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Introduction

GEMS 2011 — GEometrical Models of Natural Language Semantics — is the third instalment in a
successful series of workshops on distributional models of meaning. Since their earliest application
in information retrieval, these models have become omnipresent in contemporary computational
linguistics and neighboring fields. Different types of distributional models have been introduced —
from the relatively simple bag-of-word, document-based and syntax-based techniques to the statistically
more advanced topic models. In the field of lexical semantics, their direct applications include the
construction of lexical taxonomies, the recognition of textual entailment, word sense discrimination
and disambiguation, cognitive modeling, etc. Moreover, other areas of NLP, like parsing and Machine
Translation, have found they can indirectly benefit from the ability of distributional models to generalize
from a limited training set to unseen, but semantically similar, words.

The growth of distributional semantics, however, is not without its problems. The aim of GEMS is to
address two orthogonal types of current challenges. First, there is the fragmentation with regard to data
sets, methods and evaluation metrics, which makes it difficult to compare studies and achieve scientific
progress. We addressed this problem by providing authors with two datasets suitable for the evaluation
of distributional models, together with the corpora that can be used for their construction. As a result,
the performance of very different approaches can be easily compared across papers. Second, these
datasets were chosen so as to reflect two of the most pressing issues in the development of distributional
models nowadays: differentiation between semantic relations and compositionality.

The first set, presented by Baroni and Lenci, includes concrete nouns from different semantic classes
(living, non-living, etc.) with associated words for specific semantic relations such as “attribute”,
“category coordinate”, “event”, or “metonym”. Panchenko uses this data to compare 21 measures
of semantic similarity and relatedness, based on information from WordNet, a traditional corpus, and
the web. Baroni, Bruni and Binh Tran explore images as a fourth type of information. Both papers
discover fundamental differences in the semantic information that is captured by these different sources
of information. This paves the way for a combined, more comprehensive model.

The second dataset, borrowed from Mitchell and Lapata, contains phrase similarity judgments. It makes
it possible to address the evaluation of distributional models in compositional tasks. Grefenstette and
Sadrzadeh show how a transitive verb can be modeled as a matrix and combine with the vectors of
its subject and object. Basile, Caputo and Semeraro use vector permutation in a Random Indexing
framework to encode different syntactic dependency relations. Hartung and Frank look to Latent
Dirichlet Allocation to identify the dimensions of meaning modified by adjectives.

In addition, the workshop was open to any other original application of distributional semantics. Chan,
Callison-Burch and Van Durme use distributional similarity to evaluate paraphrases extracted from a
bilingual lexicon. Gulordava and Baroni investigate meaning change in the Google Books corpus.

Obviously, the success of a workshop does not only rely on the quality of its papers. In addition to
all speakers and participants, we would like to thank the members of the organizing committee and
program committee, who where indispensable for the preparation of the workshop. We also thank our
panelists and invited speaker for their thought-provoking contributions, and the ACL SIGSEM and ACL
SIGLEX interest groups for their endorsement of the workshop.
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Abstract

We introduce BLESS, a data set specifically
designed for the evaluation of distributional
semantic models. BLESS contains a set of tu-
ples instantiating different, explicitly typed se-
mantic relations, plus a number of controlled
random tuples. It is thus possible to assess the
ability of a model to detect truly related word
pairs, as well as to perform in-depth analy-
ses of the types of semantic relations that a
model favors. We discuss the motivations for
BLESS, describe its construction and struc-
ture, and present examples of its usage in the
evaluation of distributional semantic models.

1 Introduction

In NLP, it is customary to distinguish between in-

trinsic evaluations, testing a system in itself, and
extrinsic evaluations, measuring its performance in
some task or application (Sparck Jones and Galliers,
1996). For instance, the intrinsic evaluation of a de-
pendency parser will measure its accuracy in identi-
fying specific syntactic relations, while its extrinsic
evaluation will focus on the impact of the parser on
tasks such as question answering or machine trans-
lation. Current approaches to the evaluation of Dis-

tributional Semantic Models (DSMs, also known
as semantic spaces, vector-space models, etc.; see
Turney and Pantel (2010) for a survey) are task-
oriented. Model performance is evaluated in “se-
mantic tasks”, such as detecting synonyms, recog-
nizing analogies, modeling verb selectional prefer-
ences, ranking paraphrases, etc. Measuring the per-
formance of DSMs on such tasks represents an in-

direct test of their ability to capture lexical mean-
ing. The task-oriented benchmarks adopted in dis-
tributional semantics have not specifically been de-
signed to evaluate DSMs. For instance, the widely
used TOEFL synonym detection task was designed
to test the learners’ proficiency in English as a sec-
ond language, and not to investigate the structure of
their semantic representations (cf. Section 2).

To gain a real insight into the abilities of DSMs to
address lexical semantics, existing benchmarks must
be complemented with a more intrinsically oriented
approach, to perform direct tests on the specific as-
pects of lexical knowledge captured by the models.
In order to achieve this goal, three conditions must
be met: (i) to single out the particular aspects of
meaning that we want to focus on in the evaluation
of DSMs; (ii) to design a data set that is able to ex-
plicitly and reliably encode the target semantic infor-
mation; (iii) to specify the evaluation criteria of the
system performance on the data set, in order to get
an estimate of the intrinsic ability of DSMs to cope
with the selected semantic aspects. In this paper, we
address these three conditions by presenting BLESS

(Baroni and Lenci Evaluation of Semantic Spaces),
a new data set specifically geared towards the in-
trinsic evaluation of DSMs, downloadable from:
http://clic.cimec.unitn.it/distsem.

2 Distributional semantics benchmarks

There are several benchmarks that have been widely
adopted for the evaluation of DSMs, all of them cap-
turing interesting challenges a DSM should meet.
We briefly review here some commonly used and
representative benchmarks, and discuss why we felt
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the need to add BLESS to the set. We notice at the
outset of this discussion that we want to carve out a
space for BLESS, and not to detract from the impor-
tance and usefulness of other data sets. We further
remark that we focus on data sets that, like BLESS,
are monolingual English and, while task-oriented,
not aimed at a specific application setting (such as
machine translation or ontology population).

Probably the most commonly used benchmark in
distributional semantics is the TOEFL synonym de-

tection task introduced to computational linguis-
tics by Landauer and Dumais (1997). It consists of
80 multiple-choice questions, each made of a target
word (a noun, verb, adjective or adverb) and 4 re-
sponse words, 1 of them a synonym of the target.
For example, given the target levied, the matched
words are imposed, believed, requested, correlated,
the first one being the correct choice. The task for
a system is then to pick the true synonym among
the responses. The TOEFL task focuses on a single
semantic relation, namely synonymy. Synonymy is
actually not a common semantic relation and one of
the hardest to define, to the point that many lexi-
cal semanticists have concluded that true synonymy
does not exist (Cruse, 1986). Just looking at a few
examples of synonym pairs from the TOEFL set will
illustrate the problem: discrepancy/difference, pro-

lific/productive, percentage/proportion, to market/to
sell, color/hue. Moreover, the criteria adopted to
choose the distractors (probably motivated by the
language proficiency testing purposes of TOEFL)
are not known. By looking at the set, it is hard
to discern a coherent pattern. In certain cases, the
distractors are semantically close to the target word
(volume, sample and profit for percentage), whereas
in other cases they are not (home, trail, and song for
annals). It it thus not clear whether we are asking the
models to distinguish a semantically related word
(the synonym) from random elements, or a more
tightly related word (the synonym, again) from other
related words. The TOEFL task, finally, is based on
a discrete choice (either you get the right word, or
you don’t), with the result that evaluation is “quan-
tized”, leading to large accuracy gains for small ac-
tual differences (one model that guesses one more
synonym right than another gets 1.25% more points
in percentage accuracy).

The WordSim 353 data set (Finkelstein et al.,

2002) is a widely used example of semantic simi-

larity rating set (see also Rubenstein and Goode-
nough (1965) and Miller and Charles (1991)). Sub-
jects were asked to rate a set of 353 word pairs on a
“similarity” scale and average ratings for each pair
were computed. Models are then evaluated in terms
of correlation of their similarity scores with aver-
age ratings across pairs. From the point of view
of assessing the performance of a DSM, the Word-
Sim (and related) similarity ratings are a mixed bag,
in two senses. First, the data set contains a vari-
ety of different semantic relations. In a recent se-
mantic annotation of the WordSim performed by
Agirre et al. (2009) we find that, among the 174
pairs with above-median score (and thus presum-
ably related), there is 1 identical pair, 17 synonym
pairs, 28 hyper-/hyponym pairs, 30 coordinate pairs,
6 holo-/meronym pairs and 92 (more than half) pairs
that are “topically related, but none of the above”.
Second, the scores are a mixture of intuitions about
which of these relations are more semantically tight
and intuitions about more or less connected pairs
within each of the relations. For example, among
the top-rated scores we find synonyms such as jour-

ney/voyage and coordinate concepts (king/queen).
If we look at the relations characterizing pairs
around the median rating, we find both less “per-
fect” synonyms (monk/brother, that are synonymous
only under an unusual sense of brother) and less
close coordinates (skin/eye), as well as pairs in-
stantiating other, less taxonomically tight relations,
such as many syntagmatically connected items (fam-

ily/planning, disaster/area, bread/butter). Appar-
ently, a single scale is merging intuitions about se-
mantic similarity of specific pairs and semantic sim-
ilarity of different relations.

A perhaps more principled way to evaluate DSMs
that has recently gained some popularity is the con-

cept categorization task, where a DSM has to clus-
ter a set of nouns expressing basic-level concepts
into gold standard categories. A particularly care-
fully constructed example is the Almuhareb-Poesio
(AP) set of 402 concepts introduced in Almuhareb
(2006). Concept categorization sets also include the
Battig (Baroni et al., 2010) and ESSLLI 2008 (Ba-
roni et al., 2008) lists. The AP concepts must be
clustered into 21 classes, each represented by be-
tween 13 and 21 nouns. Examples include the ve-
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hicle class (helicopter, motorcycle. . . ), the motiva-

tion class (ethics, incitement, . . . ), and the social

unit class (platoon, branch). The concepts are bal-
anced in terms of frequency and ambiguity, so that,
e.g., the tree class contains a common concept such
as pine but also the casuarina tree, as well as the
samba tree, that is not only an ambiguous term, but
one where the non-arboreal sense dominates.

Concept categorization data sets, while interest-
ing to simulate one of the basic aspects of human
cognition, are limited to one kind of semantic re-
lation (discovering coordinates). More importantly,
the quality of the results will depend not only on the
underlying DSMs, but also on the clustering algo-
rithm being used (and on how this interacts with the
overall structure of the DSM), thus making it hard
to interpret the performance of DSMs. The forced
“hard” category choice is also problematic, and ex-
aggerates performance differences between models
especially in the presence of ambiguous terms (a
model that puts samba in the occasion class with
dance and ball might be penalized as much as a
model that puts it in the monetary currency class).

A more general issue with all benchmarks is that
tasks are based on comparing a single quality score
for each considered model (accuracy for TOEFL,
correlation for WordSim, a clustering quality mea-
sure for AP, etc.). This gives little insight into how

and why the models differ. Moreover, there is no
well-established statistical procedure to assess sig-
nificance of differences for most commonly used
measures. Finally, either because the data sets were
not originally intended as standard benchmarks, or
even on purpose, they all are likely to cause coverage
problems even for DSMs trained on very large cor-
pora. Think of the presence of extremely rare nouns
like casuarina in AP, of proper nouns in WordSim (it
is not clear to us that DSMs are adequate semantic
models for referring expressions – at the very least
they should not be mixed up lightly with common
nouns), or multi-word expressions in other data sets.

3 How we intend to BLESS distributional

semantic evaluation

DSMs measure the distributional similarity between
words, under the assumption that proximity in distri-
butional space models semantic relatedness, includ-

ing, as a special case, semantic similarity (Budanit-
sky and Hirst, 2006). However, semantically related
words in turn differ for the type of relation hold-
ing between them: e.g., dog is strongly related to
both animal and tail, but with different types of re-
lations. Therefore, evaluating the intrinsic ability of
DSMs to represent the semantic space of a word en-
tails both (i) determining to what extent words close
in semantic space are actually semantically related,
and (ii) analyzing, among related words, which type
of semantic relation they tend to instantiate. Two
models can be equally very good in identifying se-
mantically related words, while greatly differing for
the type of related pairs they favor.

The BLESS data set complies with both these
constraints. The set is populated with tuples ex-
pressing a relation between a target concept (hence-
forth referred to as concept) and a relatum concept
(henceforth referred to as relatum). For instance, in
the BLESS tuple coyote-hyper-animal, the concept
coyote is linked to the relatum animal via the hy-
pernymy relation (the relatum is a hypernym of the
concept). BLESS focuses on a coherent set of basic-
level nominal concrete concepts and a small but ex-
plicit set of semantic relations, each instantiated by
multiple relata. Depending on the type of relation,
relata can be nouns, verbs or adjectives. Moreover,
BLESS also contains, for each concept, a number of
random “relatum” words that are not semantically
related to the concept. Thus, it also allows to evalu-
ate a model in terms of its ability to harvest related
words given a concept (by comparing true and ran-
dom relata), and to identify specific types of relata,
both in terms of semantic relation and part of speech.

A data set intending to represent a gold standard
for evaluation should include tests items that are as
little controversial as possible. The choice of re-
stricting BLESS to concrete concepts is motivated
by the fact that they are by far the most studied ones,
and there is better agreement about the relations that
characterize them (Murphy, 2002; Rogers and Mc-
Clelland, 2004).

As for the types of relation to include, we are
faced with a dilemma. On the one hand, there is
wide evidence that taxonomic relations, the best un-
derstood type, only represent a tiny portion of the
rich spectrum covered by semantic relatedness. On
the other hand, most of these wider semantic rela-
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tions are also highly controversial, and may easily
lead to questionable classifications. For instance,
concepts are related to events, but often it is not clear
how to distinguish the events expressing a typical
function of nominal concepts (e.g., car and trans-

port), from those events that are also strongly re-
lated to them but without representing their typical
function sensu stricto (e.g., car and fix). As will be
shown in Section 4, the BLESS data set tries to over-
come this dilemma by attempting a difficult com-
promise: Semantic relations are not limited to tax-
onomic types and also include attributes and events
strongly related to a concept, but in these cases we
have resorted to underspecification, rather than com-
mitting ourselves to questionable granular relations.

BLESS strives to capture those differences and
similarities among DSMs that do not depend on
coverage, processing choices or lexical preferences.
BLESS has been constructed using a publicly avail-
able collection of corpora for reference (see Section
4.4 below), which means that anybody can train a
DSM on the same data and be sure to have perfect
coverage (but this is not strictly necessary). For each
concept and relation, we pick a variety of relata (see
next section) in order to abstract away from inciden-
tal gaps of models or different lexical/topical prefer-
ences. For example, the concept robin has 7 hyper-
nyms including the very general and non-technical
animal and bird and the more specific and techni-
cal passerine. A model more geared toward techni-
cal terminology might assign a high similarity score
to the latter, whereas a commonsense-knowledge-
oriented DSM might pick bird. Both models have
captured similarity with a hypernym, and we have
no reason, in general semantic terms, to penalize one
or the other. To maximize coverage, we also make
sure that, for each concept and relation, a reason-
able number of relata are frequently attested in our
reference corpora (see statistics below), we only in-
clude single-word relata and, where appropriate, we
include multiple forms for the same relatum (both
sock and socks as coordinates of scarf – as discussed
in Section 4.1, we avoided similar ambiguous items
as target concepts).

Currently, distributional models for attributional
similarity and relational similarity (Turney, 2006)
are tested on different data sets, e.g., TOEFL and
SAT respectively (briefly, attributional similarity

pertains to similarity between a pair of concepts in
terms of shared properties, whereas relational sim-
ilarity measures the similarity of the relations in-
stantiated by couples of concept pairs). Conversely,
BLESS is not biased towards any particular type of
semantic similarity and thus allows both families of
models to be evaluated on the same data set. Given
a concept, we can analyze the types of relata that are
selected by a model as more attributionally similar
to the target. Alternatively, given a concept-relatum
pair instantiating a specific semantic relation (e.g.,
hypernymy) we can evaluate a model ability to iden-
tify analogically similar pairs, i.e., others concept-
relatum pairs instantiating the same relation (we do
not illustrate this possibility here).

Finally, by collecting distributions of 200 similar-
ity values for each relation, BLESS allows reliable
statistical testing of the significance of differences
in similarity within a DSM (for example, using the
procedure we present in Section 5 below), as well
as across DSMs (for example, via a linear/ANOVA
model with relations and DSMs as factors – not il-
lustrated here).

4 Construction

4.1 Concepts

BLESS includes 200 distinct English concrete
nouns as target concepts, equally divided be-
tween living and non-living entities. Concepts
have been grouped into 17 broader classes: AM-
PHIBIAN REPTILE (including amphibians and rep-
tiles: alligator), APPLIANCE (toaster), BIRD
(crow), BUILDING (cottage), CLOTHING (sweater),
CONTAINER (bottle), FRUIT (banana), FURNI-
TURE (chair), GROUND MAMMAL (beaver), IN-
SECT (cockroach), MUSICAL INSTRUMENT (vio-

lin), TOOL (i.e., manipulable tools or devices: ham-

mer), TREE (birch), VEGETABLE (cabbage), VEHI-
CLE (bus), WATER ANIMAL (including fish and sea
mammals: herring), WEAPON (dagger).

All 200 BLESS concepts are single-word nouns
in the singular form (we avoided concepts such as
socks whose surface form might change depending
on lemmatization choices). The major source we
used to select the concepts were the McRae Norms
(McRae et al., 2005), a collection of living and non-
living basic-level concepts described by 725 sub-
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jects with semantic features, each tagged with its
property type. As further constraints guiding our
selection, we wanted concepts with a reasonably
high frequency (cf. Section 4.4), we avoided am-
biguous or highly polysemous concepts and we bal-
anced inter- and intra-class composition. Classes in-
clude both prototypical and atypical instances (e.g.,
robin and penguin for BIRD), and have a wide spec-
trum of internal variation (e.g., the class VEHICLE
contains wheeled, air and sea vehicles). 175 BLESS
concepts are attested in the McRae Norms, while the
remnants were selected by the authors according to
the above constraints. The average number of con-
cepts per class is 11.76 (median 11; min. 5 AMPHIB-
IAN REPTILE; max. 21 GROUND MAMMAL).

4.2 Relations

For each concept noun, BLESS includes several
relatum words, linked to the concept by one of
the following 5 relations. COORD: the relatum
is a noun that is a co-hyponym (coordinate) of
the concept, i.e., they belong to the same (nar-
rowly or broadly defined) semantic class: alligator-

coord-lizard; HYPER: the relatum is a noun that
is a hypernym of the concept: alligator-hyper-

animal; MERO: the relatum is a noun referring
to a part/component/organ/member of the concept,
or something that the concept contains or is made
of: alligator-mero-mouth; ATTRI: the relatum is
an adjective expressing an attribute of the concept:
alligator-attri-aquatic; EVENT: the relatum is a
verb referring to an action/activity/happening/event
the concept is involved in or is performed by/with
the concept: alligator-event-swim. BLESS also
includes the relations RAN.N, RAN.J and RAN.V,
which relate the target concepts to control tuples
with random noun, adjective and verb relata, respec-
tively.

The BLESS relations cover a wide spectrum of
information useful to describe a target concept and
to qualify the notion of semantic relatedness: taxo-
nomically related entities (hyper and coord), typical
attributes (attri), components (mero), and associated
events (event). However, except for hyper and co-

ord (corresponding to the standard relations of class
inclusion and co-hyponymy respectively), the other
BLESS relations are highly underspecified. For in-
stance, mero corresponds to a very broad notion of

meronymy, including not only parts (dog-tail), but
also the material (table-wood) as well as the mem-
bers (hospital-patient) of the entity the target con-
cept refers to (Winston et al., 1987); event is used to
represent the behaviors of animals (dog-bark), typi-
cal functions of instruments (violin-play), and events
that are simply associated with the target concept
(car-park); attri captures a large range of attributes,
from physical (elephant-big) to evaluative ones (car-

expensive). As we said in section 3, we did not at-
tempt to further specify these relations to avoid any
commitment to controversial ontologies of property
types. Note that we exclude synonymy both because
of the inherent problems in this very notion (Cruse,
1986), and because it is impossible to find convinc-
ing synonyms for 200 concrete concepts.

In BLESS, we have adopted the simplifying as-
sumption that each relation type has relata belonging
to the same part of speech: nouns for hyper, coord

and mero, verbs for event, and adjectives for attri.
Therefore, we abstract away from the fact that the
same semantic relation can be realized with different
parts of speech, e.g., a related event can be expressed
by a verb (transport) or by a noun (transportation).

4.3 Relata

The relata of the non-random relations are English
nouns, verbs and adjectives selected and validated
by both authors using two types of sources: se-

mantic sources (the McRae Norms (McRae et al.,
2005), WordNet (Fellbaum, 1998) and ConceptNet
(Liu and Singh, 2004)) and text sources (Wikipedia
and the Web-derived ukWaC corpus, see Section 4.4
below). These resources greatly differ in dimension,
origin and content and therefore provide comple-
mentary views on relata. Their relative contribution
to BLESS also depends on the type of relation and
the target concept. For instance, the rich taxonomic
structure of WordNet has been the main source of in-
formation for many technical hypernyms (e.g. gym-

nosperm, oscine), which instead are missing from
more commonsense-oriented resources such as the
McRae Norms and ConceptNet. Meronyms are
rarer in WordNet, and were collected mainly from
the latter two resources, with many technical terms
(e.g., parts of ships, weapons) harvested from the
Wikipedia entries for the target concepts.

Attributes and events were collected from McRae
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Norms, ConceptNet and ukWaC. In the McRae
Norms, the number of features per concept is fairly
limited, but they correspond to highly distinctive,
prototypical and cognitively salient properties. Con-
ceptNet instead provides a much wider array of as-
sociated events and attributes that are part of our
commonsense knowledge about the target concepts
(e.g., the events park, steal and break, etc. for car).
ConceptNet relations such as Created by, Used for,
Capable of etc. have been analyzed to identify po-
tential event relata, while the Has property relation
has been inspected to look for attributes. The most
salient adjectival and verbal collocates of the tar-
get nouns in the ukWaC corpus were also used to
identify associated attributes and events. For in-
stance, the target concept elephant is not attested in
the McRae Norms and has few properties in Con-
ceptNet. Thus, many of its related events have been
harvested from ukWaC. They include verbs such as
hunt, kill, etc. which are quite salient and frequent
with respect to elephants, although they can hardly
be defined as prototypical properties of this animal.
As a result of the combined use of such different
types of sources, the BLESS relata are representative
of a wide spectrum of semantic information about
the target concepts: they include domain-specific
terms side by side to commonsense ones, very dis-
tinctive features of a concept (e.g., hoot for owl)
together with attributes and events that are instead
shared by a whole class of concepts (e.g., all animals
have relata such as eat, feed, and live), prototypical
features as well as events and attributes that are sta-
tistically salient for the target, etc.

In many cases, the concept properties contained
in semantic sources are expressed with phrases, e.g.,
lay eggs, eat grass, live in Africa, etc. We decided,
however, to keep only single-word relata in BLESS,
because DSMs are typically populated with single
words, and, when they are not, they differ in the
kinds of multi-word elements they store. There-
fore, phrasal relata have always been reduced to
their head: a verb for properties expressed by a verb
phrase, and a noun for properties expressed by a
noun phrase. For instance, from the property lay

eggs, we derived the event relatum lay.
To extract the random relata, we adopted the fol-

lowing procedure. For each relatum that instantiates
a true relation with the concept, we also randomly

picked from our combined corpus (cf. Section 4.4)
another lemma with the same part of speech, and
frequency within 1 absolute logarithmic unit from
the frequency of the corresponding true relatum.
Since picking a random term does not guarantee
that it will not be related to the concept, we filtered
the extracted list by crowdsourcing, using the Ama-
zon Mechanical Turk via the CrowdFlower interface
(CF).1 We presented CF workers with the list of
about 15K concept+random-term pairs selected with
the procedure we just described, plus a manually
checked validation set (a “gold set” in CF terminol-
ogy) comprised of 500 concept+true-relatum pairs
and 500 concept+random-term pairs (these elements
are used by CF to determine the reliability of work-
ers, and discard the ratings of unreliable ones), plus a
further set of 1.5K manually checked concept+true-
relatum pairs to make the random-true distribution
less skewed. The workers’ task was, for each pair,
to check a YES radio button if they thought there is
a relation between the words, NO otherwise. The
words were annotated with their part of speech, and
workers were instructed to pay attention to this in-
formation when making their choices. Extensive
commented examples of both related pairs and un-
related ones were also provided in the instruction
page. A minimum of 2 CF workers rated each pair,
and, conservatively, we preserved only those items
(about 12K) that were unanimously rated as unre-
lated to their concept by the judges. See Table 1 for
summary statistics about the preserved random sets
(nouns: RAND.N, adjectives: RAN.J, verbs:RAN.V).

4.4 BLESS statistics

For frequency information, we rely on the combi-
nation of the freely available ukWaC and Wackype-
dia corpora (size: 1.915B and 820M tokens, respec-
tively).2 The data set contains 200 concepts that
have a mean corpus frequency of 53K occurrences
(min. 1416 chisel, max. 793K car). The relata of
these concepts (26,554 in total) are distributed as re-
ported in Table 1.

Note that the distributions reflect certain “natural”
differences between relations (hypernyms tend to be
more frequent words than coordinates, but there are

1http://crowdflower.com/
2http://wacky.sslmit.unibo.it/
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frequency cardinality

relation min avg max min avg max

COORD 0 37K 1.7M 6 17.1 35
HYPER 31 138K 1.9M 2 6.7 15
MERO 0 133K 2M 2 14.7 53
ATTRI 0 501K 3.7M 4 13.6 27
EVENT 0 517K 5.4M 6 19.1 40
RAN.N 0 92K 2.4M 16 32.9 67
RAN.J 1 472K 4.5M 3 10.9 24
RAN.V 1 508K 7.7M 4 16.3 34

Table 1: Distribution (minimum, mean and maximum) of
the relata of all BLESS concepts: the frequency columns
report summary statistics for corpus counts across relata
instantiating a relation; the cardinality columns report
summary statistics for number of relata instantiating a
relation across the 200 concepts, only considering relata
with corpus frequency ≥ 100.

more coordinates than hypernyms, etc.). Instead of
trying to artificially control for these differences, we
assess their impact in Section 5 by looking at the
behavior of baselines that exploit the frequency and
cardinality of relations as proxies to semantic simi-
larity (such factors could also be entered as regres-
sors in a linear model).

5 Evaluation

This section illustrates one possible way to use
BLESS to explore and evaluate DSMs. Given the
similarity scores provided by a model for a concept
with all its relata across all relations, we pick the re-
latum with the highest score (nearest neighbour) for
each relation (see discussion in Section 3 above on
why we allow models to pick their favorite from a
set of relata instantiating the same relation). In this
way, for each of the 200 BLESS concepts, we obtain
8 similarity scores, one per relation. In order to fac-
tor out concept-specific effects that might add to the
overall score variance (for example, a frequent con-
cept might have a denser neighborhood than a rarer
one, and consequently the nearest relatum scores of
the former are trivially higher than those of the lat-
ter), we transform the 8 similarity scores of each
concept onto standardized z scores (mean: 0; s.d: 1)
by subtracting from each their mean, and dividing by
their standard deviation. After this transformation,
we produce a boxplot summarizing the distribution
of scores per relation across the 200 concepts (i.e.,

each box of the plot summarizes the distribution of
the 200 standardized scores picked for each rela-
tion). Our boxplots (see examples in Fig. 1 below)
display the median of a distribution as a thick hori-
zontal line within a box extending from the first to
the third quartile, with whiskers covering 1.5 of the
interquartile range in each direction from the box,
and values outside this extended range – extreme
outliers – plotted as circles (these are the default
boxplotting option of the R statistical package).3

While the boxplots are extremely informative about
the relation types that are best captured by models,
we expect some degree of overlap among the distri-
butions of different relations, and in such cases we
might want to ask whether a certain model assigns
significantly higher scores to one relation rather than
another (for example, to coordinates rather than ran-

dom nouns). It is difficult to decide a priori which
pairwise statistical comparisons will be interesting.
We thus take a conservative approach in which we
perform all pairwise comparisons using the Tukey

Honestly Significant Difference test, that is simi-
lar to the standard t test, but accounts for the greater
likelihood of Type I errors when multiple compar-
isons are performed (Abdi and Williams, 2010). We
only report the Tukey test results for those com-
parisons that are of interest in the analysis of the
boxplots, using the standard α = 0.05 significance
threshold.

5.1 Models

Occurrence and co-occurrence statistics for all mod-
els are extracted from the combined ukWaC and
Wackypedia corpora (see Section 4.4 above). We ex-
ploit the automated morphosyntactic annotation of
the corpora by building our DSMs out of lemmas
(instead of inflected words), and relying on part of
speech information.

Baselines. The RelatumFrequency baseline uses
the frequency of occurrence of a relatum as a sur-
rogate of its cosine with the concept. With this ap-
proach, we want to verify that the unequal frequency
distribution across relations (see Table 1 above) is
not trivially sufficient to differentiate relation classes
in a semantically interesting way. For our second
baseline, we assign a random number as cosine sur-

3http://www.r-project.org/
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rogate to each relatum (to smooth these random val-
ues, we generate them by first sampling, for each
relatum, 10K random variates from a uniform distri-
bution, and then averaging them). If the set of relata
instantiating a certain relation is larger, it is more
likely that it will contain the highest random value.
Thus, this RelationCardinality baseline will favor
relations that tend to have large relata set across con-
cepts, controlling for effects due to different cardi-
nalities across semantic relations (again, see Table 1
above).

DSMs. We choose a few ways to construct DSMs
for illustrative purposes only. All the models contain
vector representations for the same words, namely,
approximately, the top 20K most frequent nouns, 5K
most frequent adjectives and 5K most frequent verbs
in the combined corpora. All the models use Local
Mutual Information (Evert, 2005; Baroni and Lenci,
2010) to weight raw co-occurrence counts (this asso-
ciation measure is obtained by multiplying the raw
count by Pointwise Mutual Information, and it is a
close approximation to the Log-Likelihood Ratio).
Three DSMs are based on counting co-occurrences
with collocates within a window of fixed width,
in the tradition of HAL (Lund and Burgess, 1996)
and many later models. The ContentWindow2

model records sentence-internal co-occurrence with
the nearest 2 content words to the left and right
of each target concept (the same 30K target nouns,
verbs and adjectives are also employed as context
content words). ContentWindow20 is like Con-
tentWindow2, but considers a larger window of 20
words to the left and right of the target. AllWin-

dow2 adopts the same window of ContentWindow2,
but considers all co-occurrences, not only those with
content words. The Document model, finally, is
based on a (Local-Mutual-Information transformed)
word-by-document matrix, recording the distribu-
tion of the 30K target words across the documents in
the concatenated corpus. This DSM is thus akin to
traditional Latent Semantic Analysis (Landauer and
Dumais, 1997), without dimensionality reduction.
The content-window-based models have, by con-
struction, about 30K dimensions. The other models
are much larger, and for practical reasons we only
keep 1 million dimensions (those that account, cu-
mulatively, for the largest proportion of the overall

Local Mutual Information mass).

5.2 Results

The concept-by-concept z-normalized distributions
of cosines of relata instantiating each of our rela-
tions are presented, for each of the example mod-
els, in Fig. 1. The RelatumFrequency baseline
shows a preference for adjectives and verbs in gen-
eral, independently of whether they are meaningful
(attributes, events) or not (random adjectives and
verbs), reflecting the higher frequencies of adjec-
tives and verbs in BLESS (Table 1). The Relation-
Cardinality baseline produces even less interesting
results, with a strong preference for random nouns,
followed by coordinates, events and random verbs
(as predicted by the distribution in Table 1). We can
conclude that the semantically meaningful patterns
produced by the other models cannot be explained
by trivial differences in relatum frequency or rela-
tion cardinality in the BLESS data set.

Moving then to the real DSMs, ContentWindow2
essentially partitions the relations into 3 groups: co-
ordinates are the closest relata, which makes sense
since they are, taxonomically, the most similar en-
tities to target concepts. They are followed by (but
significantly closer to the concept than) events, hy-
pernyms and meronyms (events and hypernyms sig-
nificantly above meronyms). Next come the at-
tributes (significantly lower cosines than all relation
types above). All the meaningful relata are signif-
icantly closer to the concepts than the random re-
lata. Similar patterns can be observed in the Con-
tentWindow20 distribution, however in this case the
events, while still significantly below the coordi-
nates, are significantly above the (statistically in-
distinguishable) hypernym, meronym and attribute
set. Again, all meaningful relata are above the ran-
dom ones. Both content-window-based models pro-
vide reasonable results, with ContentWindow2 be-
ing probably closer to our “ontological” intuitions.
The high ranking of events is probably explained
by the fact that a nominal concept will often ap-
pear as subject or object of verbs expressing asso-
ciated events (dog barks, fishing tuna), and thus the
corresponding verbs will share even relatively nar-
row context windows with the concept noun. The
AllWindow2 distribution probably reflects the fact
that many contexts picked by this DSM are function
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Figure 1: Distribution of relata cosines across concepts (values on ordinate are cosines after concept-by-concept z-
normalization).

words, and thus they capture syntactic, rather than
semantic distributional properties. As a result, ran-
dom nouns are as high (statistically indistinguish-
able from) hypernyms and meronyms. Interestingly,
attributes also belong to this subset of relations –
probably due to the effect of determiners, quantifiers
and other DP-initial function words, that will often
occur both before nouns and before adjectives. In-
deed, even random adjectives, although significantly
below the other relations we discussed, are signif-
icantly above both random and meaningful verbs
(i.e., events). For the Document model, all mean-
ingful relations are significantly above the random
ones. However, coordinates, while still the nearest
neighbours (significantly closer than all other rela-
tions) are much less distinct than in the window-
based models. Note that we cannot say a priori that
ContentWindow2 is better than Document because
it favors coordinates. However, while they are both
able to sort out true and random relata, the latter
shows a weaker ability to discriminate among differ-
ent types of semantic relations (co-occurring within
a document is indeed a much looser cue to similarity
than specifically co-occurring within a narrow win-
dow). Traditional DSM tests, based on a single qual-

ity measure, would not have given us this broad view
of how models are behaving.

6 Conclusion

We introduced BLESS, the first data set specifically
designed for the intrinsic evaluation of DSMs. The
data set contains tuples instantiating different, ex-
plicitly typed semantic relations, plus a number of
controlled random tuples. Thus, BLESS can be used
to evaluate both the ability of DSMs to discriminate
truly related word pairs, and to perform in-depth
analyses of the types of semantic relata that different
models tend to favor among the nearest neighbors of
a target concept. Even a simple comparison of the
performance of a few DSMs on BLESS - like the
one we have shown here - is able to highlight inter-
esting differences in the semantic spaces produced
by the various models. The success of BLESS will
obviously depend on whether it will become a refer-
ence model for the evaluation of DSMs, something
that can not be foreseen a priori. Whatever its des-
tiny, we believe that the BLESS approach can boost
and innovate evaluation in distributional semantics,
as a key condition to get at a deeper understanding
of its potentialities as a viable model for meaning.
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Abstract

Unsupervised methods of semantic relations
extraction rely on a similarity measure be-
tween lexical units. Similarity measures differ
both in kinds of information they use and in
the ways how this information is transformed
into a similarity score. This paper is making
a step further in the evaluation of the avail-
able similarity measures within the context
of semantic relation extraction. We compare
21 baseline measures – 8 knowledge-based, 4
corpus-based, and 9 web-based metrics with
the BLESS dataset. Our results show that
existing similarity measures provide signifi-
cantly different results, both in general per-
formances and in relation distributions. We
conclude that the results suggest developing a
combined similarity measure.

1 Introduction

Semantic relations extraction aims to discover
meaningful lexico-semantic relations such as syn-
onyms and hyponyms between a given set of lexi-
cally expressed concepts. Automatic relations dis-
covery is a subtask of automatic thesaurus con-
struction (see Grefenstette (1994), and Panchenko
(2010)).

A set of semantic relations R between a set of
concepts C is a binary relation R ⊆ C × T × C,
where T is a set of semantic relation types. A re-
lation r ∈ R is a triple 〈ci, t, cj〉 linking two con-
cepts ci, cj ∈ C with a semantic relation of type
t ∈ T . We are dealing with six types of semantic
relations: hyperonymy, co-hyponymy, meronymy,

event (associative), attributes, and random: T =
{hyper, coord,mero, event, attri, random}. We
describe analytically and compare experimentally
methods, which discover set of semantic relations
R̂ for a given set of concepts C. A semantic relation
extraction algorithm aims to discover R̂ ∼ R.

One approach for semantic relations extraction
is based on the lexico-syntactic patterns which are
constructed either manually (Hearst, 1992) or semi-
automatically (Snow et al., 2004). The alternative
approach, adopted in this paper, is unsupervised (see
e.g. Lin (1998a) or Sahlgren (2006)). It relies on
a similarity measure between lexical units. Vari-
ous measures are available. We compare 21 base-
line measures: 8 knowledge-based, 4 corpus-based,
and 9 web-based. We would like to answer on two
questions: “What metric is most suitable for the un-
supervised relation extraction?”, and “Does various
metrics capture the same semantic relations?”. The
second question is particularly interesting for devel-
oping of a meta-measure combining several metrics.
This information may also help us choose a measure
well-suited for a concrete application.

We extend existing surveys in three ways. First,
we ground our comparison on the BLESS dataset1,
which is open, general, and was never used before
for comparing all the considered metrics. Secondly,
we face corpus-, knowledge-, and web-based, which
was never done before. Thirdly, we go further than
most of the comparisons and thoroughly compare
the metrics with respect to relation types they pro-
vide. We report empirical relation distributions for

1http://sites.google.com/site/
geometricalmodels/sharedevaluation
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each measure and check if they are significantly dif-
ferent. Next, we propose a way to find the measures
with the most and the least similar relation distribu-
tions. Finally, we report information about redun-
dant measures in an original way – in a form of an
undirected graph.

2 Methodology

2.1 Similarity-based Semantic Relations
Discovery

We use an unsupervised approach to calculate set
of semantic relations R between a given set of
concepts C (see algorithm 1). The method uses
one of 21 similarity measures described in sections
2.2 to 2.4. First, it calculates the concept×concept
similarity matrix S with a measure sim. Since
some similarity measures output scores outside
the interval [0; 1] we transform them with the
function normalize as following: S← (S−min(S))

max(S) .
If we deal with a dissimilarity measure, we ad-
ditionally transform its score S to similarity as
following: S ← 1 − normalize(S). Finally, the
function threshold calculates semantic relations R
between concepts C with the k-NN thresholding:⋃|C|

i=1 {〈ci, t, cj〉 : cj ∈ top k% concepts ∧ sij ≥ γ} .
Here k is the percent of the top similar concepts
to a concept ci, and γ is a small value which
ensures than nearly-zero pairwise similarities sij

will be ignored. Thus, the method links each
concept ci with k% of its nearest neighbours.

Algorithm 1: Computing semantic relations
Input: Concepts C, Sim.parameters P ,

Threshold k, Min.similarity value γ
Output: Unlabeled semantic relations R̂

1 S← sim(C,P ) ;
2 S← normalize(S) ;
3 R̂← threshold(S, k, γ) ;
4 return R̂ ;

Below we list the pairwise similarity measures
sim used in our experiments with references to the
original papers, where all details can be found.

2.2 Knowledge-based Measures

The knowledge-based metrics use a hierarchical se-
mantic network in order to calculate similarities.
Some of the metrics also use counts derived from

a corpus. We evaluate eight knowledge-based mea-
sures listed below. Let us describe them in the fol-
lowing notations: cr is the root concept of the net-
work; h is the height of the network; len(ci, cj) is
the length of the shortest path in the network be-
tween concepts; cij is a lowest common subsumer
of concepts ci and cj ; P (c) is the probability of the
concept, estimated from a corpus (see below). Then,
the Inverted Edge Count measure (Jurafsky and Mar-
tin, 2009, p. 687) is

sij = len(ci, cj)
−1; (1)

Leacock and Chodorow (1998) measure is

sij = −log len(ci, cj)

2h
; (2)

Resnik (1995) measure is

sij = −log(P (cij)); (3)

Jiang and Conrath (1997) measure is

sij = (2log(P (cij))−(log(P (ci))+log(P (cj))))
−1;
(4)

Lin (1998b) measure is

sij = (
2log(P (cij))

log(P (ci) + log(P (cj))
; (5)

Wu and Palmer (1994) measure is

sij =
2len(cr, cij)

len(ci, cij) + len(cj , cij) + 2len(cr, cij)
.

(6)
Extended Lesk (Banerjee and Pedersen, 2003) mea-
sure is

sij =
∑

ci∈Ci

∑
cj∈Cj

simg(ci, cj), (7)

where simg is a gloss-based similarity measure, and
setCi includes concept ci and all concepts which are
directly related to it.

Gloss Vectors measure (Patwardhan and Peder-
sen, 2006) is calculated as a cosine (9) between con-
text vectors vi and vj of concepts ci and cj . A con-
text vector calculated as following:

vi =
∑

∀j:cj∈Gi

fj . (8)
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Here fj is a first-order co-occurrence vector, derived
from the corpus of all glosses, and Gi is concate-
nation of glosses of the concept ci and all concepts
which are directly related to it.

We experiment with measures relying on the
WORDNET 3.0 (Miller, 1995) as a semantic net-
work and SEMCOR as a corpus (Miller et al., 1993).

2.3 Corpus-based measures

We use four measures, which rely on the bag-
of-word distributional analysis (BDA) (Sahlgren,
2006). They calculate similarity of concepts ci, cj
as similarity of their feature vectors fi, fj with
the following formulas (Jurafsky and Martin, 2009,
p. 699): cosine

sij =
fi · fj
‖fi‖ ‖fj‖

, (9)

Jaccard

sij =

∑N
k=1min(fik, fjk)∑N
k=1max(fik, fjk)

, (10)

Manhattan

sij =
N∑

k=1

|fik − fjk|, (11)

Euclidian

sij =

√√√√ N∑
k=1

(fik − fjk)2. (12)

The feature vector fi is a first-order co-occurrence
vector. The context of a concept includes all
words from a sentence where it occurred, which
pass a stop-word filter (around 900 words) and a
stop part-of-speech filter (nouns, adjectives, and
verbs are kept). The frequencies fij are normalized
with Poinwise Mutual Information (PMI): fij =
log(fij/(count(ci)count(fj))). In our experiments
we use two general English corpora (Baroni et al.,
2009): WACYPEDIA (800M tokens), and PUKWAC
(2000M tokens). These corpora are POS-tagged
with the TreeTagger (Schmid, 1994).

2.4 Web-based measures
The web-based metrics use the Web text search en-
gines in order to calculate the similarities. They rely
on the number of times words co-occur in the doc-
uments indexed by an information retrieval system.
Let us describe these measures in the following no-
tation: hi is the number of documents (hits) returned
by the system by the query ”ci”; hij is the number
of hits returned by the query ”ci AND cj”; and M
is number of documents indexed by the system. We
use two web-based measures: Normalized Google
Distance (NGD) (Cilibrasi and Vitanyi, 2007):

sij =
max(log(hi, hj))− log(hij)

log(M)−min(log(hi), log(hj))
, (13)

and PMI-IR similarity (Turney, 2001) :

sij = log

(
hij
∑

i

∑
j hihj

hihj
∑

i hij

)
. (14)

We experiment with 5 NGD measures based on Ya-
hoo, YahooBoss 2, Google, Google over Wikipedia,
and Factiva 3; and with 4 PMI-IR measures based
on YahooBoss, Google, Google over Wikipedia, and
Factiva. We perform search among all indexed docu-
ments or within the domain wikipedia.org (we
denote the latter measures with the postfix -W).

2.5 Classification of the measures
It might help to understand the results if we men-
tion that (1) - (6) are measures of semantic similar-
ity, while (7) and (8) are measures of semantic relat-
edness. Semantic relatedness is a more general no-
tion than semantic similarity (Budanitsky and Hirst,
2001). A measure of semantic similarity uses only
hierarchical and equivalence relations of the seman-
tic network, while a measure of semantic related-
ness also use relations of other types. Furthermore,
measures (1), (2), (3), are ”pure” semantic similar-
ity measures since they use only semantic network,
while (3), (4), and (5) combine information from a
semantic network and a corpus.

The corpus-based and web-based measures are
calculated differently, but they are both clearly dis-
tributional in nature. In that respect, the web-based
measures use the Web as a corpus. Figure 1 contains

2http://developer.yahoo.com/search/boss/
3http://www.factiva.com/
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Figure 1: Classification of the measures used in the paper.

a more precise classification of the considered mea-
sures, according to their properties. Finally, both (8)
and (9)-(12), rely on the vector space model.

2.6 Experimental Setup

We experiment with the knowledge-based measures
implemented in the WORDNET::SIMILARITY pack-
age (Pedersen et al., 2004). Our own implemen-
tation is used in the experiments with the corpus-
based measures and the web-based measures rely-
ing on the YAHOO BOSS search engine API. We
use the MEASURES OF SEMANTIC RELATEDNESS

web service 4 to assess the other web measures.
The evaluation was done with the BLESS set

of semantic relations. It relates 200 target con-
cepts to some 8625 relatum concepts with 26554 se-
mantic relations (14440 are correct and 12154 are
random). Every relation has one of the following
six types: hyponymy, co-hyponymy, meronymy, at-
tribute, event, and random. The distribution of re-
lations among those types is given in table 1. Each
concept is a single English word.

3 Results

3.1 Comparing General Performance of the
Similarity Measures

In our evaluation semantic relations extraction was
viewed as a retrieval task. Therefore, for every met-
ric we calculated precision, recall, and F1-measure
with respect to the golden standard. Let R̂ be set of
extracted semantic relations, and R be set of seman-
tic relations in the BLESS. Then

Precision =
|R ∩ R̂|
|R̂|

, Recall =
|R ∩ R̂|
|R|

.

An extracted relation 〈ci, t?, cj〉 ∈ R̂ matches a re-
lation from the evaluation dataset 〈ci, t, cj〉 ∈ R if

4http://cwl-projects.cogsci.rpi.edu/msr/

Figure 2: Precision-recall graph of the six similarity mea-
sures (kNN threshold value k = 0− 52%).

t 6= random. Thus, an extracted relation is correct
if it has any type in BLESS, but random.

General performance of the measures is presented
in table 1 (columns 2-4). The Resnik measure (3) is
the best among the knowledge-based measures; the
NGD (13) measure relying on the Yahoo search en-
gine is the best results among the web-based mea-
sures. Finally, the cosine measure (9) (BDA-Cos) is
the best among all the measures. The table 2 demon-
strate some extracted relations discovered with the
BDA-Cos measure.

In table 1 we ranked the measures based on their
F-measure when precision is fixed at 80% (see fig-
ure 2). We have chosen this precision level, be-
cause it is a point when automatically extracted
relations start to be useful. It is clear from the
precision-recall graph (figure 2) that if another pre-
cision level is fixed then ranking of the metrics will
change. Analysis of this and similar plots for other
measures shows us that: (1) the best knowledge-
based metric is Resnik; (2) the BDA-Cos is the
best among the corpus-based measures, but BDA-
Jaccard is very close to it; (3) the three best web-
based measures are NGD-Google (within the preci-
sion range 100-90%), NGD-Factiva (within the pre-
cision range 90%-87%), and NGD-Yahoo (starting
from the precision level 87%). In these settings,
choose of the most suitable metric may depend on
the application. For instance, if just a few precise
relations are needed then NGD-Google is a good
choice. On the other hand, if we tolerate a slightly
less precision, and if we need many relations then
the BDA-Cos is the best choice.

Figure 3 depicts learning curve of the BDA-Cos
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Figure 3: Learning curves of the BDA-Cos on the Wa-
Cypedia and PukWaC corpora (0.1M–2000M tokens).

Figure 4: Percent of co-hyponyms among all correctly
extracted relations for the six best measures.

measure.Dependence of the F-measure at the preci-
sion level of 80% from the corpus size is not linear.
F-measure improves up to 44% when we increase
corpus size from 1M to 10M tokens; increasing cor-
pus from 10M to 100M tokens gives the improve-
ment of 16%; finally, increasing corpus from 100M
to 2000M tokens gives the improvement of only 3%.

3.2 Comparing Relation Distributions of the
Similarity Measures

In this section, we are trying to figure out what
types of semantic relations the measures find. We
compare distributions of semantic relations against
the BLESS dataset. Generally, if two measures
have equal general performances, one may want to
choose a metric which provides more relations of a
certain type, depending on the application. This in-
formation may be also valuable in order to decide
which metrics to combine in a meta-metric.

Distribution of Relation Types. In this sec-
tion, we estimate empirical relation distribution of
the metrics over five relation types: hyponymy, co-
hyponymy, meronymy, attribute, and event. To do so
we calculate percents of correctly extacted relations
of type t for a each measure:

Percent =
R̂t

|R ∩ R̂|
, where

⋃
t∈T

R̂t = |R ∩ R̂|.

Here |R ∩ R̂| is a set of all correctly extracted rela-
tions, and R̂t is a set of extracted relations of type t.
Figure 4 demonstrates that percent of extracted rela-
tions of certain type depends on the value of k (c.f.
section 2.1). For instance, if k = 10% then 77%
of extracted relations by Resnik are co-hyponyms,
but if k = 40% then the same measure outputs 40%
of co-hyponyms. We report relations distribution at
two levels of the threshold k – 10% and 40%.

The empirical distributions are reported in
columns 5-9 of the table 1. Each of those columns
correspond to one semantic relation type t, and con-
tains two numbers: p10 – percent of relations of type
t when k = 10%, and p40 – percent of relations of
type t when k = 40%. We represent those two val-
ues in the following format: p10|p40. For instance,
77|40 behind the Resnik measure means that when
k = 10% it extracts 77% of co-hypernyms, and
when k = 40% it extracts 40% of co-hypernyms.

If the threshold k is 10% then the biggest frac-
tion of extracted relations are co-hyponyms – from
35% for BDA-Manhattan to 77% for Resnik mea-
sure. At this threshold level, the knowledge-based
measures mostly return co-hyponyms (60% in aver-
age) and hyperonyms (23% in average). The corpus-
based metrics mostly return co-hyponyms (38% in
average) and event relations (26% in average). The
web-based measures return many (48% in average)
co-hyponymy relations.

If the threshold k is 40% then relation distribution
of all the measures significantly changes. Most of
the relations returned by the knowledge-based mea-
sures are co-hyponyms (36%) and meronyms (24%).
The majority of relations discovered by the corpus-
based metrics are co-hyponyms (33% ), event rela-
tions (26%), and meronyms (20.33%). The web-
based measures at this threshold value return many
event relations (32%).
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General Performance Semantic Relations Distribution
Measure k Recall F1 hyper,% coord,% attri,% mero,% event,%
Resnik 40% 0.59 0.68 9 | 14 77 | 40 4 | 8 6 | 22 4 | 15
Inv.Edge-Counts 38% 0.56 0.66 22 | 15 61 | 40 4 | 8 7 | 22 6 | 15
Leacock-Chodorow 38% 0.56 0.66 22 | 15 61 | 40 4 | 8 7 | 22 6 | 15
Wu Palmer 37% 0.54 0.65 20 | 15 64 | 42 3 | 8 7 | 22 5 | 13
Lin 36% 0.53 0.64 30 | 16 52 | 31 4 | 7 8 | 29 5 | 16
Gloss Overlap 36% 0.53 0.63 5 | 6 52 | 34 7 | 12 18 | 21 18 | 27
Jiang-Conrath 35% 0.52 0.63 38 | 16 45 | 30 4 | 6 8 | 29 5 | 18
Extended Lesk 30% 0.45 0.57 21 | 14 39 | 30 1 | 9 29 | 28 9 | 19
BDA-Cos 52% 0.76 0.78 9 | 7 42 | 27 11 | 20 15 | 17 23 | 30
BDA-Jaccard 51% 0.75 0.77 10 | 7 45 | 27 8 | 16 16 | 20 20 | 27
BDA-Manhattan 37% 0.54 0.65 7 | 6 35 | 24 17 | 22 10 | 15 31 | 34
BDA-Euclidian 21% 0.30 0.44 7 | 7 31 | 18 20 | 26 12 | 13 30 | 37
NGD-Yahoo 46% 0.68 0.74 7 | 6 51 | 30 9 | 18 17 | 20 15 | 25
NGD-Factiva 47% 0.66 0.72 10 | 8 44 | 28 8 | 19 23 | 22 16 | 25
NGD-YahooBOSS 35% 0.51 0.63 13 | 10 54 | 36 4 | 10 14 | 20 15 | 22
NGD-Google 33% 0.48 0.60 1 | 7 41 | 28 45 | 19 2 | 19 11 | 28
NGD-Google-W 29% 0.43 0.56 8 | 9 45 | 31 8 | 14 20 | 21 19 | 25
PMI-YahooBOSS 29% 0.43 0.56 15 | 12 53 | 38 3 | 9 15 | 20 13 | 20
PMI-Factiva 25% 0.28 0.44 8 | 8 42 | 30 10 | 17 21 | 20 18 | 24
PMI-Google 12% 0.18 0.29 8 | 8 55 | 35 7 | 15 17 | 21 12 | 22
PMI-Google-W 9% 0.13 0.23 12 | 11 47 | 38 7 | 11 20 | 20 13 | 19
Random measure 8 | 9 24 | 25 20 | 19 22 | 20 26 | 27
BLESS dataset 9 25 20 19 27

Table 1: Columns 2-4: Recall and F-measure when Precision= 0.8 (correct relations of all types vs random relations).
Columns 5-9: percent of extracted relations of a certain type with respect to all correctly extracted relations, when
threshold k equal 10% or 40%. The best measure are sorted by F-measure; the best measures are in bold.

ant banana fork missile salmon
cockroach (coord) mango (coord) prong (mero) warhead (mero) trout (coord)
grasshopper (coord) pineapple (coord) spoon (coord) weapon (hyper) mackerel (coord)
silverfish (coord) papaya (coord) knife (coord) deploy (event) herring (coord)
wasp (coord) pear (coord) lift (event) nuclear (attri) fish (event)
insect (hyper) ripe (attri) fender (random) bomb (coord) tuna (coord)
arthropod (hyper) peach (coord) plate (coord) destroy (event) oily (attri)
industrious (attri) coconut (coord) rake (coord) rocket (coord) poach (event)
ladybug (coord) fruit (hyper) shovel (coord) arm (hyper) catfish (coord)
bee (coord) apple (coord) handle (mero) propellant (mero) catch (event)
beetle (coord) apricot (coord) sharp (attri) bolster (random) fresh (attri)
locust (coord) strawberry (coord) spade (coord) launch (event) cook (event)
dragonfly (coord) ripen (event) napkin (coord) deadly (attri) cod (coord)
hornet (coord) plum (coord) cutlery (hyper) country (random) smoke (event)
creature (hyper) grapefruit (coord) head (mero) strike (event) seafood (hyper)
crawl (event) cherry (coord) scissors (coord) defuse (event) eat (event)

Table 2: Examples of the discovered semantic relations with the bag-of-words distributional analysis (BDA-Cos).
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Interestingly, for the most of the measures, per-
cent of extracted hyponyms and co-hyponyms de-
creases as the value of k increase, while the percent
of other relations increases. In order to make it clear,
we grayed cells of the table 1 when p10 ≥ p40.

Similarity to the BLESS Distribution. In this
section, we check if relation distributions (see ta-
ble 1) are completely biased by the distribution in
the evaluation dataset. We compare relation dis-
tributions of the metrics with the distribution in
the BLESS on the basis of the χ2 goodness of fit
test 5 (Agresti, 2002) with df = 4. A random simi-
larity measure is completely biased by the distribu-
tion in the evaluation dataset: χ2 = 5.36, p = 0.252
for k = 10% and χ2 = 3.17, p = 0.53 for k = 40%.
On the other hand, distributions of all the 21 mea-
sures are significantly different from the distribution
in the BLESS (p < 0.001). The value of chi-square
statistic varies from χ2 = 89.94 (NGD-Factiva,
k = 10%) to χ2 = 4000 (Resnik, k = 10%).

Independence of Relation Distributions. In this
section, we check whether relation distributions of
the various measures are significantly different. In
order to do so, we perform the chi-square indepen-
dence test on the table 1. Our experiments shown
that there is a significant interaction between the
type of the metric and the relations distribution:
χ2 = 10487, p < 0.001, df = 80 for all the metrics;
χ2 = 2529, df = 28, p < 0.001 for the knowledge-
based metrics; χ2 = 245, df = 12, p < 0.001 for
the corpus-based metrics; and χ2 = 3158, df =
32, p < 0.001 for the web-based metrics. Thus,
there is a clear dependence between the type of mea-
sure and the type of relation it extracts.

Most Similar and Dissimilar Measures. In this
section, we would like to find the most similar and
disimilar measures. This information is particularly
useful for the combination of the metrics. In order to
find redundant measures, we calculate distance xij

beween measures simi and simj , based on the χ2-
statistic:

xij = xji =
∑
t∈ T

(|R̂i
t| − |

ˆ
Rj

t |)2

| ˆRj
t |

, (15)

where R̂i
t is ensemble of correctly extracted rela-

5Here and below, we calculate the χ2 statistic from the table
1 (columns 5-9), where percents are replaced with frequencies.

tions of type t with measure simi. We calculate
these distances for all pairs of measures and then
rank the pairs according to the value of xij . Ta-
ble 3 present list of the most similar and dissimi-
lar metrics obtained this way. Figure 7 reports in a
compact way all the pairwise similarities (xij)21×21

between the 21 metrics. In this graph, an edge
links two measures, which have the distance value
xij < 220. The graph was drawn with the Fruchter-
man and Reingold (1991) force-directed layout al-
gorithm. One can see that relation distributions of
the web- and corpus-based measures are quite sim-
ilar. The knowledge-based measures are much dif-
ferent from them, but similar among themselves.

Distribution of Similarity Scores. In this sec-
tion, we compare distributions of similarity scores
across relation types with the following procedure:
(1) Pick a closest relatum concept cj per relation
type t for each target concept ci. (2) Convert sim-
ilarity scores associated to each target concept to z-
scores. (3) Summarize the distribution of similari-
ties across relations by plotting the z-scores grouped
by relations in a box plot. (4) Verify the statistical
significance of the differences in similarity scores
across relations by performing the Tukey’s HSD test.

Figure 6 presents the distributions of similarities
across various relation types for Resnik, BDA-Cos,
and NGD-Yahoo. First, meaningful relation types
for these three measures are significantly different
(p < 0.001) from random relations. The only ex-
ception is the Resnnik measure – its similarity scores
for the attribute relations are not significantly differ-
ent (p = 0.178) from random relations. Thus, the
best three measures provide scores which let us sep-
arate incorrect relations from the correct ones if an
appropriate threshold k is set. Second, the similar-
ity scores have highest values for the co-hyponymy
relations. Third, BDA-Cos, BDA-Jaccard, NGD-
Yahoo, NGD-Factiva, and PMI-YahooBoss provide
the best scores. They let us clearly (p < 0.001) sep-
arate meaningful relations from the random ones.
From the other hand, the poorest scores were pro-
vided by BDA-Manhattan, BDA-Euclidian, NGD-
YahooBoss, and NGD-Google, because their scores
let us clearly separate only co-hyponyms from the
random relations.

Corpus Size. Table 1 presented relation distribu-
tion of the BDA-Cos trained on the 2000M token
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Figure 5: Semantic relations distribution function of cor-
pus size (BDA-Cos measure, PukWaC corpus).

corpus UKWAC. Figure 5 shows the relation dis-
tribution function of the corpus size. First, if cor-
pus size increases then percent of attribute relations
decreases, while percent of co-hyponyms increases.
Second, corpus size does not drastically influence
the distribution for big corpora. For instance, if
we increase corpus size from 100M to 2000M to-
kens then the percent of relations change on 3% for
attributes, on 3% co-hyponyms, on 1% events, on
0.7% hyperonyms, and on 0.4% meronyms.

4 Related Work

Prior research provide us information about gen-
eral performances of the measures considered in
this paper, but not necessarily on the task of se-
mantic relations extraction. For instance, Mihal-
cea et al. (2006) compare two corpus-based (PMI-IR
and LSA) and six knowledge-based measures on the
task of text similarity computation. The authors re-
port that PMI-IR is the best measure; that, similarly
to our results, Resnik is the best knowledge-based
measure; and that simple average over all 8 mea-
sures is even better than PMI-IR. Budanitsky and
Hirst (2001) report that Jiang-Conrath is the best
knowledge-based measure for the task of spelling
correction. Patwardhan and Pedersen (2006) eval-
uate six knowledge-based measures on the task of
word sense disambiguation and report the same re-
sult. This contradicts our results, since we found
Resnik to be the best knowledge-based measure.

Peirsman et al. (2008) compared general per-
formances and relation distributions of distribu-
tional methods using a lexical database. Sahlgren

(2006) evaluated syntagmatic and paradigmatic bag-
of-word models. Our findings mostly fits well these
and other (e.g. Curran (2003) or Bullinaria and Levy
(2007)) results on the distributional analysis. Lind-
sey et al. (2007) compared web-based measures.
Authors suggest that a small search domain is better
than the whole Internet. Our results partially confirm
this observation (NGD-Factiva outperforms NGD-
Google), and partially contradicts it (NGD-Yahoo
outperforms NGD-Factiva).

Van de Cruys (2010) evaluates syntactic, and bag-
of-words distributional methods and suggests that
the syntactic models are the best for the extraction of
tight synonym-like similarity. Wandmacher (2005)
reports that LSA produces 46.4% of associative rela-
tions, 15.2% of synonyms, antonyms, hyperonyms,
co-hyponyms, and meronyms, 5.6% of syntactic re-
lations, and 32.8% of erroneous relations. We can-
not compare these results to ours, since we did not
evaluate neither LSA nor syntactic models.

A common alternative to our evaluation method-
ology is to use the Spearman’s rank correlation
coefficient (Agresti, 2002) to compare the results
with the human judgments, such as those obtained
by Rubenstein and Goodenough (1965) or Miller
and Charles (1991).

5 Conclusion and Future Work

This paper has compared 21 similarity measures be-
tween lexical units on the task of semantic relation
extraction. We compared their general performances
and figured out that Resnik, BDA-Cos, and NGD-
Yahoo provide the best results among knowledge-
, corpus-, and web-based measures, correspond-
ingly. We also found that (1) semantic relation dis-
tributions of the considered measures are signifi-
cantly different; (2) all measures extract many co-
hyponyms; (3) the best measures provide the scores
which let us clearly separate correct relations from
the random ones.

The analyzed measures provide complimentary
types of semantic information. This suggests de-
veloping a combined measure of semantic similar-
ity. A combined measure is not presented here since
designing an integration technique is a complex re-
search goal on its own right. We will address this
problem in our future research.
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Figure 6: Distribution of similarities accross relation types for Resnik, BDA-Cos, and NGD-Yahoo measures.

Most Similar Measures Most Disimilar Measures
simi simj xij simi simj xij

Leacock-Chodorow Inv.Edge-Counts 0 NGD-Google Extended Lesk 39935.16
BDA-Jaccard BDA-Cos 7.17 Jiang-Conrath NGD-Google 27478.90
NGD-YahooBOSS PMI-YahooBOSS 19.58 Lin NGD-Google 17527.22
Wu-Palmer Inv.Edge-Counts 24.00 NGD-Google Wu-Palmer 17416.95
Wu-Palmer Leacock-Chodorow 24.00 NGD-Google PMI-YahooBOSS 13390.66
BDA-Manhattan BDA-Euclidian 25.37 Inv.Edge-Counts NGD-Google 12012.79
PMI-Google-W NGD-Factiva 27.65 Leacock-Chodorow NGD-Google 12012.79
PMI-Google NGD-Yahoo 33.42 NGD-Google Resnik 11750.41
NGD-Google-W NGD-Factiva 40.03 NGD-Google NGD-YahooBOSS 11556.69
NGD-W PMI-Factiva 42.17 BDA-Euclidian Extended Lesk 8411.66
Gloss Overlap NGD-Yahoo 53.64 NGD-Factiva NGD-Google 8066.75
NGD-Factiva PMI-Factiva 58.13 BDA-Euclidian Resnik 6829.71
Lin Jiang-Conrath 58.42 PMI-Google-W NGD-Google 6574.62
Gloss Overlap NGD-Google-W 62.46 BDA-Manhattan Extended Lesk 6428.47

Table 3: List of the most and least similar measures (k = 10%).

Figure 7: Measures grouped according to similarity of their relation distributions with (15). An edge links measures
simi and simj if xij < 220. The knowledge-, corpus-, and web-based measures are marked in red, blue, and green
correspondingly and with the prefixes ’K’,’C’,and ’W’. The best measures are marked with a big circle.
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Abstract

We present a distributional semantic model
combining text- and image-based features. We
evaluate this multimodal semantic model on
simulating similarity judgments, concept clus-
tering and the BLESS benchmark. When inte-
grated with the same core text-based model,
image-based features are at least as good as
further text-based features, and they capture
different qualitative aspects of the tasks, sug-
gesting that the two sources of information are
complementary.

1 Introduction

Distributional semantic models use large text cor-
pora to derive estimates of semantic similarities be-
tween words. The basis of these procedures lies in
the hypothesis that semantically similar words tend
to appear in similar contexts (Miller and Charles,
1991; Wittgenstein, 1953). For example, the mean-
ing of spinach (primarily) becomes the result of sta-
tistical computations based on the association be-
tween spinach and words like plant, green, iron,
Popeye, muscles. Alongside their applications in
NLP areas such as information retrieval or word
sense disambiguation (Turney and Pantel, 2010), a
strong debate has arisen on whether distributional
semantic models are also reflecting human cogni-
tive processes (Griffiths et al., 2007; Baroni et al.,
2010). Many cognitive scientists have however ob-
served that these techniques relegate the process of
meaning extraction solely to linguistic regularities,
forgetting that humans can also rely on non-verbal

experience, and comprehension also involves the ac-
tivation of non-linguistic representations (Barsalou
et al., 2008; Glenberg, 1997; Zwaan, 2004). They
argue that, without grounding words to bodily ac-
tions and perceptions in the environment, we can
never get past defining a symbol by simply pointing
to covariation of amodal symbolic patterns (Harnad,
1990). Going back to our example, the meaning of
spinach should come (at least partially) from our ex-
perience with spinach, its colors, smell and the oc-
casions in which we tend to encounter it.

We can thus distinguish two different views of
how meaning emerges, one stating that it emerges
from association between linguistic units reflected
by statistical computations on large bodies of text,
the other stating that meaning is still the result of an
association process, but one that concerns the asso-
ciation between words and perceptual information.

In our work, we try to make these two appar-
ently mutually exclusive accounts communicate, to
construct a richer and more human-like notion of
meaning. In particular, we concentrate on percep-
tual information coming from images, and we cre-
ate a multimodal distributional semantic model ex-
tracted from texts and images, putting side by side
techniques from NLP and computer vision. In a nut-
shell, our technique is based on using a collection
of labeled pictures to build vectors recording the co-
occurrences of words with image-based features, ex-
actly as we would do with textual co-occurrences.
We then concatenate the image-based vector with
a standard text-based distributional vector, to ob-
tain our multimodal representation. The prelimi-
nary results reported in this paper indicate that en-
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riching a text-based model with image-based fea-
tures is at least not damaging, with respect to en-
larging the purely textual component, and it leads to
qualitatively different results, indicating that the two
sources of information are not redundant.

The rest of the paper is structured as follows. Sec-
tion 2 reviews relevant work including distributional
semantic models, computer vision techniques suit-
able to our purpose and systems combining text and
image information, including the only work we are
aware of that attempts something similar to what we
try here. We introduce our multimodal distributional
semantic model in Section 3, and our experimental
setup and procedure in Section 4. Our experiments’
results are discussed in Section 5. Section 6 con-
cludes summarizing current achievements and dis-
cussing next directions.

2 Related Work

2.1 Text-based distributional semantic models

Traditional corpus-based models of semantic repre-
sentation base their analysis on textual input alone
(Turney and Pantel, 2010). Assuming the distribu-
tional hypothesis (Miller and Charles, 1991), they
represent semantic similarity between words as a
function of the degree of overlap among their lin-
guistic contexts. Similarity is computed in a seman-
tic space represented as a matrix, with words as rows
and contextual elements as columns/dimensions.
Thanks to the geometrical nature of the represen-
tation, words are compared using a distance met-
ric, such as the cosine of the angle between vectors
(Landauer and Dumais, 1997).

2.2 Bag of visual words

In NLP, “bag of words” (BoW) is a dictionary-based
method in which a document is represented as a
“bag” (i.e., order is not considered), which contains
words from the dictionary. In computer vision, “bag
of visual words” (BoVW) is a similar idea for image
representation (Sivic and Zisserman, 2003; Csurka
et al., 2004; Nister and Stewenius, 2006; Bosch et
al., 2007; Yang et al., 2007).

Here, an image is treated as a document, and fea-
tures from a dictionary of visual elements extracted
from the image are considered as the “words” repre-
senting the image. The following pipeline is typ-

ically adopted in order to group the local interest
points into types (visual words) within and across
images, so that then an image can be represented
by the number of occurrences of each visual word
type in it, analogously to BoW. From every image
of a data set, keypoints are automatically detected
and represented as vectors of various descriptors.
Keypoint vectors are then projected into a common
space and grouped into a number of clusters. Each
cluster is treated as a discrete visual word (this tech-
nique is generally known as vector quantization).
With its keypoints mapped onto visual words, each
image can then be represented as a BoVW feature
vector according to the count of each visual word. In
this way, we move from representing the image by
a varying number of high-dimensional keypoint de-
scriptor vectors to a representation in terms of a sin-
gle sparse vector of fixed dimensionality across all
images. What kind of image content a visual word
captures exactly depends on a number of factors, in-
cluding the descriptors used to identify and represent
local interest points, the quantization algorithm and
the number of target visual words selected. In gen-
eral, local interest points assigned to the same visual
word tend to be patches with similar low-level ap-
pearance; but these common types of local patterns
need not be correlated with object-level parts present
in the images. Figure 1 illustrates the procedure to
form bags of visual words. Importantly for our pur-
poses, the BoVW representation, despite its unre-
lated origin in computer vision, is entirely analogous
to the BoW representation, making the integration of
text- and image-based features very straightforward.

2.3 Integrating textual and perceptual
information

Louwerse (2011), contributing to the debate on sym-
bol grounding in cognitive science, theorizes the in-
terdependency account, which suggests a conver-
gence of symbolic theories (such as distributional
semantics) and perceptual theories of meaning, but
lacks of a concrete way to harvest perceptual infor-
mation computationally. Andrews et al. (2009) com-
plement text-based models with experiential infor-
mation, by combining corpus-based statistics with
speaker-generated feature norms as a proxy of per-
ceptual experience. However, the latter are an un-
satisfactory proxy, since they are still verbally pro-
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Figure 1: Illustration of bag of visual words procedure: (a) detect and represent local interest points as descriptor
vectors (b) quantize vectors (c) histogram computation to form BoVW vector for the image

duced descriptions, and they are expensive to collect
from subjects via elicitation techniques.

Taking inspiration from methods originally used
in text processing, algorithms for image labeling,
search and retrieval have been built upon the connec-
tion between text and visual features. Such models
learn the statistical models which characterize the
joint statistical distribution of observed visual fea-
tures and verbal image tags (Hofmann, 2001; Hare
et al., 2008). This line of research is pursuing the re-
verse of what we are interested in: using text to im-
prove the semantic description of images, whereas
we want to exploit images to improve our approxi-
mation to word meaning.

Feng and Lapata are the first trying to integrate
authentic visual information in a text-based distribu-
tional model (Feng and Lapata, 2010). Using a col-
lection of BBC news with pictures as corpus, they
train a Topic model where text and visual words are
represented in terms of the same shared latent di-
mensions (topics). In this framework, word meaning
is modeled as a probability distribution over a set of
latent multimodal topics and the similarity between
two words can be estimated by measuring the topics
they have in common. A better correlation with se-
mantic intuitions is obtainable when visual modality
is taken into account, in comparison to estimating
the topic structure from text only.

Although Feng and Lapata’s work is very promis-
ing and the main inspiration for our own, their
method requires the extraction of a single distribu-
tional model from the same mixed-media corpus.
This has two important drawbacks: First, the tex-
tual model must be extracted from the same corpus

images are taken from, and the text context extrac-
tion methods must be compatible with the overall
multimodal approach. Thus, image features can-
not be added to a state-of-the-art text-based distri-
butional model – e.g., a model computed on the
whole Wikipedia or larger corpora using syntactic
dependency information – to assess whether visual
information is helping even when purely textual fea-
tures are already very good. Second, by training a
joint model with latent dimensions that mix textual
and visual information, it becomes hard to assess,
quantitatively and qualitatively, the separate effect
of image-based features on the overall performance.
In order to overcome these issues, we propose a
somewhat simpler approach, in which the text- and
image-based models are independently constructed
from different sources, and then concatenated.

3 Proposed method

Figure 2 presents a diagram of our overall sys-
tem. The main idea is to construct text-based and
image-based co-occurrence models separately and
then combine them. We first describe our proce-
dure to build both text-based and image-based mod-
els. However, we stress the latter since it is the
more novel part of the procedure. Then, we describe
our simple combination technique to integrate both
models and create a multimodal distributional se-
mantic space. Our implementation of the proposed
method is open-source1.

1https://github.com/s2m
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Figure 2: Overview of our system architecture

3.1 Text-based distributional model

Instead of proposing yet another model, we pick one
that is publicly available off-the-shelf and has been
shown to be at the state of the art on a number of
benchmarks. The picked model (DM)2 is encoded
in a matrix in which each target word is represented
by a row vector of weights representing its associa-
tion with collocates in a corpus. See Section 4.1 for
details about the text-based model.

3.2 Image-based distributional model

We assume image data where each image is associ-
ated with word labels (somehow related to the im-
age) that we call tags.

The primary approach to form the image-based
vector space is to use the BoVW method to rep-
resent images. Having represented each image in
our data set in terms of the frequency of occurrence
of each visual word in it, we construct the image-
based distributional vector of each tag as follows.
Each tag (textual word) is associated to the list of
images which are tagged with it; we then sum visual
word occurrences across that list of images to ob-
tain the co-occurrence counts associated with each
tag. For uniformity with the treatment of textual
co-occurrences (see Section 4.1), the raw counts are
transformed into Local Mutual Information scores
computed between each tag and visual word. Lo-
cal Mutual Information is an association measure
that closely approximates the commonly used Log-
Likelihood Ratio while being simpler to compute
(Evert, 2005).

In this way, we obtain an image-based distribu-

2http://clic.cimec.unitn.it/dm

tional semantic model, that is, a matrix where each
row corresponds to a tag vector, summarizing the
distributional history of the tag in the image collec-
tion in terms of its association with the visual words.

3.3 Integrating distributional models

We assemble the two distributional vectors to con-
struct the multimodal semantic space. Given a word
that is present both in the text-based model and
(as a tag) in the image-based model, we separately
normalize the two vectors representing the word to
length 1 (so that the text and image components will
have equal weight), and we concatenate them to ob-
tain the multimodal distributional semantic vector
representing the word. The matrix of concatenated
text- and image-based vectors is our multimodal dis-
tributional semantic model. We leave it to future
work to consider more sophisticated combination
techniques (preliminary experiments on differential
weighting of the text and image components did not
lead to promising results).

4 Experimental setup

4.1 The DM text-based model

DM has been shown to be near or at the state of
the art in a great variety of semantic tasks, ranging
from modeling similarity judgments to concept cat-
egorization, predicting selectional preferences, rela-
tion classification and more.

The DM model is described in detail by Baroni
and Lenci (2010), where it is referred to as TypeDM.
In brief, the model is trained on a large corpus
of about 2.8 billion tokens that include Web docu-
ments, the Wikipedia and the BNC. DM is a struc-
tured model, where the collocates are labeled with
the link that connect them to the target words. The
links are determined by a mixture of dependency
parse information and lexico-syntactic patterns, re-
sulting in distributional features (the dimensions of
the semantic space) such as subject kill, with gun or
as sharp as. The score of a target word with a fea-
ture is not based on the absolute number of times
they co-occur in the corpus, but on the variety of
different surface realizations of the feature the word
co-occurs with. For example, for the word fat and
the feature of animal, the raw score is 9 because fat
co-occurs with 9 different forms of the feature (a
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fat of the animal, the fat of the animal, fats of an-
imal. . . ). Refer to Baroni and Lenci (2010) for how
the surface realizations of a feature are determined.
Raw scores are then transformed into Local Mutual
Information values.

The DM semantic space is a matrix with 30K
rows (target words) represented in a space of more
than 700M dimensions. Since our visual dimension
extraction algorithms are maximally producing 32K
dimensions (see Section 4.2 below), we make the
impact of text features on the combined model di-
rectly comparable to the one of visual features by
selecting only the top n DM dimensions (with n

varying as explained below). The top dimensions
are picked based on their cumulative Local Mutual
Information mass. We show in the experiments be-
low that trimming DM in this way does not have a
negative impact on its performance, so that we are
justified in claiming that we are adding visual in-
formation to a state-of-the-art text-based semantic
space.

4.2 Visual Information Extraction

For our experiments, we use the ESP-Game data
set.3 It contains 50K images, labeled through the
famous “game with a purpose” developed by Louis
von Ahn (von Ahn and Dabbish, 2004). The tags
of images in the data set form a vocabulary of 11K
distinct word types. Image labels contain 6.686 tags
on average (2.357 s.d.). The ESP-Game corpus is
an interesting data set from our point of view since,
on the one hand, it is rather large and we know that
the tags it contains are related to the images. On
the other hand, it is not the product of experts la-
belling representative images, but of a noisy anno-
tation process of often poor-quality or uninteresting
images (e.g., logos) randomly downloaded from the
Web. Thus, analogously to the characteristics of a
textual corpus, our algorithms must be able to ex-
ploit large-scale statistical information, while being
robust to noise.

Following what has become an increasingly stan-
dard procedure in computer vision, we use the Dif-
ference of Gaussian (DoG) detector to automatically
detect keypoints from images and consequently map
them to visual words (Lowe, 1999; Lowe, 2004). We

3http://www.espgame.org

use the Scale-Invariant Feature Transform (SIFT) to
depict the keypoints in terms of a 128-dimensional
real-valued descriptor vector. Color version SIFT
descriptors are extracted on a regular grid with five
pixels spacing, at four multiple scales (10, 15, 20,
25 pixel radii), zeroing the low contrast ones. We
chose SIFT for its invariance to image scale, ori-
entation, noise, distortion and partial invariance to
illumination changes. To map the descriptors to vi-
sual words, we cluster the keypoints in their 128-
dimensional space using the K-means clustering al-
gorithm, and encode each keypoint by the index of
the cluster (visual word) to which it belongs. We
varied the number of visual words between 250 and
2000 in steps of 250. We then computed a one-level
4x4 pyramid of spatial histograms (Grauman and
Darrell, 2005), consequently increasing the features
dimensions 16 times, for a number that varies be-
tween 4K and 32K, in steps of 4K. From the point of
view of our distributional semantic model construc-
tion, the important point to keep in mind is that stan-
dard parameter choices such as the ones we adopted
lead to distributional vectors with 4K, 8K, . . . , 32K
dimensions, where a higher number of features cor-
responds, roughly, to a more granular analysis of an
image. We used the VLFeat implementation for the
entire pipeline (Vedaldi and Fulkerson, 2008). See
the references in Section 2.2 above for technical de-
tails.

4.3 Model integration

We remarked above that the visual word extraction
procedure naturally leads to 8 kinds of image-based
vectors of dimensionalities from 4K to 32K in steps
of 4K. To balance text and image information, we
use DM vectors made of top n features ranging from
4K to 32K in the same 4K steps. By combining,
we obtain 64 combined models (4K text and 4K im-
age dimensions, 4K text and 8K image dimensions,
etc.). Since in the experiments on WordSim (Section
5.1 below) we observe best performance with 32K
text-based features, we report here only experiments
with (at least) 32K dimensions. Similar patterns to
the ones we report are observed when adding image-
based dimensions to text-based vectors of different
dimensionalities.

For a thoroughly fair comparison, if we add n vi-
sual features to the text-based model and we notice
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an improvement, we must ask whether the same im-
provement could also be obtained by adding more
text-based features. To control for this possibility,
we also consider a set of purely text-based mod-
els that have the same number of dimensions of the
combined models, that is, the top 32K DM features
plus 8K, . . . , 32K further DM features (the next top
features in the cumulative Local Mutual Information
score ranking). In the experiments below, we refer to
the purely textual model as text (always 32K dimen-
sions), to the purely image-based model as image, to
the combined models as combined, and to the con-
trol in which further text dimensions are added for
comparability with combined as text+.

4.4 Evaluation benchmarks

We conduct our most extensive evaluation on the
WordSim353 data set (Finkelstein et al., 2002),
a widely used benchmark constructed by asking
16 subjects to rate a set of word pairs on a 10-
point similarity scale and averaging the ratings (dol-
lar/buck receive a high 9.22 average rating, profes-
sor/cucumber a low 0.31). We cover 260 Word-
Sim (mostly noun/noun) pairs. We evaluate models
in terms of the Spearman correlation of the cosines
they produce for the WordSim pairs with the average
human ratings for the same pairs (here and below,
we do not report comparisons with the state of the
art in the literature, because we have reduced cov-
erage of the data sets, making the comparison not
meaningful).

To verify if the conclusions reached on WordSim
extend to different semantic tasks, we use two con-
cept categorization benchmarks, where the goal is
to cluster a set of (nominal) concepts into broader
categories. The Almuhareb-Poesio (AP) concept set
(Almuhareb, 2006), in the version we cover, con-
tains 230 concepts to be clustered into 21 classes
such as vehicle (airplane, car. . . ), time (aeon, fu-
ture. . . ) or social unit (brigade, nation). The Battig
set (Baroni et al., 2010), in the version we cover,
contains 72 concepts to be clustered into 10 classes.
Unlike AP, Battig only contains concrete basic-level
concepts belonging to categories such as bird (ea-
gle, owl. . . ), kitchenware (bowl, spoon. . . ) or veg-
etable (broccoli, potato. . . ). For both sets, follow-
ing the original proponents and others, we clus-
ter the words based on their pairwise cosines in

the semantic space defined by a model using the
CLUTO toolkit (Karypis, 2003). We use CLUTO’s
built-in repeated bisections with global optimiza-
tion method, accepting all of CLUTO’s default val-
ues. Cluster quality is evaluated by percentage pu-
rity (Zhao and Karypis, 2003). If ni

r is the num-
ber of items from the i-th true (gold standard) class
that were assigned to the r-th cluster, n is the total
number of items and k the number of clusters, then:
Purity = 1

n

∑k
r=1 max

i
(ni

r). In the best case (per-

fect clusters), purity is 100% and as cluster quality
deteriorates, purity approaches 0.

Finally, we use the Baroni-Lenci Evaluation of
Semantic Similarity (BLESS) data set made avail-
able by the GEMS 2011 organizers.4 In the ver-
sion we cover, the data set contains 174 concrete
nominal concepts, each paired with a set of words
that instantiate the following 6 relations: hyper-
nymy (spear/weapon), coordination (tiger/coyote),
meronymy (castle/hall), typical attribute (an ad-
jective: grapefruit/tart) and typical event (a verb:
cat/hiss). Concepts are moreover matched with 3
sets of randomly picked unrelated words (nouns, ad-
jectives and verbs). For each true and random rela-
tion, the data set contains at least one word per con-
cept, typically more. Following the GEMS guide-
lines, we apply a model to BLESS as follows. Given
the similarity scores provided by the model for a
concept with all associated words within a relation,
we pick the term with the highest score. We then z-
standardize the 8 scores we obtain for each concept
(one per relation), and we produce a boxplot summa-
rizing the distribution of z scores per relation across
the concepts (i.e., each box of the plot summarizes
the distribution of the 174 scores picked for each re-
lation, standardized as we just described). Boxplots
are produced accepting the default boxplotting op-
tion of the R statistical package5 (boxes extend from
first to third quartile, median is horizontal line inside
the box).

4http://sites.google.com/site/geometricalmodels/shared-
evaluation

5http://www.r-project.org/
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5 Results

5.1 WordSim

The WordSim results for our models across dimen-
sionalities as well as for the full DM are summarized
in Figure 3.
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Figure 3: Performance of distributional models on Word-
Sim

The purely image-based model is having the
worst performance in all settings, although even the
lowest image-based Spearman score (0.29) is signif-
icantly above chance (p. < 0.05), suggesting that
the model does capture some semantic information.
Contrarily, adding image-based dimensions to a tex-
tual model (combined) consistently reaches the best
performance, also better – for all choices of dimen-
sionality – than adding an equal number of text fea-
tures (text+) or using the full DM matrix. Inter-
estingly, the same overall result pattern is observed
if we limit evaluation to the WordSim subsets that
Agirre et al. (2009) have identified as semantically
similar (e.g., synonyms or coordinate terms) and se-
mantically related (e.g., meronyms or topically re-
lated concepts).

Based on the results reported in Figure 3, fur-
ther analyses will focus on the combined model with
+20K image-based features, since performance of
combined does not seem to be greatly affected by the
dimensionality parameter, and performance around
this value looks quite stable (it is better only at the
boundary +4K value, and with +28K, where, how-
ever, there is a dip for the image model). The text+

performance is not essentially affected by the di-
mensionality parameter, and we pick the +20K ver-
sion for maximum comparability with combined.

The difference between combined and text+, al-
though consistent, is not statistically significant
according to a two-tailed paired permutation test
(Moore and McCabe, 2005) conducted on the re-
sults for the +20K versions of the models. Still, very
interesting qualitative differences emerge. Table 1
reports those WordSim pairs (among the ones with
above-median human-judged similarity) that have
the highest and lowest combined-to-text+ cosine ra-
tios, i.e., pairs that are correctly treated as similar by
combined but not by text+, and vice versa. Strik-
ingly, the pairs characterizing the image-feature-
enriched combined are all made of concrete, highly
imageable concepts, whereas the text+ pairs refer to
very abstract notions. We thus see here the first ev-
idence of the complementary nature of visual and
textual information.

combined text+
tennis/racket physics/proton
planet/sun championship/tournament
closet/clothes profit/loss
king/rook registration/arrangement
cell/phone mile/kilometer

Table 1: WordSim pairs with highest (first column) and
lowest (second column) combined-to-text+ cosine ratios

5.2 Concept categorization
Table 2 reports percentage purities in the AP and
Battig clustering tasks for full DM and the represen-
tative models discussed above.

model AP Battig
DM 81 96
text 79 83

text+ 80 86
image 25 36

combined 78 96

Table 2: Percentage AP and Battig purities of distribu-
tional models

Once more, we see that the image model alone
is not at the level of the text models, although both
its AP and Battig purities are significantly above
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chance (p < 0.05 based on simulated distributions
for random cluster assignment). Thus, even alone,
image-based vectors do capture aspects of meaning.
For AP, adding image features does not improve per-
formance, although it does not significantly worsen
it either (a two-tailed paired permutation test con-
firms that the difference between text+ and com-
bined is far from significance). For Battig, adding
visual features improves on the purely text-based
models based on a comparable number of features
(although the difference between text+ and com-
bined is not significant), reaching the same perfor-
mance obtained with the full DM model (that in
these categorization tests is slightly above that of the
trimmed models). Intriguingly, the Battig test is en-
tirely composed of concrete concepts, so the differ-
ence in performance for combined might be related
to its preference for concrete things we already ob-
served for WordSim.

5.3 BLESS

The BLESS distributions of text-based models (in-
cluding combined) are very similar, so we use here
the full DM model as representative of the text-based
set – its histogram is compared to the one of the
purely image-based model in Figure 4.

We see that purely text-based DM cosines capture
a reasonable scale of taxonomic similarity among
nominal neighbours (coordinates then hypernyms
then meronyms then random nouns), whereas verbs
and adjectives are uniformly very distant, whether
they are related or not. This is not surprising be-
cause the DM links mostly reflect syntactic patterns,
that will be disjoint across parts of speech (e.g., a
feature like subject kill will only apply to nouns,
save for parsing errors). Looking at the image-
only model, we first observe that it can capture dif-
ferences between related attributes/events and ran-
dom adjectives/verbs (according to a Tukey HSD
test for all pairwise comparisons, these differences
are highly significant, whereas DM only signifi-
cantly distinguishes attributes from random verbs).
In this respect, image is arguably the “best” model
on BLESS. However, perhaps more interestingly,
the image model also shows a bias for nouns, cap-
turing the same taxonomic hierarchy found for DM.
This suggests that image analysis is providing a de-
composition of concepts into attributes shared by

similar entities, that capture ontological similarity
beyond mere syntagmatic co-occurrence in an im-
age description.

To support this latter claim, we counted the av-
erage number of times that the related terms picked
by the image model directly co-occur with the target
concepts in an ESP-Game label. It turns out that this
count is higher for both attributes (10.6) and hyper-
nyms (7.5) than for coordinates (6.5). So, the higher
similarity of coordinates in the image model demon-
strates that its features do generalize across images,
allowing us to capture “attributional” or “paradig-
matic” similarity in visual space. More in general,
we find that, among all the related terms picked by
the image model that have an above-average cosine
with the target concept, almost half (41%) never co-
occur with the concept in the image set, again sup-
porting the claim that, by our featural analysis, we
are capturing visual properties of similar concepts
beyond their co-occurrence as descriptions of the
same image.

A final interesting point pertains to the specific in-
stances of each (non-random) relation picked by the
textual and visual models: of 870 related term pairs
in total, almost half (418) differ between DM and
image, suggesting that the boxplots in Figure 4 hide
larger differences in what the models are doing. The
randomly picked examples of mismatches in top at-
tributes from Table 3 clearly illustrate the qualitative
difference between the models, and, once more, the
tendency of image-based representations to favour
(not surprisingly!) highly visual properties such as
colours and shapes, vs. the well-known tendency of
text-based models to extract systemic or functional
characteristics such as powerful or elegant (Baroni
et al., 2010). By combining the two sources of infor-
mation, we should be able to develop distributional
models that come with more well-rounded charac-
terizations of the concepts they describe.

6 Conclusion

We proposed a simple method to augment a state-
of-the-art text-based distributional semantic model
with information extracted from image analysis.
The method is based on the standard bag-of-visual-
words representation of images in computer vision.
The image-based distributional profile of a word is
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Figure 4: Distribution of z-normalized cosines of words instantiating various relations across BLESS concepts.

concept DM image concept DM image
ant small black potato edible red
axe powerful old rifle short black
cathedral ancient dark scooter cheap white
cottage little old shirt fancy black
dresser new square sparrow wild brown
fighter fast old squirrel fluffy brown
fork dangerous shiny sweater elegant old
goose white old truck new heavy
jet fast old villa new cosy
pistol dangerous black whale large gray

Table 3: Randomly selected cases where nearest at-
tributes picked by DM and image differ.

encoded in a vector of co-occurrences with “visual
words”, that we concatenate with a text-based co-
occurrence vector. A cautious interpretation of our
results is that adding image-based features is at least
not damaging, when compared to adding further
text-based features, and possibly beneficial. Impor-
tantly, in all experiments we find that image-based
features lead to interesting qualitative differences in
performance: Models including image-based infor-
mation are more oriented towards capturing similar-
ities between concrete concepts, and focus on their
more imageable properties, whereas the text-based
features are more geared towards abstract concepts
and properties. Coming back to the discussion of
symbol grounding at the beginning of the paper, we

consider this (very!) preliminary evidence for an in-
tegrated view of semantics where the more concrete
aspects of meaning derive from perceptual experi-
ence, whereas verbal associations mostly account
for abstraction.

In future work, we plan first of all to improve per-
formance, by focusing on visual word extraction and
on how the text- and image-based vectors are com-
bined (possibly using supervision to optimize both
feature extraction and integration with respect to se-
mantic tasks). However, the most exciting direction
we intend to follow next will concern evaluation,
and in particular devising new benchmarks that ad-
dress the special properties of image-enhanced mod-
els directly. For example, Baroni and Lenci (2008)
observe that text-based distributional models are se-
riously lacking when it comes to characterize phys-
ical properties of concepts such as their colors or
parts. These are exactly the aspects of conceptual
knowledge where image-based information should
help most, and we will devise new test sets that will
focus specifically on verifying this hypothesis.
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Abstract

This paper improves an existing bilingual
paraphrase extraction technique using mono-
lingual distributional similarity to rerank can-
didate paraphrases. Raw monolingual data
provides a complementary and orthogonal
source of information that lessens the com-
monly observed errors in bilingual pivot-
based methods. Our experiments reveal that
monolingual scoring of bilingually extracted
paraphrases has a significantly stronger cor-
relation with human judgment for grammat-
icality than the probabilities assigned by the
bilingual pivoting method does. The results
also show that monolingual distribution simi-
larity can serve as a threshold for high preci-
sion paraphrase selection.

1 Introduction

Paraphrasing is the rewording of a phrase such
that meaning is preserved. Data-driven paraphrase
acquisition techniques can be categorized by the
type of data that they use (Madnani and Dorr,
2010). Monolingual paraphrasing techniques clus-
ter phrases through statistical characteristics such
as dependency path similarities or distributional co-
occurrence information (Lin and Pantel, 2001; Pasca
and Dienes, 2005). Bilingual paraphrasing tech-
niques use parallel corpora to extract potential para-
phrases by grouping English phrases that share the
same foreign translations (Bannard and Callison-
Burch, 2005). Other efforts blur the lines between
the two, applying techniques from statistical ma-
chine translation to monolingual data or extract-
ing paraphrases from multiple English translations
of the same foreign text (Barzilay and McKeown,
2001; Pang et al., 2003; Quirk et al., 2004).

We exploit both methodologies, applying a
monolingually-derived similarity metric to the out-

put of a pivot-based bilingual paraphrase model. In
this paper we investigate the strengths and weak-
nesses of scoring paraphrases using monolingual
distributional similarity versus the bilingually calcu-
lated paraphrase probability. We show that monolin-
gual cosine similarity calculated on large volumes
of text ranks bilingually-extracted paraphrases bet-
ter than the paraphrase probability originally defined
by Bannard and Callison-Burch (2005). While our
current implementation shows improvement mainly
in grammaticality, other contextual features are ex-
pected to enhance the meaning preservation of para-
phrases. We also show that monolingual scores can
provide a reasonable threshold for picking out high
precision paraphrases.

2 Related Work

2.1 Paraphrase Extraction from Bitexts
Bannard and Callison-Burch (2005) proposed iden-
tifying paraphrases by pivoting through phrases in a
bilingual parallel corpora. Figure 1 illustrates their
paraphrase extraction process. The target phrase,
e.g. thrown into jail, is found in a German-English
parallel corpus. The corresponding foreign phrase
(festgenommen) is identified using word alignment
and phrase extraction techniques from phrase-based
statistical machine translation (Koehn et al., 2003).
Other occurrences of the foreign phrase in the par-
allel corpus may align to a distinct English phrase,
such as jailed. As the original phrase occurs sev-
eral times and aligns with many different foreign
phrases, each of these may align to a variety of other
English paraphrases. Thus, thrown into jail not only
paraphrases as jailed, but also as arrested, detained,
imprisoned, incarcerated, locked up, and so on. Bad
paraphrases, such as maltreated, thrown, cases, cus-
tody, arrest, and protection, may also arise due to
poor word alignment quality and other factors.
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... letzteWoche wurden in Irland fünf Landwirte festgenommen , weil sie verhindern wollten

... last week five farmers were thrown into jail in Ireland because they resisted ...

...

Zahlreiche Journalisten sind verschwunden oder wurden festgenommen , gefoltert und getötet .

Quite a few journalists have disappeared or have been imprisoned , tortured and killed .

Figure 1: Using a bilingual parallel corpus to extract
paraphrases.

Bannard and Callison-Burch (2005) defined a
paraphrase probability to rank these paraphrase can-
didates, as follows:

ê2 = arg max
e2 6=e1

p(e2|e1) (1)

p(e2|e1) =
∑

f

p(e2, f |e1) (2)

=
∑

f

p(e2|f, e1)p(f |e1) (3)

≈
∑

f

p(e2|f)p(f |e1) (4)

where p(e2|e1) is the paraphrase probability, and
p(e|f) and p(f |e) are translation probabilities from
a statistical translation model.

Anecdotally, this paraphrase probability some-
times seems unable to discriminate between good
and bad paraphrases, so some researchers disregard
it and treat the extracted paraphrases as an unsorted
set (Snover et al., 2010). Callison-Burch (2008)
attempts to improve the ranking by limiting para-
phrases to be the same syntactic type.

We attempt to rerank the paraphrases using other
information. This is similar to the efforts of Zhao
et al. (2008), who made use of multiple resources to
derive feature functions and extract paraphrase ta-
bles. The paraphrase that maximizes a log-linear
combination of various feature functions is then se-
lected as the optimal paraphrase. Feature weights
in the model are optimized by minimizing a phrase
substitution error rate, a measure proposed by the
authors, on a development set.

2.2 Monolingual Distributional Similarity
Prior work has explored the acquisition of para-
phrases using distributional similarity computed

from monolingual resources, such as in the DIRT
results of Lin and Pantel (2001). In these models,
phrases are judged to be similar based on the cosine
distance of their associated context vectors. In some
cases, such as by Lin and Pantel, or the seminal work
of Church and Hanks (1991), distributional context
is defined using frequencies of words appearing in
various syntactic relations with other lexical items.
For example, the nouns apple and orange are con-
textually similar partly because they both often ap-
pear as the object of the verb eat. While syntac-
tic contexts provide strong evidence of distributional
preferences, it is computationally expensive to parse
very large corpora, so it is also common to represent
context vectors with simpler representations like ad-
jacent words and n-grams (Lapata and Keller, 2005;
Bhagat and Ravichandran, 2008; Lin et al., 2010;
Van Durme and Lall, 2010). In these models, ap-
ple and orange might be judged similar because both
tend to be one word to the right of some, and one to
the left of juice.

Here we calculate distributional similarity using a
web-scale n-gram corpus (Brants and Franz, 2006;
Lin et al., 2010). Given both the size of the collec-
tion, and that the n-grams are sub-sentential (the n-
grams are no longer than 5 tokens by design), it was
not feasible to parse, which led to the use of n-gram
contexts. Here we use adjacent unigrams. For each
phrase x we wished to paraphrase, we extracted the
context vector of x from the n-gram collection as
such: every (n-gram, frequency) pair of the form:
(ax, f ), or (xb, f ), gave rise to the (feature, value)
pair: (wi−1=a, f ), or (wi+1=b, f ), respectively. In
order to scale to this size of a collection, we relied
on Locality Sensitive Hashing (LSH), as was done
previously by Ravichandran et al. (2005) and Bha-
gat and Ravichandran (2008). To avoid computing
feature vectors explicitly, which can be a memory
intensive bottleneck, we employed the online LSH
variant described by Van Durme and Lall (2010).

This variant, based on the earlier work of Indyk
and Motwani (1998) and Charikar (2002), approxi-
mates the cosine similarity between two feature vec-
tors based on the Hamming distance in a reduced bit-
wise representation. In brief, for the feature vectors
~u, ~v, each of dimension d, then the cosine similarity
is defined as: ~u·~v

|~u||~v| . If we project ~u and ~v through
a d by b random matrix populated with draws from
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huge amount of
BiP SyntBiP BiP-MonoDS
large number of, .33 large number of, .38 huge amount of, 1.0

in large numbers, .11 great number of, .09 large quantity of, .98

great number of, .08 huge amount of, .06 large number of, .98

large numbers of, .06 vast number of, .06 great number of, .97

vast number of, .06 vast number of, .94

huge amount of, .06 in large numbers, .10

large quantity of, .03 large numbers of, .08

Table 1: Paraphrases for huge amount of according to the
bilingual pivoting (BiP), syntactic-constrainted bilingual
pivoting (SyntBiP) translation score and the monolingual
similarity score via LSH (MonoDS), ranked by corre-
sponding scores listed next to each paraphrase. Syntactic
type of the phrase is [JJ+NN+IN].

N(0, 1), then we convert our feature vectors to bit
signatures of length b, by setting each bit of the sig-
nature conditioned on whether or not the respective
projected value is greater than or equal to 0. Given
the bit signatures h(~u) and h(~v), we approximate
cosine with the formula: cos(D(h(~u),h(~v))

b π), where
D() is Hamming distance.

3 Ranking Paraphrases
We use several different methods to rank candidate
sets of paraphrases that are extracted from bilingual
parallel corpora. Our three scoring methods are:

• MonoDS – monolingual distributional similar-
ity calculated over the Google n-gram corpus
via LSH, as described in Section 2.2.
• BiP – bilingual pivoting is calculated as in

Equation 4 following Bannard and Callison-
Burch (2005). The translation model probabili-
ties are estimated from a French-English paral-
lel corpus.
• SyntBiP – syntactically-constrained bilingual

pivoting. This refinement to BiP, proposed in
Callison-Burch (2008), constrains paraphrases
to be the same syntactic type as the original
phrase in the pivoting step of the paraphrase ta-
ble construction.

When we use MonoDS to re-score a candidate set,
we indicate which bilingual paraphrase extraction
method was used to extract the candidates as prefix,
as in BiP-MonoDS or SyntBiP-MonoDS.

reluctant
MonoDShand−selected BiP
*willing, .99 not, .56

loath, .98 unwilling, .04

*eager, .98 reluctance, .03

somewhat reluctant, .98 reticent, .03

unable, .98 hesitant, .02

denied access, .98 reticent about, .01

disinclined, .98 reservations, .01

very unwilling, .97 reticence, .01

conducive, .97 hesitate, .01

linked, .97 are reluctant, .01

Table 2: Ordered reranked paraphrase candidates for the
phrase reluctant according to monolingual distributional
similarity (MonoDShand−selected) and bilingual pivoting
paraphrase (BiP) method. Two hand-selected phrases are
labeled with asterisks.

3.1 Example Paraphrase Scores
Table 1 shows the paraphrase candidates for the
phrase huge amount of along with the values for each
of our three scoring methods. Although MonoDS
does not explicitly impose syntactic restrictions, the
syntactic structure of the paraphrase in large num-
bers contributes to the large difference in the left
and right context of the paraphrase and of the orig-
inal phrase. Hence, the paraphrase was assigned a
low score of 0.098 as compared to other paraphrase
candidates with the correct syntactic type. Note that
the SyntBiP produced significantly fewer paraphrase
candidates, since its paraphrase candidates must be
the same syntactic type as the original phrase. Iden-
tity paraphrases are excluded for the rest of the dis-
cussion in this paper.

3.2 Susceptibility to Antonyms
Monolingual distributional similarity is widely
known to conflate words with opposite meaning and
has motivated a large body of prior work on antonym
detection (Lin and Zhao, 2003; Lin and Pantel,
2001; Mohammad et al., 2008a; Mohammad et al.,
2008b; Marneffe et al., 2008; Voorhees, 2008). In
contrast, the antonyms of a phrase are rarely pro-
duced during pivoting of the BiP methods because
they tend not to share the same foreign translations.
Since the reranking framework proposed here be-
gins with paraphrases acquired by the BiP methodol-
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ogy, MonoDS can considerably enhance the quality
of ranking while sidestepping the antonym problem
that arises from using MonoDS alone.

To support this intuition, an example of a para-
phrase list with inserted hand-selected phrases
ranked by each reranking methods is shown in Ta-
ble 21. Hand-selected antonyms of reluctant are in-
serted into the paraphrase candidates extracted by
BiP before they are reranked by MonoDS. This is
analogous to the case without pre-filtering of para-
phrases by BiP and all phrases are treated equally
by MonoDS alone. BiP cannot rank these hand-
selected paraphrases since, by construction, they do
not share any foreign translation and hence their
paraphrase scores are not defined. As expected from
the drawbacks of monolingual-based statistics, will-
ing and eager are assigned top scores by MonoDS,
although good paraphrases such as somewhat reluc-
tant and disinclined are also ranked highly. This
illustrates how BiP complements the monolingual
reranking technique by providing orthogonal infor-
mation to address the issue of antonyms for Mon-
oDS.

3.3 Implementation Details
For BiP and SyntBiP, the French-English parallel
text from the Europarl corpus (Koehn, 2005) was
used to train the paraphrase model. The parallel
corpus was extracted from proceedings of the Eu-
ropean parliament with a total of about 1.3 million
sentences and close to 97 million words in the En-
glish text. Word alignments were generated with
the Berkeley aligner. For SyntBiP, the English side
of the parallel corpus was parsed using the Stan-
ford parser (Klein and Manning, 2003). The transla-
tion models were trained with Thrax, a grammar ex-
tractor for machine translation (Weese et al., 2011).
Thrax extracts phrase pairs that are labeled with
complex syntactic labels following Zollmann and
Venugopal (2006).

For MonoDS, the web-scale n-gram collection of
Lin et al. (2010) was used to compute the mono-
lingual distributional similarity features, using 512
bits per signature in the resultant LSH projection.
Following Van Durme and Lall (2010), we implic-

1Generating a paraphrase list by MonoDS alone requires
building features for all phrases in the corpus, which is com-
putationally impractical and hence, was not considered here.

itly represented the projection matrix with a pool of
size 10,000. In order to expand the coverage of the
candidates scored by the monolingual method, the
LSH signatures are obtained only for the phrases in
the union set of the phrase-level outputs from the
original and from the syntactically constrained para-
phrase models. Since the n-gram corpus consists
of at most 5-gram and each distributional similar-
ity feature requires a single neighboring token, the
LSH signatures are generated only for phrases that
are 4-gram or less. Phrases that didn’t appear in the
n-grams with at least one feature were discarded.

4 Human Evaluation
The different paraphrase scoring methods were com-
pared through a manual evaluation conducted on
Amazon Mechanical Turk. A set of 100 test phrases
were selected and for each test phrase, five distinct
sentences were randomly sampled to capture the fact
that paraphrases are valid in some contexts but not
others (Szpektor et al., 2007). Judges evaluated the
paraphrase quality through a substitution test: For
each sampled sentence, the test phrase is substituted
with automatically-generated paraphrases. The sen-
tences and the phrases are drawn from the English
side of the Europarl corpus. Judges indicated the
amount of the original meaning preserved by the
paraphrases and the grammaticality of the resulting
sentences. They assigned two values to each sen-
tence using the 5-point scales defined in Callison-
Burch (2008).

The 100 test phrases consisted of 25 unigrams,
25 bigrams, 25 trigrams and 25 4-grams. These 25
phrases were randomly sampled from the paraphrase
table generated by the bilingual pivoting method,
with the following restrictions:
• The phrase must have occurred at least 5 times

in the parallel corpus and must have appeared
in the web-scale n-grams.

• The size of the union of paraphrase candidates
from BiP and SyntBiP must be 10 or more.

4.1 Calculating Correlation
In addition to their average scores on the 5-point
scales, the different paraphrase ranking methods
were quantitatively evaluated by calculating their
correlation with human judgments. Their correla-
tion is calculated using Kendall’s tau coefficient, a
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Reranking Method Meaning Grammar
BiP 0.14 0.04

BiP-MonoDS 0.14 0.24‡
SyntBiP 0.19 0.08

SyntBip-MonoDS 0.15 0.22‡

SyntBiPmatched 0.20 0.15

SyntBiPmatched-MonoDS 0.17 0.16

SyntBiP* 0.21 0.09

SyntBiP-MonoDS* 0.16 0.22†

Table 3: Kendall’s Tau rank correlation coefficients be-
tween human judgment of meaning and grammaticality
for the different paraphrase scoring methods. Bottom
panel: SyntBiPmatched is the same as SyntBiP except
paraphrases must match with the original phrase in syn-
tactic type. SyntBiP* and MonoDS* are the same as
before except they share the same phrase support with
SyntBiPmatched. (‡: MonoDS outperforms the corre-
sponding BiP reranking at p-value≤0.01, and † at≤0.05)

common measure of correlation between two ranked
lists. Kendall’s tau coefficient ranges between -1 and
1, where 1 indicates a perfect agreement between a
pair of ranked lists.

Since tied rankings occur in the human judgments
and reranking methods, Kendall’s tau b, which ig-
nores pairs with ties, is used in our analysis. An
overall Kendall’s tau coefficient presented in the re-
sults section is calculated by averaging all Kendall’s
tau coefficients of a particular reranking method
over all phrase-sentence combinations.

5 Experimental Results
5.1 Correlation

The Kendall’s tau coefficients for the three para-
phrase ranking methods are reported Table 3. A
total of 100 phrases and 5 sentence per phrase are
selected for the experiment, resulting in a max-
imum support size of 500 for Kendall’s tau co-
efficient calculation. The overall sizes of sup-
port are 500, 335, and 304 for BiP, SyntBiP and
SyntBiPmatched, respectively. The positive values of
Kendall’s tau confirm both monolingual and bilin-
gual approaches for paraphrase reranking are posi-
tively correlated with human judgments overall. For
grammaticality, monolingual distributional simi-
larity reranking correlates stronger with human
judgments than bilingual pivoting methods. For

example, in the top panel, given a paraphrase ta-
ble generated through bilingual pivoting, Kendall’s
tau for monolingual distributional similarity (BiP-
MonoDS) achieves 0.24 while that of the bilin-
gual pivoting ranking (BiP) is only 0.04. Simi-
larly, reranking of the paraphrases extracted with
syntactically-constrained bilingual pivoting shows a
stronger correlation between SyntBiP-MonoDS and
grammar judgments (0.22) than the SyntBiP (0.08).
This result further supports the intuition of distri-
butional similarity being suitable for paraphrase
reranking in terms of grammaticality.

In terms of meaning preservation, the Kendall’s
tau coefficient for MonoDS is often lower than the
bilingual approaches, suggesting that paraphrase
probability from the bilingual approach correlates
better with phrasal meaning than the monolingual
metric. For instance, SyntBiP reaches a Kendall’s
tau of 0.19, which is a slightly stronger correlation
than that of SyntBiP-MonoDS. Although paraphrase
candidates were generated by bilingual pivoting,
distributional similarity depends only on contextual
similarity and does not guarantee paraphrases that
match with the original meaning; whereas Bilingual
pivoting methods are derived based on shared for-
eign translations which associate meaning.

In the bottom panel of Table 3, only paraphrases
of the same syntactic type as the source phrase are
included in the ranked list for Kendall’s tau calcula-
tion. The phrases associated with these paraphrases
are used for calculating Kendall’s tau for the orig-
inal reranking methods (labeled as SyntBiP* and
SyntBiP-MonoDS*). Comparing only the bilingual
methods across panels, syntactic matching increases
the correlation of bilingual pivoting metrics with
human judgments in grammaticality (e.g., 0.15 for
SyntBiPmatched and 0.08 for SyntBiP) but with only
minimal effects on meaning. The maximum values
in the bottom panel for both categories are roughly
the same as that in the corresponding category in
the upper panel ({0.21,0.19} in meaning and {0.22,
0.24} in grammar for lower and upper panels, re-
spectively.) This suggests that syntactic type match-
ing offers similar improvement in grammaticality
as MonoDS, although syntactically-constrained ap-
proaches have more confined paraphrase coverage.

We performed a one-tailed sign test on the
Kendall’s Tau values across phrases to examine
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Figure 2: Averaged scores in the top K paraphrase can-
didates as a function of K for different reranking metrics.
All methods performs similarly in meaning preservation,
but SyntBiP-MonoDS outperforms other scoring meth-
ods in grammaticality, as shown in the bottom graph.

the statistical significance of the performance gain
due to MonoDS. For grammaticality, except for the
case of syntactic type matching (SyntBiPmatched), p-
values are less than 0.05, confirming the hypothesis
that MonoDS outperforms BiP. The p-value for com-
paring MonoDS and SyntBiPmatched exceeds 0.05,
agreeing with our conclusion from Table 3 that the
two methods perform similarly.

5.2 Thresholding Using MonoDS Scores
One possible use for the paraphrase scores would be
as a cutoff threshold where any paraphrases exceed-
ing that value would be selected. Ideally, this would
retain only high precision paraphrases.

To verify whether scores from each method corre-
spond to human judgments for paraphrases extracted
by BiP, human evaluation scores are averaged for
meaning and grammar within each range of para-
phrase score for BiP and approximate cosine dis-
tance for MonoDS, as shown in Table 4. The BiP
paraphrase score bin sizes are linear in log scale.

BiP Paraphrase Score MonoDS LSH Score

Region M G Region M G

1.00 ≥ x > 0.37 3.6 3.7 1 ≥ x > 0.95 4.0 4.4

0.37 ≥ x > 0.14 3.6 3.7 0.95 ≥ x > 0.9 3.2 4.0

0.14 ≥ x > 0.05 3.4 3.6 0.9 ≥ x > 0.85 3.3 4.0

0.05 ≥ x > 1.8e-2 3.4 3.6 0.85 ≥ x > 0.8 3.3 4.0

1.8e-2 ≥ x > 6.7e-3 3.4 3.6 0.8 ≥ x > 0.7 3.2 3.9

6.7e-3 ≥ x > 2.5e-3 3.2 3.7 0.7 ≥ x > 0.6 3.3 3.8

2.5e-3 ≥ x > 9.1e-4 3.0 3.6 0.6 ≥ x > 0.5 3.1 3.7

9.1e-4 ≥ x > 3.4e-4 3.0 3.8 0.5 ≥ x > 0.4 3.1 3.6

3.4e-4 ≥ x > 1.2e-4 2.6 3.6 0.4 ≥ x > 0.3 3.1 3.5

1.2e-4 ≥ x > 4.5e-5 2.7 3.6 0.3 ≥ x > 0.2 2.9 3.4

x ≤ 4.5e-5 2.5 3.7 0.2 ≥ x > 0.1 3.0 3.3

0.1 ≥ x > 0 2.9 3.2

Table 4: Averaged human judgment scores as a func-
tion of binned paraphrase scores and binned LSH scores.
MonoDS serves as much better thresholding score for ex-
tracting high precision paraphrases.

MonoDS LSH BiP Paraphrase Threshold

Threshold ≥ 0.05 ≥ 0.01 ≥ 6.7e-3

≥ 0.9 4.2 / 4.4 4.1 / 4.4 4.0 / 4.4

≥ 0.8 4.0 / 4.3 3.9 / 4.3 3.9 / 4.2

≥ 0.7 3.9 / 4.1 3.8 / 4.2 3.8 / 4.1

Table 5: Thresholding using both the MonoDS and BiP
scores further improves the average human judgment of
Meaning / Grammar.

Observe that for the BiP paraphrase scores on the
left panel, no trend on the averaged grammar scores
across all score bins is present. While a mild cor-
relation exists between the averaged meaning scores
and the paraphrase scores, the top score region (1> x
≥ 0) corresponds to merely an averaged value of 3.6
on a 5-point scale. Therefore, thresholding on BiP
scores among a set of candidates would not guaran-
tee accurate paraphrases in grammar or meaning.

On the right panel, MonoDS LSH scores on para-
phrase candidates produced by BiP are uniformly
higher in grammar than meaning across all score
bins, similar to the correlation results in Table 3.
The averaged grammar scores decreases monoton-
ically and proportionally to the change in LSH val-
ues. With regard to meaning scores, the averaged
values roughly correspond to the decrease of LSH
values, implying distributional similarity correlates
weakly with human judgment in the meaning preser-
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vation of paraphrase. Note that the drop in averaged
scores is the largest from the top bin (1≥ x > 0.95)
to the second bin (0.95 ≥ x > 0.9) is the largest
within both meaning and grammar. This suggests
that thresholding on top tiered MonoDS scores
can be a good filter for extracting high precision
paraphrases. BiP scores, by comparison, are not as
useful for thresholding grammaticality.

Additional performance gain attained by combin-
ing the two thresholding are illustrated in Table 5,
where averaged meaning and grammar scores are
listed for each combination of thresholding. At a
threshold of 0.9 for MonoDS LSH score and 0.05
for BiP paraphrase score, the averaged meaning ex-
ceeds the highest value reported in Table 4, whereas
the grammar scores reaches the value in the top bin
in Table 4. General trends of improvement from uti-
lizing the two reranking methods are observed by
comparing Tables 4 and 5.

5.3 Top K Analysis

Figure 2 shows the mean human assigned score
within the top K candidates averaged across all
phrases. Compared across the two categories,
meaning scores have lower range of score and
a more uniform trend of decreasing values as K
grows. In grammaticality, BiP clearly underper-
forms whereas the SyntBiP-MonoDS maintains the
best score among all methods over all values of K.
In addition, a slow drop-off up until K = 4 in the
curve for SyntBiP-MonoDS implies that the quality
of paraphrases remains relatively high going from
top 1 to top 4 candidates.

In applications such as question answering or
search, the order of answers presented is important
because the lower an answer is ranked, the less likely
it would be looked at by a user. Based on this intu-
ition, the paraphrase ranking methods are evaluated
using the maximum human judgment score among
the top K candidates obtained by each method. As
shown in Table 6, when only the top candidate
is considered, the averaged score corresponding to
the monolingual reranking methods are roughly the
same as that to the bilingual methods in meaning, but
as K grows, the bilingual methods outperforms the
monolingual methods. In terms of grammaticality,
scores associated with monolingual reranking meth-
ods are consistently higher than the bilingual meth-

Reranking Method

K BiP BiP-MonoDS SyntBiP SyntBiP-MonoDS

M

1 3.62 3.67 3.58 3.58

3 4.13 4.07 4.13 4.01

5 4.26 4.19 4.20 4.09

10 4.39 4.30 4.25 4.23

G

1 3.83 4.11 4.04 4.23

3 4.22 4.45 4.47 4.54

5 4.38 4.54 4.55 4.62

10 4.52 4.62 4.63 4.67

Table 6: Average of the maximum human evaluation
score from top K candidates for each reranking method.
Support sizes for BiP- and SyntBiP-based metrics are 500
and 335, respectively. (M = Meaning, G = Grammar)

ods but the difference tapers off as K increases. This
suggests that when only limited top paraphrase can-
didates can be evaluated, MonoDS is likely to pro-
vide better quality of results.

6 Detailed Examples

6.1 MonoDS Filters Bad BiP Paraphrases

The examples in the top panel of Table 7 illustrates a
few disadvantages of the bilingual paraphrase scores
and how monolingual reranking complements the
bilingual methods. Translation models based on
bilingual corpora are known to suffer from misalign-
ment of the parallel text (Bannard and Callison-
Burch, 2005), producing incorrect translations that
propagate through in the paraphrase model. This is-
sue is exemplified in the phrase pairs {considerable
changes, caused quite}, {always declared, always
been}, and {significantly affected, known} listed Ta-
ble 7. The paraphrases are clearly unrelated to the
corresponding phrases as evident from the low rank-
ings from human judges. Nonetheless, they were in-
cluded as candidates likely due to misalignment and
were ranked relatively high by BiP metric. For ex-
ample, considerable changes was aligned to modifie
considérablement correctly. However, due to a com-
bination of loose translations and difficulty in align-
ing multiple words that are spread out in a sentence,
the French phrase was inaccurately matched with
caused quite by the aligner, inducing a bad para-
phrase. Note that in these cases LSH produces the
results that agrees with the human rankings.
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Ranking
Phrase Paraphrase Sizepool Meaning Grammar BiP BiP-MonoDS

significantly affected known 20 19 18.5 1 17

considerable changes caused quite 23 23 23 2.5 23

always declared always been 20 20 20 2 13

hauled delivered 23 7 5.5 21.5 5.0

fiscal burden† taxes 18 13.5 18 6 16

fiscal burden† taxes 18 2 8 6 16

legalise legalize 23 1 1 10 1

to deal properly with address 35 4.5 5.5 4 29.5

you have just stated you have just suggested 31 13.5 8.5 4 30

Table 7: Examples of phrase pair rankings by different reranking methods and human judgments in terms of meaning
and grammar. Higher rank (smaller numbers) corresponds to more favorable paraphrases by the associated metric.
(†: Phrases are listed twice to show the ranking variation when substitutions are evaluated in different sentences.)

6.2 Context Matters
Occasionally, paraphrases are context-dependent,
meaning the relevance of the paraphrase depends on
the context in a sentence. Bilingual methods can
capture limited context through syntactic constraints
if the POS tags of the paraphrases and the sentence
are available, while the distributional similarity met-
ric, in its current implementation, is purely based on
the pattern of co-occurrence with neighboring con-
text n-grams. As a result, LSH scores should be
slightly better at gauging the paraphrases defined by
context, as suggested by some examples in Table 7.
The phrase pair {hauled, delivered} differ slightly
in how they describe the manner that an object is
moved. However, in the context of the following
sentence, they roughly correspond to the same idea:

countries which do not comply with community
legislation should be hauled before the court of
justice and i think mrs palacio will do so .
As a result, out of 23 candidates, human judges

ranked delivered 7 and 5.5 for meaning and gram-
mar, respectively. The monolingual-based metric
also assigns a higher rank to the paraphrase while
BiP puts it near the lowest rank.

Another example of context-dependency is the
phrase pair {fiscal burden, taxes}, which could have
some foreign translations in common. The original
phrase appears in the following sentence:

... the member states can reduce the fiscal burden
consisting of taxes and social contributions .
The paraphrase candidate taxes is no longer ap-

propriate with the consideration of the context sur-

rounding the original phrase. As such, taxes re-
ceived rankings of 13.5, 18 and 16 out of 18
for meaning, grammar, and MonoDS, respectively,
whereas BiP assigns a 6 to the paraphrase. The same
phrase pair but a different sentence, the context in-
duces opposite effects on the paraphrase judgments,
where the paraphrase received 2 and 8 in the two
categories as shown in Table 7:

the economic data for our eu as regards employ-
ment and economic growth are not particularly
good , and , in addition , the fiscal burden in eu-
rope , which is to be borne by the citizen , has
reached an all-time high of 46 % .

Hence, distributional similarity offers additional
advantages over BiP only when the paraphrase ap-
pears in a context that also defines most of the non-
zero dimensions of the LSH signature vector.

The phrase pair {legalise, legalize} exemplifies
the effect of using different corpora to train 2 para-
phrase reranking models as shown in Table 7. Mean-
ing, grammar and MonoDS all received top rank out
of all paraphrases, whereas BiP ranks the paraphrase
10 out of 23. Since the BiP method was trained
with Europarl data, which is dominated by British
English, BiP fails to acknowledge the American
spelling of the same word. On the other hand, dis-
tributional similarity feature vectors were extracted
from the n-gram corpus with different variations of
English, which was informative for paraphrase rank-
ing. This property can be exploited for adaptation of
specific domain of paraphrases selection.
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6.3 Limitations of MonoDS Implementation

While the monolingual distributional similarity
shows promise as a paraphrase ranking method,
there are a number of additional drawbacks associ-
ated with the implementation.

The method is currently limited to phrases with
up to 4 contiguous words that are present in the
n-gram corpus for LSH feature vector extraction.
Since cosine similarity is a function of the angle
between 2 vectors irrespective of the vector mag-
nitudes, thresholding on low occurrences of higher
n-grams in the corpus construction causes larger n-
grams to suffer from feature sparsity and be sus-
ceptible to noise. A few examples from the exper-
iment demonstrate such scenario. For a phrase to
deal properly with, a paraphrase candidate address
receives rankings of 4.5, 5.5 and 4 out of 35 for
meaning, grammar and BiP, respectively, it is ranked
29.5 by BiP-MonoDS. The two phrases are expected
to have similar neighboring context in regular En-
glish usage, but it might be misrepresented by the
LSH feature vector due to the lack of occurrences of
the 4-gram in the corpus.

Another example of how sparsity affects LSH fea-
ture vectors is the phrase you have just stated. An
acceptable paraphrase you have just suggested was
ranked 13.5, 8.5 and 6.5 out of a total of 31 can-
didates by meaning, grammar and BiP, respectively,
but MonoDS only ranks it at 30. The cosine sim-
ilarity between the phrases are 0.05, which is very
low. However, the only tokens that differentiate the
4-gram phrases, i.e. {stated,suggested}, have a sim-
ilarity score of 0.91. This suggests that even though
the additional words in the phrase don’t alter the
meaning significantly, the feature vectors are mis-
represented due to the sparsity of the 4-gram. This
highlights a weakness of the current implementa-
tion of distributional similarity, namely that context
within a phrase is not considered for larger n-grams.

7 Conclusions and Future Work

We have presented a novel paraphrase ranking met-
ric that assigns a score to paraphrase candidates ac-
cording to their monolingual distributional similar-
ity to the original phrase. While bilingual pivoting-
based paraphrase models provide wide coverage
of paraphrase candidates and syntactic constraints

on the model confines the structural match, addi-
tional contextual similarity information provided by
monolingual semantic statistics increases the accu-
racy of paraphrase ranking within the target lan-
guage. Through a manual evaluation, it was shown
that monolingual distributional scores strongly cor-
relate with human assessment of paraphrase quality
in terms of grammaticality, yet have minimal effects
on meaning preservation of paraphrases.

While we speculated that MonoDS would im-
prove both meaning and grammar scoring for para-
phrases, we found in the results that only gram-
maticality was improved from the monolingual ap-
proach. This is likely due to the choice of how con-
text is represented, which in this case is only single
neighboring words. A consideration for future work
to enhance paraphrasal meaning preservation would
be to explore other contextual representations, such
as syntactic dependency parsing (Lin, 1997), mu-
tual information between co-occurences of phrases
Church and Hanks (1991), or increasing the number
of neighboring words used in n-gram based repre-
sentations.

In future work we will make use of other com-
plementary bilingual and monolingual knowledge
sources by combining other features such as n-gram
length, language model scores, etc. One approach
would be to perform minimum error rate training
similar to Zhao et al. (2008) in which linear weights
of a feature function for a set of paraphrases candi-
date are trained iteratively to minimize the phrasal-
substitution-based error rate. Instead of phrasal sub-
stitution in Zhao’s method, quantitative measure of
correlation with human judgment can be used as
the objective function to be optimized during train-
ing. Other techniques such as SVM-rank (Joachims,
2002) may also be investigated for aggregating re-
sults from multiple ranked lists.
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Abstract

Distributional approaches are based on a sim-
ple hypothesis: the meaning of a word can be
inferred from its usage. The application of that
idea to the vector space model makes possi-
ble the construction of a WordSpace in which
words are represented by mathematical points
in a geometric space. Similar words are rep-
resented close in this space and the definition
of “word usage” depends on the definition of
the context used to build the space, which can
be the whole document, the sentence in which
the word occurs, a fixed window of words,
or a specific syntactic context. However, in
its original formulation WordSpace can take
into account only one definition of context at
a time. We propose an approach based on
vector permutation and Random Indexing to
encode several syntactic contexts in a single
WordSpace. Moreover, we propose some op-
erations in this space and report the results
of an evaluation performed using the GEMS
2011 Shared Evaluation data.

1 Background and motivation

Distributional approaches usually rely on the
WordSpace model (Schütze, 1993). An overview
can be found in (Sahlgren, 2006). This model is
based on a vector space in which points are used to
represent semantic concepts, such as words.

The core idea behind WordSpace is that words
and concepts are represented by points in a math-
ematical space, and this representation is learned
from text in such a way that concepts with sim-
ilar or related meanings are near to one an-

other in that space (geometric metaphor of mean-
ing). The semantic similarity between concepts can
be represented as proximity in an n-dimensional
space. Therefore, the main feature of the geomet-
ric metaphor of meaning is not that meanings can
be represented as locations in a semantic space, but
rather that similarity between word meanings can be
expressed in spatial terms, as proximity in a high-
dimensional space.

One of the great virtues of WordSpaces is that
they make very few language-specific assumptions,
since just tokenized text is needed to build semantic
spaces. Even more important is their independency
of the quality (and the quantity) of available train-
ing material, since they can be built by exploiting an
entirely unsupervised distributional analysis of free
text. Indeed, the basis of the WordSpace model is
the distributional hypothesis (Harris, 1968), accord-
ing to which the meaning of a word is determined by
the set of textual contexts in which it appears. As a
consequence, in distributional models words can be
represented as vectors built over the observable con-
texts. This means that words are semantically related
as much as they are represented by similar vectors.
For example, if “basketball” and “tennis” occur fre-
quently in the same context, say after “play”, they
are semantically related or similar according to the
distributional hypothesis.

Since co-occurrence is defined with respect to a
context, co-occurring words can be stored into ma-
trices whose rows represent the terms and columns
represent contexts. More specifically, each row cor-
responds to a vector representation of a word. The
strength of the semantic association between words
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can be computed by using cosine similarity.
A weak point of distributional approaches is that

they are able to encode only one definition of con-
text at a time. The type of semantics represented in
WordSpace depends on the context. If we choose
documents as context we obtain a semantics differ-
ent from the one we would obtain by selecting sen-
tences as context. Several approaches have inves-
tigated the above mentioned problem: (Baroni and
Lenci, 2010) use a representation based on third-
order tensors and provide a general framework for
distributional semantics in which it is possible to
represent several aspects of meaning using a sin-
gle data structure. (Sahlgren et al., 2008) adopt
vector permutations as a means to encode order in
WordSpace, as described in Section 2. BEAGLE
(Jones and Mewhort, 2007) is a very well-known
method to encode word order and context informa-
tion in WordSpace. The drawback of the BEAGLE
model is that it relies on a complex model to build
vectors which is computational expensive. This
problem is solved by (De Vine and Bruza, 2010)
in which the authors propose an approach similar
to BEAGLE, but using a method based on Circu-
lar Holographic Reduced Representations to com-
pute vectors.

All these methods tackle the problem of repre-
senting word order in WordSpace, but they do not
take into account syntactic context. A valuable at-
tempt in this direction is described in (Padó and La-
pata, 2007). In this work, the authors propose a
method to build WordSpace using information about
syntactic dependencies. In particular, they consider
syntactic dependencies as context and assign dif-
ferent weights to each kind of dependency. More-
over, they take into account the distance between
two words into the graph of dependencies. The re-
sults obtained by the authors support our hypothesis
that syntactic information can be useful to produce
effective WordSpace. Nonetheless, their methods
are not able to directly encode syntactic dependen-
cies into the space.

This work aims to provide a simple approach to
encode syntactic relations dependencies directly into
the WordSpace, dealing with both the scalability
problem and the possibility to encode several con-
text information. To achieve that goal, we devel-
oped a strategy based on Random Indexing and vec-

tor permutations. Moreover, this strategy opens new
possibilities in the area of semantic composition as
a result of the inherent capability of encoding rela-
tions between words.

The paper is structured as follows. Section 2
describes Random Indexing, the strategy for build-
ing our WordSpace, while details about the method
used to encode syntactic dependencies are reported
in Section 3. Section 4 describes the formal defi-
nition of some operations over the WordSpace and
shows a first attempt to define a model for semantic
composition. Finally, the results of the evaluation
performed using the GEMS 2011 Shared Evaluation
data1 is presented in Section 5, while conclusions
are reported in Section 6.

2 Random Indexing

We exploit Random Indexing (RI), introduced by
Kanerva (Kanerva, 1988), for creating a WordSpace.
This technique allows us to build a WordSpace with
no need for (either term-document or term-term)
matrix factorization, because vectors are inferred by
using an incremental strategy. Moreover, it allows
to solve efficiently the problem of reducing dimen-
sions, which is one of the key features used to un-
cover the “latent semantic dimensions” of a word
distribution.

RI is based on the concept of Random Projection
according to which high dimensional vectors chosen
randomly are “nearly orthogonal”.

Formally, given an n ×m matrix A and an m ×
k matrix R made up of k m-dimensional random
vectors, we define a new n× k matrix B as follows:

Bn,k = An,m·Rm,k k << m (1)

The new matrix B has the property to preserve
the distance between points. This property is known
as Johnson-Lindenstrauss lemma: if the distance be-
tween two any points of A is d, then the distance dr

between the corresponding points in B will satisfy
the property that dr = c · d. A proof of that property
is reported in (Dasgupta and Gupta, 1999).

Specifically, RI creates a WordSpace in two steps
(in this case we consider the document as context):

1Available on line:
http://sites.google.com/site/geometricalmodels/shared-
evaluation
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1. a context vector is assigned to each document.
This vector is sparse, high-dimensional and
ternary, which means that its elements can take
values in {-1, 0, 1}. A context vector contains a
small number of randomly distributed non-zero
elements, and the structure of this vector fol-
lows the hypothesis behind the concept of Ran-
dom Projection;

2. context vectors are accumulated by analyzing
terms and documents in which terms occur. In
particular, the semantic vector for a term is
computed as the sum of the context vectors for
the documents which contain that term. Con-
text vectors are multiplied by term occurrences.

Formally, given a collection of documents D
whose vocabulary of terms is V (we denote with
dim(D) and dim(V ) the dimension of D and V ,
respectively) the above steps can be formalized as
follows:

1. ∀di ∈ D, i = 0, .., dim(D) we built the cor-
respondent randomly generated context vector
as:

−→rj = (ri1, ..., rin) (2)

where n � dim(D), ri∗ ∈ {−1, 0, 1} and −→rj
contains only a small number of elements dif-
ferent from zero;

2. the WordSpace is made up of all term vectors−→
tj where:

−→
tj = tfj

∑
di∈D
tj∈di

−→ri (3)

and tfj is the number of occurrences of tj in
di;

By considering a fixed window W of terms as
context, the WordSpace is built as follows:

1. a context vector is assigned to each term;

2. context vectors are accumulated by analyzing
terms in which terms co-occur in a window W .
In particular, the semantic vector for each term
is computed as the sum of the context vectors
for terms which co-occur in W .

It is important to point out that the classical RI
approach can handle only one context at a time, such
as the whole document or the window W .

A method to add information about context in RI
is proposed in (Sahlgren et al., 2008). The authors
describe a strategy to encode word order in RI by the
permutation of coordinates in random vector. When
the coordinates are shuffled using a random permu-
tation, the resulting vector is nearly orthogonal to the
original one. That operation corresponds to the gen-
eration of a new random vector. Moreover, by apply-
ing a predetermined mechanism to obtain random
permutations, such as elements rotation, it is always
possible to reconstruct the original vector using the
reverse permutations. By exploiting this strategy it is
possible to obtain different random vectors for each
context2 in which the term occurs. Let us consider
the following example “The cat eats the mouse”. To
encode the word order for the word “cat” using a
context window W = 3, we obtain:

< cat >= (Π−1the) + (Π+1eat)+

+(Π+2the) + (Π+3mouse)
(4)

where Πnx indicates a rotation by n places of the
elements in the vector x. Indeed, the rotation is per-
formed by n right-shifting steps.

3 Encoding syntactic dependencies

Our idea is to encode syntactic dependencies, in-
stead of words order, in the WordSpace using vector
permutations.

A syntactic dependency between two words is de-
fined as:

dep(head, dependent) (5)

where dep is the syntactic link which connects
the dependent word to the head word. Gener-
ally speaking, dependent is the modifier, object or
complement, while head plays a key role in de-
termining the behavior of the link. For example,
subj(eat, cat) means that “cat” is the subject of
“eat”. In that case the head word is “eat”, which
plays the role of verb.

The key idea is to assign a permutation function
to each kind of syntactic dependencies. Formally,

2In the case in point the context corresponds to the word
order
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let D be the set of all dependencies that we take into
account. The function f : D → Π returns a schema
of vector permutation for each dep ∈ D. Then, the
method adopted to construct a semantic space that
takes into account both syntactic dependencies and
Random Indexing can be defined as follows:

1. a context vector is assigned to each term, as de-
scribed in Section 2 (Random Indexing);

2. context vectors are accumulated by analyzing
terms which are linked by a dependency. In
particular the semantic vector for each term ti
is computed as the sum of the permuted con-
text vectors for the terms tj which are depen-
dents of ti and the inverse-permuted vectors
for the terms tj which are heads of ti. The
permutation is computed according to f . If
f(d) = Πn the inverse-permutation is defined
as f−1(d) = Π−n: the elements rotation is per-
formed by n left-shifting steps.

Adding permuted vectors to the head word and
inverse-permuted vectors to the corresponding de-
pendent word allows to encode the information
about both heads and dependents into the space.
This approach is similar to the one investigated by
(Cohen et al., 2010) to encode relations between
medical terms.

To clarify, we provide an example. Given the fol-
lowing definition of f :

f(subj) = Π+3 f(obj) = Π+7 (6)

and the sentence “The cat eats the mouse”, we obtain
the following dependencies:

det(the, cat) subj(eat, cat)

obj(eat,mouse) det(the,mouse)
(7)

The semantic vector for each word is computed as:

• eat:

< eat >= (Π+3cat) + (Π+7mouse) (8)

• cat:
< cat >= (Π−3eat) (9)

• mouse:

< mouse >= (Π−7eat) (10)

In the above examples, the function f does not
consider the dependency det.

4 Query and vector operations

In this section, we propose two types of queries
that allow us to compute semantic similarity be-
tween two words exploiting syntactic dependencies
encoded in our space. Before defining query and
vector operations, we introduce a small set of nota-
tions:

• R denotes the original space of random vectors
generated during the WordSpace construction;

• S is the space of terms built using our strategy;

• rti ∈ R denotes the random vector of the term
ti;

• sti ∈ S denotes the semantic vector of the term
ti;

• sim(v1, v2) denotes the similarity between two
vectors; in our approach we adopt cosine simi-
larity;

• Πdep is the permutation returned from f(dep).
Π−dep is the inverse-permutation.

The first family of queries is dep(ti, ?). The idea
is to find all the dependents which are in relation
with the head ti, given the dependency dep. The
query can be computed as follows:

1. retrieve the vector sti from S;

2. for each rtj ∈ R compute the similarity be-
tween sti and < Πdeprtj >:

sim(sti , < Πdeprtj >);

3. rank in descending order all tj according to the
similarity computed in step 2.

The idea behind this operation is to compute how
each possible dependent tj contributes to the vector
ti, which is the sum of all the dependents related to
ti. It is important to note that we must first apply the
permutation to each rtj in order to take into account
the dependency relation (context). This operation
has a semantics different from performing the query
by applying first the inverse permutation to ti in R
and then computing the similarity with respect to all
the vectors tj in S. Indeed, the last approach would
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compute how the head ti contributes to the vector tj ,
which differs from the goal of our query.

Using the same approach it is possible to compute
the query dep(?, tj), in which we want to search all
the heads related to the dependent tj fixed the de-
pendency dep. In detail:

1. retrieve the vector stj from S;

2. for each rti ∈ R compute the similarity be-
tween stj and the inverse-permutation of rti ,
< Π−deprti >: sim(stj , < Π−deprti >);

3. rank in descending order all ti according to the
similarity computed in step 2.

In this second query, we compute how the inverse-
permutation of each ti (head) affects the vector stj ∈
S. In the following sub-section we provide some
initial idea about semantic composition.

4.1 Compositional semantics
Distributional approaches represent words in isola-
tion and they are typically used to compute similar-
ities between words. They are not able to represent
complex structures such as phrases or sentences. In
some applications, such as Question Answering and
Text Entailment, representing text by single words is
not enough. These applications would benefit from
the composition of words in more complex struc-
tures. The strength of our approach lies on the ca-
pability of codify syntactic relations between words
overcoming the “word isolation” issue.

A lot of recent work argue that tensor product (⊗)
could be useful to combine word vectors. In (Wid-
dows, 2008) some preliminary investigations about
product and tensor product are provided, while an
interesting work by Clark and Pulman (Clark and
Pulman, 2007) proposes an approach to combine
symbolic and distributional models. The main idea
is to use tensor product to combine these two as-
pects, but the authors do not describe a method to
represent symbolic features, such as syntactic de-
pendencies. Conversely, our approach is able to en-
code syntactic information directly into the distri-
butional model. The authors in (Clark and Pulman,
2007) propose a strategy to represent a sentence like
“man reads magazine” by tensor product:

man⊗ subj ⊗ read⊗ obj ⊗magazine (11)

They also propose a solid model for composition-
ality, but they do not provide a strategy to repre-
sent symbolic relations, such as subj and obj. They
wrote: “How to obtain vectors for the dependency
relations - subj, obj, etc. - is an open question”. We
believe that our approach can tackle this problem by
encoding the dependency directly in the space, be-
cause each semantic vector in our space contains in-
formation about syntactic roles.

The representation based on tensor product is
useful to compute sentence similarity. Given the
previous sentence and the following one “woman
browses newspaper”, we want to compute the sim-
ilarity between the two sentences. The sentence
“woman browses newspaper”, using the composi-
tional model, is represented by:

woman⊗subj⊗browse⊗obj⊗newspaper (12)

Computing the similarity of two representations
by inner product is a complex task, but exploiting
the following property of the tensor product:

(w1⊗w2) ·(w3⊗w4) = (w1 ·w3)×(w2 ·w4) (13)

the similarity between two sentences can be com-
puted by taking into account the pairs in each depen-
dency and multiplying the inner products as follows:

man · woman× read · browse×
×magazine · newspaper

(14)

According to the property above mentioned, we
can compute the similarity between sentences with-
out using the tensor product. However, some open
questions arise. This simple compositional strategy
allows to compare sentences which have similar de-
pendency trees. For example, the sentence “the dog
bit the man” cannot can be compared to “the man
was bitten by the dog”. This problem can be easily
solved by identifying active and passive forms of a
verb. When two sentences have different trees, Clark
and Pulman (Clark and Pulman, 2007) propose to
adopt the convolution kernel (Haussler, 1999). This
strategy identifies all the possible ways of decom-
posing the two trees, and sums up the similarities be-
tween all the pairwise decompositions. It is impor-
tant to point out that, in a more recent work, Clark
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et al. (Clark et al., 2008) propose a model based
on (Clark and Pulman, 2007) combined with a com-
positional theory for grammatical types, known as
Lambek’s pregroup semantics, which is able to take
into account grammar structures. It is important to
note that this strategy is not able to encode gram-
matical roles into the WordSpace. This peculiarity
makes our approach completely different. In the fol-
lowing section we provide some examples of com-
positionality.

5 Evaluation

The goal of the evaluation is twofold: proving the
capability of our approach by means of some exam-
ples and providing results of the evaluation exploit-
ing the “GEMS 2011 Shared Evaluation”, in particu-
lar the compositional semantics dataset. We propose
two semantic spaces built from two separate corpora
using our strategy. To achieve the first goal we pro-
vide several examples for each family of queries de-
scribed in Section 4. Concerning the second goal,
we evaluate our approach to compositional seman-
tics using the dataset proposed by Mitchell and Lap-
ata (Mitchell and Lapata, 2010), which is part of the
“GEMS 2011 Shared Evaluation”. The dataset is a
list of two pairs of adjective-noun combinations or
verb-object combinations or compound nouns. Hu-
mans rated pairs of combinations according to simi-
larity. The dataset contains 5,833 rates which range
from 1 to 7. Examples of pairs follow:

support offer help provide 7

old person right hand 1

where the similarity between offer-support and
provide-help (verb-object) is higher than the one be-
tween old-person and right-hand (adjective-noun).
As suggested by the authors, the goal of the eval-
uation is to compare the system performace against
humans scores by means of Spearman correlation.

5.1 System setup
The system is implemented in Java and relies on
some portions of code publicly available in the
Semantic Vectors package (Widdows and Ferraro,
2008). For the evaluation of the system, we build
two separate WordSpaces using the following cor-
pora: ukWaC (Baroni et al., 2009) and TASA.

ukWaC contains 2 billion words and it is constructed
from the Web by limiting the crawling to the .uk
domain and using medium-frequency words from
the BNC corpus as seeds. We use only a por-
tion of ukWaC corpus consisting of 7,025,587 sen-
tences (about 220,000 documents). The TASA cor-
pus (compiled by Touchstone Applied Science As-
sociates) was kindly made available to us by Prof.
Thomas Landauer from the University of Colorado.
The TASA corpus contains a collection of English
texts that is approximately equivalent to what the av-
erage college-level student has read in his/her life-
time. The TASA corpus consists of about 800,000
sentences.

To extract syntactic dependencies, we adopt
MINIPAR3 (Lin, 2003). MINIPAR is an efficient
English parser, which is suitable for parsing a large
amount of data. The total amount of extracted de-
pendencies is about 112,500,000 for ukWaC and
8,850,000 for TASA.

Our approach involves some parameters. We set
the random vector dimension to 4,000 and the num-
ber of non-zero elements in the random vector equal
to 10. We restrict the WordSpace to the 40,000 most
frequent words4. Another parameter is the set of de-
pendencies that we take into account. In this prelim-
inary investigation we consider the four dependen-
cies described in Table 1, that reports also the kind
of permutation5 applied to vectors.

5.2 Results

In this section we report some results of queries per-
formed in ukWaC and TASA corpus.

Table 2 and Table 3 report the results respectively
for the queries dep(ti, ?) and dep(?, tj). The effects
of encoding syntactic information is clearly visible,
as can be inferred by results in the tables. Moreover,
the results with the two corpora are different, as ex-
pected, but in many cases the first result of the query
is the same.

Our space can be also exploited to perform classi-
cal queries in which we want to find “similar” words.
Tables 4 and 5 report results for TASA and ukWaC

3MINIPAR is available at
http://webdocs.cs.ualberta.ca/∼lindek/minipar.htm

4Word frequency is computed taking into account the se-
lected dependencies.

5The number of rotations is randomly chosen.
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Dependency Description Permutation
obj object of verbs Π+7

subj subject of verbs Π+3

mod the relationship between a word and its adjunct modifier Π+11

comp complement Π+23

Table 1: The set of dependencies used in the evaluation.

corpus, respectively. The results obtained by similar
test are not the typical results expected by classical
WordSpace. In fact, in Table 5 the word most simi-
lar to “good” is “bad”, because they are used in the
same syntactic context, but have opposite meaning.
The similarity between words in our space strongly
depends on their syntactic role. For example, the
words similar to “food” are all the nouns which are
object/subject of the same verbs in syntactic relation
with “food”.

Finally, we provide the results of semantic com-
position. Table 6 reports the Spearman correlation
between the output of our system and the mean
similarity scores given by the humans. The table
shows results for each types of combination: verb-
object, adjective-noun and compound nouns. To per-
form the experiment on compound nouns, we re-
build the spaces encoding the “nn” relation provided
by MINIPAR which refers to compound nouns de-
pendency. Table 6 shows the best result obtained
by Mitchell and Lapata (Mitchell and Lapata, 2008)
using the same dataset. Our method is able to out-
perform MLbest and obtains very high results when
adjective-noun combination is involved.

Corpus Combination ρ

TASA

verb-object 0.260
adjective-noun 0.637
compound nouns 0.341
overall 0.275

ukWaC

verb-object 0.292
adjective-noun 0.445
compound nouns 0.227
overall 0.261

- MLbest 0.190

Table 6: GEMS 2011 Shared Evaluation results.

The experiments reported in this preliminary eval-
uation are only a small fraction of the experiments

that are required to make a proper evaluation of the
effectiveness of our semantic space and to compare
it with other approaches. This will be the main fo-
cus of our future research. The obtained results seem
to be encouraging and the strength of our approach,
capturing syntactic relations, allows to implement
several kind of queries using only one WordSpace.
We believe that the real advantage of our approach,
that is the possibility to represent several syntactic
relations, has much room for exploration.

6 Conclusions

In this work, we propose an approach to encode syn-
tactic dependencies in WordSpace using vector per-
mutations and Random Indexing. In that space, a set
of operations is defined, which relies on the possibil-
ity of exploiting syntactic dependencies to perform
some particular queries, such as the one for retriev-
ing all similar objects of a verb. We propose an early
attempt to use that space for semantic composition
of short sentences. The evaluation using the GEMS
2011 shared dataset provides encouraging results,
but we believe that there are open points which de-
serve more investigation. We planned a deeper eval-
uation of our WordSpace and a more formal study
about semantic composition.
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obj(provide, ?) mod(people, ?)

TASA ukWaC TASA ukWaC
information 0.344 information 0.351 young 0.288 young 0.736
food 0.208 service 0.260 black 0.118 with 0.360
support 0.143 you 0.176 old 0.089 other 0.223
energy 0.143 opportunity 0.141 conquered 0.086 handling 0.164
job 0.142 support 0.127 deaf 0.086 impressive 0.162

Table 2: Examples of query dep(ti, ?).

obj(?, food) mod(?, good)

TASA ukWaC TASA ukWaC
eat 0.604 eat 0.429 idea 0.350 practice 0.510
make 0.389 serve 0.256 place 0.320 idea 0.363
grow 0.311 provide 0.230 way 0.269 news 0.274
need 0.272 have 0.177 friend 0.246 for 0.269
store 0.161 buy 0.169 time 0.234 very 0.228

Table 3: Examples of query dep(?, tj).

food provide good
food 1.000 provide 1.000 good 0.999
foods 0.698 make 0.702 best 0.498
meat 0.654 restructure 0.693 excellent 0.471
meal 0.651 ready 0.680 wrong 0.453
bread 0.606 leave 0.673 main 0.430
wheato 0.604 mean 0.672 nice 0.428
thirty percent 0.604 work 0.672 safe 0.428
mezas 0.604 offer 0.671 new 0.428
orgy 0.604 relate 0.667 proper 0.400
chocolatebar 0.604 gather 0.667 surrounded 0.400

Table 4: Find similar words, TASA corpus.

food provide good
food 1.000 provide 0.999 good 1.000
meal 0.724 offer 0.855 bad 0.603
meat 0.656 supply 0.819 best 0.545
pie 0.578 deliver 0.801 anti-discriminatory 0.507
tea 0.576 give 0.787 nice 0.478
fresh food 0.576 contain 0.786 reflective 0.470
supper 0.556 require 0.784 brilliant 0.464
porridge 0.553 present 0.782 great 0.462
entertainment 0.533 gather 0.778 evidence-based 0.453
soup 0.532 work 0.777 unsafe 0.444

Table 5: Find similar words, ukWaC corpus.
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S. Padó and M. Lapata. 2007. Dependency-based con-
struction of semantic space models. Computational
Linguistics, 33(2):161–199.

M. Sahlgren, A. Holst, and P. Kanerva. 2008. Permu-
tations as a means to encode order in word space. In
Proceedings of the 30th Annual Meeting of the Cogni-
tive Science Society (CogSci’08).

M. Sahlgren. 2006. The Word-Space Model: Us-
ing distributional analysis to represent syntagmatic
and paradigmatic relations between words in high-
dimensional vector spaces. Ph.D. thesis, Stockholm:
Stockholm University, Faculty of Humanities, Depart-
ment of Linguistics.

H. Schütze. 1993. Word space. In Stephen José Hanson,
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Abstract

We present a distributional vector space model
that incorporates Latent Dirichlet Allocation
in order to capture the semantic relation hold-
ing between adjectives and nouns along inter-
pretable dimensions of meaning: The meaning
of adjective-noun phrases is characterized in
terms of ontological attributes that are promi-
nent in their compositional semantics. The
model is evaluated in a similarity prediction
task based on paired adjective-noun phrases
from the Mitchell and Lapata (2010) bench-
mark data. Comparing our model against a
high-dimensional latent word space, we ob-
serve qualitative differences that shed light
on different aspects of similarity conveyed
by both models and suggest integrating their
complementary strengths.

1 Introduction

This paper offers a comparative evaluation of two
types of accounts to the compositional meaning of
adjective-noun phrases. This comparison is embed-
ded in a similarity judgement task that determines
the semantic similarity of pairs of adjective-noun
phrases. All models we consider establish the sim-
ilarity of adjective-noun pairs by measuring simi-
larity between vectors representing the meaning of
the individual adjective-noun phrases. However, the
models we investigate differ in the type of interpreta-
tion they assign to adjectives, nouns and the phrases
composed from them.

One type of approach is represented by the clas-
sical vector space model (VSM) of Mitchell and La-

pata (2010; henceforth: M&L). It represents the se-
mantics of adjective-noun phrases inlatent seman-
tic space, based on dimensions defined by bags of
context words. This classical model will be com-
pared against a compositional analysis of adjective-
noun phrases that represents adjectives and nouns
along interpretable dimensionsof meaning, i.e. dis-
crete ontological attributes such asSIZE, COLOR,
SPEED, WEIGHT. Here, lexical vectors for adjec-
tives and nouns define possible attribute meanings as
component values; vector composition is intended
to elicit those attributes that are prominent in the
meaning of the whole phrase. For instance, a com-
posed vector representation of the phrasehot pep-
per is expected to yield high component values on
the dimensionsTASTE andSMELL, rather thanTEM-
PERATURE. The underlying relations between ad-
jectives and nouns, respectively, and the attributes
they denote is captured by way of latent semantic in-
formation obtained from Latent Dirichlet Allocation
(LDA; Blei et al. (2003)). Thus, we treat attributes
as an abstract meaning layer that generalizes over
latent topics inferred by LDA and utilize this inter-
pretable layer as the dimensions of our VSM.

This approach has been shown to be effective
in an attribute selectiontask (Hartung and Frank,
2011), where the goal is to predict the most promi-
nent attribute(s) “hidden” in the compositional se-
mantics of adjective-noun phrases. In this paper,
our main interest is to assess the potential of mod-
eling adjective semantics in terms of discrete, inter-
pretable attribute meanings in a similarity judgement
task, as opposed to a representation in latent seman-
tic space that is usually applied to tasks of this kind.
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For this purpose, we rely on the evaluation data
set of M&L which serves as a shared benchmark in
the GEMS 2011 workshop. Their similarity judge-
ment task, being tailored to measuring latent simi-
larity, represents a true challenge for an analysis fo-
cused on discrete ontological attributes.

Our results show that the latent semantic model
of M&L cannot be beaten by an interpreted anal-
ysis based on LDA topic models. However, we
show substantial performance improvements of the
interpreted analysis in specific settings with adapted
training and test sets that enable focused compar-
ison. An interesting outcome of our investiga-
tions is that – using an interpreted LDA analysis of
adjective-noun phrases – we uncover divergences in
the notions of similarity underlying the judgement
task that go virtually unnoticed in a latent semantic
VSM, while they need to be clearly distinguished in
models focused on interpretable representations.

The paper is structured as follows: After a brief
summarization of related work, Section 3 introduces
Controled LDA, a weakly supervised extension to
standard LDA, and explains how it can be utilized to
inject interpretable meaning dimensions into VSMs.
In Section 4, we describe the parameters and exper-
imental settings for comparing our model to M&L’s
word-based latent VSM in a similarity prediction
task. Section 5 presents the results of this experi-
ment, followed by a thorough qualitative analysis of
the specific strengths and weaknesses of both mod-
els in Section 6. Section 7 concludes.

2 Related Work

Recent work in distributional semantics has engen-
dered different perspectives on how to character-
ize the semantics of adjectives and adjective-noun
phrases.

Almuhareb (2006) aims at capturing the seman-
tics of adjectives in terms of attributes they denote
using lexico-syntactic patterns. His approach suf-
fers from severe sparsity problems and does not ac-
count for the compositional nature of adjective-noun
phrases, as it disregards the meaning contributed by
the noun. It is therefore unable to perform disam-
biguation of adjectives in the context of a noun.

Baroni and Zamparelli (2010) and Guevara
(2010) focus on how best to represent composition-

ality in adjective-noun phrases considering differ-
ent types of composition operators. These works
adhere to a fully latent representation of mean-
ing, whereas Hartung and Frank (2010) assign sym-
bolic attribute meanings to adjectives, nouns and
composed phrases by incorporating attributes as di-
mensions in a compositional VSM. By holding the
attribute meaning of adjectives and nouns in dis-
tinct vector representations and combining them
through vector composition, their approach im-
proves on both weaknesses of Almuhareb’s work.
However, their account is still closely tied to Al-
muhareb’s pattern-based approach in that counts of
co-occurrence patterns linking adjectives and nouns
to attributes are used to populate the vector represen-
tations. These, however, are inherently sparse. The
resulting model therefore still suffers from sparsity
of co-occurrence data.

Finally, Latent Dirichlet Allocation, originally de-
signed for tasks such as text classification and doc-
ument modeling (Blei et al., 2003), found its way
into lexical semantics. Ritter et al. (2010) and
Ó Séaghdha (2010), e.g., model selectional restric-
tions of verb arguments by inducing topic distribu-
tions that characterize mixtures of topics observed in
verb argument positions. Mitchell and Lapata (2009,
2010) were the first to use LDA-inferred topics as
dimensions in VSMs.

Hartung and Frank (2011) adopt a similar ap-
proach, by embedding LDA into a VSM for
adjective-noun meaning composition, with LDA
topics providing latent variables for attribute mean-
ings. That is, contrary to M&L, LDA is used to
convey information about interpretable semantic at-
tributes rather than latent topics. In fact, Hartung
and Frank (2011) are able to show that “injecting”
topic distributions inferred from LDA into a VSM
alleviates sparsity problems that persisted with the
pattern-based VSM of Hartung and Frank (2010).

Baroni et al. (2010) highlight two strengths of
VSMs that incorporate interpretable dimensions of
meaning: cognitive plausibility and effectiveness in
concept categorization tasks. In their model, con-
cepts are characterized in terms of salient proper-
ties and relations (e.g.,childrenhaveparents, grass
is green). However, their approach concentrates on
nouns. Open questions are (i) whether it can be ex-
tended to further word classes, and (ii) whether the
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interpreted meaning layers are interoperable across
word classes, to cope with compositionality. The
present paper extends their work by offering a test
case for an interpretable, compositional VSM, ap-
plied to adjective-noun composition with attributes
as a shared meaning layer. Moreover, to our knowl-
edge, we are the first to expose such a model to a
pairwise similarity judgement task.

3 Attribute Modeling based on LDA

3.1 Controled LDA

This section introducesControled LDA(C-LDA), a
weakly supervised variant of LDA. We use C-LDA
to model attribute information that pertains to ad-
jectives and nouns individually. This information is
“injected” into a vector-space framework as a ba-
sis for computing the attributes that are prominent
in compositional adjective-noun phrases.

In its original statement, LDA is a fully unsu-
pervised process that estimates topic distributions
over documentsθd and word-topic distributionsφt

with topics represented as hidden variables. Esti-
mating these parameters on a document collection
yields topic proportionsP (t|d) and topic distribu-
tionsP (w|t) that can be used to compute a smooth
distributionP (w|d) as in (1), wheret denotes a la-
tent topic,w a word andd a document in the corpus.

P (w|d) =
∑

t

P (w|t)P (t|d) (1)

While the generative story underlying both mod-
els is identical, C-LDA extends standard LDA by
“implicitly” taking supervised category information
into account. This allows for linking latent topics to
interpretable semantic attributes. The idea is to col-
lectpseudo-documentsin a controlled way such that
each document conveys semantic information about
one specific attribute. The pseudo-documents are
selected along syntactic dependency paths linking
the respective attribute noun to meaningful context
words (adjectives and nouns). A corpus consisting
of the two sentences in (2), e.g., yields a pseudo-
document for the attribute nounSPEED containing
car andfast.

(2) What is the speed of this car? The machine
runs at a very fast speed.

Note that, though we are ultimately interested
in triples between attributes, adjectives and nouns
that are conveyed by the compositional semantics
of adjective-noun phrases, C-LDA is only exposed
to binary tuples between attributes and adjectives or
nouns, respectively. This is in line with the findings
of Hartung and Frank (2010), who obtained sub-
stantial performance improvements by splitting the
triples into separate binary relations.

3.2 Embedding C-LDA into a VSM

The main difference of C-LDA compared to stan-
dard LDA is that the estimated topic proportions
P (t|d) of the former will be highly attribute-
specific, and similarly so for the topic distributions
P (w|t). We experiment with two variants of VSMs
that differ in the way they integrate attribute infor-
mation inferred from C-LDA, denoted as C-LDA-A
and C-LDA-T.

In C-LDA-A, the dimensions of the space are in-
terpretable attributes. The vector components re-
lating a target wordw to an attributea are set to
P (w|a). This probability is obtained from C-LDA
by constructing the pseudo-documents as distribu-
tional fingerprints of the respective attribute, as de-
scribed in Section 3.1 above:

P (w|a) ≈ P (w|d) =
∑

t

P (w|t)P (t|d) (3)

C-LDA-T capitalizes on latent topics as dimen-
sions; the vector components are set to the topic pro-
portionsP (w|t) as directly obtained from C-LDA.1

4 Parameters and Experimental Settings

Data. Our experiments are based on the adjective-
noun section of M&L’s 2010 evaluation data set2. It
consists of 108 pairs of adjective-noun phrases that
were rated for similarity by human judges.

1The “topics as dimensions” approach has also been used
by Mitchell and Lapata (2010) for dimensionality reduction. In
their word space model, however, this setting leads to a decrease
in performance on adjective-noun phrases. Therefore, we do
not compare ourselves to this instantiation of their model in this
paper.

2Available from: http://homepages.inf.ed.ac.
uk/s0453356/share
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Models. We contrast the two LDA-based models
(i, ii) C-LDA-A and C-LDA-T with two standard
VSMs: (iii) a re-implementation of the latent VSM
of M&L and (iv) a dependency-based VSM (De-
pVSM) which relies on dependency paths that con-
nect the target elements and attribute nouns in local
contexts. The paths are identical to the ones used
for constructing pseudo-documents in (i) and (ii).
Thus, DepVSM relies on the same information as
C-LDA-A and C-LDA-T, without capitalizing on the
smoothing power provided by LDA.

In the C-LDA models, we experiment with several
topic number settings. Depending on the number of
attributes|A| contained in the training material (see
below), we train one model instance for each topic
number in the range from0.5 · |A| to 2 · |A|. For our
LDA implementations, we use MALLET (McCal-
lum, 2002). We run 1000 iterations of Gibbs sam-
pling with hyperparameters set to the default values.

Training data. For C-LDA-A, C-LDA-T and De-
pVSM we apply two different training scenarios:
In the first setting, we collect pseudo-documents
instantiating 262 attribute nouns that are linked to
adjectives by anattribute relation in WordNet
(Fellbaum, 1998). The topic distributions induced
from this data cover the broadest space of attribute
meanings we could produce from WordNet3. In a
second setting, we assume the presence of an “or-
acle” that confines the training data to a subset of
33 attribute nouns that are linked to those adjectives
that actually occur in the M&L test set, to allow for
a focused evaluation. In both C-LDA variants, all
adjectives and nouns occurring at least five times in
the pseudo-documents become target elements in the
VSM. The pseudo-documents are collected along
dependency paths extracted from section 2 of the
pukWaC corpus (Baroni et al., 2009). The same set-
tings are used for training the DepVSM model.

As the M&L model is not intended to reflect at-
tribute meaning, the training data for this model re-
mains constant. Like M&L, we set the target el-
ements of this model to all types contained in the
complete evaluation data set (including nouns, ad-

3Note that in Hartung and Frank (2011) only a subset of
these attributes, mainly those characterized asproperties in
WordNet, could be successfully modeled, at overall moderate
performance levels.

jectives and verbs) and select the 2000 context words
that co-occur most frequently with these targets in
pukWaC2 as the dimensions of the space.

Filters on test set. Given the different types of
“semantic gist” of the models described above, we
expect that the LDA models perform best on those
test pairs that involve attributes known to the model.
To test this expectation, we compile a restricted test
set containing 43 pairs(adj1 n1, adj2 n2) where
bothadj1 andadj2 bear an attribute meaning accord-
ing to WordNet.

Composition operators. In our experiments, we
use a subset of the operators proposed by Mitchell
and Lapata (2010) to obtain a compositional repre-
sentation of adjective-noun phrases from individual
vectors: vector multiplication (×; best operator in
M&L’s experiments on adjective-noun phrases) and
vector addition (+). Besides, in order to assess the
contribution of individual vectors in the composi-
tion process, we experiment with two “composition
surrogates” by taking the individual adjective (ADJ-
only) or noun vector (N-only) as the result of the
composition process.

Evaluating the models. The models described
above are evaluated against the human similarity
judgements data provided by Mitchell and Lapata
(2010) as follows: We compute the cosine similar-
ity between the composed vectors representing the
adjective-noun phrases in each test pair. Next, we
measure the correlation between the model scores
and the human judgements in terms of Spearman’s
ρ, where each human rating is treated as an indi-
vidual data point. The correlation coefficient finally
reported is the average over all instances4 of one
model. For completeness, we also report the corre-
lation score of the best model instance and the stan-
dard deviation over all model instances.

5 Discussion of Results

Results on complete test set. Table 1 displays the
results achieved by the VSMs based on C-LDA and

4In fact, only those model instances resulting in a significant
correlation with the human judgements (p < 0.05) are taken
into account. This way, we eliminate both inefficient and overly
optimistic model instances.
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+ × ADJ-only N-only
avg best σ avg best σ avg best σ avg best σ

2
6

2
at

tr
s C-LDA-A 0.19 0.25 0.05 0.15 0.20 0.04 0.17 0.23 0.04 0.11 0.230.06

C-LDA-T 0.19 0.24 0.02 0.28 0.31 0.02 0.20 0.24 0.02 0.18 0.24 0.03
M&L 0.21 0.34 0.19 0.27

DepVSM -0.09 -0.09 -0.14 -0.08

3
3

at
tr

s C-LDA-A 0.23 0.27 0.02 0.21 0.24 0.01 0.27 0.29 0.01 0.17 0.22 0.02
C-LDA-T 0.21 0.28 0.03 0.14 0.23 0.04 0.22 0.27 0.03 0.10 0.210.06

M&L 0.21 0.34 0.19 0.27
DepVSM 0.21 0.20 0.27 0.19

Table 1: Correlation coefficients (Spearman’sρ) for different training sets, complete test set

+ × ADJ-only N-only
avg best σ avg best σ avg best σ avg best σ

2
6

2
at

tr
s

(fi
lte

re
d

) C-LDA-A 0.22 0.31 0.07 0.12 0.30 0.11 0.18 0.30 0.08 0.17 0.280.07
C-LDA-T 0.25 0.30 0.03 0.26 0.35 0.04 0.24 0.29 0.04 0.19 0.230.04

M&L 0.38 0.40 0.24 0.43
DepVSM 0.08 -0.09 0.06 -0.07

3
3

at
tr

s
(fi

lte
re

d
) C-LDA-A 0.29 0.32 0.02 0.31 0.36 0.02 0.34 0.38 0.02 0.09 0.180.04

C-LDA-T 0.26 0.36 0.05 0.14 0.30 0.09 0.28 0.38 0.07 0.03 0.180.08
M&L 0.38 0.40 0.24 0.43

DepVSM 0.34 0.32 0.35 0.19

Table 2: Correlation coefficients (Spearman’sρ) for different training sets and filtered test sets

the M&L word space model on the full adjective-
noun test set. The table is split into an upper and a
lower part containing the different results obtained
from training on 262 and 33 attributes, respectively.
Each multicolumn shows the performance achieved
by one of the different composition operators pre-
sented in Section 4, as well as results obtained from
predicting similarity on the basis of raw adjective
(ADJ-only) and noun (N-only) vectors.

First and foremost, we observe best overall per-
formance for the M&L model when combined with
multiplicative vector composition (ρ = 0.34), even
though the best results for this setting reported in
M&L (2010) (ρ = 0.46) cannot be reproduced.

Nevertheless, the C-LDA models show a consid-
erable performance improvement when the training
material is constrained to appropriate attributes by
an oracle (cf. Sect. 4). Another interesting obser-
vation is that the individual adjective and noun vec-
tors produced by M&L and the C-LDA models, re-
spectively, show diametrically opposed performance
(cf. 3rd and 4th multicolumn in Table 1).

More in detail, C-LDA-A achieves relative im-
provements across all composition operators when

comparing the 33-ATTR to the 262-ATTR setting.
Contrasting C-LDA-A and C-LDA-T, the latter is
clearly more effective on the larger training set, es-
pecially in combination with the× operator (ρ =
0.28). This might be due to the intersective character
of multiplication, which requires densely populated
components in both the adjective and the noun vec-
tor. This requirement meets best with the C-LDA-T
model as long as the number of topics provided is
large. The+ operator, on the other hand, combines
better with C-LDA-A. In the 33-ATTR setting, this
combination even outperforms vector addition un-
der the M&L model. Generally, C-LDA-A performs
better on the smaller training set, where it leaves C-
LDA-T behind in every configuration. This high-
lights that an interpretable, attribute-related meaning
layer generalizing over latent topics can be effective
if a small, discriminative set of attributes is available
for training. Otherwise, C-LDA-T seems to be more
powerful for the present similarity judgement task.

Analyzing the performance of the composition
surrogates ADJ-only and N-only in the restricted 33-
ATTR setting reveals an interesting twist in the qual-
ity of adjective vs. noun vectors: While M&L gen-
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erally yields better results on noun vectors alone (as
compared to adjective vectors), C-LDA-A clearly
outperforms M&L in predicting similarity based on
adjective meanings in isolation. In this configura-
tion, M&L is also outperformed by the (very strong)
dependency baseline which is, in turn, only slightly
beaten by C-LDA-A in its best configuration. In
fact, it is the ADJ-only surrogate under the C-LDA-
A model in its best setting (ρ = 0.29) that comes
closest to the overall best-performing M&L model.
This indicates that modeling attributes in the latent
semantics of adjectives can be informative for the
present similarity prediction task. The poor quality
of the noun vectors, however, limits the overall per-
formance of the C-LDA models considerably.

Results on filtered test set. As can be seen from
Table 2, our expectation that C-LDA-A and C-
LDA-T should benefit from limiting the test set to
instances related to attribute meanings is largely
met. We observe overall improvement of correla-
tion scores; also the characteristics of the individual
models observed in Table 1 remain unchanged.

However, M&L benefits from filtering as well,
and in some configurations, e.g. under vector addi-
tion, the relative improvement is even bigger for the
latent word space models. This shows that M&L
and our C-LDA models are not fully complemen-
tary, i.e. some aspects of attribute similarity are also
covered by latent models.

Neverthelesss, the adjective/noun twist observed
for individual vector performance is corroborated:
C-LDA-A’s adjective vectors outperform those of
M&L by ten points (33 attributes, filtered setting;
compared to six points on the complete test set),
whereas the performance of the noun vectors drops
even further. Again, the DepVSM baseline performs
very strong on the adjective vectors in isolation,
which clearly underlines that our dependency-based
context selection procedure is effective. On the other
hand, the individual noun vectors produced by M&L
even yield the best overall result on the filtered test
data, thus outperforming both composition methods.

Differences in adjective and noun vectors. In or-
der to highlight qualitative differences of the indi-
vidual adjective and noun vectors across the various
models, we analyzed their informativeness in terms
of entropy. The intuition is as follows: The lower the

262 attrs 33 attrs
avg σ avg σ

C-LDA-A (JJ) 1.20 0.48 0.83 0.27
C-LDA-A (NN) 1.66 0.72 1.23 0.46
C-LDA-T (JJ) 0.92 0.04 0.50 0.04
C-LDA-T (NN) 1.10 0.06 0.60 0.02
M&L (JJ) 2.74 0.91 2.74 0.91
M&L (NN) 2.96 0.33 2.96 0.33
DepVSM (JJ) 0.48 0.61 0.65 0.32
DepVSM (NN) 0.38 0.67 0.96 0.21

Table 3: Average entropy of individual adjective and
noun vectors across different models

entropy exhibited by a vector, the more pronounced
are its most prominent components. On the contrary,
high entropy indicates a rather broad, less accen-
tuated distribution of the probability mass over the
vector components (cf. Hartung and Frank (2010)).

The results of this analysis are displayed in Ta-
ble 3. With regard to the C-LDA models, we observe
lower entropy in adjective vectors compared to noun
vectors across both training settings, which corre-
sponds to their relative performance in the similar-
ity prediction task. This indicates that C-LDA cap-
tures the relation between adjectives and attributes
in a very pronounced way, and that this information
proves valuable for similarity prediction.

The DepVSM model shows inconsistent results
with regard to the different training sets. While the
pattern observed for the C-LDA models is confirmed
on the limited training set, training on the full set of
262 attributes results in more accentuated noun vec-
tors. Given the huge standard deviations, however,
we suppose that these figures are not very reliable.5

The correspondence between lower entropy and
better performance we could observe for C-LDA-
A and C-LDA-T is, however, not confirmed by the
M&L word space model, as their adjective vectors
exhibit lower entropy on average6, while they per-
sistently underperform relative to the noun vectors

5In fact, unlike the C-LDA models and M&L, DepVSM
faces severe sparsity problems on the large training set, asbe-
comes evident from the average total frequency mass per vector:
Noun vectors accumulate 704 cooccurrence counts over 262 di-
mensions on average, while adjective vectors are populatedwith
1555 counts on average (652 vs. 1052 counts over 33 dimen-
sions on the small training set).

6The entropy values of M&L are not directly comparable to
those of the C-LDA models and DepVSM; M&L entropies are
generally higher due to the higher dimensionality of the model.
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(cf. Tables 1 and 2). Note, however, that the en-
tropy values of individual adjective vectors disperse
widely around the mean (σ=0.91). This suggests
that a considerable proportion of M&L’s adjective
vectors is rather evenly distributed.

Analyzing the individual performance of noun
vectors in terms of entropy is less conclusive. While
the noun vectors consistently exhibit relatively high
entropy, their varying performance across the dif-
ferent models cannot be explained. We hypothesize
that the characteristics of the different models might
be more decisive instead: Apparently, attributes as
an abstract meaning layer are appropriate for mod-
eling the contribution of adjectives to phrase simi-
larity, whereas the contribution of nouns seems to
be captured more effectively by M&L-like distribu-
tions along bags of context words.

6 Error Analysis

In order to gain deeper insight into the strengths
and weaknesses of C-LDA-A and M&L, we
extracted the ten most similar/dissimilar pairs
(+Sim/−SimC-LDA-A/M&L ; cf. Table 4) according
to system predictions, as well as the ten pairs
on which system and human raters show high-
est/lowest agreement in terms of similarity scores
(+Agr/−AgrC-LDA-A/M&L ; cf. Table 5), for the best-
performing model instance of C-LDA-A and M&L
in the unfiltered 33-ATTR setting, respectively.

All pairs in +SimC-LDA-A and +SimM&L exhibit
matching attributes. +SimC-LDA-A contains two pairs
involving contrastive attribute values (vs. four in
+SimM&L ): long period – short time, hot weather
– cold air. Obviously, C-LDA-A is not prepared to
recognize this type of dissimilarity, as it does not
model the semantics and orientation of attributeval-
ues, and so assigns overly optimistic similarity rates.
While this deficiency is explained for C-LDA, it is
unexpected for M&L, where in +SimM&L we find
pairs such asold person – elderly ladywith similar-
ity ratings that are almost identical to antonymous
pairs discussed above, such ashigh price – low cost.

We further observe a striking difference regarding
overall similarity ratings in both systems: We find
high scores of 0.88 on average within +SimC-LDA-A ,
as opposed to 0.52 in +SimM&L . The difference
is less marked regarding−Sim. Similarly, we

find overall low average similarity rates (0.2) in
+AgrM&L , whereas +AgrC-LDA-A achieves somewhat
higher rates (0.27). While all examples point to-
wards dissimilarity, C-LDA-A shows more discrim-
inative power, as exemplified byhot weather – el-
derly lady(lowest rating) vs.central authority – lo-
cal office(highest rating). This suggests that, over-
all, C-LDA-A disposes of a more discriminative se-
mantic representation to judge similarity – which of
course can also go astray.

The disagreement set−AgrC-LDA-A contains the
antonymous adjectives with high similarity ratings
from +SimC-LDA-A , of course. We also note a high
proportion (5/10) of pairs involving adjectives with
vague and highly ambiguous attribute meanings,
such asgood, new, certain, general. These are dif-
ficult to capture, especially in combination with ab-
stract noun concepts such asinformation, effector
circumstance.

An interesting type of similarity is represented by
early evening – previous day. In this case, we ob-
serve a contrast in the semantics of the nouns in-
volved, while the pair exhibits strong similarity on
the attribute level, which is reflected in the system’s
similarity score. This type of similarity is reminis-
cent of relational analogies investigated in Turney
(2008). A related example isrural community – fed-
eral assembly. Unlike the human judges, C-LDA
predicts high similarity for both pairs.

The examples given in−AgrM&L , by contrast,
clearly point to a lack in capturing adjective seman-
tics, with misjudgements such aseffective way – effi-
cient use, large number – vast amountor large quan-
tity – great majority.

Turning to−AgrC-LDA-A again, we find 9/10 items
exhibit values greater than 0.67 (average: 0.78).
This means the model yields a high number of
false positives in rating similarity (with explanations
and some reservations just discussed). All items in
−AgrM&L , by contrast, have values below 0.36 (av-
erage: 0.16). That is, we again observe that this
model assigns lower similarity scores. This is con-
firmed by a comparative analysis of average sim-
ilarity scores on the entire test set: C-LDA-A;+
yields an average similarity of 0.48 (σ=0.05) over
all instances, while M&L;× yields 0.16 on average
(σ=0.16). The human ratings (after normalization
to the scale from 0 to 1) amount to 0.39 (σ=0.26).
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SIMILARITY
C-LDA-A; + M&L; ×

+Sim

long period – short time 0.95 important part – significant role 0.66
hot weather – cold air 0.95 certain circumstance – particular case 0.60

different kind – various form 0.91 right hand – left arm 0.56
better job – good place 0.89 long period – short time 0.55

different part – various form 0.88 old person – elderly lady 0.54
social event – special circumstance 0.88 high price – low cost 0.54

better job – good effect 0.88 black hair – dark eye 0.48
similar result – good effect 0.85 general principle – basic rule 0.44

social activity – political action 0.82 special circumstance – particular case 0.43
early evening – previous day 0.80 hot weather – cold air 0.43

−Sim

early stage – long period 0.11 old person – right hand 0.03
northern region – early age 0.11 new information – further evidence 0.03
earlier work – early evening 0.11 early stage – dark eye 0.01
elderly woman – black hair 0.10 practical difficulty – cold air 0.01
practical difficulty – cold air 0.08 left arm – elderly woman 0.01

small house – old person 0.07 hot weather – elderly lady 0.00
left arm – elderly woman 0.06 national government – cold air 0.00

hot weather – further evidence 0.06 black hair – right hand 0.00
dark eye – left arm 0.05 hot weather – further evidence 0.00

national government – cold air 0.03 better job – economic problem 0.00

Table 4: Similarity scores predicted by optimal C-LDA-A andM&L model instances; 33-ATTR setting

AGREEMENT
C-LDA-A; + M&L; ×

+Agr

major issue – american country 0.29 similar result – good effect 0.29
efficient use – little room 0.29 small house – important part 0.14

economic condition – american country 0.29 national government – new information 0.12
public building – central authority 0.29 major issue – social event 0.26
northern region – industrial area 0.28 new body – significantrole 0.11

new life – economic development 0.42 social event – special circumstance 0.25
new body – significant role 0.13 economic development – ruralcommunity 0.32
hot weather – elderly lady 0.13 new technology – public building 0.18

social event – low cost 0.13 high price – short time 0.10
central authority – local office 0.44 new body – whole system 0.24

−Agr

early evening – previous day 0.80 effective way – efficient use 0.29
rural community – federal assembly 0.67 federal assembly – national government 0.24

new information – general level 0.68 vast amount – high price 0.10
similar result – good effect 0.85 different kind – various form 0.24

better job – good effect 0.88 vast amount – large quantity 0.36
social event – special circumstance 0.88 large number – vastamount 0.31

better job – good place 0.89 older man – elderly woman 0.00
certain circumstance – particular case 0.22 earlier work – early stage 0.00

hot weather – cold air 0.95 large number – great majority 0.09
long period – short time 0.95 large quantity – great majority 0.04

Table 5: Test pairs showing high and low agreement between systems and human raters, together with system similarity
scores as obtained from optimal model instances; 33-ATTR setting
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While these means are not fully comparable as they
are the result of different composition operations,
the standard deviations suggest that M&L’s similar-
ity predictions are dispersed over a larger range of
the scale, while the C-LDA scores show only small
variation. This missing spread might be one of the
reasons for C-LDA’s lower performance.

In summary, we note one obvious shortcoming in
the C-LDA-A model, in that it does not capture dis-
similarity due to distinct contrastive meanings of at-
tribute values in cases of similarity on the noun and
attribute levels. With its focus on attribute seman-
tics, however, C-LDA-A is able to capture similar-
ity due to relational analogies, as inearly evening
– previous day(0.8), whereas the latent model of
M&L is clearly noun-oriented, and thus predicts a
low similarity of 0.2 for this pair.

We conclude that the proposed attribute analysis
of adjective-noun pairs implements an inherently re-
lational form of similarity. Noun semantics is cap-
tured only indirectly, through the range of attributes
found relevant for the noun. The current model also
fully neglects the meaning of scalar attribute values.
Whether a more comprehensive analysis of inter-
preted adjective-noun meanings is able to succeed
in a paired similarity prediction task is an open issue
to be explored in future work.

7 Conclusion

In this paper, we presented a distributional VSM
that incorporates latent semantic information char-
acterizing ontological attributes in the meaning of
adjective-noun phrases, as obtained from C-LDA, a
weakly supervised variant of LDA. Originally de-
signed for an attribute selection task (Hartung and
Frank, 2011), this model faces a true challenge when
evaluated in a pairwise similarity judgement task
against a high-dimensional word space model, such
as M&L’s VSM. In fact, our model is unable to com-
pete with M&L even in its best configurations.

Thorough analysis reveals, however, that the qual-
ity of individual adjective and noun vectors is dia-
metric across the two models: C-LDA, capitalizing
on interpretable ontological dimensions, produces
effective adjective vectors, whereas its noun repre-
sentations lag behind. The inverse situation is ob-
served for the word-based latent VSM of M&L.

One qualification is in order, though: In its cur-
rent state, the C-LDA model relies on an “oracle”
that pre-selects the attributes involved in the test set
for the model to be trained on. Although one could
argue that tailoring the context words to the target
words has a similar effect in our re-implementation
of M&L, interferences of this kind are not desirable
in principle. Future work will need to explore in
more detail possible attribute ranges with regard to
their usefulness for different tasks and data sets.

Our comparative investigaton of the specific
strengths and weaknesses of the models indicates
that they focus on different aspects of similarity:
M&L, possibly due to its higher and more discrim-
inative dimensionality, tends to produce more ef-
ficient noun vectors. Overall, this model accords
better with human similarity judgements across di-
verse aspects of similarity than the more focused
attribute-oriented LDA models. The C-LDA mod-
els focus on a specific, interpretable meaning di-
mension shared by adjectives and nouns, with a ten-
dency for stronger modeling capacity for adjectives.
They are currently not prepared to capture dissimi-
larity in cases of contrastive attribute values, while
on the positive side, they effectively cope with re-
lational analogies, both with similar and dissimilar
noun meanings.

Our findings suggest that adding more discrimina-
tive power to the noun representations and scalar in-
formation about attribute values to the adjective vec-
tors might be beneficial. Further research is needed
to investigate how to combine interpretable seman-
tic representations tailored to specific relations, as
captured by C-LDA, with M&L-like bag-of-words
representations in a single distributional model.

Applying interpreted models to the present simi-
larity rating task will still remain a challenge, as it
involves mapping diverse mixtures of aspects and
grades of similarity to human judgements. How-
ever, if the performance of an integrated model can
compete with a purely latent semantic analysis, this
offers a clear advantage for more general tasks that
require linking phrase meaning to symbolic knowl-
edge bases such as (multilingual) ontologies, or for
application scenarios that involve discrete seman-
tic labels, such as text classification based on topic
modeling (Blei et al., 2003) or fine-grained named
entity classification (Ekbal et al., 2010).

60



References

Abdulrahman Almuhareb. 2006.Attributes in Lexical
Acquisition. Ph.D. Dissertation, Department of Com-
puter Science, University of Essex.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing,East
Stroudsburg, PA, pages 1183–1193.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and
Eros Zanchetta. 2009. The WaCky Wide Web: A Col-
lection of Very Large Linguistically Processed Web-
crawled Corpora.Journal of Language Resources and
Evaluation, 43(3):209–226.

Marco Baroni, Brian Murphy, Eduard Barbu, and Mas-
simo Poesio. 2010. Strudel. A Corpus-based Seman-
tic Model based on Properties and Types.Cognitive
Science, 34:222–254.

David M. Blei, Andrew Ng, and Michael Jordan. 2003.
Latent Dirichlet Allocation.JMLR, 3:993–1022.

Asif Ekbal, Eva Sourjikova, Anette Frank, and Simone
Ponzetto. 2010. Assessing the Challenge of Fine-
grained Named Entity Recognition and Classification.
In Proceedings of the ACL 2010 Named Entity Work-
shop (NEWS), Uppsala, Sweden.

Christiane Fellbaum, editor. 1998.WordNet: An Elec-
tronic Lexical Database. MIT Press, Cambridge,
Mass.

Emiliano Guevara. 2010. A regression model of
adjective-noun compositionality in distributional se-
mantics. InProceedings of the 2010 Workshop on
GEometrical Models of Natural Language Semantics,
Stroudsburg, PA. Association for Computational Lin-
guistics.

Matthias Hartung and Anette Frank. 2010. A Structured
Vector Space Model for Hidden Attribute Meaning in
Adjective-Noun Phrases. InProceedings of the 23rd
International Conference on Computational Linguis-
tics (COLING), Beijing, China, August.

Matthias Hartung and Anette Frank. 2011. Exploring
Supervised LDA Models for Assigning Attributes to
Adjective-Noun Phrases. InProceedings of the 2011
Conference on Empirical Methods in Natural Lan-
guage Processing,Edinburgh, UK.

Andrew Kachites McCallum. 2002. MAL-
LET: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
Models of Semantic Composition. InProceedings of
ACL-08: HLT, pages 236–244, Columbus, Ohio, June.

Jeff Mitchell and Mirella Lapata. 2009. Language Mod-
els Based on Semantic Composition. InProceedings

of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing,Singapore, August 2009,
pages 430–439, Singapore, August.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in Distributional Models of Semantics.Cognitive Sci-
ence, 34:1388–1429.
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Abstract

Formal and distributional semantic models
offer complementary benefits in modeling
meaning. The categorical compositional dis-
tributional model of meaning of Coecke et al.
(2010) (abbreviated to DisCoCat in the title)
combines aspects of both to provide a gen-
eral framework in which meanings of words,
obtained distributionally, are composed using
methods from the logical setting to form sen-
tence meaning. Concrete consequences of
this general abstract setting and applications to
empirical data are under active study (Grefen-
stette et al., 2011; Grefenstette and Sadrzadeh,
2011). In this paper, we extend this study by
examining transitive verbs, represented as ma-
trices in a DisCoCat. We discuss three ways of
constructing such matrices, and evaluate each
method in a disambiguation task developed by
Grefenstette and Sadrzadeh (2011).

1 Background

The categorical distributional compositional model
of meaning of Coecke et al. (2010) combines the
modularity of formal semantic models with the em-
pirical nature of vector space models of lexical se-
mantics. The meaning of a sentence is defined to
be the application of its grammatical structure—
represented in a type-logical model—to the kro-
necker product of the meanings of its words, as
computed in a distributional model. The concrete
and experimental consequences of this setting, and
other models that aim to bring together the log-
ical and distributional approaches, are active top-
ics in current natural language semantics research,

e.g. see (Grefenstette et al., 2011; Grefenstette and
Sadrzadeh, 2011; Clark et al., 2010; Baroni and
Zamparelli, 2010; Guevara, 2010; Mitchell and La-
pata, 2008).

In this paper, we focus on our recent concrete Dis-
CoCat model (Grefenstette and Sadrzadeh, 2011)
and in particular on nouns composed with transitive
verbs. Whereby the meaning of a transitive sentence
‘sub tverb obj’ is obtained by taking the component-
wise multiplication of the matrix of the verb with
the kronecker product of the vectors of subject and
object:

−−−−−−−−→
sub tverb obj = tverb� (

−→
sub⊗−→obj) (1)

In most logical models, transitive verbs are modeled
as relations; in the categorical model the relational
nature of such verbs gets manifested in their ma-
trix representation: if subject and object are each r-
dimensional row vectors in some space N , the verb
will be a r × r matrix in the space N ⊗ N . There
are different ways of learning the weights of this ma-
trix. In (Grefenstette and Sadrzadeh, 2011), we de-
veloped and implemented one such method on the
data from the British National Corpus. The matrix of
each verb was constructed by taking the sum of the
kronecker products of all of the subject/object pairs
linked to that verb in the corpus. We refer to this
method as the indirect method. This is because the
weight cij is obtained from the weights of the sub-
ject and object vectors (computed via co-occurrence
with bases −→n i and −→n j respectively), rather than di-
rectly from the context of the verb itself, as would
be the case in lexical distributional models. This
construction method was evaluated against an exten-
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sion of Mitchell and Lapata (2008)’s disambiguation
task from intransitive to transitive sentences. We
showed and discussed how and why our method,
which is moreover scalable and respects the gram-
matical structure of the sentence, resulted in better
results than other known models of semantic vector
composition.

As a motivation for the current paper, note that
there are at least two different factors at work in
Equation (1): one is the matrix of the verb, denoted
by tverb, and the other is the kronecker product of
subject and object vectors

−→
sub ⊗ −→obj. Our model’s

mathematical formulation of composition prohibits
us from changing the latter kronecker product, but
the ‘content’ of the verb matrices can be built
through different procedures.

In recent work we used a standard lexical distri-
butional model for nouns and engineered our verbs
to have a more sophisticated structure because of
the higher dimensional space they occupy. In par-
ticular, we argued that the resulting matrix of the
verb should represent ‘the extent according to which
the verb has related the properties of subjects to the
properties of its objects’, developed a general proce-
dure to build such matrices, then studied their em-
pirical consequences. One question remained open:
what would be the consequence of starting from the
standard lexical vector of the verb, then encoding
it into the higher dimensional space using different
(possibly ad-hoc but nonetheless interesting) mathe-
matically inspired methods.

In a nutshell, the lexical vector of the verb is de-
noted by

−−→
tverb and similar to vectors of subject and

object, it is an r-dimensional row vector. Since the
kronecker product of subject and object (

−→
sub⊗−→obj)

is r × r, in order to make
−−→
tverb applicable in Equa-

tion 1, i.e. to be able to substitute it for tverb, we
need to encode it into a r × r matrix in the N ⊗ N
space. In what follows, we investigate the empirical
consequences of three different encodings methods.

2 From Vectors to Matrices

In this section, we discuss three different ways of en-
coding r dimensional lexical verb vectors into r× r
verb matrices, and present empirical results for each.
We use the additional structure that the kronecker
product provides to represent the relational nature

of transitive verbs. The results are an indication that
the extra information contained in this larger space
contributes to higher quality composition.

One way to encode an r-dimensional vector as a
r × r matrix is to embed it as the diagonal of that
matrix. It remains open to decide what the non-
diagonal values should be. We experimented with
0s and 1s as padding values. If the vector of the verb
is [c1, c2, · · · , cr] then for the 0 case (referred to as
0-diag) we obtain the following matrix:

tverb =


c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 . . . cr


For the 1 case (referred to as 1-diag) we obtain the
following matrix:

tverb =


c1 1 · · · 1
1 c2 · · · 1
...

...
. . .

...
1 1 . . . cr


We also considered a third case where the vector is
encoded into a matrix by taking the kronecker prod-
uct of the verb vector with itself:

tverb =
−−→
tverb⊗−−→tverb

So for
−−→
tverb = [c1, c2, · · · , cr] we obtain the follow-

ing matrix:

tverb =


c1c1 c1c2 · · · c1cr

c2c1 c2c2 · · · c2cr
...

...
. . .

...
crc1 crc2 · · · crcr


3 Degrees of synonymity for sentences

The degree of synonymity between meanings of
two sentences is computed by measuring their ge-
ometric distance. In this work, we used the co-
sine measure. For two sentences ‘sub1 tverb1 obj1’
and ‘sub2 tverb2 obj2’, this is obtained by taking
the Frobenius inner product of

−−−−−−−−−−→
sub1 tverb1 obj1 and−−−−−−−−−−→

sub2 tverb2 obj2. The use of Frobenius product
rather than the dot product is because the calcula-
tion in Equation (1) produces matrices rather than
row vectors. We normalized the outputs by the mul-
tiplication of the lengths of their corresponding ma-
trices.
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4 Experiment

In this section, we describe the experiment used to
evaluate and compare these three methods. The ex-
periment is on the dataset developed in (Grefenstette
and Sadrzadeh, 2011).

Parameters We used the parameters described by
Mitchell and Lapata (2008) for the noun and verb
vectors. All vectors were built from a lemmatised
version of the BNC. The noun basis was the 2000
most common context words, basis weights were
the probability of context words given the target
word divided by the overall probability of the con-
text word. These features were chosen to enable
easy comparison of our experimental results with
those of Mitchell and Lapata’s original experiment,
in spite of the fact that there may be more sophisti-
cated lexical distributional models available.

Task This is an extension of Mitchell and Lap-
ata (2008)’s disambiguation task from intransitive
to transitive sentences. The general idea behind
the transitive case (similar to the intransitive one) is
as follows: meanings of ambiguous transitive verbs
vary based on their subject-object context. For in-
stance the verb ‘meet’ means ‘satisfied’ in the con-
text ‘the system met the criterion’ and it means
‘visit’, in the context ‘the child met the house’.
Hence if we build meaning vectors for these sen-
tences compositionally, the degrees of synonymity
of the sentences can be used to disambiguate the
meanings of the verbs in them.

Suppose a verb has two meanings a and b and
that it has occurred in two sentences. Then if in
both of these sentences it has its meaning a, the two
sentences will have a high degree of synonymity,
whereas if in one sentence the verb has meaning a
and in the other meaning b, the sentences will have
a lower degree of synonymity. For instance ‘the sys-
tem met the criterion’ and ‘the system satisfied the
criterion’ have a high degree of semantic similarity,
and similarly for ‘the child met the house’ and ‘the
child visited the house’. This degree decreases for
the pair ‘the child met the house’ and ‘the child sat-
isfied the house’.

Dataset The dataset is built using the same guide-
lines as Mitchell and Lapata (2008), using transi-

tive verbs obtained from CELEX1 paired with sub-
jects and objects. We first picked 10 transitive verbs
from the most frequent verbs of the BNC. For each
verb, two different non-overlapping meanings were
retrieved, by using the JCN (Jiang Conrath) infor-
mation content synonymity measure of WordNet to
select maximally different synsets. For instance for
‘meet’ we obtained ‘visit’ and ‘satisfy’. For each
original verb, ten sentences containing that verb with
the same role were retrieved from the BNC. Exam-
ples of such sentences are ‘the system met the crite-
rion’ and ‘the child met the house’. For each such
sentence, we generated two other related sentences
by substituting their verbs by each of their two syn-
onyms. For instance, we obtained ‘the system sat-
isfied the criterion’ and ‘the system visited the cri-
terion’ for the first meaning and ‘the child satisfied
the house’ and ‘the child visited the house’ for the
second meaning . This procedure provided us with
200 pairs of sentences.

The dataset was split into four non-identical sec-
tions of 100 entries such that each sentence appears
in exactly two sections. Each section was given to
a group of evaluators who were asked to assign a
similarity score to simple transitive sentence pairs
formed from the verb, subject, and object provided
in each entry (e.g. ‘the system met the criterion’
from ‘system meet criterion’). The scoring scale for
human judgement was [1, 7], where 1 was most dis-
similar and 7 most identical.

Separately from the group annotation, each pair in
the dataset was given the additional arbitrary classi-
fication of HIGH or LOW similarity by the authors.

Evaluation Method To evaluate our methods, we
first applied our formulae to compute the similar-
ity of each phrase pair on a scale of [0, 1] and then
compared it with human judgement of the same
pair. The comparison was performed by measuring
Spearman’s ρ, a rank correlation coefficient ranging
from -1 to 1. This provided us with the degree of
correlation between the similarities as computed by
our model and as judged by human evaluators.

Following Mitchell and Lapata (2008), we also
computed the mean of HIGH and LOW scores.
However, these scores were solely based on the au-
thors’ personal judgements and as such (and on their

1http://celex.mpi.nl/
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own) do not provide a very reliable measure. There-
fore, like Mitchell and Lapata (2008), the models
were ultimately judged by Spearman’s ρ.

The results are presented in table 4. The additive
and multiplicative rows have, as composition oper-
ation, vector addition and component-wise multipli-
cation. The Baseline is from a non-compositional
approach; it is obtained by comparing the verb vec-
tors of each pair directly and ignoring their subjects
and objects. The UpperBound is set to be inter-
annotator agreement.

Model High Low ρ

Baseline 0.47 0.44 0.16
Add 0.90 0.90 0.05
Multiply 0.67 0.59 0.17
Categorical
Indirect matrix 0.73 0.72 0.21
0-diag matrix 0.67 0.59 0.17
1-diag matrix 0.86 0.85 0.08
v ⊗ v matrix 0.34 0.26 0.28
UpperBound 4.80 2.49 0.62

Table 1: Results of compositional disambiguation.

The indirect matrix performed better than the
vectors encoded in diagonal matrices padded with
0 and 1. However, surprisingly, the kronecker prod-
uct of this vector with itself provided better results
than all the above. The results were statistically sig-
nificant with p < 0.05.

5 Analysis of the Results

Suppose the vector of subject is [s1, s2, · · · , sr] and
the vector of object is

−→
obj = [o1, o2, · · · , or], then

the matrix of
−→
sub⊗−→obj is:
s1o1 s1o2 · · · s1or

s2o1 s2o2 · · · s2or
...

sro1 sro2 · · · sror


After computing Equation (1) for each generation
method of tverb, we obtain the following three ma-

trices for the meaning of a transitive sentence:

0-diag :


c1s1o1 0 · · · 0

0 c2s2o2 · · · 0
...

...
. . .

...
0 0 · · · crsror


This method discards all of the non-diagonal infor-
mation about the subject and object, for example
there is no occurrence of s1o2, s2o1, etc.

1-diag :


c1s1o1 s1o2 · · · s1or

s2o1 c2s2o2 · · · s2or
...

...
. . .

...
sro1 sro2 · · · crsror


This method conserves the information about the
subject and object, but only applies the information
of the verb to the diagonals: s1 and o2, s2 and o1,
etc. are never related to each other via the verb.

v ⊗ v :


c1c1s1o1 c1c2s1o2 · · · c1crs1or

c2c1s2o1 c2c2s2o2 · · · c2crs2or
...

...
. . .

...
crc1sro1 crc2sro2 · · · crcrsror


This method not only conserves the information

of the subject and object, but also applies to them
all of the information encoded in the verb. These
data propagate to Frobenius products when comput-
ing the semantic similarity of sentences and justify
the empirical results.

The unexpectedly good performance of the v ⊗ v
matrix relative to the more complex indirect method
is surprising, and certainly demands further inves-
tigation. What is sure is that they each draw upon
different aspects of semantic composition to provide
better results. There is certainly room for improve-
ment and empirical optimisation in both of these
relation-matrix construction methods.

Furthermore, the success of both of these meth-
ods relative to the others examined in Table 1 shows
that it is the extra information provided in the matrix
(rather than just the diagonal, representing the lexi-
cal vector) that encodes the relational nature of tran-
sitive verbs, thereby validating in part the require-
ment suggested in Coecke et al. (2010) and Grefen-
stette and Sadrzadeh (2011) that relational word vec-
tors live in a space the dimensionality of which be a
function of the arity of the relation.
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Abstract

This paper presents a novel approach for auto-
matic detection of semantic change of words
based on distributional similarity models. We
show that the method obtains good results
with respect to a reference ranking produced
by human raters. The evaluation also analyzes
the performance of frequency-based methods,
comparing them to the similarity method pro-
posed.

1 Introduction

Recently a large corpus of digitized books was made
publicly available by Google (Mitchel et al., 2010).
It contains more than 5 millions of books published
between the sixteenth century and today. Computa-
tional analysis of such representative diachronic data
made it possible to trace different cultural trends
in the last centuries. Mitchel et al. (2010) exploit
the change in word frequency as the main measure
for the quantitative investigation of cultural and lin-
guistic phenomena; in this paper, we extend this ap-
proach by measuring the semantic similarity of the
word occurrences in two different time points using
distributional semantics model (Turney and Pantel,
2010).

Semantic change, defined as a change of one
or more meanings of the word in time (Lehmann,
1992), is of interest to historical linguistics and is
related to the natural language processing task of
unknown word sense detection (Erk, 2006). Devel-
oping automatic methods for identifying changes in
word meaning can therefore be useful for both theo-
retical linguistics and a variety of NLP applications
which depend on lexical information.

Some first automatic approaches to the seman-
tic change detection task were recently proposed by
Sagi et al. (2009) and Cook and Stevenson (2010).
These works focus on specific types of semantic
change, i.e., Sagi et al. (2009) aim to identify widen-
ing and narrowing of meaning, while Cook and
Stevenson (2010) concentrate on amelioration and
pejoration cases. Their evaluation of the proposed
methods is rather qualitative, concerning just a few
examples.

In present work we address the task of auto-
matic detection of the semantic change of words in
quantitative way, comparing our novel distributional
similarity approach to a relative-frequency-based
method. For the evaluation, we used the Google
Books Ngram data from the 1960s and 1990s, tak-
ing as a reference standard a ranking produced by
human raters. We present the results of the method
proposed, which highly correlate with the human
judgements on a test set, and show the underlying
relations with relative frequency.

2 Google Books Ngram corpus

The overall data published online by Google repre-
sent a collection of digitized books with over 500
billion words in 7 different languages distributed in
n-gram format due to copyright limitations (Mitchel
et al., 2010). An n-gram is a sequence of n words di-
vided by space character; for each n-gram it is spec-
ified in which year it occurred and how many times.

For our diachronic investigation we used the
American English 2-grams corpus (with over 150
millions 2-grams) and extracted two time slices from
the 1960s and 1990s time periods. More precisely,
we automatically selected 2-grams with year of oc-
currence between 1960 and 1964 for the 1960s slice,
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and between 1995 and 1999 for the 1990s slice, and
summed up the number of occurrences of each 2-
gram for both corpora. After preprocessing, we ob-
tained well-balanced 60s and 90s corpora containing
around 25 and 28 millions of 2-grams, respectively.

We consider the 60s and 90s to be interesting time
frames for the evaluation, having in mind that a lot
of words underwent semantic change between these
decades due to many significant technological and
social movements. At the same time, the 60s are
close enough so that non-experts should have good
intuitions about semantic change between then and
now, which, in turn, makes it possible to collect ref-
erence judgments from human raters.

3 Measuring semantic change

3.1 Relative frequency

Many previous diachronic studies in corpus linguis-
tics focused on changes of relative frequency of
the words to detect different kinds of phenomena
(Hilpert and Gries, 2009; Mitchel et al., 2010). In-
tuitively, such approach can also be applied to de-
tect semantic change, as one would expect that many
words that are more popular nowadays with respect
to the past (in our case: the 60s) have changed their
meaning or gained an alternative one. Semantic
change could explain a significant growth of the rel-
ative frequency of the word.

Therefore we decided to take as a competing mea-
sure for evaluation the logarithmic ratio between fre-
quency of word occurrence in the 60s and frequency
of word occurrence in the 90s1.

3.2 Distributional similarity

In the distributional semantics approach (see for ex-
ample Turney and Pantel, 2010), the similarity be-
tween words can be quantified by how frequently
they appear within the same context in large cor-
pora. These distributional properties of the words
are described by a vector space model where each
word is associated with its context vector. The way a
context is defined can vary in different applications.
The one we use here is the most common approach

1The logarithmic ratio helps intuition (terms more popular in
the 60s get negative scores, terms more popular in the 90s have
similarly scaled positive scores), but omitting the logarithmic
transform produced similar results in evaluation.

which considers contexts of a word as a set of all
other words with which it co-occurs. In our case we
decided to use 2-grams, that is, only words that oc-
cur right next to the given word are considered as
part of its context. The window of length 2 was cho-
sen for practical reasons given the huge size or the
Google Ngram corpus, but it has been shown to pro-
duce good results in previous studies (e.g. Bullinaria
and Levy, 2007). The words and their context vec-
tors create a so called co-occurrence matrix, where
row elements are target words and column elements
are context terms.

The scores of the constructed co-occurrence ma-
trix are given by local mutual information (LMI)
scores (Evert, 2008) computed on the frequency
counts of corresponding 2-grams2. If words w1 and
w2 occurred C(w1, w2) times together and C(w1)
and C(w2) times overall in corpus then local mutual
information score is defined as follows:

LMI = C(w1, w2) · log2

C(w1, w2)N
C(w1)C(w2)

,

where N is the overall number of 2-gram in the cor-
pus.

Given the words w1, w2 their distributional simi-
larity is then measured as the cosine product of their
context vectors v1,v2: sim(w1, w2) = cos(v1,v2).

We apply this model to measure similarity of a
word occurrences in two corpora of different time
periods in the following way. The set of context el-
ements is fixed and remains the same for both cor-
pora; for each corpus, a context vector for a word is
extracted independently, using counts in this corpus
as discussed above. In this way, each word will have
a 60s vector and a 90s vector, with the same dimen-
sions (context elements), but different co-occurrence
counts. The vectors can be compared by computing
the cosine of their angle. Since the context vectors
are computed in the same vector space, the proce-
dure is completely equivalent to calculating similar-
ity between two different words in the same corpora;
the context vectors can be considered as belong-
ing to one co-occurrence matrix and correspond-
ing to two different row elements word 60s and
word 90s.

2LMI proved to be a good measure for different semantic
tasks, see for example the work of Baroni and Lenci, 2010.
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group examples sim freq
more frequent users 0.29 -0.94

in 90s sleep 0.23 -0.32
disease 0.87 -0.3

card 0.17 -0.1
more frequent dealers 0.16 0.04

in 60s coach 0.25 0.12
energy 0.79 0.14

cent 0.99 1.13

Table 1: Examples illustrating word selection with simi-
larity (sim) and log-frequency (freq) metric values.

We use the described procedure to measure se-
mantic change of a word in two corpora of interest,
and hence between two time periods. High similar-
ity value (close to 1) would suggest that a word has
not undergone semantic change, while obtaining low
similarity (close to 0) should indicate a noticeable
change in the meaning and the use of the word.

4 Experiments

4.1 Distributional space construction

To be able to compute distributional similarity for
the words in the 60s and 90s corpora, we randomly
chose 250,000 mid-frequency words as the context
elements of the vector space. We calculated 60s-to-
90s similarity values for a list of 10,000 randomly
picked mid-frequency words. Among these words,
48.4% had very high similarity values (> 0.8), 50%
average similarity (from 0.2 to 0.8) and only 1.6%
had very low similarity (< 0.2). According to our
prediction, this last group of words would be the
ones that underwent semantic change.

To test such hypothesis in a quantitative way some
reference standard must be available. Since for our
task there was no appropriate database containing
words classified for semantic change, we decided to
create a reference categorization using human judge-
ments.

4.2 Human evaluation

From the list of 10,000 words we chose 100 as a
representative random subset containing words with
different similarities from the whole scale from 0
to 1 and taken from different frequency range, i.e.,
words that became more frequent in 90s (60%) and
words that became less frequent (40%) (see Table

sim-HR freq-HR sim-freq
all words 0.386∗∗ 0.301∗∗ 0.380∗∗

frequent in 90s 0.445∗∗ 0.184 0.278∗

frequent in 60s 0.163 0.310 0.406∗

Table 2: Correlation between similarity (sim), frequency
(freq) and human ranking (HR) values for all words,
words more frequent in 60s and more frequent in 90s.
Values statistically significant for p = 0.01(0.05) in one-
sample t-test are marked with ∗∗(∗).

1 for examples). Human raters were asked to rank
the resulting list according to their intuitions about
change in last 40 years on a 4-point scale (0: no
change; 1: almost no change; 2: somewhat change;
3: changed significantly). We took the average of
judgments as the reference value with which distri-
butional similarity scores were compared. For the
5 participants, the inter-rater agreement, computed
as an average of pair-wise Pearson correlations, was
0.51 (p < 0.01). It shows that the collected judge-
ments were highly correlated and the average judge-
ment can be considered an enough reliable reference
for semantic change measurements evaluation.

5 Results and discussion

To assess the performance of our similarity-based
measure, we computed the correlations between the
values it produced for our list of words and the av-
erage human judgements (Table 2). The Pearson
correlation value obtained was equal to 0.38, which
is reasonably high given 0.51 inter-rater agreement.
The frequency measure had a lower correlation
(0.3), though close to the similarity measure perfor-
mance. Yet, the correlation of 0.38 between the two
measures in question suggests that, even if they per-
form similarly, their predictions could be quite dif-
ferent.

In fact, if we consider separately two groups of
words: the ones whose frequency increased in the
90s (log-freq < 0), that is, the ones that are more
popular nowadays, and those whose frequency in-
stead decreased in the 90s (log-freq > 0), that is,
the ones that were more popular in the 60s, we can
make some interesting observations (see Table 2).
Remarkably, similarity performs better for the words
that are popular nowadays while the frequency-
based measure performs better for the words that
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were popular in the 60s.
We can see the origin of this peculiar asymme-

try in behavior of similarity and frequency measures
in the following phenomenon. As we already men-
tioned, if a word became popular, the reason can be
a new sense it acquired (a lot of technological terms
are of this kind: ‘disk’, ‘address’, etc). The change
in such words, that are characterized by a significant
growth in frequency (log-freq � 0), is detected by
the human judges, as well as by the similarity mea-
sure. However, other cases such as ‘spine’, ‘smok-
ing’ are also characterized by a significant growth
in frequency, but no semantic change was reported
by raters (nor by the similarity measure). If word
frequency instead decreases, intuitively, a change
in word meaning is less probable. These intuitions
together can explain the behavior of the frequency
measure: for the test set as a whole its performance
is quite high, as it captures this asymmetrical dis-
tribution of words that change meanings, despite its
failure to reliably indicate semantic change for in-
dependent words. A strong evidence for this inter-
pretation is also that, if the frequency measure is
made symmetric, that is, equal for the words that
decreased and the ones that increased in frequency,
it dramatically drops in performance, showing a cor-
relation of just 0.04 with human ranking.

Some interesting observation regarding the per-
formance of the similarity measure can be made af-
ter accurate investigation of ‘false-positive’ exam-
ples — the ones that have low similarity but were
ranked as ‘not changed’ by raters — like ‘sleep’
and ‘parent’. It is enough to have a look at their
highest weighted co-occurrences to admit that the
context of their usage has indeed changed (Table
3). These examples show the difference between
the phenomenon of semantic change in linguistics
and the case of context change. It is well known
that the different contexts that distributional seman-
tics catches do not always directly refer to what lin-
guists would consider distinct senses (Reisinger and
Mooney, 2010). Most people would agree that the
word ‘parent’ has the same meaning now as it had
40 years before, still the social context in which it
is used has evidently changed, reflected by the more
frequent ‘single parent family(ies)’ collocate found
in the 90s. The same is true for ‘sleep’, whose usage
context did not change radically, but might have a

‘parent’ ‘sleep’
60s p. company 2643 deep s. 3803

p. education 1905 s. well 1403
p. corporation 1617 cannot s. 1124
p. material 1337 long s. 1102
p. body 1082 sound s. 1101
p. compound 818 dreamless s. 844
common p. 816 much s. 770

90s p. families 17710 REM s. 20150
single p. 10724 s. apnea 14768
p. company 8367 deep s. 8482
p. education 5884 s. disorders 8427
p. training 5847 s. deprivation 6108
p. involvement 5591 s. disturbances 5973
p. family 5042 s. disturbance 5251

Table 3: Examples of the top weighted 2-grams contain-
ing ‘sleep’ and ‘parent’.

more prominent negative orientation.
The distributional similarity measure captures

therefore two kinds of phenomena: the semantic
change in its linguistic definition, that is, change of
meaning or acquiring a new sense (e.g., ‘virus’, ‘vir-
tual’), but also the change in the main context in
which the word is used. The latter, in turn, can be
an important preliminary evidence of the onset of
meaning change in its traditional sense, according
to recent studies on language change (Traugott and
Dasher, 2002). Moreover, context changes have cul-
tural and social origins, and therefore the similarity
measure can also be used for collecting evidence of
interest to the humanities and social sciences.

6 Conclusions

In this paper we introduced and evaluated a
novel automatic approach for measuring semantic
change with a distributional similarity model. The
similarity-based measure produces good results, ob-
taining high correlation with human judgements on
test data. The study also suggests that the method
can be suitable to detect both “proper” semantic
change of words, and cases of major diachronic con-
text change. Therefore, it can be useful for historical
linguistic studies as well as for NLP tasks such as
novel sense detection. Some interesting phenomena
related to changes in relative frequency were also
discovered, and will be the object of further investi-
gations.
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