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Abstract

Traditional approaches to referring expression gen-
eration (REG) have taken as a fundamental require-
ment the need to distinguish the intended referent
from other entities in the context. It seems obvious
that this should be a necessary condition for success-
ful reference; but we suggest that a number of recent
investigations cast doubt on the significance of this
aspect of reference. In the present paper, we look at
the role of visual context in determining the content
of a referring expression, and come to the conclu-
sion that, at least in the referential scenarios under-
lying our data, visual context appears not to be a ma-
jor factor in content determination for reference. We
discuss the implications of this surprising finding.

1 Introduction

Traditional approaches to referring expression generation
are based on the idea of distinguishing the intended refer-
ent from the other entities in the context (Dale and Reiter,
1995; Gardent, 2002; Krahmer and Theune, 2002; Krah-
mer et al., 2003; Gatt and van Deemter, 2006). The task
is generally characterised as involving the construction of
a distinguishing description consisting of those attributes
of the intended referent that distinguish it from the other
entities with which it might be confused; building a re-
ferring expression thus requires us to have an appropriate
formalisation of the notion of context. Earlier work (for
example, (Dale, 1989)) took its cue from work on dis-
course structure (in particular, (Grosz and Sidner, 1986)),
and defined the context in terms of the set of discourse-
accessible referents; more recent work has tended to fo-
cus on visual scenes (for example, (Viethen and Dale,
2006; Gatt et al., 2008; Gatt et al., 2009)), with the con-
text being defined as the set of all the objects in the scene.

Most of the early approaches to REG (Dale, 1989; Dale
and Haddock, 1991; Dale and Reiter, 1995; Krahmer et
al., 2003) were proposed without the support of rigorous
empirical testing. Probably the most fundamental shift in
the field in the last five years has been the move towards
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the development of algorithms that attempt to replicate
corpora of human-produced referring expressions. This
work has only really become possible with the advent of a
number of publicly-available corpora of human-produced
referring expressions collected under controlled circum-
stances: these include the TUNA Corpus (van der Sluis et
al., 2006), the Drawer Corpus (Viethen and Dale, 2006),
and the GRE3D3 and GRE3D7 Corpora (Viethen and
Dale, 2008; Viethen and Dale, 2011). All of these cor-
pora contain descriptions of target referents using a small
number of attributes in simple visual scenes containing
only a very small number of distractor objects. The de-
scriptions in all these cases were elicited in isolation, with
no preceding discourse: the reference task they represent
has sometimes been called ‘one-shot reference’. So there
is no discourse context that provides a set of potential
distractors, but there is a visual context of potential dis-
tractors.

The idea that the process of constructing a reference
to an object in a visual scene needs to take account of
the other entities in that scene in order to ensure that the
reference is successful seems so obvious that it might
be thought ridiculous to doubt it. However, our explo-
ration of a dataset that contains referring expressions for
objects in visual scenes of somewhat greater complexity
and involving dialogic discourse calls this fundamental
assumption into question.

In (Viethen et al., 2011), we presented a machine-
learning approach to REG, and distinguished two main
kinds of features that might play a role in subsequent ref-
erence: ‘traditional’ REG features, which are concerned
with distinguishing the intended referent from visual and
discourse distractors; and ‘alignment’ features, represent-
ing aspects of the discourse history (Clark and Wilkes-
Gibbs, 1986; Pickering and Garrod, 2004). We used fea-
ture ablation in a decision tree approach to investigate the
role of the traditional features, and found that the impact
of these features was negligible compared to that of the
alignment features. The bad performance of these fea-
tures caused us to ask whether the method of determining
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the visual distractors that were taken into account was to
be blamed. In the present paper, we explore this question
by trying out two different ways of determining the set of
visual distractors and by varying the size of this set.

In Section 2 we provide some background by situat-
ing the investigation presented here with respect to the
literature. In Section 3, we describe the corpus we work
with, and in Section 4, we describe our machine-learning
framework for exploring the data this corpus provides. In
Section 5, we present the results of some experiments that
attempt to determine the role of visual context in REG,
and in Section 6 we draw some conclusions.

2 Background

Some of the earliest work in REG (for example, (Dale,
1989)) adopted what we might think of as an ‘extreme
rationalist’ characterisation of the task: build a descrip-
tion that has no more and no less information than is
required to distinguish the intended referent (a minimal
distinguishing description).

It was soon recognised that this was not a good char-
acterisation of what people did, in particular because
human-produced descriptions are often over-specified,
rather than being minimal in the sense just described. The
incremental algorithm (IA; (Dale and Reiter, 1995)) di-
luted the extreme position with the acknowledgement that
something akin to habit also played a role in REG: the ba-
sic idea here was that, on the basis of experience, people
learn ‘preference orders’ for properties that tend to work
well, and when faced with the need to create a new de-
scription, they use these preference orders to guide the
search for an appropriate description. The IA still hung
on to the need to build a distinguishing description, but
the preference order mechanism meant that some descrip-
tions might be longer than necessary, containing redun-
dant information.

In (Dale and Viethen, 2010), we proposed a further
weakening of the traditional model, suggesting that at-
tributes in a referring expression might be chosen inde-
pendently, rather in a fashion whereby each depends on
the attributes previously chosen (a characteristic of earlier
algorithms that we refer to as serial dependency). But
even this attribute-centric model takes the view that the
discriminatory power of the individual attributes plays a
role in decision-making. The requirement that we should
take account of the context in determining how to refer to
something has thus been kept more or less centre-stage in
computational work through the last 20 years or so.

Meanwhile, work in psycholinguistics has explored the
idea that quite orthogonal factors are at play in choosing
the content of descriptions. Starting with the early work
of Carroll (1980), a distinct strand of research has ex-
plored how a speaker’s form of reference to an entity is
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impacted by the way that entity has been previously re-
ferred to in the discourse or dialogue. The general idea
behind what we will call the alignment approach is that
a conversational participant will often adopt the same
semantic, syntactic and lexical alternatives as the other
party in a dialogue. This perspective is most strongly as-
sociated with the work of Pickering and Garrod (2004).
With respect to reference in particular, speakers are said
to form conceptual pacts in their use of language (Clark
and Wilkes-Gibbs, 1986; Brennan and Clark, 1996). The
implication of much of this work is that one speaker in-
troduces an entity by means of some description, and then
(perhaps after some negotiation) both conversational par-
ticipants share this form of reference, or a form of refer-
ence derived from it, when they subsequently refer to that
entity. Recent work by Goudbeek and Krahmer (2010)
supports the view that subconscious alignment does in-
deed take place at the level of content selection for re-
ferring expressions: the participants in their study were
more likely to use a dispreferred attribute to describe a
target referent if this attribute had recently been used in a
description by a confederate.

One way of characterising these developments is that,
on the one hand, the original very precise and somewhat
rigid computational approaches to REG have been pro-
gressively weakened in the face of real human data; and
on the other hand, work in a distinct discipline has of-
fered a quite separate view of how reference works. Of
course, these two broad approaches may not be incompat-
ible. The truth may lie ‘in-between’, involving insights
and ideas from both ways of thinking about the problem.
In the present paper we aim to put one of the remaining
fundamental tenets of the computational approaches to
the test: does visual context really matter when we con-
struct a referring expression?

3 Referring Expressions in the iIMAP
Corpus

The iMAP Corpus (Louwerse et al., 2007) is a collec-
tion of 256 dialogues between 32 participant-pairs who
contributed 8 dialogues each. Both participants had a
map of the same environment, but one participant’s map
showed a route winding its way between the landmarks
on the map (see Figure 1 for examples). The task was for
this participant, the instruction giver (IG), to describe the
route in such a way that their partner, the instruction fol-
lower (IF), could draw it onto their map; this was com-
plicated by some discrepancies between the two maps,
such as missing landmarks, the unavailability of colour
in some regions due to ink stains, and small differences
between some landmarks. Note that the maps contain a
relatively large number of objects compared to the visual
stimuli used in other REG corpora.
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(a) An example pair of IG and IF maps of the type bird+house.

(b) An IG map of type fish+car.

Figure 1: Three example maps.

There are eight types of landmarks, grouped into
pairs of one animate and one inanimate type each:
alien+trafficsign, bird+house, fish+car, and bugs+trees.
Each of these pairs defines a map type, which contains
landmarks which are mostly of one of the two types of
the pair. Half of the maps contain a few landmarks of
types other than the main type; for example, a bird+house
map contains mostly birds or houses, but might also con-
tain a small number of other landmarks. The maps in
Figure 1(a) are bird+house maps containing mainly birds
with a few landmarks of other types mixed in, and the
map in Figure 1(b) is an unmixed fish—car map for the IG,
containing only fish landmarks. Note the high density of
landmarks on the map in Figure 1(b) compared to those
in Figure 1(a) (each cluster of same-coloured bugs on the
bird maps counts as a single landmark). Overall there are
32 maps, which differ by the map type (four levels), the
animatedness of the landmark types (two levels, e.g. fish
vs. cars), the mixedness of the landmark types (two lev-
els: only the main landmark type or also a few landmarks
of different types), and the shape of the ink blots on the
IF’s map (two levels: one large blot or several smaller
ones).

Apart from their type, the landmarks differ in colour,
and one other attribute, which is different for each type of
landmark. For example, there are different kinds of birds
and houses (eagle, ostrich, penguin, ...; church, castle,
...); fish and cars differ by their patterns (dotted, check-
ered, plain, ...), aliens and traffic signs have different
shapes (circular, hexagonal, ...), and bugs and trees ap-
pear in small clusters of differing numbers. In addition
to these three inherent attributes of the landmarks, par-
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ticipants used spatial relations to other items on the map.
Each of the 34,403 referring expression in the corpus is
annotated with the semantic values of the attributes that
it contains. This collection of annotations forms the basic
data we use in our experiments.

We removed from the data all referring expressions
that made reference to more than one landmark and
those—in particular, pronouns—that did not contain
any of the four main landmark attributes, type, colour,
relation, or the landmark’s other distinguishing attribute.
However, all filtered expressions are taken into account in
the computation of the features for the machine learner.
The final data set contains 22,727 referring expressions,
of which 6,369 are initial references and 16,358 are sub-
sequent references.

We can think of each referring expression as being re-
alised from a content pattern: this is the collection of at-
tributes that are used in that description. The attributes
can be derived from the property-level annotation given
in the corpus. So, for example, if a particular reference
appears as the noun phrase the blue penguin, annotated
semantically as (blue, penguin), then the corresponding
content pattern is (colour, kind). Our aim is to replicate
the content pattern of each referring expression in the cor-
pus. Table 1 lists the 15 content patterns that occur in our
data set in order of frequency.

The high frequency of the (other) pattern is in part due
to the annotation of the kind of birds and houses as other,
which could also be argued to be a more fine-grained type
attribute. We accepted this annotation as it was provided
in the corpus, but we may alter it in future studies.



Content Pattern Count  Proportion
{other) 7561 33.27%
(other, type) 5975 26.29%
(other, colour) 2364 10.40%
(other, colour, type) 1954 8.60%
(colour) 1029 4.53%
(relation) 796 3.50%
(other, relation) 738 3.25%
(type) 662 2.91%
(colour, type) 596 2.62%
(other, relation, type) 463 2.04%
(relation, type) 262 1.15%
(other, colour, relation) 124 0.55%
(colour, relation) 101 0.44%
(other, colour, relation, type) 82 0.36%
(colour, relation, type) 20 0.09%
total 22,727

Table 1: The 15 different content patterns that occur in our data
and their frequencies.

4 A Machine Learning Approach to
Content Determination

The number of factors that can be hypothesised as hav-
ing an impact on the form of a referring expression in a
dialogic setting associated with a visual domain is very
large. Attempting to incorporate all of these factors into
parameters for a rule-based system, and then experiment-
ing with different settings for these parameters, is pro-
hibitively complex. Instead, we here capture a wide range
of factors as features that can be used by a machine learn-
ing algorithm to automatically induce from the data a
classifier that predicts for a given set of feature values the
attributes that should be used in a referring expression.

The features we extracted from the data set are out-
lined in Tables 2—4.! They fall into a number of subsets.
Map features capture design characteristics of the map-
pair the current dialogue is about; Speaker features cap-
ture the identity and role of the participants; and LMprop
features capture the inherent visual properties of the tar-
get referent. The TradREG features allow the machine
learner to capture factors that the traditional computa-
tional approaches to referring expression generation take
account of. Of particular interest for our present consid-
erations are the Visual TradREG features, which repre-
sent knowledge about the visual context. Alignment fea-
tures capture factors that we would expect to play a role
in the psycholinguistic models of alignment and concep-
tual pacts. When we refer to the complete feature set, we
use the abbreviation allF.

'In these tables, arf is an abbreviatory variable that is instantiated
once for each of the four attributes type, colour, relation, and the other

distinguishing attribute of the landmark. The abbreviation LM stands
for landmark.
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Map Features
Main_Map_type
Main_Map_other

most frequent type of LM on this map
other attribute if the most frequent type of LM

Mixedness are other LM types present on this map?
Ink Orderliness  shape of the ink blot(s) on the IF’s map
LMprop Features

other_Att type of the other attribute of the target
[att] Value value for each att of target

[att] Difference  was att of target different between the two maps?
Missing was target missing one of the maps?
Inked_Out was target inked]_out on the IG’s map?
Speaker Features

Dyad_ID ID of the pair of participant-pair
Speaker_ID ID of the person who uttered this RE

Speaker_Role was the speaker the IG or the IF?

Table 2: The Map, LMProp and Speaker feature sets.

Visual TradREG Features

Count_Vis_Distractors number of visual distractors

Prop_Vis_Same_[att] proportion of visual distractors with

same att

distance to the closest visual distractor

has the closest distractor the same att?

distance to the closest distractor of same

att as target

Cl_Same_type_Same_[att] has the closest distractor of the same

type also the same art?

Discourse TradREG Features

Count_Intervening_LMs number of other LMs mentioned since the
last mention of the target

Prop_Intervening_[att] proportion of intervening LMs for which
att was used AND which have the same att
as target

Table 3: The TradREG feature set.

Dist_Closest
Closest_Same_[att]
Dist_Closest_Same_[art]

For our experiments, we use the Weka Toolkit (Witten
and Frank, 2005) to learn one decision tree for each of the
four attributes which decides whether or not to include
that attribute. We then combine the attributes for which a
positive decision was made into a content pattern that can
be compared to the content pattern found in the corpus
for the same instance.?

In (Viethen et al., 2011) we showed that dropping the
complete TradREG feature set from allF does not de-
crease the performance of this model on subsequent ref-
erence. The relevant numbers from that experiment are
shown in italics in the first two lines of Table 5.

One question this kind of work raises is: just what gets
included in the visual context? Considering that most
of the TradREG features depend on the visual context,
it might be possible that the lack of impact of this fea-
ture set was due to the size of the visual context having
been chosen incorrectly. A second consideration is that
the TradREG features might have more of an impact on

2We also tried an alternative approach of learning the whole content
pattern at once with very similar results, which we do not report here
due to space limitations.



Alignment Features — Recency

Last_Men_Speaker_Same who made the last mention of target?

Last_Mention_/att] was att used in the last mention of target?

Dist_Last_Mention_Utts distance to the last mention of target in
utterances

Dist_Last_Mention_REs distance to the last mention of target in
REs

Dist_Last_[att] LM_Utts distance in utterances to last use of art
for target

Dist_Last_[art] LM _REs distance in REs to last use of art for tar-
get

Dist_Last_[art] _Dial_Utts distance in utterances to last use of art

Dist_Last_{art] Dial REs distance in REs to last use of art

Dist_Last_ RE_Utts distance to last RE in utterances

Last_RE_[att] was aft mentioned in the last RE?

Alignment Features — Frequency

Count_{art] Dial how often has att been used in the dialogue?

Count_[art] LM  how often has att been used for target?

Quartile quartile of the dialogue the RE was uttered in
Dial_No number of dialogues already completed +1
Mention_No number of previous mentions of target +1

Table 4: The Alignment feature set.

initial reference than on the subsequent referring expres-
sions that were at focus in our previous work. We explore
these possibilities next.

5 The Effects of Variation in Visual
Context

In (Viethen et al., 2011), the size of the visual context was
set for each map type in such a way that each landmark
on any map of that type would have six distractors on
average. We will refer to this way of setting the visual
context size as average—6.

Because we are here particularly interested in the per-
formance of the features that depend on the visual con-
text (i.e., the Visual TradREG features), we performed
two more ablation steps, in which we separately excluded
only the Visual TradREG features and the Discourse
TradREG features for both subsequent and initial refer-
ences. Table 5 confirms that, using the average—6 method
to determine the visual context, the Visual TradREG fea-
tures have no significant effect for either subsequent or
initial referring expressions on the Accuracy with which
the model replicates the referring expressions in our cor-
pus. Perhaps surprisingly, this is true not only for subse-
quent reference, but also for initial reference, where one
might expect that distinguishing from the visual context
would be of more importance.

Considering the difference in density and uniformity
of landmarks on the different types of maps (compare
Figure 1(a) with 42 diversely shaped landmarks in the
IG map to Figure 1(b) with 59 uniformly shaped land-
marks), we wondered whether the average—6 method of
setting the visual context might be too inflexible. For ex-
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all initial | subseq.

allF || 61.5% | 68.6% | 58.8%

allF — TradREG || 61.3% | 69.4% | 58.2%

allF — Discourse TradREG || 61.3% | 68.6% | 58.4%
allF — Visual TradREG || 61.6% | 69.4% | 58.5%

no of REs || 22727 | 6369 16358

Table 5: Ablation of Discourse and Visual TradREG features
using average—6 to determine the visual context. Performance
is measured in percentage of perfect matches. Numbers in ital-
ics were prevously reported in (Viethen et al., 2011).

ample, one might hypothesise that fewer surrounding ob-
jects might get taken into account in describing the blue
penguin marked by a circle in the left map in Figure 1(a)
than in describing the purple fish marked by a circle in
Figure 1(b).

We therefore split our data into four sets according to
the four different map types and tried out a range of dif-
ferent visual context sizes for each type separately. Two
different ways of determining the visual context might be
at play. One possibility is that people might indeed be
taking into account (roughly) the same number of sur-
rounding objects for each landmark, while this number
might be different for different map types due to their dif-
ferent landmark densities. We call this the count method
of determining the visual context. Alternatively, one
might draw an imaginary circle around each landmark,
and consider all objects whose centres fall within the ra-
dius of this circle to be distractors. We call this the dis-
tance method of determining the visual context.

In order to explore whether there is one ‘correct’ size
of visual context for each map type, we tried all distances
from 0 to 675 pixels in 15 pixel steps (each map is 488 x
675 pixels) and all possible distractor counts from 0 to 61
(the maximum number of landmarks on the most dense
map pair is 61). If the bad performance of the Visual
TradREG features so far was indeed due to the visual
context being too inflexible or set incorrectly, we would
expect to find at least one visual context size for each map
type that outperforms all others. There should also be a
peak of performance around that size, with the perfor-
mance falling if the size grows or shrinks from the ideal
size (if the visual context is set too small, we might ex-
pect to see references containing too many attributes; if
the visual context is set too large, we might expect to see
references with too few attributes).

We trained the decision trees on 80% of the data for
each map type and tested on the remaining 20%. The
training—test splits were stratified for the content patterns
of the referring expressions, the Speaker_IDs of the par-
ticipants who produced the expressions, and the Quartiles
of the dialogue in which the references occurred. Table 6



map type | train | test | total

alien+sign 4,425 967 5,392
fish+car || 4,021 813 4,834
bird+house || 5,492 | 1,264 | 6,756
tree+bug || 4,703 | 1,042 | 5,745

total || 18,641 | 4,086 | 22,727

Table 6: Sizes of the training and test sets for the different map

types.
best all best | initial || best |subseq.
maptype || sizes | REs || sizes | REs || sizes | REs
alien+sign|| 43 |63.5% 5 |683%| 43 |62.5%
fish+car|| 44, 46 (59.2%| 43 [60.6%| 13 |59.0%
house+ 13,
bird 3,22 |72.6%| 22 |75.6% 19,28 71.8%
trees+ 0,1,3,
bugs 3 170.5% 11, 12 74.8%| 33 | 68.4%
weighted 67.1% 71.1% 65.9%
average
all maps 61.5% 68.6% 58.8%
average-6

Table 7: Maximum possible Accuracy using all features
achieved by choosing the best performing visual context by the
count method for each map type, compared to the performance
of the average-6 visual contexts.

shows the sizes of the four different training—test splits.

Table 7 shows that if we choose the best performing
count of distractors for each map type, the overall perfor-
mance (weighted average over all map types) does indeed
improve over the old average-6 method of choosing the
visual context. Table 8 shows the same results for the
distance method of determining the visual context. (For
both methods p < 0.01, using the x? statistic with df = 1
for all, initial, and subsequent references.)

However, Figures 2 to 5 demonstrate that there is no
consistent effect of the size of the visual context on the
performance of our model using the number method of
setting visual context sizes. None of the graphs show a
clear performance peak around one particular visual con-
text; instead, performance oscillates in a fairly narrow
percentage band both when using all features and when
using only the Visual TradREG features that are directly
impacted by the visual context. For most map types it
becomes clear that even a model using only the features
that are not affected by the visual context (the flat lines la-
belled noVisualTrad) outperforms allF with many of the
settings for visual context size. This means that, unless
we are certain that we are using the best performing set-
ting for visual context, using the Visual TradREG fea-
tures is risky, as choosing the wrong visual context can
easily lead to a worse match with human behaviour.
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best all best | initial best |subsequ.
maptype || sizes | REs sizes REs sizes REs
alien+sign || 90, 105|59.5% 90 65.1% || 240, 285| 57.9%
fish+car|| 75 |57.3%]|| 75,180 |62.4% 75 55.9%
house+ 300,
bird 150 |73.3% 540-675 74.8%| 480 73.4%
trees+ 585, 210,
bugs 210 |70.4% 660, 675 76.6% 40, 505 67.2%
weighted 65.9% 70.9% 64.3%
average
all maps 61.5% 68.6% 58.8%
average-6

Table 8: Maximum possible Accuracy using all features
achieved by choosing the best performing visual context by the
distance method for each map type, compared to the perfor-
mance of the average-6 visual contexts.

For space reasons we do not show all four graphs for
the distance method. However, Figure 6 shows the per-
formance for all map types when using all feature sets.
Again, the performance oscillates as the size of the visual
context varies, rather than showing a real peak around an
ideal context size.

Although the performance of the overall system can
be increased over the old average-6 method by setting
the visual context to a map type-specific optimum, these
results show that this increase is somewhat a matter of
luck. Short of trying out (almost) all possible sizes of
the visual context, as we did here, there is no systematic
way in which to determine the size of the visual context
that gives the best performance; and by using features
dependent on the visual context one might just as likely
hit on a visual context that decreases performance. The
oscillations in the graphs in Figures 2 to 6 indicate that it
is unlikely that people are taking the visual content into
account in the way that our model suggests.

6 Discussion

In this paper we have put forward what might be con-
sidered a rather heretical position: that during the con-
struction of a referring expression, contrary to what is as-
sumed by much work in the field, a speaker does not seem
to take account of the visual context of reference. Using
a collection of human-produced referring expressions of
landmarks on moderately complex maps, we have shown
that there is no principled way in which to determine a
visual context that might make a significant difference
to the ability of a machine-learned algorithm to replicate
the human data. The implication of this would seem to
be that humans generate referring expressions with little
regard for the visual context, or at least that the role of
visual context is masked by other factors (such as align-
ment) that play a bigger role. So, we might conclude that
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Figure 2: Accuracy for different visual contexts (determined
by the count method) for the alien+sign maps.

car+fish — count method

60%
58%
56%
54%
52%
50%
48% ++1
46%
44%
42%
40%
38%
36%
34%
32%

30% 7T
0 2 4 6 8 10121416 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

--allF initial ---allF subs —VisTrad all - VisTrad initial

—noVisTrad all -+ noVisTrad initial ---noVisTrad subs =-VisTrad subs

—allFall

Figure 3: Accuracy for different visual contexts (determined
by the count method) for the fish+car maps .

the view that reference is about deliberately constructing
distinguishing descriptions should be considered suspect.

It could be argued that this is a somewhat plausible po-
sition if we look only at subsequent reference as we did in
(Viethen et al., 2011): once an entity has been introduced
into the discourse, perhaps how it is referred to subse-
quently depends more on the preceding discourse than it
does on the visual context at the time of reference. In-
deed, once an entity has been referred to, the description
that has been constructed ‘factors in’ the visual context,
and so any subsequent reference to that entity does not
require re-computation of the description; referring to the
entity in the way that it was referred to before should still
do the job (unless, of course, the context has changed in
some relevant way). Such a model has the twin appeals of
being both more computationally efficient, and consistent
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Figure 4: Accuracy for different visual contexts (determined
by the count method) for the bird+house maps.
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Figure 5: Accuracy for different visual contexts (determined
by the count method) for the bugs+trees maps.

with explanations based on the alignment approach.

But surely, we would want to say, context must still be
taken account of when constructing an initial reference;
and if the context is a visual one, then that first refer-
ence constructed needs to distinguish the intended refer-
ent from the other entities in the scene. Surprisingly, even
here, our experimental results support the view that visual
context doesn’t matter.

So what’s going on? Intuition suggests that, in real
world scenes, we do take account of the distinguishing
ability of our referring expressions; when we describe an
intended referent, we do not do so blindly without con-
sidering whether the referring expression might be con-
fusing or ambiguous. But our data suggests, at least in
the scenarios we have looked at, that this is not the case.

One possible explanation is that neither of the two
ways of determining the visual context that we tried out
in our experiments accurately models the visual context
that the speakers in our corpus take into account. Firstly,
while acknowledging that there are differences between
the different types of maps that might influence the num-
ber of distractors to be taken into account, we still kept



all features — distance method

—alien+sign all ---alien+sign initial ---alien+sign subs —house+bird all

~-carfish initial ~ ---car+fishsubs  --~-house+bird initial

tree+bug initial

—car+fishall
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Figure 6: Accuracy for different visual contexts determined by
the distance method for all map types.

the size of the visual context constant for all landmarks
on a given map. It is conceivable that this is still too sim-
plistic an assumption and that distractor numbers have
to be determined on a landmark-by-landmark basis in-
stead. For instance, it is likely that, at least for the IG, the
course of the path influences the shape of the visual con-
text, with objects along the path being more likely to be
taken into account than those further away. This is a con-
sideration that was taken into account to some extent by
Guhe (2007; 2009). Similarly, what counts as the visual
context is probably influenced by the linguistic context as
well. For example, in uttering as well as resolving an in-
struction such as go left until you get to the red alien, the
red alien has to be distinguished mostly from objects to
its right and not so much from anything that lies beyond
it to its left.

To explore these kinds of hypotheses, a lot more
preparatory work would be necessary. The dialogues
would need to be annotated with information about the
point on the path that the IG and IF have reached, and
with possibly relevant information in the dialogue con-
text. However, to obtain a more definite answer to the
question of which landmarks are taken into account when
people refer in dialogue, we will ultimately have to look
beyond the text of the dialogue transcriptions. With tech-
nologies such as eye-tracking it might be possible to re-
veal which other landmarks speakers look at while or be-
fore they construct a referring expression.

Another possible explanation for the surprising out-
come of our experiment is that our scenarios are too sim-
ple: they do not reflect the complexity of real-world vi-
sual scenes, and so the complex mechanisms we think are
required for REG more generally are simply not required
in these simple scenes. Rather than compute a reference
that takes account of the context, the subjects in the iMAP
Task perhaps recognise that the scenes are simple enough
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to use referring expressions that are not carefully com-
puted on the basis of context.

But this then raises a methodological issue. An as-
sumption implicit in much recent work on evaluation in
REG is that, by initially using simplistic domains and
tasks, the in-principle capabilities of algorithms can be
tested before scaling up to more complex real-world set-
tings. The visual scenarios that are represented by the
TUNA Corpus, the Drawer Corpus, and the GRE3D3 and
GRE3D7 Corpora are very abstract and arguably quite
unlike any real-world scenes where a speaker needs to
construct a reference. For the work presented here, we
attempted to consider more ‘realistic’ scenes involving
speakers discussing larger numbers of objects in a dis-
tinct task; but even here, the scenario is still very simple
with much fewer attributes to choose from than speaker
are usually presented with when referring ‘in the wild’.
But if this is the case, then what do we learn by develop-
ing algorithms that work in these simple scenarios?

We do not believe that the idea that human speakers
deliberately build distinguishing descriptions in order to
uniquely identify their intended referents should be aban-
doned: this seems to us a fundamentally important aspect
of successful referential behaviour. But if we want to un-
derstand how it is that people do this, we should be wary
of thinking we can learn about these processes by look-
ing at how people refer in vastly simplified models of the
real world. To move forward, we need to focus on the
complexity of real-world reference scenarios.

7 Conclusions

Traditional REG algorithms are based on the aim of dis-
tinguishing the target referent from the other objects in its
context. However, using a corpus of maptask dialogues,
we found in earlier work that using features based on the
same considerations as those underlying the traditional
REG algorithms does not help in machine learning which
attributes people use in a given situation. In this paper,
we used two different methods of varying the size of the
visual context that gets taken into account in computing
the values for these features. We found that it is not pos-
sible to systematically determine an ideal context size
using these methods, which seems to point to the con-
clusion that, for the speakers in our corpus, visual con-
text was not an important consideration. Alternatively,
even more fine-grained methods of determining the vi-
sual context than those we tried might be necessary, or
the scenarios on the maps underlying our corpus are too
simplistic to elicit real-world behaviour from the speak-
ers. This points to the conclusion that it might be time
for the field to move on to more complex visual scenes
when researching content selection mechanisms for re-
ferring expression generation.
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