
Proceedings of the 6th Workshop on Statistical Machine Translation, pages 470–477,
Edinburgh, Scotland, UK, July 30–31, 2011. c©2011 Association for Computational Linguistics

Spell Checking Techniques for Replacement of Unknown Words and Data
Cleaning for Haitian Creole SMS Translation

Sara Stymne
Department of Computer and Information Science

Linköping University, Sweden
sara.stymne@liu.se

Abstract

We report results on translation of SMS mes-
sages from Haitian Creole to English. We
show improvements by applying spell check-
ing techniques to unknown words and creating
a lattice with the best known spelling equiva-
lents. We also used a small cleaned corpus to
train a cleaning model that we applied to the
noisy corpora.

1 Introduction

In this paper we report results on the WMT 2011
featured shared task on translation of SMS messages
from Haitian Creole into English, which featured a
number of challenges. The in-domain data avail-
able is small and noisy, with a lot of non-standard
language. Furthermore, Haitian Creole is a low re-
source language, for which there are few language
technology tools and corpora available.

Our main focus has been to make the best pos-
sible use of the available training data through dif-
ferent ways of cleaning the data, and by replacing
unknown words in the test data by plausible spelling
equivalents. We have also investigated effects of dif-
ferent ways to combine the available data in transla-
tion and language models.

2 Baseline system

We performed all our experiments using a stan-
dard phrase-based statistical machine translation
(PBSMT) system, trained using the Moses toolkit
(Koehn et al., 2007), with SRILM (Stolcke, 2002)
and KenLM (Heafield, 2011) for language model-
ing, and GIZA++ (Och and Ney, 2003) for word
alignment. We also used a lexicalized reordering

model (Koehn et al., 2005). We optimized each
system separately using minimum error rate train-
ing (Och, 2003). The development and devtest data
were available in two versions, as raw, noisy data,
and in a clean version, where the raw data had been
cleaned by human post-editors.

The different subcorpora had different tokeniza-
tions and casing conventions. We normalized punc-
tuation by applying a tokenizer that separated most
punctuation marks into separate tokens, excluding
apostrophes that were suspected to belong to con-
tracted words or Haitian short forms, periods for ab-
breviations, and periods in URLs. There were often
many consecutive punctuation marks; these were re-
placed by only the first of the punctuation marks.
In the English translations of the SMS data there
were often translator’s notes at the end of the transla-
tions. These were removed when introduced by two
standard formulations: Additional Notes or transla-
tor’s note/interpretation. In addition the translation
marker The SMS [. . .] were removed.

Case information was inconsistent, especially for
SMS data, and for this reason we lower-cased all
Haitian source data. On the English target side
we wanted to use true-cased data, since we wanted
case distinctions in the translation output. We based
the true-casing on Koehn and Haddow (2009), who
changed the case of the first word in each sentence,
to the most common case variant of that word in the
corpus when it is not sentence initial. In the noisy
SMS data, though, there were many sentences with
all capital letters that would influence this truecasing
method negatively. To address this, we modified the
algorithm to exclude sentences with more than 40%
capital letters when calculating corpus statistics, and
to lowercase all unknown capitalized words.

470

Data Sentences Words TM LM Reo TC
In-domain SMS data 17,192 35k SMS SMS yes yes
Medical domain 1,619 10k other other – –
Newswire domain 13,517 30k other other – yes
Glossary 35,728 85k other other – –
Wikipedia parallel sentence 8,476 90k other other – yes
Wikipedia named entities 10,499 25k other other – –
Haitisurf dictionary 1,687 3k other other – yes
Krengle sentences 658 3k other other – yes
The Bible 30,715 850k bible bible – yes

Table 1: Corpora used for training translation models (TM), language models (LM), lexicalized reordering model
(Reo), and true-casing model (TC). All corpora are bilingual English–Haitian Creole.

All translation results are reported for the devtest
corpus, on truecased data. We report results on
three metrics, Bleu (Papineni et al., 2002), NIST
(Doddington, 2002), and Meteor optimized on flu-
ency/adequacy (Lavie and Agarwal, 2007).

3 Corpus Usage

The corpora available for the task was a small
bilingual in-domain corpus of SMT data, a limited
amount of bilingual out-of-domain corpora, such
as dictionaries and the Bible. This is different to
the common situation of domain adaptation, as in
the standard WMT shared tasks, where there is a
small bilingual in-domain corpus, a larger in-domain
monolingual corpus, and possibly several out-of-
domain corpora that can be both monolingual and
bilingual. In such a scenario it is often useful to
use all available training data for both translation
and language models, possibly in separate models
(Koehn and Schroeder, 2007).

Table 1 summarizes how we used the available
corpora, in our different models. For translation
and language models we separated the bilingual data
into three parts, the SMS data, the Bible, and every-
thing else. For our lexicalized reordering model we
only used SMS data, since we believe word order
there is likely to differ from the other corpora. For
the English true-casing model we concatenated the
English side of all bilingual corpora that were not
lower-cased.

Table 2 shows the results of the different model
combinations on the clean devtest data. When we
used only the SMS data in the translation model,
the scores changed only slightly regardless of which
combinations of language models we used. Using

two translation models for the SMS data and the
other bilingual data overall gave better results than
when only using SMS data for the translation model.
With double translation models it was best only to
use the SMS data in the language model. Including
the Bible data had a minor impact. Based on these
experiments we will use all available training data
in two translation models, one for SMS and one for
everything else, but only use SMS data in one lan-
guage model, which corresponds to the line marked
in bold in Table 2, and which we will call the dual
system.

We did not perform model combination experi-
ments for the raw input data, since we believed the
pattern would be similar as for the clean data. The
results for the raw devtest as input are considerably
lower than for the clean data. Using the best model
combination, we got a Bleu score of only 26.25,
which can be compared to 29.90 using the clean
data.

4 Data Cleaning Model

While the training data is noisy, we had access to
cleaned versions of dev, devtest and test data. We
decided to use the dev data to build a model for
cleaning the noisy SMS data. We did this by train-
ing a standard PBSMT model from raw to clean dev
data. When inspecting this translation model we
found that it very often changed the place holders
for names and phone numbers, and thus we filtered
out all entries in the phrase table that did not have
matching place holders. We then used this model to
perform monotone decoding of the raw SMS data,
thus creating a cleaner version of it.

This approach is similar to that of Aw et al.

471

TMs LMs Bleu NIST Meteor
SMS SMS 29.04 5.578 52.32
SMS SMS, other 28.76 5.543 51.96
SMS SMS, other+bible 29.18 5.696 51.77
SMS, other SMS 29.78 5.808 52.86
SMS, other+bible SMS 29.90 5.764 52.88
SMS, other+bible SMS, other 29.59 5.742 52.28
SMS, other+bible SMS, other+bible 28.75 5.587 52.52

Table 2: Translation results, with different combinations of translation and language models. Model names separated
by a comma stands for separate models, and names separated with a plus for one model built from concatenated
corpora.

Model Testset Bleu NIST Meteor
Dual clean 29.90 5.764 52.88
Dual+CM clean 29.78 5.740 52.95
Dual raw 26.25 5.231 50.79
Dual raw+CM 26.26 5.348 51.30
Dual+CM raw 25.64 5.120 50.01
Dual+CM raw+CM 26.24 5.362 51.64

Table 3: Translation results, with and without an addi-
tional cleaning model (+CM) on the clean and raw devtest
data

(2006), who trained a model for translation from
English SMS language to standard written English,
with very good results both on this task itself, and
on a task of translating English SMS messages into
Chinese. For training they used up to 5000 sen-
tences, but the results stabilized already when us-
ing 3000 training sentences. Our task is different,
though, since we do not aim at standard written
Haitian, but into cleaned up SMS language, and our
training corpus is a lot smaller, only 900 sentences.

Table 3 shows the results of using the cleaning
model on training data and raw translation input. For
the clean data using the cleaning model on the train-
ing data had very little effect on any of the metrics
used. For the raw data translation results are im-
proved as measured by NIST and Meteor when we
use the filter on the devtest data, compared to using
the raw devtest data. Using the filter on the training
data gives worse results for non-filtered devtest data,
but the overall best results are had by filtering both
training and devtest data for raw translation input.
Based on these experiments we used the cleaning
model both on test and training data for raw input,
but not at all for clean input, marked in bold in Table
3.

5 Spell Checking-based Replacement of
Unknown Words

The SMS data is noisy, and there are often many
spelling variations of the same word. One exam-
ple is the word airport, which occur in the training
corpus in at least six spelling variants: the correct
ayeropò, and aeoport, ayeopò, aeroport, aeyopòt,
and aewopo, and in the devtest in a seventh variant
ayéoport. The non-standardized spelling means that
many unknown words (out-of-vocabulary words,
OOVs) have a known spelling variant in the train-
ing corpus. We thus decided to treat OOVs using a
method inspired by spell-checking techniques, and
applied an approximate string matching technique
to OOVs in the translation input in order to change
them into known spelling variants.

OOV replacement has been proposed by several
researchers, replacing OOVs e.g. by morphological
variants (Arora et al., 2008) or synonyms (Mirkin et
al., 2009). Habash (2008) used several techniques
for expanding OOVs in order to extend the phrase-
table. Yang and Kirchhoff (2006) trained a morpho-
logically based back-off model for OOVs. Bertoldi
et al. (2010) created confusion networks as input of
translation input with artificially created misspelled
words, not specifically targetting OOVs, however.
The work most similar to ours is DeNeefe et al.
(2008), who also created lattices with spelling alter-
natives for OOVs, which did not improve translation
results, however. Contrary to us, they only consid-
ered one edit per word, and did not weigh edits or
lattice arcs.

Many standard spell checkers are based on the
noisy channel model, which use an error (channel)
model and a source model, which is normally mod-

472

eled by a language model. The error model normally
use some type of approximate string matching, such
as Levenshtein distance (Levenshtein, 1966), which
measures the distance between two strings as the
number of insertions, deletions, and substitutions of
characters. It is often normalized based on the length
of the strings (Yujian and Bo, 2007), and the dis-
tance calculation has also been improved by associ-
ating different costs to individual error operations.
Church and Gale (1991) used a large training corpus
to assign probabilities to each unique error opera-
tion, and also conditioned operations on one consec-
utive character. Brill and Moore (2000) introduced a
model that worked on character sequences, not only
on character level, and was conditioned on where
in the word the sequences occurred. They trained
weights on a corpus of misspelled words with cor-
rections.

Treating OOVs in the SMS corpus as a spell
checking problem differs from a standard spell
checking scenario in that the goal is not necessarily
to change an incorrectly spelled word into a correct
word, but rather to change a word that is not in our
corpus into a spelling variant that we have seen in the
corpus, but which might not necessarily be correctly
spelled. It is also the case that many of the OOVs are
not wrong, but just happen to be unseen; for instance
there are many place names. Thus we must make
sure that our algorithm for finding spelling equiva-
lents is bi-directional, so that it cannot only change
incorrect spellings into correct spellings, but also go
the other way, which could be needed in some cases.
We also need to try not to suggest alternatives for
words that does not have any plausible alternatives
in the corpus, such as unknown place names.

5.1 Approximate String Matching Algorithm

The approximate string matching algorithm we sug-
gest is essentially that of Brill and Moore (2000),
a modified weighted Levenshtein distance, where
we allow error operations on character sequences as
well as on single characters. We based our weight
estimations on the automatically created list of lex-
ical variants that was built as a step in building the
cleaning model, described in section 4. This list is
very noisy, but does also contain some true spelling
equivalents. We implemented two versions of the
algorithm, first a simple version which used manu-

ally identified error operations, then a more complex
variant where error operations and weights were
found automatically.

Manually Assigned Weights
We went through the lexicon list manually to iden-
tify edits that could correct the misspellings that oc-
curred in the list. We identified substitutions lim-
ited to three characters in length, and at the begin-
ning and end of words we also identified letter in-
sertions and deletions. The inspection showed that
it was very common for letters to be replaced by the
same letter but with a diacritic, or with a different
diacritic, for instance to vary between [e, é, è]. An-
other common operation was between a single char-
acter and two consecutive occurrences of the same
character. Table 4 shows the 46 identified opera-
tions. To account for the fact that we do not want
our error model to have a directionality from wrong
to correct, we allow operations in both directions.

Since the operations were found manually we did
not have a reliable way to estimate weights, and used
uniform weights for all operations. The operations
in Table 4 have the weights given in the table, sub-
stitution of a letter with a diacritic variant 0, single
to double letters 0.1, insertions and deletions 1 and
substitutions other than those in the table, 1.6.

Automatically Assigned Weights
To automatically train weights from the very noisy
list of lexical variants, we filtered it by applying
the edit distance with the manual weights described
above to phrase pair that did not differ in length by
more than three characters. We used a cut-off thresh-
old of 2.8 for words where both versions had at least
six characters, and 1 for shorter words. This gave
us a list of 587 plausible spelling variants, from the
original list with 1635 word pairs.

To find good character substitutions and assign
weights to them, we used standard PBSMT tech-
niques as implemented in Moses, but on character
level, with the filtered list of word pairs as train-
ing data. We inserted spaces between each character
of the words, and also added beginning and end of
word markers, e.g., the word problém was tokenized
as ‘B p r o b l é m E’. Thus we could train a PB-
SMT system that aligned characters using GIZA++,
and extracted and scored phrases, which in this case

473

Manual Automatic
Type Instances Weight Examples+weights Count
mid 1-1 e-i, a-o, i-y, a-e, i-u, s-c, r-w, c-k, j-g, s-z,

n-m
.2 n-m .90, e-c .74, j-g .62 12

mid 1-2 z-sz, i-iy, m-nm, n-nm, y-il, i-ye, s-rs, t-
th, o-an, x-ks, x-kz, e-a,

.2 x-ks .35, i-ue .83, w-rr .74 107

mid 1-3 – – e-ait .75 e-eur .66 29
mid 2-2 wa-oi, we-oi, en-un, xs-ks .2 we-oi .67, wo-ro .20, ie-ye .54 103
mid 2-3 wa-oir, ye-ier, an-ent, eo-eyo .2 iv-eve .79, ey-eyi .18 160
mid 3-3 syo-tio, syo-tyo .2 ant-ent .81, dyo,dia .67 116
beg 0-1 ε-h, ε-l .2 ε-n .95, ε-m .90, ε-h .50 9
beg 0-2 – – ε-te .95, ε-pa .82 6
beg 1-1 h-l .2 a-e .89, w-r .67 i-u .33 5
beg 1-2,3 – – e-ai .68, a-za .74 k-pak .48 30
beg 2,3-2,3 – – wo-ro 0, ex-ekz .65, ens-ins .17 58
end 0-1 ε-e, ε-t, ε-n, ε-m, ε-r, ε-y .2 ε-r .57 ε-e .85, ε-v .75 12
end 0-2 ε-te, ε-de, ε-ue, ε-le 1 ε-de .93, ε-le .75 7
end 1-1 – – e-o .74, n-m .86 5
end 1-2,3 – – i-li .81, c-se .62 n-nne .66 48
end 2,3-2,3 – – sm-me .67, ns-nce .38, wen-oin .36 70

Table 4: Error operations at the middle, beginning and end of words. For manually defined operations all instances are
shown, with their uniform score. For automaticcally identified operations examples are shown with their score, and
the total count of each operation type.

amounts to creating a phrase-table with character se-
quences. The phrase probabilities are given in both
translation directions, P (S|T) and P (T |S). Since
we do not want our scores to have any direction, we
used the arithmetic mean of these two probabilities
to calculate the score for the pair, which is calcu-
lated as 1 − ((P (S|T) + P (T |S))/2), to also con-
vert the probabilities to costs. To compensate for
errors made in the extraction process, we filtered
out phrase pairs where both probabilities were lower
than 0.1.

To get fair scores for character sequences of dif-
ferent lengths we applied the phrase table construc-
tion four times, while increasing the limit of the
maximum phrase length from one to four. From the
first phrase table, with maximum length 1, we ex-
tracted 1-1 substitutions, from the second table 1-2
and 2-2 substitutions, and so on. We used the begin-
ning and end of word markers both to extract sub-
stitutions that were only used at the beginning or
end of sentences, and to extract deletions and inser-
tions used at the beginning and end of words. Again,
we only allowed substitutions up to three characters
in length. The fourth phrase-table, with phrases of
length four, were only used to allow us to extract

substitutions of length three at the beginning and end
of words, since the markers count as tokens. Table 4
shows the types of transformations extracted, some
examples of each with their score, and the count
of each transformation. A total of 777 operations
were found, compared to only 46 manual operations.
There were few substitutions with diacritic variants,
so again we allowed them with a zero cost. The costs
for deletions, additions, and substitutions not given
any weights were the same as before, 1, 1, and 1.6.
For the edit distance with the automatic weights, we
used scores that were normalized by the length of
the shortest string.

Application to OOVs

We applied the edit distance operation on all OOVs
longer than 3 characters, and calculated the distance
to all words in the training corpora that did not dif-
fer in length with more than two characters. We used
the standard dynamic programming implementation
of our edit distance, but extended to check the scores
not only in directly neighbouring cells, but in cells
up to a distance of 3 away, to account for the maxi-
mum length of the character sequence substitutions.
It would have been possible to use a fast trie imple-

474

Clean devtest Raw devtest
System Bleu NIST Meteor Bleu NIST Meteor
No OOV treatment 29.90 5.764 52.88 26.24 5.362 51.64
Manual 1-best 29.76 5.721 52.91 26.60 5.417 52.17
Automatic 1-best 29.90 5.746 52.83 26.26 5.351 51.60
Manual lattice 30.53 5.957 54.06 27.12 5.574 53.27
Automatic lattice 30.94 5.982 54.62 27.27 5.554 52.99
Automatic lattice + LM 30.33 5.912 54.07 27.79 5.555 52.98

Table 5: Translation results, using the approximate string matching algorithm for OOVs. The submitted system is
marked with bold.

mentation (Brill and Moore, 2000), however.
We performed both 1-best substitution of OOVs,

and lattice decoding where we kept the three best
alternatives for each word. In both cases we only re-
placed OOVs if the edit distance scores were below a
threshold of 1.2 for the manual weights, which were
not normalized, and for the normalized automatic
weights below 0.25, or below 0.33 for word pairs
where both words had at least 6 characters. These
thresholds were set by inspecting the results, but re-
sulted in a different number of substitutions:

• clean (total 691)
– manual: 251
– automatic: 222

• raw (total 932)
– manual: 601
– automatic: 437

The lattice arcs were weighted with the edit dis-
tance score, normalized to fall between 0-1. We also
tried to include a source language model score in
the weights in the lattice, to account for the source
model that has been shown to be useful for spelling
correction, but which has not been found useful for
OOV replacement. We trained a 3-gram language
model on the Haitian SMS text, and applied this
model for a five-word context around the replaced
OOV. We used a single lattice weight where half the
score came from the edit distance, and the other half
represented the language model component. A bet-
ter approach though, would probably have been to
use two weights.

5.2 Results
Table 5 shows the results of the OOV treatment.
When using 1-best substitutions there are small dif-
ferences compared to the baseline on both test sets,

except for the system with manual weights on raw
data, which was improved on all metrics. All three
ways of applying the lattice substitutions led to large
improvements on all metrics on both test sets. On
the clean test set it was better to use automatic than
manual weights when not using the language model
score, which made the results worse. On the raw
test set the highest Meteor and NIST scores were
had by using manual weights, whereas the highest
Bleu score was had by using automatic weights with
the language model. The system submitted to the
workshop is the system with a lattice with manual
weights, marked in bold in Table 5, since the auto-
matic weights were not ready in time for the submis-
sion.

6 Conclusion

In this article we presented methods for translat-
ing noisy Haitian Creole SMS messages, which we
believe are generally suitable for small and noisy
corpora and under-resourced languages. We used
an automatically trained cleaning model, trained on
only 900 manually cleaned sentences, that led to im-
provements for noisy translation input. Our main
contribution was to apply methods inspired by spell
checking to suggest known spelling variants of un-
known words, which we presented as a lattice to
the decoder. Several versions of this method gave
consistent improvements over the baseline system.
There are still many questions left about which con-
figuration that is best for weighting and pruning the
lattice, however, which we intend to investigate in
future work. In this work we only considered OOVs
in the translation input, but it would also be interest-
ing to address misspelled words in the training cor-
pus.

475

References

Karunesh Arora, Michael Paul, and Eiichiro Sumita.
2008. Translation of unknown words in phrase-based
statistical machine translation for languages of rich
morphology. In Proceedings of the First Interna-
tional Workshop on Spoken Languages Technologies
for Under-resourced languages (SLTU-2008), pages
70–75, Hanoi, Vietnam.

AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. 2006. A
phrase-based statistical model for SMS text normaliza-
tion. In Proceedings of the 21st International Confer-
ence on Computational Linguistics and 44th Annual
Meeting of the ACL, poster session, pages 33–40, Syd-
ney, Australia.

Nicola Bertoldi, Mauro Cettolo, and Marcello Federico.
2010. Statistical machine translation of texts with
misspelled words. In Proceedings of Human Lan-
guage Technologies: The 2010 Annual Conference of
the NAACL, pages 412–419, Los Angeles, California,
USA.

Eric Brill and Robert C. Moore. 2000. An improved
error model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting of the ACL,
pages 286–293, Hong Kong.

Kenneth W. Church and William A. Gale. 1991. Prob-
ability scoring for spelling correction. Statistics and
Computing, 1:93–103.

Steve DeNeefe, Ulf Hermjakob, and Kevin Knight. 2008.
Overcoming vocabulary sparsity in MT using lattices.
In Proceedings of the 8th Conference of the Associa-
tion for Machine Translation in the Americas, pages
89–96, Waikiki, Hawaii, USA.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurence
statistics. In Proceedings of the Second International
Conference on Human Language Technology, pages
228–231, San Diego, California, USA.

Nizar Habash. 2008. Four techniques for online handling
of out-of-vocabulary words in Arabic-English statisti-
cal machine translation. In Proceedings of the 46th
Annual Meeting of the ACL: Human Language Tech-
nologies, Short papers, pages 57–60, Columbus, Ohio,
USA.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, Edin-
burgh, UK.

Philipp Koehn and Barry Haddow. 2009. Edinburgh’s
submission to all tracks of the WMT 2009 shared task
with reordering and speed improvements to Moses. In
Proceedings of the Fourth Workshop on Statistical Ma-
chine Translation, pages 160–164, Athens, Greece.

Philipp Koehn and Josh Schroeder. 2007. Experiments in
domain adaptation for statistical machine translation.
In Proceedings of the Second Workshop on Statistical
Machine Translation, pages 224–227, Prague, Czech
Republic, June.

Philipp Koehn, Amittai Axelrod, Alexandra Birch
Mayne, Chris Callison-Burch, Miles Osborne, and
David Talbot. 2005. Edinburgh system description
for the 2005 IWSLT speech translation evaluation. In
Proceedings of the International Workshop on Spo-
ken Language Translation, Pittsburgh, Pennsylvania,
USA.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the ACL, demon-
stration session, pages 177–180, Prague, Czech Re-
public.

Alon Lavie and Abhaya Agarwal. 2007. METEOR: An
automatic metric for MT evaluation with high levels of
correlation with human judgments. In Proceedings of
the Second Workshop on Statistical Machine Transla-
tion, pages 228–231, Prague, Czech Republic.

Vladimir Iosifovich Levenshtein. 1966. Binary codes ca-
pable of correcting deletions, insertions and reversals.
Soviet Physics Doklady, 10(8):707–710.

Shachar Mirkin, Lucia Specia, Nicola Cancedda, Ido
Dagan, Marc Dymetman, and Idan Szpektor. 2009.
Source-language entailment modeling for translating
unknown terms. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 791–799, Sun-
tec, Singapore.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of the
42nd Annual Meeting of the ACL, pages 160–167, Sap-
poro, Japan.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the ACL, pages 311–318,
Philadelphia, Pennsylvania, USA.

Andreas Stolcke. 2002. SRILM – an extensible language
modeling toolkit. In Proceedings of the Seventh Inter-
national Conference on Spoken Language Processing,
pages 901–904, Denver, Colorado, USA.

476

Mei Yang and Katrin Kirchhoff. 2006. Phrase-based
backoff models for machine translation of highly in-
flected languages. In Proceedings of the 11th Confer-
ence of the EACL, pages 41–48, Trento Italy.

Li Yujian and Liu Bo. 2007. A normalized Levenshtein
distance metric. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 29(6):1091–1095.

477

