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Abstract

In this paper we describe the Institute for
Logic, Language and Computation (Uni-
versity of Amsterdam) phrase-based statisti-
cal machine translation system for English-
to-German translation proposed within the
EMNLP-WMT 2011 shared task. The main
novelty of the submitted system is a syntax-
driven pre-translation reordering algorithm
implemented as source string permutation via
transfer of the source-side syntax tree.

1 Introduction

For the WMT 2011 shared task, ILLC-UvA submit-
ted two translations (primary and secondary) for the
English-to-German translation task. This year, we
directed our research toward addressing the word
order problem for statistical machine translation
(SMT) and discover its impact on output translation
quality. We reorder the words of a sentence of the
source language with respect to the word order of
the target language and a given source-side parse
tree. The difference from the baseline Moses-based
translation system lies in the pre-translation step, in
which we introduce a discriminative source string
permutation model based on probabilistic parse tree
transduction.

The idea here is to permute the order of the source
words in such a way that the resulting permutation
allows as monotone a translation process as possible
is not new. This approach to enhance SMT by using
a reordering step prior to translation has proved to be
successful in improving translation quality for many

translation tasks, see (Genzel, 2010; Costa-jussà and
Fonollosa, 2006; Collins et al., 2005), for example.

The general problem of source-side reordering is
that the number of permutations is factorial in n, and
learning a sequence of transductions for explaining
a source permutation can be computationally rather
challenging. We propose to address this problem by
defining the source-side permutation process as the
learning problem of how to transfer a given source
parse tree into a parse tree that minimizes the diver-
gence from target word order.

Our reordering system is inspired by the direction
taken in (Tromble and Eisner, 2009), but differs in
defining the space of permutations, using local prob-
abilistic tree transductions, as well as in the learn-
ing objective aiming at scoring permutations based
on a log-linear interpolation of a local syntax-based
model with a global string-based (language) model.

The reordering (novel) and translation (standard)
components are described in the following sections.
The rest of this paper is structured as follows. After a
brief description of the phrase-based translation sys-
tem in Section 2, we present the architecture and de-
tails of our reordering system (Section 3), Section 4
reviews related work, Section 5 reports the experi-
mental setup, details the submissions and discusses
the results, while Section 6 concludes the article.

2 Baseline system

2.1 Statistical machine translation

In SMT the translation problem is formulated as se-
lecting the target translation t with the highest prob-
ability from a set of target hypothesis sentences for
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the source sentence s: t̂ = arg max
t
{ p(t|s) } =

arg max
t
{ p(s|t) · p(t) }.

2.2 Phrase-based translation

While first systems following this approach per-
formed translation on the word level, modern state-
of-the-art phrase-based SMT systems (Och and Ney,
2002; Koehn et al., 2003) start-out from a word-
aligned parallel corpus working with (in principle)
arbitrarily large phrase pairs (also called blocks) ac-
quired from word-aligned parallel data under a sim-
ple definition of translational equivalence (Zens et
al., 2002).

The conditional probabilities of one phrase given
its counterpart is estimated as the relative frequency
ratio of the phrases in the multiset of phrase-pairs
extracted from the parallel corpus and are interpo-
lated log-linearly together with a set of other model
estimates:

êI
1 = arg max

eI
1

{
M∑

m=1

λmhm(eI
1, f

J
1 )

}
(1)

where a feature function hm refer to a system model,
and the corresponding λm refers to the relative
weight given to this model.

A phrase-based system employs feature func-
tions for a phrase pair translation model, a lan-
guage model, a reordering model, and a model
to score translation hypothesis according to length.
The weights λm are optimized for system perfor-
mance (Och, 2003) as measured by BLEU (Papineni
et al., 2002).

Apart from the novel syntax-based reordering
model, we consider two reordering methods that
are widely used in phrase-based systems: a simple
distance-based reordering and a lexicalized block-
oriented data-driven reordering model (Tillman,
2004).

3 Architecture of the reordering system

We approach the word order challenge by including
syntactic information in a pre-translation reordering
framework. This section details the general idea of
our approach and details the reordering model that
was used in English-to-German experiments.

3.1 Pre-translation reordering framework

Given a word-aligned parallel corpus, we define the
source string permutation as the task of learning
to unfold the crossing alignments between sentence
pairs in the parallel corpus. Let be given a source-
target sentence pair s → t with word alignment set
a between their words. Unfolding the crossing in-
stances in a should lead to as monotone an align-
ment a

′
as possible between a permutation s

′
of s

and the target string t. Conducting such a “mono-
tonization” on the parallel corpus gives two par-
allel corpora: (1) a source-to-permutation parallel
corpus (s → s

′
) and (2) a source permutation-to-

target parallel corpus (s
′ → t). The latter corpus is

word-aligned automatically again and used for train-
ing a phrase-based translation system, while the for-
mer corpus is used for training our model for pre-
translation source permutation via parse tree trans-
ductions.

In itself, the problem of permuting the source
string to unfold the crossing alignments is com-
putationally intractable (see (Tromble and Eisner,
2009)). However, different kinds of constraints can
be made on unfolding the crossing alignments in a.
A common approach in hierarchical SMT is to as-
sume that the source string has a binary parse tree,
and the set of eligible permutations is defined by bi-
nary ITG transductions on this tree. This defines
permutations that can be obtained only by at most
inverting pairs of children under nodes of the source
tree.

3.2 Conditional tree reordering model

Given a parallel corpus with string pairs s → t with
word alignment a, the source strings s are parsed,
leading to a single parse tree τs per source string. We
create a source permuted parallel corpus s → s

′
by

unfolding the crossing alignments in a without/with
syntactic tree to provide constraints on the unfold-
ing.

Our model aims at learning from the source per-
muted parallel corpus s → s

′
a probabilistic op-

timization arg maxπ(s) P (π(s) | s, τs). We as-
sume that the set of permutations {π(s)} is defined
through a finite set of local transductions over the
tree τs. Hence, we view the permutations leading
from s to s

′
as a sequence of local tree transduc-
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tions τ
s
′
0
→ . . . → τs′n

, where s
′
0 = s and s

′
n = s

′
,

and each transduction τ
s
′
i−1

→ τ
s
′
i

is defined using a
tree transduction operation that at most permutes the
children of a single node in τ

s
′
i−1

as defined next.
A local transduction τ

s
′
i−1

→ τ
s
′
i

is modelled by
an operation that applies to a single node with ad-
dress x in τ

s
′
i−1

, labeled Nx, and may permute the
ordered sequence of children αx dominated by node
x. This constitutes a direct generalization of the ITG
binary inversion transduction operation. We assign a
conditional probability to each such local transduc-
tion:

P (τ
s
′
i
| τ

s
′
i−1

) ≈ P (π(αx) | Nx → αx, Cx) (2)

where π(αx) is a permutation of αx (the ordered
sequence of node labels under x) and Cx is a lo-
cal tree context of node x in tree τ

s
′
i−1

. One wrin-
kle in this definition is that the number of possible
permutations of αx is factorial in the length of αx.
Fortunately, the source permuted training data ex-
hibits only a fraction of possible permutations even
for longer αx sequences. Furthermore, by condition-
ing the probability on local context, the general ap-
plicability of the permutation is restrained.

In principle, if we would disregard the computa-
tional cost, we could define the probability of the se-
quence of local tree transductions τ

s
′
0
→ . . . → τs′n

as

P (τ
s
′
0
→ . . . → τs′n

) =
n∏

i=1

P (τ
s
′
i
| τ

s
′
i−1

) (3)

The problem of calculating the most likely permu-
tation under this kind of transduction probability
is intractable because every local transduction con-
ditions on local context of an intermediate tree1.
Hence, we disregard this formulation and in practice
we take a pragmatic approach and greedily select at
every intermediate point τ

s
′
i−1

→ τ
s
′
i

the single most
likely local transduction that can be conducted on
any node of the current intermediate tree τ

s
′
i−1

. The

1Note that a single transduction step on the current tree
τ

s
′
i−1

leads to a forest of trees τ
s
′
i

because there can be mul-

tiple alternative transduction rules. Hence, this kind of a model
demands optimization over many possible sequences of trees,
which can be packed into a sequence of parse-forests with trans-
duction links between them.

individual steps are made more effective by interpo-
lating the term in Equation 2 with string probability
ratios:

P (π(αx) | Nx → αx, Cx)×
(

P (s
′
i−1)

P (s′i)

)
(4)

The rationale behind this interpolation is that our
source permutation approach aims at finding the op-
timal permutation s

′
of s that can serve as input for

a subsequent translation model. Hence, we aim at
tree transductions that are syntactically motivated
that also lead to improved string permutations. In
this sense, the tree transduction definitions can be
seen as an efficient and syntactically informed way
to define the space of possible permutations.

We estimate the string probabilities P (s
′
i) using

5-gram language models trained on the s
′

side of
the source permuted parallel corpus s → s

′
. We es-

timate the conditional probability P (π(αx) | Nx →
αx, Cx) using a Maximum-Entropy framework,
where feature functions are defined to capture the
permutation as a class, the node label Nx and its
head POS tag, the child sequence αx together with
the corresponding sequence of head POS tags and
other features corresponding to different contextual
information.

We were particularly interested in those linguistic
features that motivate reordering phenomena from
the syntactic and linguistic perspective. The features
that were used for training the permutation system
are extracted for every internal node of the source
tree that has more than one child:

• Local tree topology. Sub-tree instances that in-
clude parent node and the ordered sequence of
child node labels.

• Dependency features. Features that determine
the POS tag of the head word of the current
node, together with the sequence of POS tags
of the head words of its child nodes.

• Syntactic features. Two binary features from
this class describe: (1) whether the parent node
is a child of the node annotated with the same
syntactic category, (2) whether the parent node
is a descendant of a node annotated with the
same syntactic category.
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4 Related work

The integration of linguistic syntax into SMT sys-
tems offers a potential solution to reordering prob-
lem. For example, syntax is successfully integrated
into hierarchical SMT (Zollmann and Venugopal,
2006). In (Yamada and Knight, 2001), a set of tree-
string channel operations is defined over the parse
tree nodes, while reordering is modeled by permuta-
tions of children nodes. Similarly, the tree-to-string
syntax-based transduction approach offers a com-
plete translation framework (Galley et al., 2006).

The idea of augmenting SMT by a reordering step
prior to translation has often been shown to improve
translation quality. Clause restructuring performed
with hand-crafted reordering rules for German-to-
English and Chinese-to-English tasks are presented
in (Collins et al., 2005) and (Wang et al., 2007), re-
spectively. In (Xia and McCord, 2004; Khalilov,
2009) word reordering is addressed by exploiting
syntactic representations of source and target texts.

In (Costa-jussà and Fonollosa, 2006) source and
target word order harmonization is done using well-
established SMT techniques and without the use of
syntactic knowledge. Other reordering models op-
erate provide the decoder with multiple word or-
ders. For example, the MaxEnt reordering model
described in (Xiong et al., 2006) provides a hierar-
chical phrasal reordering system integrated within
a CKY-style decoder. In (Galley and Manning,
2008) the authors present an extension of the famous
MSD model (Tillman, 2004) able to handle long-
distance word-block permutations. Coming up-to-
date, in (PVS, 2010) an effective application of data
mining techniques to syntax-driven source reorder-
ing for MT is presented.

Different syntax-based reordering systems can be
found in (Genzel, 2010). In this system, reorder-
ing rules capable to capture many important word
order transformations are automatically learned and
applied in the preprocessing step.

Recently, Tromble and Eisner (Tromble and Eis-
ner, 2009) define source permutation as the word-
ordering learning problem; the model works with a
preference matrix for word pairs, expressing pref-
erence for their two alternative orders, and a cor-
responding weight matrix that is fit to the parallel
data. The huge space of permutations is then struc-

tured using a binary synchronous context-free gram-
mar (Binary ITG) with O(n3) parsing complexity,
and the permutation score is calculated recursively
over the tree at every node as the accumulation of
the relative differences between the word-pair scores
taken from the preference matrix. Application to
German-to-English translation exhibits some perfor-
mance improvement.

5 Experiments and submissions

Design, architecture and configuration of the trans-
lation system that we used in experimentation co-
incides with the Moses-based translation system
(Baseline system) described in details on the
WMT 2011 web page2.

This section details the experiments carried out to
evaluate the proposed reordering model, experimen-
tal set-up and data.

5.1 Data

In our experiments we used EuroParl v6.0 German-
English parallel corpus provided by the organizers
of the evaluation campaign.

A detailed statistics of the training, development,
internal (test int.) and official (test of.) test datasets
can be found in Table 1. The development corpus
coincides with the 2009 test set and for internal test-
ing we used the test data proposed to the participants
of WMT 2010.

”ASL“ stands for average sentence length. All the
sets were provided with one reference translation.

Data Sent. Words Voc. ASL
train En 1.7M 46.0M 121.3K 27.0
train Ge 1.7M 43.7M 368.5K 25.7
dev En 2.5K 57.6K 13.2K 22.8

test int. En 2.5K 53.2K 15.9K 21.4
test of. En 3.0K 74.8K 11.1K 24.9

Table 1: German-English EuroParl corpus (version 6.0).

Apart from the German portion of the EuroParl
parallel corpus, two additional monolingual corpora
from news domain (the News Commentary corpus
(NC) and the News Crawl Corpus 2011 (NS)) were

2http://www.statmt.org/wmt11/baseline.
html
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used to train a language model for German. The
characteristics of these datasets can be found in Ta-
ble 2. Notice that the data were not de-duplicated.

Data Sent. Words Voc. ASL
NC Ge 161.8M 3.9G 136.7M 23.9
NS Ge 45.3M 799.4M 3.0M 17.7

Table 2: Monolingual German corpora used for target-
side language modeling.

5.2 Experimental setup
Moses toolkit (Koehn et al., 2007) in its standard
setting was used to build the SMT systems:

• GIZA++/mkcls (Och, 2003; Och, 1999) for
word alignment.

• SRI LM (Stolcke, 2002) for language model-
ing. A 3-gram target language model was es-
timated and smoothed with modified Kneser-
Ney discounting.

• MOSES (Koehn et al., 2007) to build an un-
factored translation system.

• the Stanford parser (Klein and Manning,
2003) was used as a source-side parsing en-
gine3.

• For maximum entropy modeling we used the
maxent toolkit4.

The discriminative syntactic reordering model is
applied to reorder training, development, and test
corpora. A Moses-based translation system (corpus
realignment included5) is then trained using the re-
ordered input.

5.3 Internal results and submissions
The outputs of two translation system were submit-
ted. First, we piled up all feature functions into a sin-
gle model as described in Section 3. It was our “sec-
ondary” submission. However, our experience tells

3The parser was trained on the English treebank set provided
with 14 syntactic categories and 48 POS tags.

4http://homepages.inf.ed.ac.uk/lzhang10/
maxent_toolkit.html

5Some studies show that word re-alignment of a mono-
tonized corpus gives better results than unfolding of alignment
crossings (Costa-jussà and Fonollosa, 2006).

that the system performance can increase if the set
of patterns is split into partial classes conditioned on
the current node label (Khalilov and Sima’an, 2010).
Hence, we trained three separate MaxEnt models for
the categories with potentially high reordering re-
quirements, namely NP , SENT and SBAR(Q).
It was defines as our “primary” submission.

The ranking of submission was done according to
the results shown on internal testing, shown in Ta-
ble 3.

System BLEU dev BLEU test NIST test
Baseline 11.03 9.78 3.78
Primary 11.07 10.00 3.79

Secondary 10.92 9.91 3.78

Table 3: Internal testing results.

5.4 Official results and discussion
Unfortunately, the results of our participation this
year were discouraging. The primary submission
was ranked 30th (12.6 uncased BLEU-4) and the
secondary 31th (11.2) out of 32 submitted systems.

It turned out that our preliminary idea to extrapo-
late the positive results of English-to-Dutch transla-
tion reported in (Khalilov and Sima’an, 2010) to the
WMT English-to-German translation task was not
right.

Analyzing the reasons of negative results during
the post-evaluation period, we discovered that trans-
lation into German differs from English-to-Dutch
task in many cases. In contrast to English-to-Dutch
translation, the difference in terms of automatic
scores between the internal baseline system (without
external reordering) and the system enhanced with
the pre-translation reordering is minimal. It turns
out that translating into German is more complex
in general and discriminative reordering is more ad-
vantageous for English-to-Dutch than for English-
to-German translation.

A negative aspect influencing is the way how the
rules are extracted and applied according to our ap-
proach. Syntax-driven reordering, as described in
this paper, involves large contextual information ap-
plied cumulatively. Under conditions of scarce data,
alignment and parsing errors, it introduces noise to
the reordering system and distorts the feature prob-
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ability space. At the same time, many reorderings
can be performed more efficiently based on fixed
(hand-crafted) rules (as it is done in (Collins et al.,
2005)). A possible remedy to this problem is to
combine automatically extracted features with fixed
(hand-crafted) rules. Our last claims are supported
by the observations described in (Visweswariah et
al., 2010).

During post-evaluation period we analyzed the
reasons why the system performance has slightly
improved when separate MaxEnt models are ap-
plied. The outline of reordered nodes for
each of syntactic categories considered (SENT ,
SBAR(Q) and NP ) can be found in Table 4 (the
size of the corpus is 1.7 M of sentences).

Category # of applications
NP 497,186

SBAR(Q) 106,243
SENT 221,568

Table 4: Application of reorderings for separate syntactic
categories.

It is seen that the reorderings for NP nodes is
higher than for SENT and SBAR(Q) categories.
While SENT and SBAR(Q) reorderings work anal-
ogously for Dutch and German, our intuition is that
German has more features that play a role in reorder-
ing of NP structures than Dutch and there is a need
of more specific features to model NP permutations
in an accurate way.

6 Conclusions

This paper presents the ILLC-UvA translation sys-
tem for English-to-German translation task pro-
posed to the participants of the EMNLP-WMT 2011
evaluation campaign. The novel feature that we
present this year is a source reordering model in
which the reordering decisions are conditioned on
the features from the source parse tree.

Our system has not managed to outperform the
majority of the participating systems, possibly due
to its generic approach to reordering. We plan to in-
vestigate why our approach works well for English-
to-Dutch and less well for the English-to-German
translation in order to discover more generic ways
for learning discriminative reordering rules. One

possible explanation of the bad results is a high
sparseness of automatically extracted rules that does
not allow for sufficient generalization of reordering
instances.

In the future, we plan (1) to perform deeper anal-
ysis of the dissimilarity between English-to-Dutch
and English-to-German translations from SMT
perspective, and (2) to investigate linguistically-
motivated ideas to extend our model such that we
can bring about some improvement to English-to-
German translation.
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