more information
otherwise. It learns to balance variation and align-
ment in an about equal proportion. Trained in iso-
lation, a non-optimal behaviour is learnt. The rea-
son is that all three components have a repertoire
of actions, which are different in nature, but can
have similar effects. For example, assume that for a
user with medium information need the CS compo-
nent makes a decision favouring an efficient instruc-
tion giving. It chooses a high-level navigation strat-
egy, which contracts several low-level instructions.
The next component, UP, should now take an action
to balance the earlier efficiency decision and corre-
spond to the user’s increased cognitive load. How-
ever, without access to the earlier decision, it may it-
self make an efficiency choice, and thus increase the
likelihood of the user hesitating or requesting help.

The second claim concerning the advantage of
BNs for SR is addressed by Table 1. Here, we
tested the human-likeness of SR decisions by com-

11Since the reward function assigns a reward of−1 for each
action taken, rewards stay in negative values.

12For training, the step-size parameterα (learning rate) was
initiated with1 and then reduced over time byα = 1

1+t
, where

t is the time step. The discount rateγ, which indicates the rele-
vance of future rewards in relation to immediate rewards, was
set to0.99, and the probability of a random actionǫ was0.01.
See (Sutton and Barto, 1998) for details on these parameters.
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Conv. Policy Action (composite in italics) Utterance
USR requestroute (low info need, on track) ‘How do I get to the trophy?’

π0
0 CS: navigation, dontConfirm

π1
1 generateHighLevel, planUtterance, dontRepair

π2
2 generateDestination, generateDirection

π2
0 UP: jointPresentation, noTempMarkers

π3
2 SR: turnVP, emptyPP, insertLocation

π3
4 emptyVP, emptyPP, pointRelatum Turn left at the end of the hall.

USR [waits]
SYS π0

0 CS: navigation,
π1

1 generateLowLevel, planUtterance, repairUtterance
π1

0 switchNavigationStrategy
π2

1 generateDirection, generatePath
π2

0 UP: aggregateClauses, incrementalPresentation
π3

2 SR: turnVP, emptyPP, noLocation Turn right,
π3

3 goVP, downPrep, pathRelatum and go down the hallway.
USR [executes navigation instructions]
SYS π0

0 CS: navigation, dontConfirm
π1

1 generateLowLevel, planUtterance, dontRepair
π2

1 generateDirection
π2

0 UP: incrementalPresentation, tempMarkers
π3

2 SR: bearVP, emptyPP Now bear left.
USR [executes navigation instructions]
SYS π0

0 confirmation Well done.

Table 2: Sample dialogue for the jointly learnt policy. See Section 5.1 for corresponding policies and actions. The
agent starts using a high level navigation strategy. When the user gets confused, it temporarily switches back to low
level; nonverbal behaviour is given in square brackets.

paring them with the human-authored instructions
from the GIVE corpus. We compare our jointly
learnt policy (‘HRL with BNs’) with a greedy base-
line (‘HRL with greedy’, where SR decisions are
made purely based on frequency) and a random
baseline (‘HRL withrandom’ where SR decisions
only aim to produce a grammatical form). For the
comparison we use Precision-Recall based on the
F-Measure score, and dialogue similarity based on
the Kullback-Leibler (KL) divergence (Cuayáhuitl
et al., 2005), which computes the difference be-
tween two probability distributions. In all cases, we
compared word strings of human-authored instruc-
tions against word strings of instructions generated
by each of our policies. Table 1 shows results of
the comparison of two human data sets ‘Real1’ vs
‘Real2’ and both of them together, as the gold stan-
dard, against our policies. While ‘HRL withgreedy’
receives higher F-Measure scores, the learnt policy

is more similar to the human data. This is due to
variation: in contrast to the greedy baseline, which
always exploits the most likely variant, the ‘HRL
with BNs’ policy learns to vary surface forms. This
leads to lower F-Measure scores, but achieves higher
similarity with human authors. This ultimately is a
desirable property, since it enhances the quality and
naturalness of our instructions. The ‘HRL withran-
dom’ baseline, which generates random variation,
performs worst according to both metrics.

Table 2 shows an example dialogue using the
jointly learnt policy. Here, the user has prior knowl-
edge of the environment and a low information need.
The system decides to give instructions efficiently
and chooses a high-level navigation strategy (‘Turn
left at the end of the hall’). When the user hesitates
(waits), it repairs its previous utterance, switches the
navigation strategy to low-level and rephrases the ut-
terance (‘Turn right, and go to the end of the hall.
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Conv. Utterance

USR ‘How do I get to the trophy?’
SYS Go to the end of the hall and then turn left.
USR [waits]
SYS Turn right, go straight and follow the

corridor. Then turn left.
USR [turns right, requests help]
SYS Go to the end of the hall and turn left.
USR [undesired action: turns left]
SYS Wait! Go back, then straight and then

follow the corridor.
USR [executes instructions]
SYS Very good. Turn left.
USR [executes instructions]
SYS Very good.

Table 3: Sample dialogue using policy optimised in iso-
lation. In terms of CS and UP, the agent prefers efficient
instruction giving. There is no variation in surface forms.

Now bear left’). It also chose to aggregate the mes-
sages using the conjunction ‘and’ (to minimise the
number of instructions), and present them in a one-
by-one fashion (to ease comprehensibility). This in-
terrelated decision making is possible due to their
joint optimisation. In contrast, Table 3 shows a di-
alogue for the same situation using the policy op-
timised in isolation, where the user gets confused
several times. Since decision making is not interre-
lated, all components prefer efficiency decisions (a
high-level navigation strategy, aggregation and joint
presentation whenever possible). There is no vari-
ation in surface forms, and repair strategies affect
only the immediately preceding utterance.

6.3 Human Evaluation Study

To get a more reliable idea of the quality and hu-
man acceptance of our instructions, we asked 12
participants13 to rate 96 sets of instructions. Each
set contained a spatial graphical scene with a per-
son, mapped with one human, one jointly learnt,
and one instruction learnt in isolation. Participants
were asked to rate navigation instructions to an ob-
ject, e.g. ‘go left and press the yellow button’, on a
1-5 Likert scale (where 5 is the best) for their help-
fulness on guiding the displayed person to the refer-

137 female, 5 male with an age average of25.6.

ent. Scenes were presented in a random order. We
then asked the participants to circle the object they
thought was the intended referent. Human instruc-
tions were rated with a mean of3.86 (with a stan-
dard deviation (SD) of0.89). The jointly learnt in-
structions were rated with a mean of3.57 (SD=1.07)
and instructions learnt in isolation with a mean of
2.35 (SD=0.85). The difference between human and
jointly learnt is not significant (p < 0.29) according
to a t-test. The effect sizer is 0.14. The difference
between human and learnt in isolation is significant
at p < 0.001 with an effect sizer of 0.65 and the
difference between jointly learnt and learnt in isola-
tion is significant atp < 0.003 and has an effect size
r of 0.53. Users were able to identify the intended
referent in96% of all cases.

7 Conclusion

We have presented a novel approach to optimising
NLG for situated interactions using HRL with BNs.
We also suggested to jointly optimise the tasks of
CS, UP and SR using reward functions induced
from human data. For the former two, we used the
PARADISE framework to obtain a reward function
that favours short interactions at maximal task
success. We then proposed a method for inducing
a reward function for SR from human data: it uses
BNs to represent the surface realiser and inform the
HRL agent’s learning process. In this way, we are
able to address a number of challenges arising with
situated NLG and correspond to the interrelated
nature of different NLG tasks. Results showed that
our jointly learnt policies outperform policies learnt
in isolation and received human ratings similar to
human instructions. We also found that our hybrid
approach to SR using HRL with BNs generates
language more similar to human data than a greedy
or random baseline enhancing language quality and
naturalness. Future work can transfer our approach
to different domains, or address the effects of SR
variants on human ratings in a more detailed study.
Other graphical models, e.g. Dynamic Bayesian
Networks, can be explored for SR. In addition,
adaptive NLG during an interaction can be explored
assuming a continuously changing learning environ-
ment, as shown for situated dialogue management
by Cuayáhuitl and Dethlefs (2011a).
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