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Abstract

This paper describes LIMSI’s submissions to
the Sixth Workshop on Statistical Machine
Translation. We report results for the French-
English and German-English shared transla-
tion tasks in both directions. Our systems
use n-code, an open source Statistical Ma-
chine Translation system based on bilingual
n-grams. For the French-English task, we fo-
cussed on finding efficient ways to take ad-
vantage of the large and heterogeneous train-
ing parallel data. In particular, using a sim-
ple filtering strategy helped to improve both
processing time and translation quality. To
translate from English to French and Ger-
man, we also investigated the use of the
SOUL language model in Machine Trans-
lation and showed significant improvements
with a 10-gram SOUL model. We also briefly
report experiments with several alternatives to
the standard n-best MERT procedure, leading
to a significant speed-up.

1 Introduction

This paper describes LIMSI’s submissions to the
Sixth Workshop on Statistical Machine Translation,
where LIMSI participated in the French-English and
German-English tasks in both directions. For this
evaluation, we used n-code, our in-house Statistical
Machine Translation (SMT) system which is open-
source and based on bilingual n-grams.

This paper is organized as follows. Section 2 pro-
vides an overview of n-code, while the data pre-
processing and filtering steps are described in Sec-
tion 3. Given the large amount of parallel data avail-

able, we proposed a method to filter the French-
English GigaWord corpus (Section 3.2). As in our
previous participations, data cleaning and filtering
constitute a non-negligible part of our work. This
includes detecting and discarding sentences in other
languages; removing sentences which are also in-
cluded in the provided development sets, as well as
parts that are repeated (for the monolingual news
data, this can reduce the amount of data by a fac-
tor 3 or 4, depending on the language and the year);
normalizing the character set (non-utf8 characters
which are aberrant in context, or in the case of the
GigaWord corpus, a lot of non-printable and thus in-
visible control characters such as EOT (end of trans-
mission)1).

For target language modeling (Section 4), a stan-
dard back-off n-gram model is estimated and tuned
as described in Section 4.1. Moreover, we also in-
troduce in Section 4.2 the use of the SOUL lan-
guage model (LM) (Le et al., 2011) in SMT. Based
on neural networks, the SOUL LM can handle an
arbitrary large vocabulary and a high order marko-
vian assumption (up to 10-gram in this work). Fi-
nally, experimental results are reported in Section 5
both in terms of BLEU scores and translation edit
rates (TER) measured on the provided newstest2010
dataset.

2 System Overview

Our in-house n-code SMT system implements the
bilingual n-gram approach to Statistical Machine
Translation (Casacuberta and Vidal, 2004). Given a

1This kind of characters was used for Teletype up to the sev-
enties or early eighties.
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source sentence sJ
1, a translation hypothesis t̂I

1 is de-
fined as the sentence which maximizes a linear com-
bination of feature functions:

t̂I
1 = argmax

tI
1

{
M

∑
m=1

λmhm(sJ
1, t

I
1)

}
(1)

where sJ
1 and tI

1 respectively denote the source and
the target sentences, and λm is the weight associated
with the feature function hm. The translation fea-
ture is the log-score of the translation model based
on bilingual units called tuples. The probability as-
signed to a sentence pair by the translation model is
estimated by using the n-gram assumption:

p(sJ
1, t

I
1) =

K

∏
k=1

p((s, t)k|(s, t)k−1 . . .(s, t)k−n+1)

where s refers to a source symbol (t for target) and
(s, t)k to the kth tuple of the given bilingual sentence
pair. It is worth noticing that, since both languages
are linked up in tuples, the context information pro-
vided by this translation model is bilingual. In ad-
dition to the translation model, eleven feature func-
tions are combined: a target-language model (see
Section 4 for details); four lexicon models; two lex-
icalized reordering models (Tillmann, 2004) aim-
ing at predicting the orientation of the next transla-
tion unit; a “weak” distance-based distortion model;
and finally a word-bonus model and a tuple-bonus
model which compensate for the system preference
for short translations. The four lexicon models are
similar to the ones used in a standard phrase-based
system: two scores correspond to the relative fre-
quencies of the tuples and two lexical weights are
estimated from the automatically generated word
alignments. The weights associated to feature func-
tions are optimally combined using a discriminative
training framework (Och, 2003) (Minimum Error
Rate Training (MERT), see details in Section 5.4),
using the provided newstest2009 data as develop-
ment set.

2.1 Training

Our translation model is estimated over a training
corpus composed of tuple sequences using classi-
cal smoothing techniques. Tuples are extracted from

a word-aligned corpus (using MGIZA++2 with de-
fault settings) in such a way that a unique segmenta-
tion of the bilingual corpus is achieved, allowing to
estimate the n-gram model. Figure 1 presents a sim-
ple example illustrating the unique tuple segmenta-
tion for a given word-aligned pair of sentences (top).

Figure 1: Tuple extraction from a sentence pair.

The resulting sequence of tuples (1) is further re-
fined to avoid NULL words in the source side of the
tuples (2). Once the whole bilingual training data is
segmented into tuples, n-gram language model prob-
abilities can be estimated. In this example, note that
the English source words perfect and translations
have been reordered in the final tuple segmentation,
while the French target words are kept in their orig-
inal order.

2.2 Inference

During decoding, source sentences are encoded
in the form of word lattices containing the most
promising reordering hypotheses, so as to reproduce
the word order modifications introduced during the
tuple extraction process. Hence, at decoding time,
only those encoded reordering hypotheses are trans-
lated. Reordering hypotheses are introduced using
a set of reordering rules automatically learned from
the word alignments.

In the previous example, the rule [perfect transla-
tions ; translations perfect] produces the swap of
the English words that is observed for the French
and English pair. Typically, part-of-speech (POS)
information is used to increase the generalization
power of such rules. Hence, rewriting rules are built
using POS rather than surface word forms. Refer

2http://geek.kyloo.net/software
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to (Crego and Mariño, 2007) for details on tuple ex-
traction and reordering rules.

3 Data Pre-processing and Selection

We used all the available parallel data allowed in
the constrained task to compute the word align-
ments, except for the French-English tasks where
the United Nation corpus was not used to train our
translation models. To train the target language
models, we also used all provided data and mono-
lingual corpora released by the LDC for French
and English. Moreover, all parallel corpora were
POS-tagged with the TreeTagger (Schmid, 1994).
For German, the fine-grained POS information used
for pre-processing was computed by the RFTag-
ger (Schmid and Laws, 2008).

3.1 Tokenization
We took advantage of our in-house text process-
ing tools for the tokenization and detokenization
steps (Déchelotte et al., 2008). Previous experi-
ments have demonstrated that better normalization
tools provide better BLEU scores (Papineni et al.,
2002). Thus all systems are built in “true-case.”

As German is morphologically more complex
than English, the default policy which consists in
treating each word form independently is plagued
with data sparsity, which poses a number of diffi-
culties both at training and decoding time. Thus,
to translate from German to English, the German
side was normalized using a specific pre-processing
scheme (described in (Allauzen et al., 2010)), which
aims at reducing the lexical redundancy and splitting
complex compounds.

Using the same pre-processing scheme to trans-
late from English to German would require to post-
process the output to undo the pre-processing. As in
our last year’s experiments (Allauzen et al., 2010),
this pre-processing step could be achieved with a
two-step decoding. However, by stacking two de-
coding steps, we may stack errors as well. Thus, for
this direction, we used the German tokenizer pro-
vided by the organizers.

3.2 Filtering the GigaWord Corpus
The available parallel data for English-French in-
cludes a large Web corpus, referred to as the Giga-
Word parallel corpus. This corpus is very noisy, and

contains large portions that are not useful for trans-
lating news text. The first filter aimed at detecting
foreign languages based on perplexity and lexical
coverage. Then, to select a subset of parallel sen-
tences, trigram LMs were trained for both French
and English languages on a subset of the available
News data: the French (resp. English) LM was used
to rank the French (resp. English) side of the cor-
pus, and only those sentences with perplexity above
a given threshold were selected. Finally, the two se-
lected sets were intersected. In the following exper-
iments, the threshold was set to the median or upper
quartile value of the perplexity. Therefore, half (or
75%) of this corpus was discarded.

4 Target Language Modeling

Neural networks, working on top of conventional
n-gram models, have been introduced in (Bengio
et al., 2003; Schwenk, 2007) as a potential means
to improve conventional n-gram language models
(LMs). However, probably the major bottleneck
with standard NNLMs is the computation of poste-
rior probabilities in the output layer. This layer must
contain one unit for each vocabulary word. Such a
design makes handling of large vocabularies, con-
sisting of hundreds thousand words, infeasible due
to a prohibitive growth in computation time. While
recent work proposed to estimate the n-gram dis-
tributions only for the most frequent words (short-
list) (Schwenk, 2007), we explored the use of the
SOUL (Structured OUtput Layer Neural Network)
language model for SMT in order to handle vocabu-
laries of arbitrary sizes.

Moreover, in our setting, increasing the order of
standard n-gram LM did not show any significant
improvement. This is mainly due to the data spar-
sity issue and to the drastic increase in the number of
parameters that need to be estimated. With NNLM
however, the increase in context length at the input
layer results in only a linear growth in complexity
in the worst case (Schwenk, 2007). Thus, training
longer-context neural network models is still feasi-
ble, and was found to be very effective in our system.
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4.1 Standard n-gram Back-off Language
Models

To train our language models, we assumed that the
test set consisted in a selection of news texts dat-
ing from the end of 2010 to the beginning of 2011.
This assumption was based on what was done for
the 2010 evaluation. Thus, for each language, we
built a development corpus in order to optimize the
vocabulary and the target language model.

Development set and vocabulary In order to
cover different periods, two development sets were
used. The first one is newstest2008. This corpus is
two years older than the targeted time period; there-
fore, a second development corpus named dev2010-
2011 was collected by randomly sampling bunches
of 5 consecutive sentences from the provided news
data of 2010 and 2011.

To estimate such large LMs, a vocabulary
was first defined for each language by including
all tokens observed in the Europarl and News-
Commentary corpora. For French and English, this
vocabulary was then expanded with all words that
occur more than 5 times in the French-English Gi-
gaWord corpus, and with the most frequent proper
names taken from the monolingual news data of
2010 and 2011. As for German, since the amount
of training data was smaller, the vocabulary was ex-
panded with the most frequent words observed in the
monolingual news data of 2010 and 2011. This pro-
cedure resulted in a vocabulary containing around
500k words in each language.

Language model training All the training data al-
lowed in the constrained task were divided into sev-
eral sets based on dates or genres (resp. 9 and 7
sets for English and French). On each set, a stan-
dard 4-gram LM was estimated from the 500k words
vocabulary using absolute discounting interpolated
with lower order models (Kneser and Ney, 1995;
Chen and Goodman, 1998).

All LMs except the one trained on the news cor-
pora from 2010-2011 were first linearly interpolated.
The associated coefficients were estimated so as to
minimize the perplexity evaluated on dev2010-2011.
The resulting LM and the 2010-2011 LM were fi-
naly interpolated with newstest2008 as development
data. This procedure aims to avoid overestimating

the weight associated to the 2010-2011 LM.

4.2 The SOUL Model

We give here a brief overview of the SOUL LM;
refer to (Le et al., 2011) for the complete training
procedure. Following the classical work on dis-
tributed word representation (Brown et al., 1992),
we assume that the output vocabulary is structured
by a clustering tree, where each word belongs to
only one class and its associated sub-classes. If wi

denotes the i-th word in a sentence, the sequence
c1:D(wi) = c1, . . . ,cD encodes the path for the word
wi in the clustering tree, with D the depth of the tree,
cd(wi) a class or sub-class assigned to wi, and cD(wi)
the leaf associated with wi (the word itself). The
n-gram probability of wi given its history h can then
be estimated as follows using the chain rule:

P(wi|h) = P(c1(wi)|h)
D

∏
d=2

P(cd(wi)|h,c1:d−1)

Figure 2 represents the architecture of the NNLM
to estimate this distribution, for a tree of depth
D = 3. The SOUL architecture is the same as for
the standard model up to the output layer. The
main difference lies in the output structure which in-
volves several layers with a softmax activation func-
tion. The first softmax layer (class layer) estimates
the class probability P(c1(wi)|h), while other out-
put sub-class layers estimate the sub-class proba-
bilities P(cd(wi)|h,c1:d−1). Finally, the word layers
estimate the word probabilities P(cD(wi)|h,c1:D−1).
Words in the short-list are a special case since each
of them represents its own class without any sub-
classes (D = 1 in this case).

5 Experimental Results

The experimental results are reported in terms of
BLEU and translation edit rate (TER) using the
newstest2010 corpus as evaluation set. These auto-
matic metrics are computed using the scripts pro-
vided by the NIST after a detokenization step.

5.1 English-French

Compared with last year evaluation, the amount of
available parallel data has drastically increased with
about 33M of sentence pairs. It is worth noticing
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Figure 2: Architecture of the Structured Output Layer
Neural Network language model.

that the provided corpora are not homogeneous, nei-
ther in terms of genre nor in terms of topics. Never-
theless, the most salient difference is the noise car-
ried by the GigaWord and the United Nation cor-
pora. The former is an automatically collected cor-
pus drawn from different websites, and while some
parts are indeed relevant to translate news texts, us-
ing the whole GigaWord corpus seems to be harm-
ful. The latter (United Nation) is obviously more
homogeneous, but clearly out of domain. As an il-
lustration, discarding the United Nation corpus im-
proves performance slightly.

Table 1 summarizes some of our attempts at deal-
ing with such a large amount of parallel data. As
stated above, translation models are trained with
the news-commentary, Europarl, and GigaWord cor-
pora. For this last data set, results show the reward of
sentence pair selection as described in Section 3.2.
Indeed, filtering out 75% of the corpus yields to
a significant BLEU improvement when translating
from English to French and of 1 point in the other
direction (line upper quartile in Table 1). More-
over, a larger selection (50% in the median line) still
increases the overall performance. This shows the
room left for improvement by a more accurate data
selection process such as a well optimized thresh-
old in our approach, or a more sophisticated filtering
strategy (see for example (Foster et al., 2010)).

Another issue when using such a large amount

System en2fr fr2en
BLEU TER BLEU TER

All 27.4 56.6 26.8 55.0
Upper quartile 27.8 56.3 28.4 53.8
Median 28.1 56.0 28.6 53.5

Table 1: English-French translation results in terms of
BLEU score and TER estimated on newstest2010 with
the NIST script. All means that the translation model is
trained on news-commentary, Europarl, and the whole
GigaWord. The rows upper quartile and median corre-
spond to the use of a filtered version of the GigaWord.

of data is the mismatch between the target vocab-
ulary derived from the translation model and that of
the LM. The translation model may generate words
which are unknown to the LM, and their probabili-
ties could be overestimated. To avoid this behaviour,
the probability of unknown words for the target LM
is penalized during the decoding step.

5.2 English-German
For this translation task, we compare the impact of
two different POS-taggers to process the German
part of the parallel data. The results are reported
in Table 2. Results show that to translate from En-
glish to German, the use of a fine-grained POS infor-
mation (RFTagger) leads to a slight improvement,
whereas it harms the source reordering model in the
other direction. It is worth noticing that to translate
from German to English, the RFTagger is always
used during the data pre-processing step, while a dif-
ferent POS tagger may be involved for the source
reordering model training.

System en2de de2en
BLEU TER BLEU TER

RFTagger 22.8 60.1 16.3 66.0
TreeTagger 23.1 59.4 16.2 66.0

Table 2: Translation results in terms of BLEU score
and translation edit rate (TER) estimated on newstest2010
with the NIST scoring script.

5.3 The SOUL Model
As mentioned in Section 4.2, the order of a con-
tinuous n-gram model such as the SOUL LM can
be raised without a prohibitive increase in complex-
ity. We summarize in Table 3 our experiments with
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SOUL LMs of orders 4, 6, and 10. The SOUL LM
is introduced in the SMT pipeline by rescoring the
n-best list generated by the decoder, and the asso-
ciated weight is tuned with MERT. We observe for
the English-French task: a BLEU improvement of
0.3, as well as a similar trend in TER, when intro-
ducing a 4-gram SOUL LM; an additional BLEU
improvement of 0.3 when increasing the order from
4 to 6; and a less important gain with the 10-gram
SOUL LM. In the end, the use of a 10-gram SOUL
LM achieves a 0.7 BLEU improvement and a TER
decrease of 0.8. The results on the English-German
task show the same trend with a 0.5 BLEU point
improvement.

SOUL LM en2fr en2de
BLEU TER BLEU TER

without 28.1 56.0 16.3 66.0
4-gram 28.4 55.5 16.5 64.9
6-gram 28.7 55.3 16.7 64.9
10-gram 28.8 55.2 16.8 64.6

Table 3: Translation results from English to French and
English to German measured on newstest2010 using a
100-best rescoring with SOUL LMs of different orders.

5.4 Optimization Issues
Along with MIRA (Margin Infused Relaxed Al-
gorithm) (Watanabe et al., 2007), MERT is the
most widely used algorithm for system optimiza-
tion. However, standard MERT procedure is known
to suffer from instability of results and very slow
training cycle with approximate estimates of one de-
coding cycle for each training parameter. For this
year’s evaluation, we experimented with several al-
ternatives to the standard n-best MERT procedure,
namely, MERT on word lattices (Macherey et al.,
2008) and two differentiable variants to the BLEU
objective function optimized during the MERT cy-
cle. We have recast the former in terms of a spe-
cific semiring and implemented it using a general-
purpose finite state automata framework (Sokolov
and Yvon, 2011). The last two approaches, hereafter
referred to as ZHN and BBN, replace the BLEU
objective function, with the usual BLEU score on
expected n-gram counts (Rosti et al., 2010) and
with an expected BLEU score for normal n-gram
counts (Zens et al., 2007), respectively. All expecta-

tions (of the n-gram counts in the first case and the
BLEU score in the second) are taken over all hy-
potheses from n-best lists for each source sentence.

Experiments with the alternative optimization
methods achieved virtually the same performance in
terms of BLEU score, but 2 to 4 times faster. Neither
approach, however, showed any consistent and sig-
nificant improvement for the majority of setups tried
(with the exception of the BBN approach, that had
almost always improved over n-best MERT, but for
the sole French to English translation direction). Ad-
ditional experiments with 9 complementary transla-
tion models as additional features were performed
with lattice-MERT, but neither showed any substan-
tial improvement. In the view of these rather incon-
clusive experiments, we chose to stick to the classi-
cal MERT for the submitted results.

6 Conclusion

In this paper, we described our submissions to
WMT’11 in the French-English and German-
English shared translation tasks, in both directions.
For this year’s participation, we only used n-code,
our open source Statistical Machine Translation sys-
tem based on bilingual n-grams. Our contributions
are threefold. First, we have shown that n-gram
based systems can achieve state-of-the-art perfor-
mance on large scale tasks in terms of automatic
metrics such as BLEU. Then, as already shown by
several sites in the past evaluations, there is a signifi-
cant reward for using data selection algorithms when
dealing with large heterogeneous data sources such
as the GigaWord. Finally, the use of a large vocab-
ulary continuous space language model such as the
SOUL model has enabled to achieve significant and
consistent improvements. For the upcoming evalua-
tion(s), we would like to suggest that the important
work of data cleaning and pre-processing could be
shared among all the participants instead of being
done independently several times by each site. Re-
ducing these differences could indeed help improve
the reliability of SMT systems evaluation.
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