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Abstract in other forms, a standard phrase-based decoder has
no way of using it to generate the correct translation.
We use target-side monolingual data to ex- Reverse self-training addresses this problem by
tend the vocabulary of the translation model  jycorporating the available monolingual data in the

in statistical machine translation. This method

called “reverse self-training” improves the de- translation model. This paper builds upon the idea

coder’s ability to produce grammatically cor- outlinec_i in Boja}r and Tamchyna (2011), describing
rect translations into languages with morphol- ~ Now this technique was incorporated in the WMT
ogy richer than the source |anguage esp. in Shared Task and extending the experimental evalu-
small-data setting. We empirically evalu- ation of reverse self-training in several directions —
ate the gains for several pairs of European  the examined language pairs (Section 4.2), data size

languages and discuss some approaches of  (Section 4.3) and back-off techniques (Section 4.4).
the underlying back-off techniques needed to

translate unseen forms of known words. We 2 Related Work
also provide a description of the systems we
submitted to WMT11 Shared Task. The idea of using monolingual data for improving

the translation model has been explored in several
previous works. Bertoldi and Federico (2009) used
monolingual data for adapting existing translation
Like any other statistical NLP task, SMT relies onmodels to translation of data from different domains.
sizable language data for training. However the patn their experiments, the most effective approach
allel data required for MT are a very scarce resourc&yas to train a new translation model from “fake”
making it difficult to train MT systems of decent parallel data consisting of target-side monolingual
quality. On the other hand, it is usually possible talata and their machine translation into the source
obtain large amounts of monolingual data. language by a baseline system.

In this paper, we attempt to make use of the Ueffing et al. (2007) used a boot-strapping tech-
monolingual data to reduce the sparseness of surfaggue to extend translation models using mono-
forms, an issue typical for morphologically rich lan-lingual data. They gradually translated additional
guages. When MT systems translate into such lasource-side sentences and selectively incorporated
guages, the limited size of parallel data often causdlsem and their translations in the model.
the situation where the output should include a word Our technique also bears a similarity to de Gis-
form never observed in the training data. Evemert et al. (2005), in that we try to use a back-off
though the parallel data do contain the desired worir surface forms to generalize our model and pro-

T This work has been supported by the grants EUIroMatrixgluce translations with word forms never seen in the

Plus (FP7-ICT-2007-3-231720 of the EU and 7E09003 of th@riginal parallel data. However, instead of a rule-
Czech Republic), P406/10/P259, and MSM 0021620838.  based approach, we take advantage of the available
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Source English Target Czech Czech Lemmatized
Parallel (small) a cat chased. .. = kocka honila. .. kocka honit. . .
| saw a cat = vidél jserkoCku vidét byt kacka
Iread aboutadog = Cetl jsem o psovi Cist byt o pes
Monolingual (large) ? Cetl jsem kocce Cist byt o katka
I read about a cat <+ Use reverse translation backed-off by lemmas.

Figure 1: The essence of reverse self-training: a new phraisg“about a cat” = “okoCc€) is learned based on a
small parallel corpus and large target-side monolingudste

data and learn these forms statistically. We are therprove simply because more data is included in train-
fore not limited to verbs, but our system is only abléng — by adding translations generated using known
to generate surface forms observed in the target-sidata, the model could gain only new combinations

monolingual data. of known words. However, by using a back-off
to less sparse units (e.g. lemmas) in the factored
3 Reverse Self-Training target-source translation, we enable the decoder

Fi il h  th hod. Usi to produce previously unseen surface forms. These
'gure L1 ustrates the core o ¢ © method. UsINg, »hglations are then included in the model, reducing
available parallel data, we first train an MT syste

Mhe data sparseness of the target-side surface forms.
to translate from the target to the source language.

Since we want to gather new word forms from the} Experiments

monolingual data, this reverse model needs the abil- .
ity to translate them. For that purpose we use a fa(\!ye used common tools for phrase-based translation
tored translation model (Koehn and Hoang, 2007 Moses (Koehn et al., 2007) decoder and_tools,
with two alternative decoding paths: forrform RILM (Stoicke, 2002) a_nd KenLM (Heafield,
and back-off>~form. We experimented with several 2011) for language modelling and GIZA++ (Och

options for the back-off (simple stemming by trun—an;1 Ney, 2000) fﬁcr W(.)rq allgnmentj. dM |
cation or full lemmatization), see Section 4.4. The orreverse seli-training, we needed Moses to aiso

decoder can thus use a less sparse representatior?lé?pUt word alignments between source sentences

words if their exact forms are not available in theand their translations. As we were not able to make

parallel data the existing version of this feature work, we added a

We use this reverse model to translate (mucHeW option and re-implemented this funcionality.

larger) target-side monolingual data into the source We rely on automatic transfation quality eval-

language. We preserve the word alignments of thl(Jaatlon throughout our paper, namely the well-

phrases as used in the decoding so we directly oggtablished BLEU metric (Papineni et al., 2002). We
tain the word alignment in the new “parallel” cor- estimate 95% confidence bounds for the scores as

o . . escribed in Koehn (2004). We evaluated our trans-

pus. This gives us enough information to procee( .
. . ations on lower-cased sentences.

with the standard MT system training — we extrac

and score the phrases consistent with the constructed Data Sources

word alignment and create the phrase table. Aside from the WMT 2011 Translation Task data,

We combine this enlarged translation model W'tr\‘/ve also used several additional data sources for the

a _m_odel trained on the .trge parallel data and_ us‘(5?><periments aimed at evaluating various aspects of
Minimum Error Rate Training (Och, 2003) to find reverse self-training

the balance between the two models. The final

model has four separate components — two languadRC-Acquis

models (one trained on parallel and one on monolin- We used the JRC-Acquis 3.0 corpus (Steinberger

gual data) and the two translation models. et al., 2006) mainly because of the number of avail-
We do not expect the translation quality to im-able languages. This corpus contains a large amount
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Source  Target Corpus Size (k sents) Vocabulary Size RatioselB& +MonolLM +Mono TM

Para Mono
English  Czech 94 662 1.67 4:9.9 43.5:2.0 *44.3+2.0
English  Finnish 123 863 2.81 240.9 27.6:1.8 28.3:1.7
English German 127 889 1.83 3488 36.4:1.8 37.6:1.8
English  Slovak 109 763 2.03 3583.6 37.3:1.7 37.41.8
French  Czech 95 665 1.43 3299 425-1.8 43.1-1.8
French  Finnish 125 875 2.45 26.1.8 27.8:1.7 28.3:1.8
French German 128 896 1.58 3858 40.2:1.8 *40.5+1.8
German Czech 95 665 0.91 3528 37.0:1.9 *37.3:1.9

Table 1: BLEU scores of European language pairs on JRC datterigks in the last column mark experiments for
which MERT had to be re-run.

of legislative texts of the European Union. The facfor verbs, nouns, adjectives, pronouns and numerals.
that all data in the corpus come from a single, vergentence structure is exhibited by various agreement
narrow domain has two effects — models trained orules which often apply over long distance. Most of
this corpus perform mostly very well in that domainthe issues commonly associated with rich morphol-
(as documented e.g. in Koehn et al. (2009)), but fadgy are clearly observable in these languages.

when translating ordinary texts such as news or fic- German also has some inflection, albeit much less
tion. Sentences in this corpus also tend to be ratheomplex. The main source of German vocabulary
long (e.g. 30 words on average for English). size are the compound words. Finnish serves as an
example of agglutinative languages well-known for
CzEng 3 the abundance of word forms.

CzEng 0.9 (Bojar andabokrtsky, 2009) is a par-  Table 1 contains the summary of our experimen-
allel richly annotated Czech-English corpus. It contg| results. Here, only the JRC-Acquis corpus was
tains roughly 8 million parallel sentences from aysed for training, development and evaluation. For
variety of domains, including European regulationgvery language pair, we extracted the first 10 per-
(about 34% of tokens), fiction (15%), news (3%)cent of the parallel corpus and used them as the par-
technical texts (10%) and unofficial movie subtitlesy|le| data. The last 70 percent of the same corpus
(27%). We do not make much use of the rich annawere our “monolingual” data. We used a separate
tation in this paper, however we did experiment withset of 1000 sentences for the development and an-
using Czech lemmas (included in the annotation) agher 1000 for testing.
the back-off factor for reverse self-training. Sentence counts of the corpora are shown in the
columns Corpus Size Para and Mono. The table
also shows the ratio between observed vocabulary
In order to determine how successful our approackize of the target and source language. Except for
is across languages, we experimented with Czecthe German-Czech language pair, the ratios are
Finnish, German and Slovak as target languages. Aligher than 1. The Baseline column contains the
of them have a rich morphology in some sense. WBLEU score of a system trained solely on the paral-
limited our selection of source languages to Englishel data (i.e. the first 10 percent). A 5-gram language
French and German because our method focuses model was used. The “+Mono LM” scores were
the target language anyway. We did however conachieved by adding a 5-gram language model trained
bine the languages with respect to the richness oh the monolingual data as a separate component
their vocabulary — the source language has less wofits weight was determined by MERT). The last col-
forms in almost all cases. umn contains the scores after adding the translation

Czech and Slovak are very close languages, shanodel self-trained on target monolingual data. This
ing a large portion of vocabulary and having a verynodel was also added as another component and the
similar grammar. There are many inflectional rulesveights associated with it were found by MERT.

4.2 Comparison Across Languages
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For the back-off in the reverse self-training, we
used a simple suffix-trimming heuristic suitable for
fusional languages: cut off the last three characters

Figure 2: Vocabulary ratio and BLEU score

of each word always keeping at least the first three 12k ender ]
characters. This heuristic reduces the vocabulary £
size to a half for Czech and Slovak but it is much E 1r 7
less effective for Finish and German (Table 2), as &
s L . 5 08¢ en-cs+ -
can be expected from their linguistic properties. m en-fit
-
Q06 fr-cs+ .
Language Vocabulary reduced to (%) E fr-fi+
Czech 52 'g 04 | en-sk+ -
FInnISh 64 0.2 deIe-(:sl fr-Ide_t | | | | | |
German 73 708112141618 2 22242628 3
Slovak 51 Vocabulary size ratio

Table 2: Reduction of vocabulary size by suffix trimming

We did not use any linguistic tools, such as MOMated sentence from the development data. On av-

phological analyzers, in this set of experiments. Wgrage (over all 1000 sentences and over all runs), the

see the main point of this section in illustrating then—best list only contained 6.13 different translations

applicability of our technique on awide range of Ianbf a sentence. The result of the same calculation

gg?ges_,llrz)clludlng languages for which such tools araepplied on the baseline run of MERT (which con-
varaple. verged in 9 iterations) was 34.85 hypotheses. This

We encounte_red problems when using MERT Riear disproportion shows that MERT had much less
balance the weights of the four model components. <. ~tion when optimizing our model

Our model consisted of 14 features — one for each

language model, five for each translation model oyerall, reverse self-training seems helpful for
(phrase probability and lexical weight for both di-transjating into morphologically rich languages. We
rections and phrase penalty), word penalty and digchieved promising gains in BLEU, even over the
tortion penalty. The extra 5 weights of the reverselyaseline including a language model trained on the
trained translation model caused MERT to diverge iPnonoIinguaI data. The improvement ranges from
some cases. Since we used ther t - noses. pl oyghly 0.3 (e.g. GermanCzech) to over 1 point
script for tuning and kept the default parametersenglish—German) absolute. This result also indi-

MERT ran for 25 iterations and stopped. As aresulgates that suffix trimming is a quite robust heuristic,
even though our method seemed to improve trangseful for a variety of language types.

lation performance in most language pairs, several
experiments contradicted this observation. We sim- Figure 2 illustrates the relationship between vo-
ply reran the final tuning procedure in these casasabulary size ratio of the language pair and the
and were able to achieve an improvement in BLEUmprovement in translation quality. Although the
as well. These language pairs are marked with a "points are distributed quite irregularly, a certain ten-
sign in Table 1. dency towards higher gains with higher ratios is ob-
A possible explanation for this behaviour ofservable. We assume that reverse self-training is
MERT is that the alternative decoding paths add most useful in cases where a single word form in the
lot of possible derivations that generate the samsource language can be translated as several formsin
string. To validate our hypothesis we examined the target language. A higher ratio between vocab-
diverging run of MERT for English-Czech transla- ulary sizes suggests that these cases happen more
tion with two translation models. Our n-best listsoften, thus providing more space for improvement
contained the best 100 derivations for each transising our method.
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4.3 Data Sizes Figure 3. Relation between monolingual data size and

We conducted a series of English-to-Czech exper@iains in BLEU score

ments with fixed parallel data and a varying size of

monolingual data. We used the CzEng corpus, 500 Sl Y Sy —
thousand parallel sentences and from 500 thousand 32F  MonolM ------- 7
up to 5 million monolingual sentences. We used 31+
two separate sets of 1000 sentences from CzEng for
development and evaluation. Our results are sum-
marized in Figure 3. The gains in BLEU become
more significant as the size of included monolingual L - |
data increases. The highest improvement can be ob- 26 T . . .
served when the data are largest — over 3 points ab- 0 1 2 3 4 5
solute. Figure 4 shows an example of the impact on Monolingual data size (millions of sentences)
translation quality — the “Mono” data are 5 million

sentences. Fi 5: Varyi llel data si face f
. . . igure 5. Varying parallel data size, surface form cov-
When evaluated from this point of view, our rage (“Parallel”, “Parallel and Mono”) and BLEU score

methoql can also pe seen as a way of consi_der_a ¥ono LM”, “Mono LM and TM")
improving translation quality for languages with lit-
tle available parallel data.

We also experimented with varying size of paral-
lel data (500 thousand to 5 million sentences) and its 38
effect on reverse self-training contribution. The size
of monolingual data was always 5 million sentences.
We first measured the percentage of test data word 34
forms covered by the training data. We calculated
the value for parallel data and for the combination of P
parallel and monolingual data. For word forms that 30 4 92
appeared only in the monolingual data, a different
form of the word had to be contained in the parallel ;;) Parallel and Mono =~ 1 90
data (so that the model can learn it through the back- 26 1
off heuristic) in order to be counted in. The differ- 0 PO'5 to15 2 25 3 35 4 45

- . arallel data size (millions of sentences)
ence between the first and second value can simply
be thought of as the upper-bound estimation of re-

verse self-training contribution. Figure 5 shows the, 0| sentences and another 5 million sentences as
results along with BLEU scores achieved in tranSIat'arget-side monolingual data. As in the previous

tion experiments following this scenario. section, the sizes of our development and evaluation
Our technique has much greater effect for smallats were a thousand sentences.

parallel data sizes; the amount of newly learned CzEng annotation contains lexically disam-

word forms declines rapidly as the size growspigyated word lemmas, an appealing option for our
Similarly, improvement in BLEU score decreasesyrposes. We also tried trimming the last 3 charac-
quickly and becomes negligible around 2 milliongs of each word, keeping at least the first 3 charac-
parallel sentences. ters intact. Stemming of each word to four charac-
ters was also evaluated (Stem-4).

Table 3 summarizes our results. The last column
We experimented with several options for the backshows the vocabulary size compared to original vo-
off factor in English—Czech translation. Data from cabulary size, estimated on lower-cased words.
training section of CzEng were used, 1 million par- We are not surprised by stemming performing the

30 -

BLEU

29

28 -

M(I)no LIM anld TI\/II

=~ 4 o8

-1 96

BLEU

4 94

Coverage of surface forms (%)

4.4 Back-off Techniques
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System Translation Gloss

Baseline Jsi tak zrcadla? Are ygt So mirrors? (ungrammatical)
+Mono LM Jsi neobjednavejte zrcadla?  Did yeudon't ordelp;, mirrors? (ungrammatical)
+Mono TM Uz sis objednal zrcadla?  Have yguordered the mirrors (for yourself) yet?

Figure 4: Translation of the sentence “Did you order the ong?” by baseline systems and a reversely-trained system.
Only the last one is able to generate the correct form of theliarder”.

worst — the equivalence classes generated by thisan the parallel data. Our BLEU scores were also
simple heuristic are too broad. Using lemmas seenadfected by submitting translation outputs without
optimal from the linguistic point of view, however normalized punctuation and with a slightly different
suffix trimming outperformed this approach in ourtokenization.

experiments. We feel that finding well-performing |n this scenario, a lot of parallel data were avail-
back-off techniques for other languages merits furable and we did not manage to prepare a reversely

ther research. trained model from larger monolingual data. Both
Back-off BLEU Vocabulary Size (%) of these factors contributed to the inconclusive re-
Baseline 31.823.24 100 sults.
Stem-4 32.733.19 19 Table 4 shows case-insensitive BLEU scores as
Lemma 33.05:3.40 54 calculated in the official evaluation.
Trimmed Suffix 33.28+3.32 47
. i . Target Language Mono LM +Mono TM
Table 3: Back-off BLEU scores comparison German 148 148
Czech 15.7 15.9
4.5 WMT Systems Table 4: Case-insensitive BLEU of WMT systems

We submitted systems that used reverse self-
training (cu-t anchyna) for English—Czech and
English—German language pairs. i

Our parallel data for German were constrained t§ Conclusion
the provided set (1.9 million sentences). For Czech, . _ . _
we used the training sections of CzEng and the sue!\-/e mtroducgd a technique fo_r exploiting monqlm-
plied WMT11 News Commentary data (7.3 miIIiongual data t.o improve the quality of translation into
sentences in total). morphologically rich languages.

In case of German, we only used the supplied We carried out experiments showing improve-
monolingual data, for Czech we used a large coMents in BLEU when using our method for trans-
lection of texts for language modelling (i.e. unconJating into Czech, Finnish, German and Slovak with
strained). The reverse self-training used only themall parallel data. We discussed the issues of in-
constrained data — 2.3 million sentences in Germafiuding similar translation models as separate com-
and 2.2 in Czech. In case of Czech, we only useonents in MERT.
the News monolingual data from 2010 and 2011 for We showed that gains in BLEU score increase
reverse self-training — we expected that recent dawith growing size of monolingual data. On the other
from the same domain as the test set would improveand, growing parallel data size diminishes the ef-
translation performance the most. fect of our method quite rapidly. We also docu-

We achieved mixed results with these systems mented our experiments with several back-off tech-
for translation into German, reverse self-training didiiques for English to Czech translation.

not improve translation performance. For Czech, Finally, we described our primary submissions to

we were able to achieve a small gain, even thougihe WMT 2011 Shared Translation Task.
the reversely translated data contained less sentences
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