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Abstract

Word Sense Induction (WSI) is an unsuper-
vised learning approach to discovering the dif-
ferent senses of a word from its contextual
uses. A core challenge to WSI approaches
is distinguishing between related and possibly
similar senses of a word. Current WSI evalu-
ation techniques have yet to analyze the spe-
cific impact of similarity on accuracy. There-
fore, we present a new WSI evaluation that
guantifies the relationship between the relat-
edness of a word’s senses and the ability of a
WSI algorithm to distinguish between them.
Furthermore, we perform an analysis on sense
confusions in SemEval-2 WSI task according
to sense similarity. Both analyses for a rep-
resentative selection of clustering-based WSI
approaches reveals that performance is most
sensitive to the clustering algorithm and not
the lexical features used.
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confounded by the relationships between a word’s
senses. While homonyms such as “bass” or “bank”
have unrelated senses, many polysemous words
have interrelated senses, with lexicographers of-
ten in disagreement for the number of fine-grained
senses (Palmer et al., 2007). For example, the most
frequent four senses for “law” according to Word-
Net, shown in Table 1, are similar in several aspects
and could be ascribed interchangeably in some con-
texts. The difficulty of automatically distinguishing
two senses is proportional to their similarity because
of the increasing likelihood of the two senses shar-
ing similar contexts.

While the issue distinguishing between related
senses is a recognized issue for Word Sense Dis-
ambiguation (Chugur et al., 2002; McCarthy, 2006),
which uses supervised training to learn sense dis-
tinctions, measuring the impact of sense related-
ness on the harder problem of WSI remains unad-
dressed. The recent SemEval WSI tasks (Agirre and
Soroa, 2007; Manandhar and Klapaftis, 2009) have

Many words in a language have several distingbrovided a standard framework for evaluating WSI

meanings. For example, “earth” may refer to thesystems, with a controlled training corpus designed
planet Earth, dirt, or solid ground, depending on th& limit sense ambiguity in the example contexts.
context. The goal of Word Sense Induction (WSI) idHowever, given the potential relatedness of a word’s
to automatically discover the different senses by exsenses, we view it necessary to consider how WSI
amining how a word is used. This unsupervised dignethods perform relative to the degree of contextual
covery process produces a sense inventory where tambiguity. Our goal is therefore to quantify the sim-
number of senses is corpus-driven and where sengkgity at which a WSI approach is unable to distin-
may reflect additional usages not present in a prguish between two senses, which reflects the sense
defined sense inventory, such as those for medicimgganularity at which the approach operates.
or law (Dorow and Widdows, 2003). Furthermore, We propose two new evaluations. The first, de-
these discovered senses can be used to automatribed in Section 4, uses a similarity-based pseudo-
cally expand lexical resources such as WordNet avord discrimination task to measure the discrimi-
FrameNet (Klapaftis and Manandhar, 2010). nation capability for related senses along a graded
Discovering the multiple senses is frequentlyscale of similarity. As a second evaluation, in
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the collection of rules imposed by authority of Pedersen and Kulkarni (2006) and use the Gap
2 legal document setting forth rules governing a particular Statistic (Tibshirani et al., 2000) to automatically de-
2 kind of activity . . termine the number of clusters.

a rule or body of rules of conduct inherent in human o )

nature and essential to or binding upon human society 1€ Gap Statistic runs K-Means repeatedly with
4 ageneralization that describes recurring facts or eventsdifferent values of, ranging from 1 to some sen-

in nature sible maximum. The Gap Statistic first induces a
data model from the feature distributions of the ini-
tial dataset and then for eaéh, creates a set of arti-
ficial datasets by sampling from the derived model.
K is increased until the “gap”, i.e. the distance be-
fween the objective function of the original dataset

Section 5 we perform an error analysis using th L . g
SemEval-2010 WS task, examining sense confu’i—nd the average objective function of the artificial

sion relative to the sense similarities. For both eval fatasets, is larger then the gap for the Pr,e‘,"ﬂ’s
ations, we examine twenty different WSI clustering-value' We calculate the gap using 10 artificial data
based models through combining five feature type%etS sampled from the model.

and four clustering algorithms. These models wer8pectral Clustering Spectral Clustering inter-
selected to be representative of a wide class of exigirets a dataset's elements as vertices in graph with
ing algorithms as a way of influence future algorithedges based on their similarity (Ng et al., 2001).
mic directions based on the current model’s perfor€lusters are found by identifying the graph parti-
mance. tion that produces the minimum conductance be-
tween every partition. This can be thought of as
trying to find small islands that are connected by as
Frequently, WSI is treated as an unsupervised clugew bridges as possible. We refer the reader to (von
tering problem: The contexts in which a word apLuxburg, 2007) for further technical details. To our
pears are clustered in order to discover its senskaowledge, only He et al. (2010) have applied spec-
(Navigli, 2009). We selected four diverse clustertral clustering to WSI, which was performed on a
ing algorithms for evaluation based on three crite€hinese dataset. However, the algorithm used by He
ria: (1) the ability to automatically determine the fi-et al. requires the number of clusters to be specified.
nal number of clusters given an upper bound or a We instead use a hybrid spectral clustering algo-
set of parameters, (2) an efficient run time, and (3)thm, first applied to information retrieval (Cheng
high quality results in either WSI or other fields re-et al., 2006), that automatically selects the number
lated to text analysis. The first criteria is essentiabf clusters. This algorithm recursively partitions a
for WSI; the final number of senses must be derivedataset in half by finding the cut that produces the
without supervision in order to reflect the true numminimum conductance, which builds a tree of par-
ber of senses present in the corpus. titions. This split is done until either every data
eooint is in its own partition or a maximum number of

similarity between two data points. Clusters grovxP a;:'tsgssgri?:ngi Igg‘rtlg(r)triltisoirse tt)giz ddgzzrzlhcgltlgr
by assigning data points to the cluster with the mogf ¢r9ed: 9 b '

similar centroid. After every data point is assignedmg criteria. We use the relaxed correlation criteria
: \gg:heng et al., 2006), which tries to maximize both

each cluster’s centroid is recalculated to be the a T . L
) . inter cluster similarity and intra cluster dissimilarity.
erage of all the data points assigned to the clust . . .

: . : he final cluttering generated is then the best tree-
This process repeats until the centroids converge Fos ecting partition of the original data set
a fixed point. We choose initial seeds at random ang P gp g '
use the H2 criterion function (Zhao and KarypisClustering By Committee Pantel and Lin (2002)
2001). Although K-Means is efficient and widelyfound that K-Means clustering folded all features
used, it requires the number of clusters to be spefound in a cluster into the centroid, many of which

ified a priori. Therefore, we follow the WSI model are not useful for identifying the desired word sense.

Table 1: Definitions for the top four senses of “law”
according to WordNet

2 Clustering Contextsto Discover Senses

K-Means K-Means builds clusters based on th
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To overcome this, they proposed a novel clustedata point becomes the centroid of a new cluster.
ing algorithm for WSI, Clustering by Committee OnceC reaches a threshold, based on an estimate of
(CBC), which includes only the most distinguishingthe number of data points, or the overall K-Means
features for a cluster into the centroid. clustering cost reaches some limit, the centroids are
For each context, an initial set of “committees’treated as new data points and re-clustered, with the
is formed by clustering the most similar contexts t@oal of merging some centroids. We follow (Jur-
each context, with the resulting committees ranke@iens and Stevens, 2010a) and cluster the final cen-
to prefer larger, highly similar clusters. The finaltroids with Hierarchical Agglomerative Clustering,
set of committees (sense clusters) are selected by with the average link criteria as suggested by (Ped-
cursively identifying the highest ranking committeegrsen and Bruce, 1997).
that are dissimilar to each other and then repeating \ odeling Context
the process for any contexts not similar to existin
committees. In essence, CBC aims to find the clu

ters that are similar to the largest set of contextd€Xt models that represent the types of lexical fea-

while keeping clusters dissimilar from each otheriUres used by the majority of WSI approaches.
CBC'’s recursion ensures that contexts dissimilar tG@o-Occurrence Contexts formed from word co-
the large committees are still grouped into their owccurrence are the most common in WSI algorithms.
smaller committees, which enables the discovery @for each occurrence of a word, those words within
infrequent senses with distinct contexts. We use & certain range are counted as features. Prior work
hard sense assignment for each context, i.e., a camas used a variety of context sizes, e.g. words in
text is labeled with only one sense according to ththe same sentence (Bordag, 2006), in nearby lexi-
most similar cluster. cal positions (Gauch and Futrelle, 1993), or within a

) ] ) paragraph-sized context window (Pedersen, 2010).
Streaming K-Means  As WSI moves into induc-  \ye consider two co-occurrence context models:
ing senses from Web-scale amounts of data, exist-5_\word and a 25-word window. We note that in
ing clustering algorithms that keep all contexts iy oo\ rrence-based word space algorithms, smaller
memory become impractical. Jurgens and Stevengiext sizes have shown to better capture paradag-
(2010a) proposed an on-line hybrid clustering S aic similarity, while larger sizes capture semantic

lution using on-line K-Means and Hierarchical Ag-,qqqciativity (Peirsman et al., 2008; Utsumi, 2010).
glomerative Clustering, which automatically de-

cided the number of clusters without retaining alPependency-Relations Dependency parsing cre-
the contexts. To the best of our knowledge, theirdl€S & syntax tree where words are directly linked
is the only work using an on-line approach. weaccording to their relation. These links refine co-
extend this work by applying a more theoreticallyoccurrence based contexts by utilizing syntactic in-
sound online K-Means algorithm, called Streaminglications of how words are related. Dependency
K-Means (Braverman et al., 2011), to WSI. We us@arsed features have proven highly effective for
Streaming K-Means to conduct a direct algorithmi¢vord representations in many NLP applications,
comparison with K-Means in the hopes that onlin€-9- (Padd and Lapata, 2007; Baroni et al., 2010).
approaches can be made just as effective as off-lif¥¢ follow Pantel and Lin (2002) and Dorow and
approaches. Widdows (2003) using the sentence as contexts and
Streaming K-Means processes each data poiﬁp words with a dependency path of length 3 or less,

only once, thus reducing the memory overhead grivith the last word and its relation as a feature. We
matically. Instead of recording each data point, pote that recently Kern et al. (2010) achieved good

immediately assigns each data point to a cluster atWSI performancg with only a small, manually-tuned
maintainskK - C' clusters. C' varies as the algorithm subset of all relations as context.

runs, initially being set to 0. When assigning a dat&/ord Ordering Word ordering can provide a
point, it is only assigned to an existing cluster whemild form of syntactic information (Jones et al.,
their similar is above some threshold, otherwise th2006; Sahlgren et al., 2008). While other syntac-

g:_or each clustering algorithm, we consider five con-
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tic features may provide significantly more informa- festival laws

tion, word ordering is efficient to compute and pro-  gffices 0.13660 interests 0.18289

vides an alternative source of syntactic information play 0.13751 politics 0.20440

for knowledge-lean systems or for languages where convention %22%%%‘; govelmr_ne”ts 823%?
. . tournament . regu ations .

NLP tools are not readily available. concerts 0.48348 legislation 0.56112

Because we treat word ordering as a syntactic fea-
ture, we limit the context to words occurring in theTaple 2: Example confounders for “festival” and
same sentence. A feature is the combination of ‘gqws” and their similarities
co-occurring word and its relative position, i.e. the

same word in different positions is treated as two
separate features. rafsky (2010) on designing pseudo-words, pseudo-

_ words were created from words with the same part
Parts of Speech Part of speech tagging can pro-of speech and equal frequency in the training cor-

vide a preliminary coarse-grained sense disambigugys, we selected nouns occurring more than 5,000
tion of a word's contextual fea_tures, where a worgimes in a 2009 Wikipedia snapshot and then drew

may have as many senses as it does part“s of SP??&*@OO contexts for each. The snapshot was tagged
For example, “conS|der”an occurrence of ho‘l‘Jse IWith the Stanford Part of Speech Tagger (Toutanova
the context of “address” as a noun and verb: “l wenkt 1. 2003) and parsed with the Malt Parser (Nivre

to his house address,” and “I heard the legislator ags 5. 2006).

dress the house.” Labeling "address” with its part 1 o\ a1uate the impact of sense similarity, pseudo-

of speech provides for more semantic information ;.4s were created from word pairs with a broad

on“its me?ning, which further constrains the Sensgnqe of lexical similarities. We selected lexical
of *house.” Prior work (Pedersen and Bruce, 1997)yiarity as an approximation of sense similarity

has suggested that this information can improve Pef order to model the hypothesis that similar senses

formance, but to our knowledge, the impact of PO,y appear in similar contexts. Similarity scores
features has not been evaluated in isolation. were calculated using cosine similarity on contex-
Each context is formed from the containing senga| distributions built from a sliding=2 word win-
tence; a feature is a combination of each word and itgyw over the Wikipedia corpus. Table 2 highlights
part of speech, e.g., “board-NOUN" is distinct fromgeyeral example confounders and their similarities
board-VERB. with the base term. In total, we generated 5000 term-
4 WSl Performance on Related Senses confounder pairs from 98 base terms, with a mean of
51 confounders per term.
The proposed methodology measures the ability of & Al clustering parameters were chosen using the
WSl approach to distinguish between related sensgfefault values provided in the original papers. K-
However, generating a large corpus with manumeans and Streaming K-Means were both set with
ally labeled sense assignments and sense similargymaximum of 15 clusters, with the final number of

judgements is prohibitively expensive. Thereforeglysters being determined by the data itself.
we employ a pseudo-word discrimination task where

a base word and a second word, dsnfoundey 41 Evauation
are replaced throughout the corpus with a pseud@e pseudo-word’s senses are induced from a train-
word. The objective is then to determine which ofing segment using each feature and clustering com-
the words was originally present given the contexpination. Given that both words making up the
of an occurrence of the pseudo-word. Due to ngiseudo-word may be polysemous, more than two
requiring manual annotation, this type of task wasenses may be induced. Each sense cluster is la-
initially proposed as a substitute for word sense disseled according to which of the original words was
ambiguation (Schutze, 1992; Gale et al., 1992) angtesent in the majority of its contexts. For testing,
for selectional preferences (Clark and Weir, 2002).each instance of the pseudo-word in a previously
Following the suggestions of Chambers and Juinseen context is assigned the label of the cluster
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Figure 1: Pseudo-word discrimination performance

to which it is most similar. We perform five-fold beyond 0. Performance at high similarity becomes
cross-validation, using 4,000 contexts for trainingnore variable for all algorithms and features.
and 1,000 contexts for testing. Discrimination ac- . , .
. ) For each clustering algorithm, we see dramati-
curacy is reported as the average of all five runs, : .
Cﬁllly different trends. Streaming K-Means performs

Since an equal number of contexts are used for eac . .
well with co-occurrence based features and it does

term, the base line accuracy of a most frequent sense .
. poorly when either contexts have too many features,
model is 50% for each pseudo-word. : )
as in the 25 Window Co-Occurrence feature space,
4.2 Resultsand Discussion or the feature space overall is too sparse, as in the

Figure 1 shows the discrimination accuracy relativg arts of Speech and Ordering feature spaces.

to the similarity of a base pair and confounder, for K-Means with the gap statistic converges to the
each feature and clustering algorithm combinatiormost frequent sense baseline for nearly every con-
Similarity values were binned at the 0.01 level withfounder pair. We note that this behavior significantly
a mean of 39.0 scores per bin (median=11). Badiffers from that seen in (Pedersen and Kulkarni,
cause most word pairs are not related, the distr2006), which clustered second-order co-occurrence
bution of similarity values is biased towards lowelvectors rather than the first-order features that we
values. Therefore, we omit similarity ranges abovese. Our analysis showed that the H2 criterion was
0.5, as too few confounders occurred in that range t@sponsible for this behavior. A subsequent analy-
draw reliable conclusions. The standard error (nais revealed that K-Means still converged to MFS
shown) is< 1 for all measurements. for the E1, E2, |11, and 12 criterion functions (Zhao
The general trends suggests that the clustering @nd Karypis, 2001) as well as when the number of
gorithm impacts the sense discriminatory ability faartificial datasets was increased up to 100. How-
more than the lexical feature choice. Furthermoregver, additional tests using the same features on the
sense similarity affects most clustering algorithmsSemEval-1 WSI task did not converge to MFS. Fur-
with most systems seeing a noticeable performandier investigation is needed to identify the cause of
drop when pseudo-word similarity is increased justonvergence and what types of data are appropriate
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the Gap Statistic. The induced senses are then evaluated against the
Clustering by Committee performs well on mostgold standard labels OntoNotes (Hovy et al., 2006)
models, but significantly worse on dependency resenses labels for the test corpus. For our evaluation,
lation features. A subsequent analysis showed thake use both the two contrasting unsupervised mea-
CBC generates significantly more clusters than aflures, the paired FScore (Artiles et al., 2009) and the
other models. For the POS, 5 word window, and 2¥-Measure (Rosenberg and Hirschberg, 2007), and
window Co-Occurrence feature spaces, CBC genes-supervised measure. For each metric, we use the
ated between 205 and 247 clusters on average, @aluation framework provided by the organizers of
word. With the order feature space, CBC generate@emEval-2 Task 14.
1087 clusters per word. However, when paired with The V-Measure rates the homogeneity and com-
dependency relation features, the number of clustepdeteness of a clustering solution. Solutions that
drops to only 78 per word. have word clusters formed from one gold-standard
Spectral Clustering is most affected by senseense are homogeneous; completeness measures the
similarity, performing competitively for unrelated degree to which a gold-standard sense’s instances
senses but dropping significantly when words beare assigned to a single cluster. The paired FScore
come even slightly similar. This performance drogneasures two types of overlap of a solution and the
is seen across all features. Performance is therefageld standard in cluster assignments for all in pair-
low, with the exception of dependency relations. wise combination of instances. This score tends
Overall, these results suggest that sense relaté@-penalize solutions with many small clusters and
ness is a important factor in WSI performance anbighly heterogeneous clusters (Manandhar and Kla-
its impact should be considered in future WSI evalpaftis, 2009).
uations. A potential next step is to vary the pro- The supervised evaluation measures the recall
portion of contexts from the confounder. The curwhen building a Word Sense Disambiguation classi-
rent method intentionally uses a uniform distribufier from the induced senses. The WSI system labels
tion to avoid potential bias; however, word sense dighe entire corpus, which is then divided into train-
tributions are rarely equal, and a varied distributioing and test portions. The sense labels in the train-
would more closely model real world distributions.ing portion are used to construct a mapping from in-
Similarly, the current method tested only two sensegluced senses to the gold standard OntoNotes labels.
whereas an n-way disambiguation between multipl€his mapping is then evaluated for the induced la-
confounders should also provide further insight intdels in the test. We report the scores for the 80%
a WSI approach’s discriminatory abilities. training and 20% testing scenario.

5 Sense Confusion in SemEval-2 Task 14 5.1 Evaluation

As a second experiment, we analyze incorrect sen¥¥e expect that if sense similarity is a factor in sense
assignments on SemEval-2 Task 14 (Manandhar g@nfusion, the probability of confusion will increase
al., 2010) to measure whether sense-relatedness With sense similarity. Therefore, we measure the
ases which sense was incorrectly selected. For wgfobability of labeling an instance with the incorrect
systems, a similarity bias would indicate that similafPntoNotes sense relative to the sense similarity with

senses are more likely to be incorrectly identified a'€ gold standard sense. _
a single sense. In order to calculate the incorrect assignments,

We summarize Task 14 as follows. Systems arf@e induced senses must be mapped to OntoNotes
provided with an unlabeled training corpus conS€nses. Each induced sensg,is mapped to the
sisting of 879,807 multi-sentence contexts for 10§NtoNotes sense that occurs most frequently among
polysemous words, comprised of 50 nouns and gie instances in the test corpus that are assigned in-
verbs. Systems induce sense representations for tgrced sense;. \We note that this labeling process
get words from the training corpus and then usé Only an approximate solution to assigning gold
those representations to label the senses of the t§f@ndard labels to induced senses. A more robust

get words in unseen contexts from a test corpus. http: /1w cs. york. ac. uk/ semeval 2010_WSl /

118



c 350 = 160 x
k) Actual (avg) —+— S i Actual (avg) —+—
S 300 Baseline (avg) - g 140} Baseline (avg) - 1
c Actual (max) —»— c Actual (max) —»—
§ 250 Baseline (max) -&- § 1207 Baseline (max) &
@ @ 100 |
% 200 %
80
L 150 2
5 : S 60}
> > :
& 100 py [g) .
g 5
g AW ZEA x g 20 /a\
i o L A - s "N AN i oL T N
005 01 015 02 025 0.3 005 01 015 0.2 025 0.3
Ontonote Sense Similarity Ontonote Sense Similarity
(a) Streaming K-means (b) CBC
350 T T v r v v 400 v r v v
_5 &. Actual (avg) —— _5 Actual (avg) —+—
2 300 H Baseline (avg) - g 350 ¢t WE‘ Baseline (avg) - 1
c Actual (max) —»— c A Actual (max) —»—
8 250 Baseline (max) - g 3800 : Baseline (max) -
@ @ 250 [ i
2 200 2
200 | j
9 150 W
g g 150  ;
© 100 A 9 A
OC:§ ' § 100 fy
& 50 3 & 50 )
9] ELN, ] X.. /-,
i o W - “5 N T o L : .- N :
0.05 01 015 0.2 025 03 005 01 015 02 025 03
Ontonote Sense Similarity Ontonote Sense Similarity
(c) Spectral Clustering (d) K-means

Figure 2: The error frequency distributions for confusihg torrect sense with another sense of the given
similarity when using a 5-word co-occurrence window as erthtDashed lines indicate the null models.

labeling could take into account the distribution ofthe sense mapping provided by the CoNLL shared
gold standard senses labels in the corpus from whitask® The sense similarity for two OntoNotes
the senses are induced; however, such labels are sehses is computed using one of two methods:
available in the Task 14 training corpus. 1

For each incorrect sense assignment, we measim = Z JON (wn', wn’),

sure the similarity of the confused sense to the [SH157 wnieS! wni€S?

correct sense. To our knowledge, no work has (1)
been done on calculating sense similarity within the®’ , _
OntoNotes sense hierarchyCherefore, we approxi- sim = argmax JCON(wn',wn’), (2)

.. . . . ic Sl jieS2
mate OntoNotes sense similarity by using sense sim- wniesTwnIe

ilarity in the WordNet ontology, on which has manywhere JCN indicates the Jiang-Conrath similar-
similarity measures have been defined. Followingy of two WordNet senses, calculated using Word-
Budanitsky and Hirst (2006), we estimate the WordNet::Similarity (Pedersen et al., 2004). Eq. 1 com-
Net sense similarity using the method proposed hyutes similarity as the average similarity of all pair-

Jiang and Conrath (1997). wise WordNet sense combinations, while Eq. 2 uses
Each OntoNotes sensé is mapped to a set of the highest similarity. The resulting OntoNote sense
WordNet 3.0 sense§’ = {wny,...,wn,} using similarities range from 0 to 1, with 1 being maxi-

— o mally similar. We excluded 10 words from the test
We suspect that this is in part because a word’s OntoNotes =~

senses have been designed to minimize sense confusion. Shttp://conl 1. bbn. conf i ndex. php/ dat a. ht
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Context Feature Clustering V-Measure F-Score Recall #Clusters Purity GoF p-Value

Streaming 6.7 55.5 54.8 4.74 0.103 <p.07e-37
Spectral 10.8 39.2 54.3 8.41 0.194 <pl.11le-25
5-Word Co-Occurrence  ~ g 23.9 8.2 395 39.7 0.665 0.916
K-Means 2.5 61.8 55.6 1.68 0.020 < 1.20e-37
Streaming 2.6 61.7 55.5 1.7 0.020 <p1.20e-37
Spectral 5.0 48.6 55.9 3.3 0.083 <p4.36e-32
25-Word Co-Occurrence  ~- g 21.3 116 450 32.2 0.561 <0.011
K-Means 2.5 61.8 55.6 1.68 0.020 p< 1.20e-37
Streaming 3.0 61.5 55.6 1.9 0.022 p< 7.33e-38
Dependency Relations Spectral 8.5 46.8 55.3 5.9 0.134 <p5.45e-14
P y CBC 12.9 31.3 52.4 11.4 0.259 <4.07e-12
K-Means 2.5 61.8 55.6 1.6 0.020 p< 1.20e-37
Streaming 10.8 43.1 54.2 10.8 0.300 <pt.46e-24
Spectral 12.2 324 53.7 10.0 0.26 <p3.27e-20
Word Order CBC 27.2 118 303 549 0857 p<0.999
K-Means 2.5 61.8 55.6 1.6 0.020 p< 1.20e-37
Streaming 6.6 53.0 545 4.7 0.117 <pl1.06e-39
Spectral 10.9 394 53.7 8.3 0.201 <p2.38e-13
Parts of Speech CBC 23.8 08.0  40.1 39.7 0.678 pl.04e-2
K-Means 2.5 61.8 55.6 1.6 0.020 p< 1.20e-37
SemEval-2 Most Frequent Sense 0.0 63.4 58.6 1.0 0.0 < 4@44e-23
Best SemEval-2 FScore 0.0 63.3 58.6 1.0 0.0 < p.893e-23
Best SemEval-2 VMeasure 16.2 26.7 58.3 10.7 0.367 < p956e-14
Best SemEval-2 Supervised Recall 15.7 49.7 62.4 11.5 0.187< 8910e-19

Table 3: Unsupervised and Supervised scores on the Ser@B1AIWSI Task for each feature and clustering
models, with reference scores for the top performing systiemeach evaluation shown below.

set that did not have mappings from OntoNotes tthe null model, the incorrect sense for each instance
WordNet 3.0 senses, and additional 23 words th@t selected with uniform probability from the avail-
only had two senses, which prevented testing faable senses. This behavior produces a distribution
a similarity bias. The remaining 67 words yieldedwith no similarity bias. The cumulative error dis-
4,097 test instances for evaluation. tribution for the null model is not uniform due to
Each instance of the test corpus was tested féRultiple sense pairings having the same similetity.
sense confusion, recording the similarity of the inT0 quantify the difference between a system’s error
correctly assigned sense and the gold standard ser@étribution and corresponding null model, we cal-
The resulting incorrect assignments are transformegilate the G-test as a measure of Goodness of Fit
into an error distribution according by accumulatindGoF). The resulting p-values reflect the probability
error counts into similarity bins where each bin has 8f observing the system’s error distribution if there
range of 0.02. We analyze the WSI systems definéias no bias from sense-similarity.
in sectio_n _4 as W_eII as the results of three sy;tem§2 Results and Discussion
that participated in Task 14 and scored the highest

on the paired FScore, V-measure, or Supervised R compare the error analysis against the evalua-
call evaluations. tion measures of Task 14. Table 3 displays the eval-

To quantify the impact, we compare each system “Verb senses often have a JCN similarity of 0 due to hav-

error distribution against a null model over the set 0f,g no shared parent within the WordNet verb sense hierarchy
incorrect test instances missed by that system. lwhich results in high frequency distribution around 0.

120



uation measures. We also report the average nurf8emEval-2 evaluation: the performance on the V-
ber of clusters per word, the cluster purity, and thdeasure is proportional to the number of induced
p-value when using Eq. 2 to measure sense similasense clusters, while the paired FScore is inversely
ity. Figure 2 visualizes the error distributions for theproportional. But what is surprising is that models
four clustering algorithms on 5-word co-occurrencavhich perform well against the V-Measure also ex-
features. The distributions in Figure 2 are represetibit a smaller sense similarity bias, suggesting that
tative of those of the other context models, which w&€BC and similar clustering methods are suitable for
omit due to space. Each plot reflects the frequengituations where competing senses of a word have a
at which a sense with the specified similarity wasigh degree of overlap.
confused for the correct sense. As a final comparison, we also computed the
The low p-values in Table 3 indicate a significantsense bias for the top 3 SemEval systems under each
deviation from the null model. Examining the shapeaneasure. The best of these models are listed in Table
of the error distribution in Figure 2 reveals a no-3. We did not find any consistent trends between the
ticeable skew towards higher similarity when an inV-Measure, purity, and p-value among these mod-
correct sense assignment is made. This distributials. The top F-Scoring models all used either a first
skew is also consistent for both similarity measuresr second order co-occurrence feature space similar
Comparing the Task 14 results in Table 3 to th¢o ours (Kern et al., 2010; Pedersen, 2010), whereas
sense confusion trends in in Figure 2 highlights athe top supervised score was achieved by a graph-
interesting pattern among the various models: as thmased system (Klapaftis and Manandhar, 2008).
numt_)er_of i_nduced sense cIL_Jsters increases, the 8™ Future Work and Conclusion
ror distribution better approximates the null model. _
Specifically, the GoF for all models was well corre-Ve presented a two evaluation for WSI approaches
lated with cluster purity£=0.66), and the number of @nd €xamined the performance of a wide range of
clusters =0.76). CBC generated the highest r]umalgorltr_lms. The results raise a potential issue .for
ber of clusters and has a sense confusion distributiGiStering-based WSI approaches: sense discrimi-
that closely matches the null model, indicating tha@tion degrades notably as the sense relatedness in-
it is less affected by sense similarity. In comparicreéases. We highlight three potential avenues for
son, all of the Streaming K-Means models, whicHuture research. First, this methodology should be

have the fewest clusters, differ noticeably from th@Pplied to additional WSI models, such as graph-

null model. Spectral Clustering, which also generPased (Klapaftis and Manandhar, 2008; Navigli and

ates fewer clusters than CBC, has an observed contisafulli, 2010) and probabilistic models (Dinu and
fusion rate that differs from the baseline. K-Meand-@pata, 2010; Elshamy et al., 2010). Second, we
again reduces to the MFS baseline. plan to extend the analysis to different sense dis-
When comparing along the feature sets, we sddPutions, varying number of senses, and for hu-
that on average Word Order features generate tHen annotated sense similarity data. Third, this
highest V-Measure scores, highest purity, and higtvaluation makes the simplifying assumption of one
est p-values for Streaming K-Means and CBC. Thi§€NS€ per instance; however, Erk et al. (2009) note
result correlates well with the average number ofat the relations between senses may cause a single
features seen per context: Word Order contexts us¥prd instance to evoke multiple senses within the
0.03% of the feature space while contexts in othefaMe context. Therefore, a future experiment should
feature spaces used between 0.07% and 0.129% G@nsider how WSI systems might address learning
the feature space, suggesting that the SemEval m&&Nses given the presence of multiple, similar senses
sures are determined in part by feature space def®Y @ single instance. _
sity. Similarly, 25-word co-occurrence features had All models, associated data sets, testing frame-
the highest percentage of features used per conte¥0rk. and scores have been released as a part of the
0.12%, and generated the lowest V-Measure, purigpen-source S-Space Package (Jurgens and Stevens,

5
score, and p-value for 3 clustering models. 010b):

These scores Support another knOWn trend in the 5htt p: // code. googl e. cont p/ ai r head- r esear ch/
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